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Abstract

Event-Based Cameras (EBCs), unlike conventional cameras, feature independent pixels

that asynchronously generate outputs upon detecting changes in their field of view.

Short calculations are performed on each event to mimic the brain. The output is a

sparse sequence of events with high temporal precision. Conventional computer vision

algorithms do not leverage these properties. Thus a new paradigm has been devised.

While event cameras are very efficient in representing sparse sequences of events

with high temporal precision, many approaches are challenged in applications where a

large amount of spatially-temporally rich information must be processed in real-time.

In reality, most tasks in everyday life take place in complex and uncontrollable envi-

ronments, which require sophisticated models and intelligent reasoning. Typical hard

problems in real-world scenes are detecting various non-uniform objects or navigation

in an unknown and complex environment. In addition, colour perception is an es-

sential fundamental property in distinguishing objects in natural scenes. Colour is a

new aspect of event-based sensors, which work fundamentally differently from standard

cameras, measuring per-pixel brightness changes per colour filter asynchronously rather

than measuring ”absolute” brightness at a constant rate.

This thesis explores neuromorphic event-based processing methods for high-noise

and cluttered environments with imbalanced classes. A fully event-driven processing

pipeline was developed for agricultural applications to perform fruits detection and

classification to unlock the outstanding properties of event cameras. The nature of

features in such data was explored, and methods to represent and detect features were

demonstrated. A framework for detecting and classifying features was developed and

evaluated on the N-MNIST and Dynamic Vision Sensor (DVS) gesture datasets. The

same network was evaluated on laboratory recorded and real-world data with various

internal variations for fruits detection such as overlap, variation in size and appearance.

In addition, a method to handle highly imbalanced data was developed. We examined

the characteristics of spatio-temporal patterns for each colour filter to help expand our

understanding of this novel data and explored their applications in classification tasks

where colours were more relevant features than shapes and appearances.

The results presented in this thesis demonstrate the potential and efficacy of event-

based systems by demonstrating the applicability of colour event data and the viability

of event-driven classification.
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Chapter 1

INTRODUCTION

1.1 Motivation

Conventional video cameras represent the world as a sequence of static images captured

in rapid succession. By repeating this process, the information from the visual scene

becomes sampled at a fixed rate (i.e. discrete point in time). While this is the most

common way of capturing visual information, this method suffers from several draw-

backs: (i) The dynamic of the scenes depends on the sampling rate. Static scenes are

sampled at the same rate as high-speed scenes leading to redundancy or information

loss between the frames. (ii) Motion-blur occurs during rapid motion when the shutter

is open. (iii) Uniform exposure across the pixels limits the intrascene dynamic range.

Despite the advances in computational power, pixel resolution, and frame rates, even

the state-of-the-art computer vision methods fall far short of biological vision systems’

robustness, reliability, and energy consumption.

Event-based cameras (EBC) attempt to replicate some of the benefits of biological

retinas and provide a vastly different paradigm in which to sense and process the visual

world. They capture visual information continuously through time, with each pixel

storing a reference level of brightness and continuously comparing it with the current

level and generating data only when a certain amount of change is detected. The final

output of the camera is an asynchronous stream of events triggered by per-pixel changes

in brightness.

While event-based vision is an emerging technology in the era of mature frame-based

camera hardware and software, there is no agreement on the best methods to process

events, notably because they primarily depend on the application. Different trade-offs

are involved for each method, such as latency vs power consumption and accuracy

or sensitivity vs bandwidth and processing capacity, which should be processed and

adjusted according to the algorithm and platform capacity.

Two categories of event-based methods can be distinguished: (i) methods designed

for static cameras with movable objects and (ii) methods designed for moving cameras.

EBC sends only information when a change in contrast between edges is observed.

When the camera is static, the events are mainly triggered by moving objects. For a

moving camera, the events are triggered by the whole scene, including the foreground
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and background. Static camera setups allow for robust event-based algorithms due to

the sparsity of the scene achieving minimum latency. The latter is more challenging

because an algorithm is not only waiting for a change in contrast in the scene but also

requires an understanding of the dynamic of the entire scene, which includes real and

noise events. The mode of operation of our setuo comprised on an EBC moving freely

in front of static scene with dense and cluttered background. This study raises some

fundamental questions which drive the algorithmic design, such as:

• What to detect?

• How it should be detected?

• What kind and how many distortions can be handled?

A challenging research area involves developing methods to optimise the sensor

and algorithm parameters for optimal performance and preserve temporal resolution

throughout the computation and processing pipeline.

Another challenge is to develop bio-inspired systems that are natively event-based

end-to-end from perception to control and actuation. Thus, event cameras pose the

challenge of rethinking perception, control, and actuation. As a result, there is a need

to develop new algorithms and paradigms in which to handle and process the event-

based data in complex and cluttered scenes without the need to convert the events into

frames.

The majority of event cameras work to date use grayscale (i.e. monochromatic)

[Lichtsteiner et al., 2006, Posch et al., 2011] and only a minority of researchers have

explored colour event cameras, primarily due to the challenges of building such sen-

sors. Colour processing in the human visual system is not fully understood yet, and

colour computer vision tasks are handled by ad-hoc and computationally expensive

algorithms. A challenging research area in colour events is replicating some of the

benefits of biological retinas in colour recognition and processing. It is an inherently

challenging problem because the methods commonly applied to conventional imaging

are not directly applicable to the colour event sensor. That is because EBCs transmit

brightness changes per pixel and per colour filter asynchronously rather than measuring

absolute brightness at a constant rate. For that reason, some fundamental questions

arise, such as:

• How should we process colour spikes?

• Are colour spikes important for visual recognition?

• Do we need more complex algorithms that work on simple grey levels data or a

simple algorithm for complex colour datasets?

This thesis addresses and explores these questions, provide insights and answers

into detecting objects in cluttered scenes, and investigates the role and importance of

colours in event-based vision.
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1.2 Aims

This work explores event-driven algorithms that can be applied in agricultural appli-

cations such as fruits detection and classification. The aim is to investigate methods to

extract robust features to perform detection and classification in dense and cluttered

scenes using only events spikes.

This work presents insights into neuromorphic colour imagers through rigorous char-

acterisation and identifying key parameters that can provide more relevant information

for features. The findings of this thesis will provide a better understanding of the pixel

response and the internal properties of the Bayer filter purely from the DVS output.

1.3 Contribution of this Work

The main contributions of this thesis are the development of end-to-end event-based

object detection and classification architecture that comprises an unsupervised feature

extractor with a single feed-forward (i.e. without back-propagation) classification algo-

rithms. In addition, this work aims to characterise the novel data from an event-based

colour sensor to demonstrate its key operations in colour transition and classification

using the events statistical properties.

1.4 Structure of this Thesis

Each section in this thesis introduces the research gap with a list of research questions

and contains a detailed discussion of the specific contribution made. This thesis is

organised as follows:

• Chapter 2 presents a detailed literature review about event-based devices used in

this research, such as the monochromatic and colour sensor. It also covers feature

detection algorithms in conventional computer vision and the event-based domain

relevant to this work. The literature also includes recent advances in agricultural

applications, which is the main application of this thesis.

• Chapter 3 provides an in-depth study about the CDAVIS sensor by characterising

the response of the colour events purely from the DVS output and showcases the

spatio-temporal output patterns generated by each colour filter.

• Chapter 4 introduces three different variants of event-based object detection and

classification architectures that take into account supervisory signals in the event-

based visual data across different types of datasets such as laboratory recorded

data and recording from real-world scenes. Multiple algorithm configurations were

tested with a range of back-end classifiers, with the performances being analysed

at each processing stage. The performance of the network was evaluated on the

N-MNIST and DVS Gesture dataset.

3



• Chapter 5 provides the conclusions to work performed in this thesis and includes

a discussion of potential future work.

Appendix A contains a detailed method for classifying colour against non-colour

event-based data using the statistical properties of the events. Appendix B presents

the initial dichromatic colour event prototype comprised of two event-based sensor chips

with two colour filters and using a dichroic beam-splitter to ensure that the full spatial

resolution of the sensors is preserved. Appendix C presents additional figures and tables

included as supplementary materials related to chapter 4. Appendix D provides more

examples of how the spatio-temporal pattern of colour events look in various conditions.
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Chapter 2

LITERATURE REVIEW

2.1 Colour Sensing and Perception

The retina is part of the eye that detects colour, and the visual cortex is the part of

the brain that processes the information it receives from the retina. The information is

interpreted from available light and used to build and construct a representation of the

visual world. This process begins when light passes through the transparent element of

the eye and hits the retina. When viewing a scene, the human visual system extracts

information about the light wavelength, which is why we see in colour. This process

results in the perception in which colour is one of the elements.

Throughout evolution, the benefit of colour for our ancestors was clear: seeing in

colour makes it easier to find food, such as the colour of the fruit against leaves and the

ability to detect camouflaged animals. Considering the sheer amount of information

that surrounds us and how much of it is based on colour, it is not surprising that

most visual information in our world is colour-coded, such as traffic light, advertising,

graphic design, and the digital world.

Conventional digital processing systems have primarily focused on intensity grayscale

images, and colour was just considered as a dimensional extension of intensity dimen-

sion. That is, colour images were treated just as three grey value images, not taking

into consideration the multidimensional nature of human colour perception or colour

sensory system in general [Trémeau et al., 2008].

Colour is an internal sensation produced by the visual system from light wavelengths

emitted by external objects. The relationship between chromatic stimuli and perception

is complicated and not fully understood.

Historically, human colour perception is described by two major theories: the

trichromatic colour theory and the colour opponent-process theory. The Young-Helmholtz

trichromatic theory, which was introduced in 1801 [Lee, 2008] gave a complete descrip-

tion of colour perception and suggested that the retina contained three types of nerve

fibres (receptors), which are stimulated by a lesser or greater wavelength that corre-

sponds to red, green, and violet colours. This finding led to the hypothesis that normal

colour vision is based on the activity of three types of receptors, each with different

peak sensitivity.
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A few years later, James C. Maxwell [noa, 1865] confirmed Young and Helmholtz’s

theory and demonstrated that any colour in the spectrum could be matched with the

monochromatic primary colours. However, they incorrectly assumed that colour per-

ception resulted from a linear combination of cell activities, and the colour appearance

was not studied yet. Hering’s opponent colours theory introduced in 1892 [Lee, 2008]

was the first to bring the issue of colour appearance to prominence, and he proposed

the colour-opponency mechanism-based of four colours: yellow, red, blue, and green ar-

ranged in mutually excluding pairs, and two achromatic colours: black and white. The

theory explains colour vision phenomena that result from how photoreceptors are inter-

connected neurally. However, Jameson and D’Andrade [1997] have proved that colour

perception is not due to opponent processes and that the colour perception emerges

further up in the visual pathway. More recently, [Land, 1959] proposed the retinex

theory (Land’s Retinex), which refers to the contraction of the Retina and cortex. The

theory indicates that colour perception with colour constancy involves all levels of vi-

sual processing from the Retina to the visual cortex contradicting the previous theories

that assume colour perception happens at the photoreceptor level.

As illustrated in Figure 2.1, the human eye is made up of three distinct layers of

tissue: Sclerotic coat, Choroid coat and Retina. The sclerotic coat is the outer layer;

it contributes to the image-forming process by refracting light entering the eye. The

choroid coat is the intermediate layer, this layer is pigmented with melanin that reduces

reflection of stray light in the eye, and it also forms the iris, which adjusts the size of

the pupil to regulate the amount of light admitted into the eye. The nervous system

controls the pupil, in dim light, the pupil opens wider letting more light into the eye,

and in bright light, the pupil closes [Zaidi et al., 2007]. The contraction of the pupil

is thought to be more of a primary defence mechanism to protect the Retina against

sudden changes in light. The inner layer of the eye is the Retina. Anatomically, the

Retina contains three types of photoreceptor cells: cones, rods and horizontal, bipolar,

amacrine and ganglion cells. A photoreceptor is capable of performing phototrans-

duction, by which the emitted photons are converted into an electrical signal which is

then transmitted to other neurons. Cones and rods are responsible for high precision

spatio-temporal light sensing. In terms of light, rods can function in low light, whereas

cones need much higher light levels. Rods are responsible for night vision, and cones

are used in daytime vision seeing colour and visual acuity. Cone cells exist in three

types: S, M and L [noa, 1990]. Given an electromagnetic spectrum, the photoreceptor

excitation can be derived from the sensitivity curves. Photoreceptors can also change

their sensitivity curve based on the amount of light received which is a slow adaption

process and can take several minutes.

The human visual system can adapt to colours, where colours remain unchanged

regardless of the changes in illuminance [Viqueira Pérez et al., 2010]. It is known as

chromatic adaption and colour constancy which is defined by the ability to deduct light

spectrum to preserve the chromatic appearance of a particular object within the visual

field. Colour adaptation is an internal process, and it happens after the photoreceptor
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Figure 2.1: Human eye structure with a drawing of the retina network. Modified from
Viqueira Pérez et al. [2010], Posch [2015].

receives the chromatic stimulus from the outside world. Colour constancy is an extreme

case of chromatic adaptation that associates a colour to an object regardless of the light

in which the object is seen. For instance, object colour might look similar during day

and night, even with fluorescent lighting.

(a) (b)

Figure 2.2: The differences between chromatic and achromatic edges. (a) An image of a
red fruit on a green background. The chromatic and achromatic images are shown with
their associate edges. (b) Shows a real world scene where contours are clearly delineated
in the chromatic than in the achromatic image (Source: Hansen and Gegenfurtner
[2017]).

Recent work in Hansen and Gegenfurtner [2017] investigated the benefits of chro-

matic edge contrast on object-contour perception. This study shows that chromatic

information is essential for representing object contour and detecting objects quickly

and easily. Furthermore, chromatic edges (e.g. red-green) do not result from shadow

but indicate a change in surface reflectance, which may signal an object contour. As

shown in Figure 2.2, in natural scenes, most of the edges combine luminance and colour,

which are only represented chromatically. However, in the achromatic image, the edges

of the fruits are hardly detectable because the luminance of the fruits and the back-

ground is almost the same. This is particularly important for the DVS because if the

edge contrasts are delineated, events will be triggered, indicating the presence of an

object. The study also suggests that strong chromatic edges likely signal an object
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boundary, while strong achromatic edges can also result from shadow.

2.2 Frame-based Computer Vision

The ability to recognise patterns and objects are an ordinary human skill. The same

recognition problem presents an unprecedented challenge for machine vision systems.

To allow the machine to recognise objects, feature extraction techniques have become

an apparent need in many processes which have much to do with computer vision,

object detection and localisation.

In the following sections, we provide a comprehensive overview of feature extraction

methods in Section 2.2.1, followed by a summarisation of recent methods in object

detection and their contribution to artificial intelligence in Section 2.2.2.

2.2.1 Feature Extraction

Extracting relevant features from the environment presents a challenge due to the

high information content of the visual input. Computers currently face challenges in

processing all the information they receive from the world in real-time due to the

computational power needed. To compensate, computer vision systems often select

only the relevant part of the scene because locating and retrieving a particular feature

in more complex environments require an attentive system that allows an algorithm to

isolate their target within the environment.

In recent times, the volume of available computer vision data has grown tremen-

dously, including the number of classes and the amount of raw information each instance

contains. Given the excessive amounts of raw information, the task of feature extraction

is as critical as ever for the successful application of machine learning. Such applica-

tions for feature extraction include natural language processing, image recognition, text

categorisation, audio analysis, bioinformatics. Many efforts were spent on building and

maintaining complex feature extraction pipelines, which has driven the research in both

industrial and academic fields and has made it into a broad and diverse topic [Sculley

et al., 2014]. The primary goal of feature extraction is to extract salience features that

are understandable to a learning algorithm from input data while removing noise and

unwanted events [Guyon et al., 2006]. The input information is then transformed into a

feature space that can be used as input for a learning algorithm. Without informative

features, it is impossible to generalise a trained network, but if relevant information is

retrieved and extracted, then a simple method can lead to superior results [Yang and

Pedersen, 1997].

A common approach for feature extraction is feature selection or variable subset

selection which deals with selecting a subset from a large input feature set [Blum

and Langley, 1997]. Feature selection is implemented on various methods such as vari-

able ranking [Rakotomamonjy, 2003], feature subset selection [Narendra and Fukunaga,

1977] and penalised least squares [Fan and Li, 2001]. Another general approach is fea-

ture re-weighting, which aims at finding the best weight for each feature [Wettschereck
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et al., 1997].

Another approach is feature normalisation which involves feature centring, rescaling

to target range or scaling to unit balls [Aksoy and Haralick, 2001]. Feature construction

is a different approach of feature extraction that involves creating new features from

input data such as bag-of-words or n-gram based vector [Liu and Motoda, 1998], and

clustering, in which case the constructed features are cluster centres instead of original

variables. Feature embeddings involve a map from the input data to a manifold to

preserve some statistical measure on the data, such as variance and reconstruction

error. An example of feature embedding is dimensionality reduction which involves

projecting features to lower-dimensional subspace [van der Maaten et al., 2009]. It aims

at learning a map from input data to a linear dimensional geometric structure. Principal

Component Analysis [Pearson, 1901], Random Projection [Hegde et al., 2008], Linear

Discriminant Analysis [Fisher, 1938] are also examples of dimensionality reduction.

Extensive studies have been devoted to nonlinear dimensionality reduction, which aims

at learning a map from input data onto some nonlinear low-dimensional geometric

structure or manifold [Lee and Verleysen, 2007].

The majority of these feature extractions method relies mostly on a distance metric

on the input space. Distance metric learning is a crucial area of feature extraction.

Some distance metric algorithms are local LDA [Fan and Li, 2001], relevance component

analysis [Bar-Hillel et al., 2003], large margin nearest neighbor [Weinberger and Saul,

2009], Bayesian active distance metric learning [Yang et al., 2012].

The breakthrough in Artificial Neural Network (ANN) and Deep Learning (DL) had

a significant impact on feature extraction because the learning mechanism is composed

of multiple nonlinear transformations of the input features. This mechanism of ex-

tracting features through hierarchical layers is called representation learning. The aim

of representation learning leveraging ANN is an automated way for feature extraction

without the need for human-engineered handcrafted features.

2.2.2 Object Detection

Object detection is a crucial computer vision task that detects instances of visual

objects of a particular class. Object detection aims to build computational models

and techniques that provide information for any computer vision application about the

object type and where it is located within the visual field. In the last two decades, it

has become widely accepted that the progress of object detection has generally gone

through two significant historical periods Zou et al. [2019] which was highly influenced

by AlexNet architecture and considered a breakthrough in the field of object detection

as illustrated in Figure 2.3. Most of the early attempts to develop object detection

algorithms were based on handcrafted features due to the lack of sufficient datasets at

that time and fewer computational resources. That is because they showed superior

performance, and they were easier to train with a much smaller sample [Lin et al., 2020,

Sejnowski, 2020]. Consequently, researchers worked on designing sophisticated feature

detection and developed multiple ways to increase the speed of computing resources.
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Figure 2.3: The progress of the state of object detection over two historical periods:
Traditional detection methods and deep learning based detection methods (Source: Zou
et al. [2019]).

Notable work on developing a robust and reliable object detector was proposed

by [Viola and Jones, 2001, 2004] (Viola-Jones Detectors), which achieved real-time

detection of human faces for the first time and faster than any other algorithms at the

time under comparable detection accuracy. The Viola-Jones detector involves sliding

windows to go through all possible locations and scales in an image to see if any

window contains a human face. Dalal and Triggs [2005] proposed Histogram of Oriented

Gradients (HOG) feature descriptor algorithm. HOG was developed to detect a variety

of object classes of different sizes to balance the feature invariance (i.e. translation,

scale, illumination, etc.) and has proved to be effective and efficient across a wide variety

of applications. Felzenszwalb et al. [2008] extended on HOG and proposed Deformable

Part-based Model (DPM) algorithm. DPM follows the detection philosophy of ”divide

and conquer”, where the training is considered as the learning of a proper way to

decompose an object, and the inference is considered as an ensemble of detections on

different object parts. Although many of current object detection algorithms surpassed

DPM in terms of performance and speed, many of them are still deeply influenced by

its valuable insights.

On the one hand, a significant increase and availability of high-performance comput-

ing power such as Graphical Processing Unit (GPU) led to the fast evolution of object

detection techniques. Also, the resurgence of Convolutional Neural Network (CNN)

[Lecun et al., 1998] improved the performance of detection algorithms by automatically

learning features as opposed to using handcrafted methods [Nanni et al., 2017]. Thus,

handcrafting features has become unnecessary for most applications, as CNN learns

what features to extract via backpropagation.

In recent times, the rapid development of DL has brought new types of object detec-

tion algorithms, which have led to remarkable breakthroughs in terms of performance,

computational efficiency, and speed. Thenceforth, object detection started to evolve at
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an unprecedented speed. Deep learning-based object detection can be divided into two

methods: one-stage detection, which frames the detection in one step, and two-stage

detection, which frames it as a coarse-to-fine process.

One Stage object Detection: You Look Only Once (YOLO) was proposed by [Red-

mon et al., 2016] as a one-stage detector. It is a real-time object detection algorithm

that can predict up to 100 bounding boxes per image by straight extracting features

from input images to predict class probabilities. However, a major disadvantage of

YOLO is that it fails to detect accurate object localisation. YOLOv2 [Redmon and

Farhadi, 2017] is an extension of YOLO and is an improvement over the previous design

in terms of speed and precision. Such improvements involved are listed below:

• Batch normalisation [Ioffe and Szegedy, 2015] which outputs activations with the

same distribution ahead of each convolutional layer.

• A higher resolution classifier includes a fine-tuned network to adjust to higher

resolution frames.

• Convolutional with Anchor Boxes which predict class and objectness for every

anchor box by removing fully connected layers.

• Predicting the size and aspect ratio of anchor boxes by using K-means clustering

on the training set bounding boxes to get good priors automatically.

• Fine-Grained Features concatenates the higher resolution features with the low-

resolution features by stacking adjacent features into different channels.

• Multi-Scale Training where the network chooses different image dimensions after

several iterations.

YOLOv3 [Redmon and Farhadi, 2018] adapts to more complex datasets with many

overlapping labels, and it uses three different feature map scales for bounding box pre-

diction using a robust feature extraction pipeline (DarkNet-53). Single Shot Detector

(SSD) [Liu et al., 2016] introduces multi-reference and multi-resolution detection tech-

niques and significantly improve the detection accuracy specifically for small objects

as well as precision. Deconvolutional Single Shot Detector (DSSD) [Fu et al., 2017]

increases the resolution of feature maps strengthen features. Every deconvolution layer

predicts a variety of objects of different sizes. RetinaNet [Lin et al., 2018] is a one-stage

detector that introduces focal loss function by reshaping the standard cross-entropy loss

so that detector puts more focus on complex and misclassified examples during train-

ing. The network has achieved higher accuracy and maintained a higher detection

speed with the focal loss.

Two Stage object Detection: RCNN [Girshick et al., 2014] is a two-stage region-

based CNN detector. It generates region proposals on the feature map by selective

search and extracts a fixed-length feature vector from each region proposal. A linear

support vector machine (SVM) then applies to classifying objects in one image to

predict the bounding box location. R-CNN suffers from slow detection speed due to the
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redundant feature computations on many overlapped proposals. Fast R-CNN [Girshick,

2015] comprised of extracting features from the input image then passes ROI pooling

layer to fixed-sized features which will be fed to the classifier to predict the bounding

box. The features are extracted once and are then sent to CNN for classification,

unlike, R-CNN which performs a forward pass for each region proposal without sharing

computation. Faster-RCNN [Ren et al., 2016] replaced the proposal ROI from Fast-

RCNN by the novel Region Proposal Network (RPN) as a fully connected network to

efficiently predict region proposals with a wide range of scales and aspect ratios. The

RPN speed up the region proposal mechanisms because it shares the full convolutional

feature maps with the detection network. Experiments with Faster-RCNN greatly

improved precision and detection efficiency.

The development of new object detection networks was bolstered by the availability

of open-source datasets and benchmarks. A number of well-known datasets and bench-

marks have been released such as PASCAL VOC Challenges which includes VOC2007

[Everingham et al., 2015b] and VOC2012 [Everingham et al., 2015a], ImageNet chal-

lenges [Russakovsky et al., 2015], MS-COCO Detection Challenge [Lin et al., 2015]. The

uses of challenging datasets as a benchmark are significant in advancing the current

state of DL because they can draw a standard comparison between different algorithms

and set goals for new solutions. These benchmarks became the standard in evalu-

ating every model and were adopted to measure the performance of algorithms with

the corresponding dataset. However, these benchmarks do not apply to neuromorphic

algorithms based on the standard frame-based dataset.

With the continuous development of object detection, there is a need for more ac-

curate and precise real-time systems to achieve high accuracy and efficient detection.

New directions need to focus on extracting rich features, exploiting good representa-

tions, improving processing speed, training from scratch, anchor-free methods, solving

sophisticated scene issues (small objects, occluded objects), increasing localisation ac-

curacy and enhancing classification confidence [Jiao et al., 2019].

2.3 Event-based Computer Vision

Event-based sensors pose a paradigm shift in the way visual information is acquired.

Their novelty has been exploited in applications where high speed, low data rate are

crucial elements, such as in mobile robotics, augmented and virtual/augmented reality

and video game applications, to name a few. However, because they work fundamen-

tally different from standard vision sensors, novel methods are required to process their

output and unlock their potential.

In the following sections, we describe the event-based vision sensor and its mode of

operations 2.3.1 for both monochromatic and colour vision. We provide an overview

of recent methods for event-based feature extractions 2.3.2 following by current imple-

mentations to perform event-based object detection and classification in Section 2.3.3.
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2.3.1 Event-Based Sensing

Figure 2.4: Summarise the principle of operation of the DVS camera with a rotating
dot stimulus (Source: Delbruck et al. [2010]).

The rise of computer vision as a field has been deeply inspired by Hubel and Wiesel

[1959] work which expanded our understanding of the biological visual system by in-

troducing several new analyses and approaches for neuronal processing in the cortex.

They demonstrated that visual processing always starts with simple structures, such

as oriented edges. Inspired by this experiment, Fukushima et al. [1983] developed the

first-ever neural network capable of recognising patterns using a sliding window moved

across images. A few years later, Lecun et al. [1998] developed a unique learning al-

gorithm called back-propagation and was applied to Fukushima’s CNN architecture,

which became the essential ingredients of current image recognition models. The field

then took advantage of the rapid growth in the amount of annotated data and the signif-

icant improvements in the power of optimised co-processors, such as GPU. As a result,

computational models could far exceed the performance of previous forms of artificial

intelligence in standard machine learning tasks. The CNN became the de-facto method

to solve complex image-driven pattern recognition tasks. It created a range of new

avenues for computer vision research offering a better understanding of its mechanism

in ANN architectures. However, at the implementation level, only marginal similarities

can be recognised between brain-like computing and analogue neural network, as used

in Artificial Intelligence (AI) applications. This is likely because conventional datasets

are mainly captured using a frame-based sensor, which is fundamentally different from

the human retina mode of operation. Frame-based sensors capture still and static im-

ages taken at a constant rate resulting in a snapshot of the whole scene and containing

redundant data, making it a disadvantage in applications where low latency, low power,

and high dynamic range are critical for decision making.

This idea of creating computational models that mimic the biological systems has

stimulated numerous studies to understand the relationship between the human sen-

sory and central nervous systems and apply computational neuroscience knowledge to
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construct intelligent machines. An example of this is the development of the first sil-

icon retina event cameras, which was made by Fukushima et al. [1970] and the work

of Mahowald [1992], which presented the first viable biologically-inspired device. Over

the next few decades, the neuromorphic community has developed a series of different

forms of silicone retina, including asynchronous spatial and temporal contrast sensors

by Boahen’s group Zaghloul and Boahen [2004a,b], temporal intensity sensors by Mallik

et al. [2005], temporal difference sensors by Kramer [2002], Lichtsteiner et al. [2006],

and spatial contrast sensors by Barbaro et al., Lenero-Bardallo et al. [2009], Posch et al.

[2011].

Silicone retina or EBC differs from conventional frame cameras by outputting a

stream of asynchronous events that encode the time, location, and polarity of bright-

ness changes. EBCs offer several vital properties such as the high temporal resolution

on the order of µs, a high dynamic range greater than 120 dB, low power consumption,

and high pixel bandwidth on the order of kHz. For an EBC, each pixel is triggered in-

dependently and asynchronously in response to the logarithmic luminance change when

it exceeds a fixed threshold. A frame-based camera acquires full images at a constant

rate regardless of whether this information has changed since the last frame. Collecting

and processing this additional data wastes resources and increases channel bandwidth

and memory requirements and high transmission power dissipation. The events bundle

spatial and temporal information and boolean polarity encoding, indicating that there

is a significant change corresponding to an increase or decrease in brightness. Events

are transferred using Address-Event Representation (AER) communication protocol

through a USB bus. Figure 2.4 illustrates an example of a high-speed stimulus that

generates a sparse and asynchronous digital stream of address-event, which rapidly

signifies changes in the scene reflectance.

Bio-inspired vision sensors, such as the EBC, have shown their potential to provide

advantages in a range of applications such as object tracking Delbruck and Lang [2013],

Glover and Bartolozzi [2016], surveillance and monitoring Litzenberger et al. [2006a],

object recognition Lee et al. [2014], Amir et al. [2017], Litzenberger et al. [2006a],

depth estimation Rogister et al. [2012a,b], 3D scanning Matsuda et al. [2015], optical

flow estimation Zhu et al. [2018a], Matsuda et al. [2015], image reconstruction with

high dynamic range Rebecq et al. [2019], Kim et al. [2014b], Simultaneous Localisation

and Mapping (SLAM) Kim et al. [2016], Rebecq et al. [2017], Vidal et al. [2018], image

deblurring Pan et al. [2018], and space situational awareness Cohen et al. [2019], Chin

et al. [2019].

Several approaches to colour sensing have been considered for neuromorphic sensors

starting in 2007. Such approaches were (i) Foveon method (i.e. stacked photodiodes)

consists of vertically stacking photodiodes with different colour filters resulting in high

spatial resolution for each colour, (ii) Bayer filters method (i.e. Colour filter array)

consists of placing a discrete array of colour filters over pixels which implies reducing

the sensor resolution at least three times and (iii) three chips method which consists

of combining three-camera chips and using an array of beam splitting mirrors and
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(a) (b)

(c)

Figure 2.5: Different types of colour event-based technology design. (a) Foveon or
double/triple stacked diodes. (b) Bayer filter using colour filter arrays. (c) Three-chip
or a combination of EBC sensors.

colour filters to channel light into three separate wavelengths (see Figure 2.5 and Ta-

ble 2.1 for a summary). One of the earliest attempts to fabricate a colour sensitive

silicon retina was made by Berner et al. [2008] using the Foveon method by stacked

two-diode structure to measure relative long and short-wavelength spectral content.

Shimonomura [2011] proposed a three silicon retinas design and demonstrated colour

constancy, Marcireau et al. [2018] built a three-chip colour sensor using Asynchronous

Time-Based Sensor (ATIS) sensors and demonstrated a low-power colour signature and

colour tracking algorithm. Fu and Titus [2009] proposed a neuromorphic chip which

performs colour disambiguation. Berner and Delbruck [2011] proposed a colour vision

DVS or CDAVIS using a single buried double junction (BDJ) photodiode, which de-

tects both brightness changes, as would a DVS pixel, and wavelength changes but does

not provide the absolute brightness. The design was limited by large pixels and poor

colour separation. Li et al. [2015] combined the design of DAVIS with a Bayer filter

RGB sensor, which results in an RGBW sensor that can read out events and frames

and in which the white channel used is the DVS pixel photodiodes. Lenero-Bardallo

15



et al. [2014] and Farian et al. [2015] proposed a tricolour silicon retina design using

stacked photodiodes offering information on different colour spectra from the same 2D

location in the focal plane obtaining full-resolution colour information. The latest EBC

design was the colourDAVIS346, which was proposed by Taverni et al. [2018], which

takes advantage of the advancement of the back-side illumination technology and Bayer

filtering with improved sensitivity and had a superior quantum efficiency and fill factor.

Scheerlinck et al. [2019] have published a colour-event based dataset produced by both

the CDAVIS346 sensor and a colour event simulator.

Table 2.1: Summary of colour event-based sensors from 2008 to 2018.

Sensor Design Resolution Colour Technology CMOS Technology Functionality Characterisation Dataset Availability

Berner et al. [2008] 4x5 BDJ 1.5 µm CMOS
Asynchronous

time-to-first-spike
X

Olsson and Hafliger [2008] N/A BDJ 0.35 µm CMOS
Linear transformation

of intensity
X

Fu and Titus [2009] N/A BDJ 1.5 µm CMOS Color change-intensity X
Berner and Delbruck [2010] N/A BDJ 0.5 µm CMOS Color change-intensity X
Berner and Delbruck [2011] N/A BDJ 180 µm CMOS Colour/log intensity change X
Lenero-Bardallo et al. [2014] 22x22 BTJ 90 nm CMOS Pulse frequency modulation X

Farian et al. [2015] 16x16 BTJ 90 nm CMOS
Color temporal

contrast detection
X

Li et al. [2015] QVGA RGBW CFA 0.18 µm CMOS Log-intensity change

Moeys et al. [2017] 192px RGBW CFA 180 nm CMOS Log-intensity change X
Moeys et al. [2018] 192px RGBW CFA 180 nm CMOS Log-intensity change X
Taverni et al. [2018] 346x260 RGBG CFA 180 nm CMOS Log-intensity change X Scheerlinck et al. [2019] X
Marcireau et al. [2018] 304x240 Three-chip 180µm CMOS Change detection and PWM X

2.3.2 Event-based Feature Extraction

Due to the many years of research in understanding and improving frames data, current

frame-based feature extraction approaches have produced numerous sophisticated and

robust algorithms. However, event-based feature extraction poses a different and more

challenging task because the nature of processing the events data is not standardised.

It differs based on the camera mode of operation, application and system trade-offs,

which heavily influence the dataset’s quality. Since the EBC output is neither a single

aggregated frame nor a video consisting of frame sequences, the majority of existing

feature detectors are not applicable for event-based data or require an additional layer

of processing to convert the events to frames prior to feature extraction. While methods

to convert events to frames provide a clear representation of events in an image form, it

does not take into account the behaviour of every individual pixel, which is considered

one of the critical properties of the event-based sensor.

Event-based processing systems commonly consist of transforming incoming events

into alternative representations to facilitate the extraction of meaningful features. Such

representation is individual events [Kim et al., 2014a, Gallego et al., 2018], Event packet

[Rogister et al., 2012a, Rebecq et al., 2018], 2D histogram [Cook et al., 2011, Liu and

Delbruck, 2018], Time surface [Lagorce et al., 2017, Afshar et al., 2019b], Voxel grid

[Bardow et al., 2016, Wang et al., 2019], 3D point set [Sekikawa et al., 2019], Point

set of image plane [Litzenberger et al., 2006b, Zhenjiang Ni et al., 2012] and Events

to frames reconstruction [Scheerlinck et al., 2018]. The camera mode of operation

heavily influences the methods used to process events, and the subjects exist in the

scenes, such as sparse vs dense scenes. As a result, different types of representation

motivated different types of feature extraction. Camunas-Mesa et al. [2012] proposed
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an event-driven convolutional module for computing a set of 2D convolutions on such

event streams, which were assembled in a hierarchical multi-layer convolutional net-

work. Their proposed convolutional kernel selects the convolution kernel depending

on the event’s origin. Sironi et al. [2018] proposed HATS which make use of a local

memory time surface, which divides the image into a regular grid of cells and uses a

histogram of averaged time surfaces to extract features, followed by a standard clas-

sifier. Lagorce et al. [2017] proposed HOTS, introducing event-driven spatio-temporal

features extraction using time surfaces event representation and combined with un-

supervised feature extraction and classification to form an event-based convolutional

network which was named Hierarchy of Time Surfaces (HOTS), where each neuron

in the hierarchical architectures learn features based on local learning rules inspired

by the human visual cortex. Afshar et al. [2019c] proposed FEAST proposed a local

adaptive threshold that guarantees homeostasis between the learning and activity of

all neurons, and the threshold adaptation enables equal learning among all the neu-

rons. The main key property of event-based feature extraction is to be simple and

less computationally expensive to enable efficient implementation of the algorithm in

neuromorphic hardware.

2.3.3 Event-based Object Detection

The wide adoption of EBCs and the last decade of development in the field of computer

vision has motivated the development of a range of event-based algorithms for object

detection and recognition. These algorithms often consist of several stages such as event

pre-processing, core processing (feature extraction) and post-processing. Depending on

the processing method, some algorithms are natively event/spike-based, and some are

considered an adaptation of DL algorithms with event data as an input. The former

achieves lower latency by preserving the temporal resolution and exploiting the sparsity

of the events, and the latter enables the re-utilisation of image-based computer vision

tools leveraging more than 40 years of computer vision research.

On the one hand, a few works [Alonso and Murillo, 2018, Maqueda et al., 2018, Zhu

et al., 2018b] approached object detection by mapping the events stream to a dense

representation, thereby enabling the use of standard DL architectures (i.e. gradient

descent). Rebecq et al. [2019], Ronneberger et al. [2015] used a recurrent network to

reconstruct high-quality frames from the events and used it in image Segmentation.

Cannici et al. [2019] implemented an event-driven YOLO network [Redmon et al.,

2016] using an asynchronous CNN network. Li et al. [2017] used faster-RCNN network

[Ren et al., 2016] with temporally pooled binary images reconstructed from the event

camera. However, these methods add a further computational step which loses the

events temporal resolution, but gains in terms of accuracy and scalability.

On other hand, Kaiser et al. [2020] combined the plasticity of Spiking Neural Net-

work (SNN) with the scalability of ANN using local learning rules [Mostafa et al., 2018],

and surrogate gradient descent [Neftci et al., 2019]. This enables gradients to be com-

puted locally at each layer. Some methods [Kasabov et al., 2013, Lee et al., 2016] uses
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SNN to exploit and preserve the temporal resolution of the events stream. However,

applying these approaches to large and noisy events remain difficult, and their efficacy

has mainly been demonstrated on classification tasks using datasets with lower spatial

resolution.

Despite the notable advantages of event cameras, there remains a significant per-

formance gap between event-driven algorithms and their frame-based counterparts for

various vision problems. This is partly due to a requirement of totally new event-

by-event processing paradigms. However, the recent event-based detection focuses on

closing the gap using deep SNN [O’Connor et al., 2013].

2.4 Deep Learning for Agriculture Applications

Detection, counting, and localising fruits in orchards are essential tasks in agriculture

automation. They allow farmers to manage and optimise resources and make critical

decision making during harvest. Researchers have used a variety of sensor technologies

to tackle the problem of fruits detection, including RGB/RGB-D camera, laser sensor,

thermal imaging sensor, and spectral imaging sensor. These tedious and laborious

tasks (i.e. fruit picking) are still mainly performed by manual efforts. Automating

plants phenotyping and fruit counting is required to meet the large-scale genotype and

phenotype analysis. A robust system consists of an efficient fruits detector because the

detection step is executed before performing the picking. For instance, if the fruit is

not detected or seen, it cannot be picked.

Computer vision and DL have experienced significant breakthroughs due to the

availability of large scale datasets and advancement in computational power, and

image-based recognition received lots of attention in fruit-related studies. In recent

times, there exist several methods in the image-based detection of fruits: conventional

machine-learning-based algorithms [Gongal et al., 2015] and deep-learning-based algo-

rithms [Sa et al., 2016, Roy and Isler, 2017]. The former method uses the image feature

descriptors to encode the feature information and then apply the machine-learning-

based classifier to perform the segmentation or detection of the fruit within the image.

A detection pipeline is comprised of three different steps: image capturing and

annotation/labelling, feature extraction and object detection. However, to extract

features such as shape, appearance, colour etc., sparse coding and multi-kernel learning

methods need to be applied, which require precision engineering and domain expertise.

Many expert-coded feature descriptors have been adopted to be used for agricultural

application, such as the histogram of gradient [Dalal and Triggs, 2005], colour coherence

vector [Pass et al., 1996], and local binary patterns [Ahonen et al., 2006]. Zhou et al.

[2012] proposed a logistic regression classifier based on colour features to detect apples

in an unconstrained environment like an orchard. Song et al. [2014] used a bayesian

classifier with a support vector machine algorithm to learn the colour and texture

features, and it was used to detect pepper with an RGB camera. Luo et al. [2016], Wang

et al. [2018] used the colour-based and texture-based features and used an AdaBoost

classifier to perform fruit detection.
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Deep learning approaches demonstrate their effectiveness by automatically extract-

ing features from the input image and learning low-level to high-level features rep-

resented in the image, eliminating the need to hand-craft features. This has helped

achieve more robust and superior performance than conventional machine learning ap-

proaches. Sa et al. [2016] utilised a faster-RCNN network to detect peppers, rock

melons and apples. Bargoti and Underwood [2017] adopted a faster-RCNN network to

detect apples and mangoes in orchards. Yu et al. [2019] utilised mask-RCNN network

to perform the detection and segmentation of the strawberry in the greenhouse. These

methods use the classification accuracy as an evaluation metric to evaluate the network

as shown in Table 2.2, which summarises the performance of various DL architectures

with their corresponding state-of-the-art results.

(a) (b)

(c) (d)

Figure 2.6: Fruits detection using colour and near infrared vision sensors. (a) and (b)
show the detection of sweet pepper with the output bounding boxes. (c) and (d) show
the detection of rock melons with the output bounding boxes.

Most of the frame-based recognition systems are deployed under a controlled lab-

oratory environment. When the system is transferred to the real-world environment,

intrinsic and extrinsic variations in the wild pose significant challenges, this can sig-

nificantly deteriorate the detection system, as shown in Figure 2.6. Such challenges

become more problematic, especially in a real-time real-world application. These chal-

lenges can be mostly boiled down to the variations in the field-based environment such
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as:

1. Fruits emerge over time and vary significantly in shape and size as plants/trees

grow.

2. Fruit exhibits a similar visual appearance to the background as shown in Figure

2.6.

3. Different cultivars of fruits exhibit different appearance variations, such as colour

and texture.

4. Illumination changes dramatically due to the different weather conditions, espe-

cially during a sunny day.

5. Image angle and perspective distortions due to the wind cause various pose vari-

ations.

6. Occlusions frequently occur, which renders the difficulty of counting even for a

human expert.

7. The cluttered background make visual patterns of fruits diverse and misleading.

8. The quality of the image degrades because of the dust or raindrops on the camera

lens.

9. Textural patterns also change essentially due to different flowering statuses.

To overcome these, a well-generalised model that is invariant and robust to bright-

ness and viewpoint changes and highly discriminative feature representations are re-

quired.

Table 2.2: State-of-the-art results of deep learning in agriculture applications.

Ref. Problem Proposed model SOTA

Ha et al. [2017]

Classification

healthy and

Fusarium wilt of

radish

CNN-based 97.4%

Ma et al. [2018]
Recognition of

cucumber diseases
DCNN 93.4%

Lu et al. [2017]
Recognition of rice

diseases
CNN-based 95.48%

Liu et al. [2017]
Identification of

apple leaf diseases
AlexNet-based 97.62%

Zhong et al. [2019] Crop classification
LSTM

and Conv1D
85.54%
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Mehdipour Ghazi et al. [2017] Plant identification

Fine-tune

VGGNet,

AlexNet, and

GoogLeNet

80%

Dias et al. [2018]
Apple flower

detection
CNN-based 90%

Rahnemoonfar and Sheppard [2017]
Fruit yield

estimation

Modified

Inception-ResNet
91%
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Chapter 3

INVESTIGATION OF NOVEL

EVENT-BASED DATA USING THE

COLOUR EVENT-BASED VISION

SENSOR

3.1 Introduction

Colour is created by using two properties of light, energy and frequency of wavelength.

How our brain separates and recombines them into colour perception is still a mystery

[Gouras].

Colour provides essential information about the environment. It is utilised to de-

termine whether the water we drink is clean or whether an apple is ripened. Most

illuminants and surfaces have broad spectra that contain many wavelengths. Hence,

the perception of colour depends to no small degree on other colours in the whole scene,

and by taking all colours into account, the visual system can discount changes in illu-

mination (e.g. colour constancy) [Viqueira Pérez et al., 2010], and compute the colour

closely related to the reflectance spectrum of a surface. Various visual processing stages

interact to extract a robust estimate of the reflectance spectrum, giving rise to the sen-

sation of colour. The first step in sensing colour occurs in the retina, where three types

of cone photoreceptors measure light. Then, the retina visual input is transmitted in

these three channels via the Lateral Geniculate Nucleus (LGN) to the cortex to form

colour categories. This makes colour perception a multi-stage process, involving - at

different degrees - all visual cerebrocortical areas.

Although colours can provide valuable information, there is no clear evidence of how

strong variations in colour information influence classification performance [Buhrmester

et al., 2019, Funt and Zhu, 2018]. Recognition algorithms are originally developed on

static frames and videos because colour frames are well understood with many decades

of research and development. Colour events have been rarely studied, and their benefits

and applications are not yet apparent. The advantages of EBC make them well-suited
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candidates to overcome existing limitations in computer vision. For example, they are

power-efficient, generating sparse events with spatial and temporal rich information.

Their high temporal resolution allows for various simplifying assumptions, with complex

behaviours emerging from simple, high-speed algorithms. However, the colour events do

not encode absolute luminance information, that is because the colour measurements of

the DAVIS pixels are performed only on APS side in a frame-based fashion. Therefore,

they do not benefit from the event-based approach’s advantages.

This study aims to investigate the novelty of the pixels response from the CDAVIS

sensor, in a view to expanding our understanding of how these sensors work and how

they respond to different achromatic stimuli. The goal is to determine the appropriate

parameters to record colour events data more efficiently. These parameters are the

camera settings (i.e. biases), scene illumination (i.e. light source), and colour contrast

between surfaces (i.e. stimuli). The sensor’s internal circuit voltage, photodiode cur-

rent, quantum efficiency, and activity leaks were out of the scope of this work. Instead,

the main focus is to observe and analyse the events read out to characterise their re-

sponse. Several characteristics of the DVS sensor are identified and measured without

asking the manufacturer to provide them exhaustively. Measurements of characteristics

such as noise, contrast uniformity, and spatio-temporal statistics are performed on the

whole area of the imager. Also, it is investigated across a wide range of parameters

that we can control, such as camera threshold, lighting condition and objects contrast

ratio.

We began by (i) investigating the SNR from the DVS sensor to get a better estimate

of the noise produced by colour filters, (ii) characterising the APS to get a better

estimate of the colour quality using a colour checkerboard, (iii) quantifying the spatial

uniformity of the sensor to observe its responsiveness and sensitivity, (iv) investigating

the pixel temporal noise using the total number of events and the event frequency

(events/s) under different illumination and contrast threshold conditions in uniform and

noiseless scene, (v) characterising the sensor based on chromatic and achromatic stimuli,

and (vi) investigating the use of events for multiclass classification tasks with KNN

algorithm. All experiments were performed by considering that the light spectrum is

not perfectly linear and considering that colour stimuli might contain a mix of different

colours due to the colour mix in the printer ink.

A complete characterisation study enables the development of a better simulation

model for the Complementary Metal Oxide Semiconductor (CMOS) retina, which in

return increases the databases necessary to validate a vision algorithm for these new

imagers, and ultimately recording more efficient datasets that are application-specific,

and ultimately contributing toward building better colour EBCs. Appendix B we show

the initial prototype of the colour sensor consisting of a two-chips camera assembly

with dichromatic vision capabilities.
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3.2 Research Questions

Based on the literature and the current understanding of the colour event-based spikes,

below are the main research questions:

1. How can the colour differences between surfaces change the DVS pixel response?

2. Is it possible to correlate the colour of a given stimulus and the events triggered

by the colour filters?

3. Can the total number of events triggered by each colour filter be used to resolve

the intrinsic properties of objects such as actual objects’ colours?

4. Is colour information relevant in event-based classification and object colour dis-

crimination?

5. What are the advantages and shortcomings of the colour event-based vision sen-

sor?

3.3 Contribution

The benefit of colour events in its infancy, and the work on spiking colour sensors has

been rare, and there is little existing work on the subject of colour events processing and

analysis [Marcireau et al., 2018]. This section includes several techniques and makes

the following contributions to the existing body of knowledge:

• Builds an experimental setup to facilitate data collection and analysis using a

linear slider platform with optical equipment to reduce the external noises.

• Provides an in-depth explanation into the mode of operation of the CDAVIS using

primary colours as a source of stimuli.

• Characterises and analyse the CDAVIS camera in terms of biases/settings and

external parameters such as objects colours and scene illuminations. Moreover,

studying the behaviour of the DVS pixels and the APS image.

• Derives and demonstrates a mechanism for performing classification on the colour-

event data using the internal properties of the events stream from each colour

filter.

3.4 Materials and Methods

This section describes the structure and nature of the colour events-based sensor, the

software-hardware setup to operate the pan and tilt platform, the method used to label

the colour pixels and the measures used to perform the detailed characterisations on

the DVS and APS pixel.
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3.4.1 DVS Colour Pixel: CDAVIS

The colour Dynamic and Active VIsion Sensor (cDAVIS) or colourDAVIS [Taverni et al.,

2018] is the first commercially available sensor that combines a DVS and APS pixels

patterned with an RGBG Bayer filter array. The sensor concurrently outputs rolling

or global shutter RGBG coded VGA resolution frames and asynchronous RGBG coded

QVGA resolution temporal contrast events (see Figure 3.1). The CDAVIS follow the

same design rules described by Taverni et al. [2018] where the Back Side Illumination

(BSI) circuit design was proven to outperform the Front Side Illumination (FSI) in

terms of quantum efficiency and pixel’s form factor. In this design, the DVS part

outputs a stream of brightness change events, and each event signals a change of log

intensity ∆lnIp exceeding a pair of temporal contrast thresholds Θon > 0 and Θoff < 0

as shown in Equation 3.1 and Equation 3.2.

∆lnIp > Θon (3.1)

∆lnIp < Θoff (3.2)

The pixels store the value of lnIp after the event is sent. The readout is a variable

data-rate stream of events consisting of the addresses of the pixels and the signs of the

brightness change (i.e. polarity). However, each colour filter can produce a different

change in brightness related to the amount of contrast and the type of colour in the

scene. For instance, the sensor can be more sensitive to a specific colour in the scene for

a given contrast threshold. In this case, the number of events and noise profile triggered

will vary between each colour filter. For example, Figure 3.2 show the correlation

between the number of events for each colour filter with the contrast threshold. (a)

and (b) show the space-time plot of the event stream under low and high contrast

thresholds. When the contrast threshold increases, the number of events is reduced,

and the rigid edge between surfaces becomes visible. It is evident that the red circle

stopped triggering events for the red filter, that is because the log pixel illuminance is

affected by the colour filter as shown in Figure 3.2(e) and 3.2(f), resulting in no change

in brightness for the red circle. This show that the DVS readout for each colour filter

is highly affected by the sensor threshold as well as the lighting conditions and the

contrast ratio between objects.

The motivation behind adding colours to the EBC is to help us tell apart objects that

are otherwise identical as well as facilitate post-processing by increasing the separability

of features.

The Bayer filter on the DVS pixels does not capture the absolute illuminance in-

formation, but it improves the contrast depending on the colour differences between

the figure and the background. For instance, when white light shines on a red object,

all white light colours are absorbed except red, which is reflected, making the object
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Figure 3.1: A detailed view of the colour Dynamic and Active VIsion Sensor (cDAVIS).
(a) show the actual look of the sensor and an abstract overview of the colour filtering
array. (b) An example of the RGBG Bayer filter shows the relative sensitivity with the
filter wavelength, where the incoming light only penetrates through the filter depending
on its wavelength. (c) The resulting pixel-wise patterns when the filter is separated
into four colour channels. (d) The resulting patterns are observed through the DVS
and APS sensors.

appear red. A green colour filter will only let green through and absorb all other colours

in a similar case. Hence, when the blue light is allowed through a blue filter onto a blue

object, the object will still reflect blue and appear blue. However, when blue light hits

a red object, the blue will be absorbed, and little light will be reflected, then the object

will appear black. Another example, when a red light hits a red filter, a red object

appears white. In contrast, a blue object appears black due to the light absorption and

reflection as shown in Figure 3.3 which illustrates the appearance of primary colours

through each colour filter and demonstrate colour absorption.

From the CDAVIS perspective, a combination of two or more colours will result in

pixels sensing a change in the energy at particular frequency. This makes colour DVS

pixels a beneficial sensor to sense the contrast difference between colours at different

frequency band.
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Figure 3.2: The CDAVIS is moving in front of three circles with different colours (Red,
Green and Blue) on a white background in an illuminated condition. (a) and (c)
Separately showing the events triggered by each colour filter of the Bayer matrix and
for each circle using a high and low contrast threshold, respectively. Because of the
high threshold, the red filters are not generating any events for the red circle, while
under a low threshold, the events are noisy. (b) and (d) All the events triggered by
all colour filters combined. (e) An example of the log pixel illuminance response for
each colour filter resulting in ON and OFF events is shown in (f). If there is a positive
change in the pixel illumination, an ON event will be triggered and vice versa.

Figure 3.3: Appearance of primary colours through each filter in the bayer matrix.
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3.4.2 Hardware Assembly

Figure 3.4: Hardware setup. It shows the mechanical assembly of the pan and tilt
platform and the position of the CDAVIS in relation to the stimuli.

The setup is built in a view to converting static images into spikes events. The con-

version system relies on the CDAVIS sensor for recording. To control the motion of

the CDAVIS, we constructed our pan and tilt mechanism. The mechanism consists of

two hybrid phases 42H34S-1304A stepper motors connected through an elastic toothed

belt. The motors interface directly to an Arduino Nano 1 with two MP6500 stepper

motor driver 2 connected to a custom carrier board from EleksMaker. Each motor

allows programming of a target position, speed and acceleration. A custom housing

for the CDAVIS including lens mount and a connection to the pan-tilt mechanism was

3D printed. The motors themselves in an enclosure made from acrylic materials. A

toothed belt is attached to two pulleys mounted on the stepper motor and a bearing

system on the centre of the platform to allow the camera to move in the x and y-axis.

A static ink-based display 3 was used to display static patterns with colours. Using

an ink-based display and not an LCD eliminates the refresh rate generated by the LCD

screen frame rate, which includes unnecessary noise because motion on the screen is

discontinuous, consisting of discrete jumps in position at each monitor update. These

discontinuities are visible in the data as described in Orchard et al. [2015], whereas

in the ink display, the pixels are static-filled with ink without and do not require any

frame update. Since the pattern is static, the camera moves to trigger a change in

contrast and generate events.

The distance between the sensor and the stimuli was adjusted to 42cm to give the

platform a sufficient height to line up with the vertical centre of the pattern. The whole

platform was initially used as a CNC drawing robot 4, but extensive modifications have

1https://www.arduino.cc/en/pmwiki.php?n=Main/ArduinoBoardNano
2https://www.pololu.com/product/2966
3https://github.com/neuromorphicsystems/epaper
4https://wiki.eleksmaker.com/doku.php?id=eleksdraw2019
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been applied to it to make it suitable for our experiment. To remove all the external

noise from the fluorescent light source as much as possible, the platform was placed

in a dark room with all the external light blocked. We used the non-flickering LED

OSLON SSL 80 LUW CR7P (EQW) 5. The high flux, high efficacy, and low thermal

resistance make the light source more stable and uniform than the standard fluorescent

light. Besides, it also removes the light flicker, which the EBC can detect due to the

low latency. Figure 3.4 illustrates the hardware assembly.

3.4.3 Software Stack

Figure 3.5: Software stack. It shows a simplified flowchart of the whole process. In this
case GRBL firmware is used to process G-code commands to the pan and tilt platform
and sepia to process event-based data.

The software stack is used to drive the platform was based on the Sepia framework de-

veloped by [Marcireau et al.] which is a header-only and modular C++ framework in a

view to facilitating the implementation of event-driven algorithms. GRBL 6 firmware

is integrated within Sepia to send commands to the platform. Sepia is an input/out-

put library for event-based devices that facilitate communication between devices and

EBCs, such as reading and writing events data to an event stream file.

GRBL is a parallel-port motion control firmware for CNC milling machines that

supports Atmega328 7 microcontroller built-in Arduino board, GRBL is used due to its

look-ahead capability, which allows the controller to look at 18 motions into the future

and plan its velocities to deliver smooth acceleration and jerk-free cornering. Then,

G-Code commands can be sent directly from the host PC to the Arduino through

Sepia.

The sepia framework is running on the host PC interface with the pan-tilt robot and

the CDAVIS. Another separate thread controls the display of images on the ink display.

5https://docs.rs-online.com/f9ce/0900766b815fe2fd.pdf
6https://github.com/grbl/grbl
7https://www.microchip.com/wwwproducts/en/ATmega328
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Since the data recording thread and the images display thread was not connected, the

images were displayed on the ink display first, followed by the Sepia framework. The

frames readout were disabled to prevent any interference between the DVS and APS

output stream, as it is known that when the APS frame generation is active, it can

change the behaviour of the events adding unnecessary noises.

At the beginning of the initialisation state, Sepia connects to the camera through

libUSB (a library that provides generic access to USB devices), an empty .es file 8 is

created locally in the specified directory, Sepia then send G-code commands to the

Arduino board. The G-code includes setting for the initial velocity and acceleration

and the coordinates of the initial and final position of the camera. For simplicity, the

camera was only moved from left to right and then right to the left in a periodic motion.

The camera’s motion is linear and not random to better understand the pixel from one

colour to another. Once the first G-code command is sent and a check is performed

to ensure that the request is received, the events data will be recorded and written to

the events file. After the last G-code command is received, the same check operation

is applied and then the software stop recording events to the file.

Sepia repeats the process of recordings events depending on the user input, which

includes how much data needed to be recorded, and at each run, a new event file is

created separately. A wait state of two seconds is performed between each recording

cycle. This automated process of data collection ensure reproducibility and repeatabil-

ity of the experiments and that each event data contains the same amount of data with

the same recording duration removing all the external noise. Figure 3.5 illustrates the

hardware assembly.

3.4.4 Colour Pixel Labelling

The CDAVIS events readout is similar to its counterpart, such as the DAVIS. The

events stream consists of an array of the locations of the active pixels (x and y), the

direction of change of brightness (polarity), and the timestamp on the microsecond

scale. However, pixel’s data do not contain absolute luminance information. To do

this, we implemented pixel labelling to indicate the colour index for each pixel, this

imply converting the colour information to spatial location due to different addresses

of colour pixels. Based on the Bayer matrix (RGBG) position over the pixel array, it

became trivial to know which pixel belongs to each colour filter as shown in Figure 3.1.

The colour labelling method works as follows:

• If the x and y pixel positions are odd, this pixel is blue.

• If the x and y pixel positions are even, this pixel is red.

• If the x position is even and the y position is odd, this pixel is green1.

• If the x position is odd and the y position is even, this pixel is green2.

8https://github.com/neuromorphicsystems/event stream
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Using this method we were able to add another dimension to the event stream in

post processing as shown in Equation 3.3 below:

ei = [xi, yi, pi, ti]
T → ei = [xi, yi, pi, ci, ti]

T , iεN+ (3.3)

where c is the colour index of each pixel. For red pixel c=1, for blue pixel c=2, for

green1 and green2, c is 3 and 4 respectively.

3.4.5 Characterisation Measures

The characterisation measures proposed in this section aim at measuring the main

characteristics of the colour DVS pixel under an indoor environment to estimate the

overall response of the sensor. The primary goal is to characterise the sensor based on

parameters listed in Table 3.1.

Table 3.1: Characterisation measures and intended use case

Characterization Parameter Usage

Signal to noise ratio

Assessing the signal quality

and get a better estimate of the noise

produced by colour filters

Chromaticity Error

Measuring the colour pixel values

from the APS to get a better

estimate of the colour quality

Spatial Uniformity
Assessing the sensor’s spatial

response and sensitivity

Pixel Temporal Noise
Assessing the variation of the events stream

over a range of threshold and illumination

Chromatic and Achromatic Contrast
Evaluating the event stream

in chromatic and achromatic spaces

3.5 Results

In the following sections, we provide the results for each characterisation measure de-

scribed in Section 3.4.5 and interpret the results to highlight to contribution for each

experiment. The section further provides a detailed analysis of a KNN algorithm ap-

plied on the colour events for classification tasks.

3.5.1 Signal to Noise Ratio

Our interest lies in extracting moving objects and measuring the noise produced in

each colour filter. The signal is defined as the events captured by each colour filter

when the object is in motion. Noise is considered to be events or activities present

when the object is not moving. The EBCs not only capture the change in the light
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intensity at a location due to moving objects but also produces some noise activity

at various pixel locations due to uneven illuminations (e.g. bright spots or shadows)

or slight movement of background objects and noise generated by the actual circuits.

Computing the SNR has the benefit of filtering away all unwanted noise and extracting

events from the object of interest for classification tasks. That is because it allows us

to understand the noise profile through time which can be eliminated.

The SNR is calculated by recording the stimulus in two different states: during

motion, and when the object is static. The number of events is calculated over the

same time interval for each state. Then the logarithm with base 10 of the ratio of the

events when the object in motion to the number of events when the object is static is

taken as shown in Equation 3.4 [Padala et al., 2018].

SNR = 10 ∗ log10(
ESignal
ENoise

) (3.4)

Where ESignal is the number of events (i.e. pixels) generated by the object and

ENoise is the number of events generated by the noise. To quantify the signal against

noise events, the SNR was compared with the total number of events from each colour

filter to investigate any possible correlation between the two measures. To do that,

we considered using colour transition patterns using a rotational disk as shown in Fig-

ure 3.6, where the colour of the rotated circle and the background changes to trigger

contrast change during motion. The platform’s motion was stabilised to ensure a con-

sistent event stream during data collection. Due to the infinite number of colours in

the world9 we only used the primary colours such that a combination of two primary

colours is used to trigger contrast change. A brushless motor was used and rotated for

2 seconds under constant illumination of 53 lux.

Figure 3.6, show the events output from each colour filter for two recording con-

ditions. In Figure 3.6(a), a green circle over a blue background is presented to the

CDAVIS as input stimulus. We measure the response to blue → green → blue across

the four channels. Results show that the red, green1 and green2 filters were spatially

denser and had more spatial contrast events representing the actual shape of the cir-

cle, whereas the blue filter had the lowest event activity. This is due to the contrast

change in each filter which was illustrated in Figure 3.7, although the blue colour is

dominant in the scene, the contrast difference between the blue and green was very

low, causing the blue filter to trigger only noise events, in contrast to the red filter and

green1/green2 filters where the contrast was relatively higher. In this example, there

is a strong correlation between the total number of events and the SNR.

A red circle over a green background was shown to the camera, as shown in Figure

3.6(b), to allow green → red → green colour transition. As shown in the space-time

plots, only the pixels with the red filter triggered events, whereas pixels with the blue

and green1/green2 filters trigger only noise events. That is because the red circle

appears brighter through the red filter, and the green background appears dark through

9http://markfairchild.org/WhyIsColor/files/ExamplePage.pdf
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(a)

(b)

Figure 3.6: Spatio-temporal patterns for each colour filter with the signal to noise ratio.
(a) shows the pixel responses using a rotating green circle on a blue background. (b)
shows the pixel responses using a rotating red circle on a green background.

the red filter due to colour absorption, which only causes a higher contrast on the red

filter during motion and very low contrast for the green and the blue filter as both

surface colours appear dark. Based on the observations, we found a strong correlation

between the number of events and the number of events that belong to the actual signal.
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These experiments showed that even under controlled parameters such as illumi-

nation and camera biases, there was no correlation between the actual colour of the

stimulus and the number of events triggered by each filter, making it impossible to

retrieve the actual colour purely based on the events stream. The same concept can be

applied to other colour filters. It becomes challenging to identify the actual colour of

the stimulus purely from the events rate and events internal properties (e.g. number of

ON events, number of OFF events, ON/OFF ratio, etc.). Several factors contributed to

this colour pixel behaviour such as, the colour patterns were generated using printer-

based inks in which the primary colours are generated from an additive of two or

more colours, non-linearity of the light source and colour temperature, the value of the

contrast threshold, and the mismatch in the photodiodes.

Theoretically, it will be possible to generate colour events based on data based

on the object’s true colour, but under a rigorous environment with very constraints,

parameters are considered rare in real-world scenes. The same experiment was repeated

using different combination of primary colours as shown in Appendix C from Figure

C.1 to Figure C.7.

The results presented in this section have been obtained with a set of fixed pa-

rameters for all recording conditions given the lighting condition. In particular, the

camera’s internal electrical components were tuned via a set of analogical values called

”biases”, which correspond to a list of voltage values that set the operating conditions

of the electronics. Depending on their values, the property of the pixels such as the

detection threshold, the latency, the refractory period and many others may change.

For our experiments, we used a fixed set of biases with the hypothesis that the camera’s

parameters should remain unchanged when the colour of the patterns changed.

In this section, we found and learned that there is a significant variance between

the response of each colour filter depending on the colour of the background and the

object chosen. We also saw that the noise coming from each filter also varies with the

colour. The colour filters appeared to be sensitive to patterns with different colours,

however, it was not possible to see a correlation between the colour of the object and

the event readout mainly because a slight tweak to the colour of the background also

affects the event readout.

Appendix D shows additional examples of colour event data in various scenes where

each pixel is represented according to its colour index.

3.5.2 Chromaticity Error

The human visual system can efficiently discount the colour of the incident light when

interpreting objects in the scene (i.e. colour constancy). However, from the perspective

of a CMOS camera, the same surface can appear different in images captured under

illuminants with different colours. The primary purpose of this study is to characterise

the response of the APS and examine how well it can represent different colours under

constrained illumination with different exposure times. Given that this chapter focuses

on DVS pixels, the APS characterisation is considered helpful for calibration purposes
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because the DVS pixels cannot see non-moving objects, hence making the focusing of

the lens harder.

Efficient red, blue, green filters ensure that the APS and DVS pixels are sensitive to

the visible wavelength and that the filter can interpret the colour efficiently. Since the

APS provide us with the absolute intensity of each pixel, it makes more sense to use the

APS to characterise colour stimuli. To do that, we used the colour checkerboard from

Macbeth 10 (see Figure 3.7(a)), which has 24 squares of painted samples, as an input

stimulus and computed the chromaticity coordinates of each colour patch and then

compared it with the actual coordinates from the CIE colour diagram 11. These colour

patches have spectral reflectances intended to mimic natural object such as human skin,

foliage and flowers, for the consistency of the colour appearance under various lighting

conditions.

The chromaticity diagram (i.e. CIE XYZ or CIE 1931) maps human colour percep-

tion based on two CIE parameters. Consequently, it can be expressed on a 2D chro-

maticity diagram as shown in Figure 3.7(c). It provides us with two crucial measures

that correlate with perceptual attributes, such as hue and saturation, which provide a

visual understanding of the properties of colours. It also contains a white point ref-

erence related to the colour of the object and not its intensity; The white point of

an illuminant is the chromaticity of a white object under the illuminant. However, it

does not correspond uniquely to only one illuminant. In addition, the white point can

help in calibration, colour constancy and gamut mapping. This diagram also shows all

the hues perceivable by the standard observer for various (x,y) pairs and indicates the

spectral wavelengths of the dominant single frequency colours. The colour space in CIE

allow us to measure the tristimulus values, X, Y and Z, which are a device-invariant

representation of colour, that is because the CIE colour space encompasses all colour

sensations that are visible to a person with average eyesight 12.

The process begins by pointing the CDAVIS toward the colour checkerboard. A

white non-flickering LED at a fixed intensity was used to minimise the external noise

caused by fluorescent lights. jAER software 13 is used to control the CDAVIS and

record frames and store the data locally. Fifty-five experiments were conducted where

the shutter speed (i.e. exposure time) was the only variable component. In this case,

the exposure time was set to be from 5 ms to 200 ms, where low exposure allows less

light to come in and the scene appears dark, whereas high exposure allows more light to

come in and the scene appears brighter. One frame from each recording was selected.

Since we were only interested in how the colour patches were represented through the

APS, we selected a spatial window of 21x16px over each colour patch to exclude the

black lines that separate the colour patches and the background colour. We converted

the colour space of the cropped colours patches from sRGB to CIE.XYZ colour space

and computed the mean for each colour channel over each colour patch. The mean of

10https://poynton.ca/notes/color/GretagMacbethColorChecker.html
11https://en.wikipedia.org/wiki/CIE 1931 color space
12https://en.wikipedia.org/wiki/CIE 1931 color space
13https://github.com/SensorsINI/jaer
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(a) (b)

(c)

Figure 3.7: Chromaticity coordinate with the colour checkerboard. (a) The colour
checkerboard from Macbeth. (b) The colour checkerboard through the APS readout of
the EBC for each colour filter. (c) The CIE chromaticity diagram and the colour label
for each colour patch, the different colour tones are shown and parametrised with the
normalised coordinates x and y.

each colour channel was multiplied by a transformation matrix14 as shown in equation

3.5 to compute the tristimulus values (i.e. XYZ). These values were then normalised

to produce the chromaticity of the light (x,y). These coordinates are compared with

the actual colour coordinates from the chromaticity diagram to estimate the quality

of colours better. The calculation of x and y was performed using Equation 3.6 and

Equation 3.7.

14https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-
ciexyz
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Y
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(3.7)

where σ is the normalised value for each colour channel, X, Y and Z are the tris-

timulus values, and x and y are the final chromaticities coordinate. Figure 3.8(a) and

Figure 3.8(b) show the chromaticity error for each coordinate and the chromaticity

distance error respectively. The chromaticity error was computed using the relative ab-

solute error Botchkarev [2019] which takes the positive difference between the expected

coordinate and the computed one (Equation 3.8). The absolute error was performed

for each coordinate to observe whether the error value is shifted toward the x or y-axis.

The error distance between the expected and the computer chromaticity coordinate

was performed as illustrated in equation 3.9 and shown in Figure 3.8(a) and 3.8(b).

RAE = |VA − VT | (3.8)

Distance =
√

(XA −XT )2 + (YA − YT )2 (3.9)

where VA is the approximated value and VT is the actual value. As shown in Figure

3.8(a), there was a high correlation between x and y coordinates in Neutral five and

black colour. The error increased dramatically at medium-high exposure, and the error

decreased when the exposure time was lower. Similarly, for the White, Neutral 8,

Neutral 6.5 and Neutral 5. In this case, the error decreased at a specific exposure

time, and it was high for all other values. Colour patches such as Orange, Orange-

yellow, Bluish-green and Cyan had the same error patterns where it was lower for the y

coordinate at medium-high exposure and high error for the x coordinate because orange

and orange-yellow are relatively closer to each other on the chromaticity diagram,

similarly to the cyan and bluish green. Blue sky and blue flower patches showed lower

chromaticity error at high exposure time. Overall, yellow, white, blue, bluish-green,

cyan, neutral 3.5 and black showed lower error at lower exposure time compared to

other colour patches. As a result, these colours can be seen even under lower lighting

conditions.
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This experiment is independent from the DVS pixels and it does not take into

account the event response and behaviour, therefore, it serves as a guide for calibrating

the APS as well as the DVS pixels.

(a)

(b)

Figure 3.8: The results of the chromaticity error for each of the colour patches. (a)
Chromaticity error for each colour patch on the macbeth colour checker board. (b) The
distance between actual and measured chromaticity coordinate for each colour patch
to measure the estimated colour error.
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3.5.3 Spatial Uniformity

It is essential to evaluate the uniformity across the DVS pixels to gain a better un-

derstanding of its output response under different illumination conditions and different

contrast thresholds. As mentioned in [Gallego et al., 2020], the EBC suffers from

various problems such as noise and dynamic effects due to the inherent shot noise in

photons, transistor circuit mismatch, circuit thermal noise, fixed pattern noise and the

sensor non-idealities. These types of noise introduce uncertainty and non-uniformity

in the event readout, typically in the order of hundreds of µs under normal lighting

conditions, as shown in Figure 3.9. This is especially true for EBC where the process

of quantising temporal contrast is complex and has not been thoroughly characterised

and investigated. The DVS pixels reduce the mismatch generated by the ON and OFF

comparators by referring the mismatch to the input, which is minimised by the gain

from ±20mV to as low as ±2mV. This is crucial as the mismatch introduces a random

variation in the threshold along with the differencing amplifier, which is inevitable in

the DVS sensor Lichtsteiner et al. [2006], Lichtsteiner et al.. To characterise the sensi-

tivity and the non-uniformity of the sensor, we investigated the spatial distribution of

the events readout across a hardware-enabled ROI.

Figure 3.9: Uncertainty and non-uniformity in the event detection time [ini, 2021].

In this experiment we used the experimental setup described in Section 3.4.2. To

quantify the uniformity of the DVS pixels, a colour transition pattern was presented to

the CDAVIS in a sliding motion (i.e. right ↔ left) 30 times using nine unique stimuli.

This was performed to ensure the events readout are consistent and the variation over

time is precisely measured (e.g. average of events and error). The stimuli are composed

of a combination of two primary colours. To minimise the effect of the arbiter and

reduce the mismatch, a hardware-based ROI was selected to disable all the pixels

outside of the ROI. The number of events for each condition was calculated per column

for each polarity (e.g. ON events and OFF events) and all colour filters. It was observed

that the differences between the events polarities change depending on three main
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factors: (1) scene contrast, (2) sensor contrast threshold and (3) scene illumination.

Sepia [Marcireau et al.] was used to change the sensor contrast threshold for the ON

and OFF polarities.

Figure 3.10(a) and Figure 3.10(b) show the spatial uniformity response across dif-

ferent contrast thresholds for ON and OFF events respectively. We concluded that

the spatial uniformity varies with the object/background contrast based on these re-

sults. For instance, the contrast is higher when the background colour is white for all

primary colours, as shown in the bottom panels. The output response becomes more

uniform across the ROI pixel array. In contrast, the output spatial response was less

uniform and sparser across the columns when the colour transition was from blue to

red, red to blue, blue to green and green to blue. It became less uniform at higher

threshold values. Accordingly, the contrast ratio between the object and background

can significantly change the output responses of the DVS pixels. With high contrast

threshold (i.e. camera bias), the pixel array stops responding to changes in contrast

in the scene. For that reason, very few events were triggered. It was clear that at a

high threshold value, the OFF events were more uniform, and there the distribution

was higher in terms of the number of events than the ON events. Overall, the spatial

uniformity gradually decreases when the threshold increases and at a very high contrast

thresholds (e.g. 100%), the events inside the ROI window no longer trigger events for

both polarities.

Overall, this experiment shows the variance of the uniformity of the DVS response

across the primary colours. This shows that the colour event output is not uniform is

every case, that is mainly due to the contrast threshold selected. This confirm that

the the number of events for each colour filter is not only affected by the colour of the

object and the background, but also the sensor threshold.

3.5.4 Pixel Temporal Noise

This Section analyses the temporal noise under different conditions regarding sensor

threshold and scene illuminance. A light diffuser was used to ensure that the light was

equally scattered over the patterns and measured the irradiance across the whole field

of view. This step was performed to prevent having a bright spot on the patterns,

introducing unnecessary noise events. The same colour transition patterns used in

Section 3.5.3 were also used in this experiment. The goal was to measure the following:

(1) total number of events for each colour filter as a function of contrast threshold,

(2) the total number of events for each colour filter as a function of illuminance in

Lux, (3) events rate (events/seconds) in terms of contrast threshold and (4) events rate

(events/seconds) as a function of illuminance in Lux. The test was repeated 30 times

to ensure that the data were consistent and without outliers.

In Section 3.5.1 we showed the space-time plot for different colour transition con-

ditions. We found no correlation between the actual colour of the objects and the

events triggered by each colour filter. That is because the contrast ratio between the

object and background influences the event output and not the object’s colour. For
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(a)

(b)

Figure 3.10: Pixel uniformity responses. (a) The uniformity of response for the ON
events using all the combinations of colour transition for primary colours. (b) The
uniformity of response for the OFF events using all the combinations of colour transition
for primary colours.

that reason, we aim to analyse the same nine colour transitions through a wide range of

contrast threshold and scene illumination and investigate the change in the behaviour
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of the events. Since there is no universal approach to characterising colour events, we

followed the conventional way of characterising the standard DVS by studying the total

number of events and the event rate (events/s) for each colour filter.

In Figure 3.11(a) and Figure 3.11(b), we used the event counts per colour filter as a

function of contrast threshold and illumination as the primary characterisation measure

for all nine colour transition patterns. Based on the event counts measured, we found

that the event count decreases for all colour filters at higher thresholds, showing few

events triggered by the sensors. Based on the change in the events count with different

thresholds, it is difficult to identify the object’s actual colour based only on the event

counts. Similarly, when the transition from one colour to another is in the opposite

direction. For instance, the transition from red to green and then green to red results

in the same event counts.

Moreover, it was evident that the distribution of red and blue events was similar

throughout the threshold range in each of the nine experiments. In addition, when

transitioning from white to blue, all colour filters trigger events equally, leading to the

exact event count. Finally, at a higher threshold, the error increased, indicating non-

idealities in the pixels array when the threshold is higher. When characterising the

event count as a function of the illuminance, we found that the events count decreases

inverse proportionally to the light intensity for all colours transition conditions.

In Figure 3.12(a) and Figure 3.12(b), we considered the events rate as the primary

measure for each polarity, and we investigated it in terms of the sensor threshold and

scenes illuminance and using the nine colour transition patterns. We observed that

the event rate decreases dramatically for both polarities at a higher threshold based

on the event rate. At a lower threshold, the events rate increased but with a high

error indicating the presence of noise in the DVS pixels at a lower threshold. A lower

sensor threshold generally triggers more events with pixel noise. In addition, when

transitioning from white to blue at a higher threshold, we observed no OFF polarity

events and an increase in the ON events. When transitioning from red to green, blue

to green and blue to red, we observed that the ON event rate was higher than the OFF

event but both ON and OFF event rates became similar at a much higher threshold.

On the other hand, when we experimented with different illuminance, we observed

that the ON events rate increased at a very high illuminance while the OFF events rate

kept decreasing, except for colour transitions from red to green and blue to green, which

resulted in a low event rate at the maximum illuminance. The pattern was the same

for both polarities. We also observed that the error increased when the light intensity

increased. However, overall the patterns were the same when the background was white,

which was reasonable because the white background appears brighter through all colour

filters, contrasting the rigid line and the background enough to trigger spatially rich

events.

By considering the events count and average event rate as characterisation mea-

sures, it was possible to investigate the number of events produced by the DVS pixels

under different contrast and lighting conditions as well as the events rate under specific
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(a)

(b)

Figure 3.11: Pixel temporal noise results. (a) show the total number of events across
a wide range of contrast thresholds using primary colours transitions. (b) shows the
total number of events across a wide range of scene illumination using primary colours
transitions.

conditions. This can help record colour events data efficiently and calibrate the colour

sensor for specific scenes. While, these two measures do not provide information about
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the actual colour of an object. They provide more information about the difference

between two or more colours (i.e. contrast).

(a)

(b)

Figure 3.12: Temporal noise characterisation. (a) shows the event rate to measure and
quantify it in terms of sensor contrast threshold (ON and OFF threshold). (b) shows
the event rate to measure and quantify it in terms of scene illumination in Lux.
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3.5.5 Chromatic and Achromatic Contrast

By definition, achromatic colours have lightness but no hue or saturation. However,

chromatic colours have hue, and both can be created by mixing complementary colours.

The elements of hue, lightness and saturation found in chromatic colours are referred to

as the three attributes of colour, and specific colours can be represented by specifying

the values for each of these attributes.

There have been notable works where the role of colours was investigated in human

visual perception. For instance, Breuil et al. [2019] showed that providing colour im-

ages can improve edge classification compared to grayscale images and suggested that

colour information facilitates the identification of material properties, transparency,

shadows and the perception of shape-from-shading. Hansen and Gegenfurtner [2017]

investigated the benefits of chromatic edge contrast on object-contour perception, and

they show that chromatic information is essential for better representing object contour

and detecting objects quickly and easily. We investigated two things as motivation: (1)

greyscale patterns with different contrast ratios and (2) gradual colour mixing. The

edges were rigid to enable a rapid change between two surfaces with distinct contrast

in both cases. We investigated greyscale and colour patterns to observe the effect of

greyscale edges against edges with coloured and characterise the sensor sensitivity using

a wide range of contrast ratios for both cases.

In this experiment, we used the same pan and tilt platform described in Section

3.4.2 and used a constant illuminance using the non-flickering LED. Thus the only

variable is the colour of the background. We considered the total number of events as

the primary measure to calculate the amount of activity in each colour filter for each

condition—the patterns comprised of printed colours on a paper. Here, we investigated

the DVS pixels behaviour using greyscale patterns where the only variable parameter

used was the colour of the patterns (i.e. contrast).

The patterns consist of two blocks, each with a different greyscale level, creating a

rigid line between two surfaces. This allows the pixel to have an instant shift between

the surfaces. For each test, the contrast ratio between both surfaces was varied by

either increasing or decreasing the grey-level value of each block. We considered the

total number of events as the primary measure to characterise the camera sensitivity

for high and low contrast. A 104x7 hardware-enabled ROI was selected to activate the

pixels within a small region and prevent interferences by the other pixels in the imager.

For that reason, we only receive events from the pixels inside the ROI. For recording,

the same pan and tilt platform described in Section 3.4.2 was used to move the camera

in a linear motion across the x-axis over the patterns as shown in Figure 3.13. The

duration for each recording was 2 seconds, and it was repeated 30 times to measure

the mean and standard deviation of the events. A wait state is activated between each

recording for 2 seconds to let the pixels recover from possible refractory period effects.

Using both DAVIS and CDAVIS we considered the total number of the events for both

polarities and all colour filters (in case of CDAVIS).

Figure 3.14(a) and Figure 3.14(b) show the difference in the events readout for the

45



Figure 3.13: The greyscale patterns are used in the chromatic characterisation. It
consists of two blocks with different greyscale values to allow the pixel to shift from
one surface to another.

DAVIS and CDAVIS respectively. It was evident that each camera exhibited different

behaviour on the same patterns. For the DAVIS, it appeared that when pixels shifted

from white (block 1) to block two that has a grey-level value from 90% to 0%, the

total number of events decreased until there was no visible contrast which led to no

more events triggered in the ROI. The same case behaviour occurs when setting the

grey-level to 2.5%, 5%, 7.5% and 10% for block 1. In this case, the contrast becomes

very similar to a grey-level between 0% and 10%. Furthermore, the total number of

events increased when the grey-level in block one was 20%.

On the other hand, when the grey level for block 2 exceeds 20%, the total number

of events increases proportionally to the greys level value of block one. Compared with

the DAVIS and under the same conditions such as scene illuminance, lens focusing,

and camera bias, the CDAVIS generated approximately 2X more events across the

ROI considering that all events from all colour filters were counted. The CDAVIS
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appeared to be more sensitive to grey-level edges. The total number of events exhibited

a parabolic shape indicating the presence of contrast within the selected ROI. However,

the main challenge is to find whether the events were triggered from the actual edge

between the surfaces or just noise events generated by the colour filters (e.g. due to

circuit mismatch). The standard deviation was higher at high contrast ratio and lower

at low contrast ratio, indicating a high variance in the pixel response at high contrast

ratio, which might be caused by the surface edge and its effect on the refractory period.

In a different experiment, we used achromatic patterns to characterise the response

of the DVS for each colour filter across a wide range of colour variations. The aim is

to observe the influence of background colour on the event’s output. A green circle

on the top of a red background was chosen as an input stimulus, and another colour

was gradually added to the red background, such as blue, green, and white, to change

the background colour. We observed how the background colour changed the contrast

ratio and how the events generated by each colour filter changed according to different

conditions. As shown in Figure 3.15(a), it was apparent that the APS output became

brighter when observing the red background through the red filter. In this case, the

green circle becomes darker. In contrast, the scene looks much darker through the

blue filter, as shown in Figure 3.3. The addition of green colour to the red background

add more contrast, making the appearance between the pattern and the object clearer.

Similarly, when adding white to the red background.

In Figure 3.15(b), we showed the results using the total number of events for each

condition. We observed that by adding blue colour to the red background, the contrast

increases for every colour filter because the final magenta colour was reflective of red

and blue. Also, we observed an increase in the total number of events for the green1

and blue filters compared to other colour filters, which had no significant change. This

indicates that adding a blue to red colour produced more events in the green1 and blue

filters. Due to the dark appearance of the background through the blue filter, there

were more events through the blue filter, which indicates the presence of an excessive

amount of noise events for short-wavelength (i.e. lower sensitivity). While gradually

adding green to the red background, the contrast increased in each colour filter, and

the background in both green filters became brighter. From the perspective of the

DVS, we found that the events in each colour filter increased proportionally with the

amount of green colour added to the background. In addition, while adding white to

the red background, we observed that the number of events increased for each colour

filter simultaneously by adding more white to the red background. This experiment

indicates that the achromatic edges can affect the output of the event, and by adding

different colours to the background, the contrast ratio will change. The behaviour of

the DVS will vary accordingly.

3.5.6 Colour Events Classification with KNN

A colour event dataset was created using the CDAVIS sensor. The dataset was made

to investigate the importance of colours events information in distinguishing between
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(a)

(b)

Figure 3.14: Total number of events versus contrast comprised of black and white
edges with different contrast ratios. (a) show the events triggered by the DAVIS346.
(b) events triggered by the CDAVIS.

different patterns in classification tasks. It consists of 50 events data files for each class

where there is a single object per recording. In this case, the only variable is the colour

of the background and the colour of the object. The dataset was divided into three

different categories: (1) objects with different shapes and with the same colour, (2)

objects with different shapes and with different colours, and (3) objects with the same
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(a)

(b)

Figure 3.15: Colours addition experiment. (a) The APS output for each pattern show-
ing a gradual addition to blue, green and white to the red background while keeping
the green circle colour the same. (b) The total number of events through each colour
filter for each colour addition condition.

shape and with different colours. Simple shapes were chosen, such as circles, lines, stars

and triangles with primary colours. The dataset contains the same number of testing

and training items, and the distribution of images between them is preserved. We found

that the characteristics related to each sequence vary slightly because the recordings

were performed using a physical device in a repetitive motion resulting in timing and

accuracy in the hardware and acquisition process. Consequently, non-idealities and

non-uniformity in terms of noise also existed in the dataset, adding another dimension

of complexity, such as real-world scenarios.

Since the object does not occupy the entire field of view, only the events that belong

to the object were selected, reducing the high dimensionality of the data and removing
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all the excessive, unnecessary noise events generated by the background, which have

less contribution compared it to the events from the real object. This was performed

by removing the pixels on the boundary in post-processing. The resolution of the data

becomes 100x100 pixels centred on the object. The average length of the recording

is 2 seconds. We used the pan and tilt platform described in Section 3.4.2 to swipe

through the patterns in both directions. The average number of events varies between

each patterns due to the difference in size and the colour as shown in Table 3.2, Table

3.4 and Table 3.3. For example, for ”different objects same colour”, there were more

OFF events in the train and test set. Given that the number of events per colour filter

is different, even for objects with the same shape, that means the number of events

triggered by the DVS is not only influenced by the size and shape of the object but

also by the colour.

(a) (b)

(c)

Figure 3.16: Conditions selected for classification where colours and shapes are essential
features to identify the differences between different classes. The edges were colourised
to indicate the colour of the object. (a) Same object with different colours. (b) Different
objects with the same colour. (c) Different objects with different colours.

To explore the internal properties of the events, a simple classifier namely KNN

was constructed to classify each category. KNN classifies an unknown example with

the most common class among K closest examples. There is no inherent training with

a KNN classifier but rather a calculation step that generates the labelled data. The

testing process performs the actual nearest neighbour clustering. The calculation allows

for the varying number of neighbours (e.g. the k value) during the testing. This also
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inherently allows for multiple and parallel testing, allowing for the broad sweeps of

k-values performed. As the entire process is deterministic, there is no need to run

multiple trials. The order of the data cross validation also plays no role.

The Euclidean distance was used as the primary distance measure for the algorithm

as shown in the Equation 3.10.

d(x, y) =
n∑
i=1

|xi − yi| (3.10)

Different K values were tested, and we found K =
√
x where x is the total number

of the training set to be the optimal solution as it works best as an odd number

[Hassanat et al., 2014], and the results stabilised at this value. This had the following

advantages in increasing the speed of the algorithm by avoiding the even classifiers, to

avoid the chance of two different classes having the same number of votes and the pilot

experiments having the even K’s show no significant change of the results. Overall, this

can avoid the problem of ties that occur when two or more points are equidistant from

an unclassified observation, thereby making it difficult to choose which neighbours are

included. The same statistics were then found for each testing sequence, and the closest

k neighbours were extracted. This approach takes the most direct means of constructing

a classifier by examining the patterns internal properties. KNN was implemented and

tested across all dataset categories for nine different statistical properties calculated

across each training and testing sample. For each pattern, the following statistical

properties were used:

1. The total number of events in the pattern

2. The duration of the motion in milliseconds

3. The number of ON events in the pattern

4. The number of OFF events in the pattern

5. The ratio of ON events to OFF events in the pattern

6. The mean x address calculated across all the events in the pattern

7. The mean y address calculated across all the events in the pattern

8. The standard deviation of the x addresses in the pattern

9. The standard deviation of the y addresses in the pattern

The same parameters were calculated for each training sequence and then used as

the input dataset for the KNN classifier. We showed the accuracy over the entire data

and each colour filter to better understand the contribution of colours in classification.

It was immediately apparent that given the selected K value as K =
√

(x) where x

is the number of samples, the classifier performs well on all the statistical properties
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except for the event’s duration, which was expected as all recording duration were

the same. For example, for the ”same object different colours” category, the classifier

achieved an accuracy of 98% and 100% across the standard deviation of X and Y

addresses, respectively, as shown in Figure 3.17. For the other two categories, such as

in Figure 3.18 and Figure 3.19 the classifier recognition results achieved an accuracy

of 73% across all the statistical properties except for event duration, that is because

in both cases, the patterns used were the same, but with different colours. Colours in

these cases showed a minimal effect as the shape of the object was a dominant feature.

It was also apparent that the classifier based on the sequence duration yielded

statistically insignificant classification results even when splitting the colour filter into

four event streams. However, it produces an overall recognition accuracy well above

the chance level. Overall, we concluded that for the ”same object different colours”

category, colours significantly contribute to making the patterns separable, although

they had the same shape and size. This was also possible without splitting the events

into four colour channels. The colour becomes negligible when different objects have

different shapes, such as in ”different patterns different colours” and ”different patterns

same colours”.

These results are insightful, as they showed that colour events become an essential

source of information when the object’s appearance is not relevant. Hence, to take

advantage of the colour filters, one should record data in a colour-rich environment or

where a rapid colour change needs to be detected. Future work should address those

in more details.

In appendix A we presented a more detailed investigation using DAVIS sensor using

objects with different shapes and different colours using the events statistical properties

as input to an ELM classifier as well as spatio-temporal features using FEAST network.

This study compares the same network architecture on both cameras to provide a better

understanding of the differences between monochromatic and colour events.

Table 3.2: Statistical summary of the ”same object different colours” scenario. Results
are shown separately for the training set of 50 recordings per class and the testing set
comprising of another 50 recordings.

Training Set Testing Set

Statistics Mean Std Mean Std

Duration of Recordings (s) 2.06s 1.30s 2.04s 1.32s

Number of Events (*1e5) 3.64 3.15 3.60 3.15

Number of ON Event (*1e4) 0.23 0.53 2.32 5.23

Number of OFF Event (*1e5) 3.36 2.67 3.36 2.67

X Address (px) 186.74 2.94 186.74 2.94

Y Address (px) 133.87 0.97 133.87 0.97
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Table 3.3: Statistical summary of the ”different objects same colour” scenario. Results
are shown separately for the training set of 50 recordings per class and the testing set
comprising another 50 recordings.

Training Set Testing Set

Statistics Mean Std Mean Std

Duration of Recordings (s) 2.96 0.28 2.97 0.87

Number of Events (*1e3) 3.88 0.67 3.88 0.68

Number of ON Event (*1e3) 2.07 0.34 2.07 0.34

Number of OFF Event (*1e3) 1.80 0.34 1.80 0.35

X Address (px) 179.69 106.60 179.69 106.60

Y Address (px) 124.54 78.31 124.54 78.31

Table 3.4: Statistical summary of the ”different objects different classes” scenario.
Results are shown separately for the training set of 50 recordings per class and the
testing set comprising another 50 recordings.

Training Set Testing Set

Statistics Mean Std Mean Std

Duration of Recordings (s) 2.96 0.45 2.96 0.45

Number of Events (*1e3) 3.82 1.90 3.82 1.90

Number of ON Event (*1e3) 2.05 1.01 2.05 1.05

Number of OFF Event (*1e3) 1.77 0.98 1.77 0.98

X Address (px) 180.90 106.61 180.90 106.61

Y Address (px) 75.96 78.84 122.55 78.84

Figure 3.17: Classification Results for the KNN classifier on statistical properties for
scenes where there are objects with the same shape but with different colours. Left:
Accuracy on the stream of the entire event. Right: Accuracy for each colour filter.

3.6 Discussion and Future Work

The CDAVIS is the only commercially available working prototype of a single event-

based sensor that can filter light from visible wavelengths using colour filter arrays

(i.e. Bayer filters) combined into one photosensor. This sensor can only detect colour

variation on the DVS part and absolute illuminance on the APS part. Thus, events

from the DVS pixels do not provide information about the colour in the scene. To the

best of our knowledge, the only way to achieve such a task is by reconstructing the

absolute luminance and computing the RGB intensity for each pixel mathematically

[Scheerlinck et al., 2018]. However, it requires additional operations, which increases
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Figure 3.18: Classification Results for the KNN classifier on statistical properties for
scenes where there are objects with different shapes but with the same colour. Left:
Accuracy on the stream of the entire event. Right: Accuracy for each colour filter.

Figure 3.19: Classification Results for the KNN classifier on statistical properties for
”objects with different shapes but with different colours” condition. Left: Accuracy on
the stream of the entire event. Right: Accuracy for each colour filter.

the computational cost, making the whole mechanism synchronous due to the colour

demosaicing operation. In this work, colour reconstruction is out of our scope as we

purely investigated the DVS part. That is because the colour events from the DVS

pixels are not fully understood and explored. Considering the characterisation study

conducted in this chapter, we were able to identify the key advantages of the colour

pixels in various domains as listed below:

1. Eliminate spatial redundancy and noise events. This can be achieved by actively

selecting the colour filter with high SNR and removing events from filters will

fewer activities.

2. Detecting rapid transitions between colours.

3. Detect transitions between different wavelengths such as radiation in the near-

infrared band and the visible spectrum.

4. Distinguishing shadows from real objects in situations where the DVS does not

see borders between two objects due to the same reflectance.

5. Imaging of neural activity [Moeys et al., 2018] by reconstructing images with

High Dynamic Range (HDR) from the DVS colour pixels eliminating the need of

expensive CMOS sensors.
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Although colour events can benefit some applications, it suffers from various draw-

backs, such as not having a universal approach to characterise events based on colour

patterns as the majority of the EBC are by defaults monochromatic (i.e. greyscale).

Thus, the same characterisation techniques and the exact measurements used might

not be directly applicable to colour sensors. In addition, the current colour sensors are

only characterised in terms of their internal circuit voltage and current properties and

not the internal properties of the event.

This makes the processing and handling of colour spikes unclear and challenging.

The only colour event dataset has been published by Scheerlinck et al. [2019] to give the

researcher access to new types of datasets and motivate them to work in this direction.

However, no further follow up work can be found since 2018, and the dataset is not

application focused as it was recorded in various scenarios and scenes. Thus, future

efforts must be dedicated to producing colour events datasets specific to particular

applications.

There has been more focus on events to frame reconstructions algorithms as a way

to process the incoming colour events from the CDAVIS and produce frames out of

the events data. For that reason, the processing pipeline becomes fully synchronous

once the demosaicking is included in the process. An emphasis on frames reconstruction

shifts away from developing a native even-based end-to-end system that takes advantage

of the camera capabilities (e.g. low power, low data rate, high pixel bandwidth, etc.)

with the colour events transition advantages.

This has limited the progress of colour event data characterisation and processing

techniques. It is advantageous to consider the difference between the monochromatic

DAVIS and the CDAVIS as each requires domain and application knowledge, for ex-

ample, using the CDAVIS in cases where colours are an essential source of visual infor-

mation and using the monochromatic DAVIS where spatial features are more dominant

than colour information. It is beneficial to consider the suitability of the sensor for the

proper application and right recording scene.

Moreover, it is beneficial to consider that the data from the colour event sensor

represents only the first step of colour detection in the visual pathway and not the

whole pipeline. For instance, the human retina works as a colour data collector and the

colours detection and merging happen in the later stage of the visual pathway Seymour

et al. [2016]. Therefore, the colour sensors do not represent the full biological model

of the colour detection and discrimination system, and they should only be considered

the first step and the first layer in colour processing.

The next chapter presents a native end-to-end event-driven network pipeline to

detect and classify events in a dense and complex environment using an unsupervised

feature extraction algorithm and a supervised classifier network.

3.7 Conclusion

In this work, we conducted an in-depth investigation of the colour events sensor from

the DVS pixels in a view to provide a better understanding of how the CDAVIS works in
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various conditions. To rigorously investigate the effects of different colours and different

camera biases, the exploration was only conducted on primary colours. We choose the

three primary colours (i.e. Red, Green, Blue), and the investigation of secondary

colours and many other complex patterns can be informed by these primary colours

results. In this chapter, the characterisation results were based on three key factors:

(i) an in-house built setup that supports a stable motion of the CDAVIS, (ii) a range

of experimental conditions taking into account the camera biases, scene illuminations

and scene contrast ratio and (iii) using two characterisation measurements such as the

total number of events and event frequency/rate (events/second).

We have observed the following: (i) the number of events for each colour filter is

primarily affected by the colour of the object and the background, (ii) the colour fil-

ters appeared to be sensitive to patterns with different colours where a slight change in

colour induced by an object can lead to different event readouts pattern from the colour

filters, (iii) it is challenging to identify the absolute illuminance (i.e. actual colour) of

the objects purely from the DVS readout, that is because the DVS provide events with

no information about colour, colour information can be recovered using intensity recon-

struction techniques, (iv) it is possible to classify events data in scenes with identical

objects which have the same shape and size but have different colours. Finally, this

characterisation study provides more understanding of how to record better datasets

and the datasets expected from the colour filter under a specific condition. However, in

future work, more experiment need to be conducted to address the inconsistency in the

colour output. This includes experimenting with a large range of colours and expands

the recording duration to test and observe the change in sensor behaviour.

The work presented in this chapter is an exploration of the domain of colour events-

based data and serves as a motivation for future work in colour data processing and anal-

ysis where DVS readout is considered without reconstructing intensity-based frames.

An event-based colour processing can retain the camera’s technical capabilities in use,

such as low data rate, high pixel bandwidth, and high temporal resolution.
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Chapter 4

EVENT-BASED OBJECT

DETECTOR AND CLASSIFIER

FOR FRUIT DETECTION

APPLICATIONS IN CLUTTERED

SCENES

4.1 Introduction

Vision sensors in agricultural environments deal with high dimensional data streams

conventionally acquired and analysed at a fixed sampling frequency. A system with a

fixed sampling frequency limits the temporal resolution of the data-processing and the

amount of data that can be processed. Firstly, the data streams must be sparse by

sending only information when there is a change in the environment to address these

limitations. Secondly, the incoming data stream can be processed parallel and asyn-

chronous fashion. To fully demonstrate the advantage of an event-based approach, the

target is to solve the problem of fruits detection as it is well studied and algorithmi-

cally understood using various other passive and active sensors such as Lidar, Radar

and RGBD vision sensors.

Early event-based detection methods focused on simplicity to demonstrate the low-

latency and low-processing requirements of event-driven vision systems. They assumed

a stationary camera and tracked moving objects as clustered blob-like sources of events

[Delbruck and Lichtsteiner, 2007, Delbruck and Lang, 2013, Litzenberger et al., 2006a].

In this case, only pixels that generate events are processed. Some example of appli-

cations are traffic monitoring and surveillance [Litzenberger et al., 2006a], high-speed

robotic tracking [Delbruck and Lang, 2013], and particle tracking in fluids [Drazen

et al., 2011]. Detecting of more complex, high-contrast user-defined shapes has been

solved using Iterative Closest Point (ICP) [Zhenjiang Ni et al., 2012], gradient descent

[Ni et al., 2015], Mean-shift and Monte-Carlo methods [Lagorce et al., 2015], or parti-
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cle filtering [Glover and Bartolozzi, 2017]. However, they only work for a limited class

of object shapes, and they are only useful where the objects’ appearance is clear and

defined, simplifying the computations. However, methods to determine more robust

features become necessary when the number of classes becomes large.

Most applications of EBCs have involved tasks that are particularly suitable to the

sensor’s mode of operation, that is, sparse or static scenes with a limited number of

non-dense moving objects in the sensor field of view. These applications provide ideal

conditions for the use of the EBCs as they allow the sensor to compress the visual

scene into sparse event streams significantly. Nevertheless, suppose EBCs are to, in

fact, be used in a wide range of applications. In that case, they must also be able

to operate in conditions that are challenging to the sensor’s mode of operation, for

example, non-sparse, visually dense environments which cause the cameras to generate

a very large number of events, significantly impairing the sensor’s ability to transmit

valuable sparse data.

For that reason, an event-based object classification algorithm should reliably clas-

sify or recognise under a wide range of affine transformations, photometric changes and

cluttered scenes. This chapter explores a means of performing robust object classifi-

cation on event-based data streams for fruit detection and thoroughly examines and

characterises the performance. This work primarily makes use of a classification algo-

rithm based on FEAST algorithm [Afshar et al., 2019c], as it provides several important

features which make it particularly well suited to the applications used in this section.

This work also aims the following (i) to showcase the efficacy and efficiency of a detector

algorithm, (ii) to validate its performance in constrained and unconstrained environ-

ments, and (iii) to tackle the problem of highly imbalanced event-based datasets.

The use of EBCs in the domain of fruits detection presents unique challenges and

requires the development of specialised algorithms to take full advantage of the event-

based paradigm offered by these sensors. Such algorithms are tailored to the data,

resulting in highly efficient systems capable of handling the consistent change in the

environment.

4.2 Research Questions

Based on the literature and recent advances in event-based visual detection, below are

the research questions:

1. Can we use detect objects in highly textured scenes with non-uniform sensor

motion?

2. Can we extract robust and discriminative features from the object of interest in

dense and cluttered scenes?

3. How can we classify objects using highly imbalanced and noisy data?

4. Will supervisory signals improve the quality of the features representations and

lead to better classification performance?
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4.3 Contribution

The field of event-based vision in agricultural applications is recent, with no existing

work on event-driven fruits detection and recognition. This section makes the following

contributions to the existing body of knowledge:

• Derives and demonstrates a mechanism for performing classification on event-

based data for binary classification problems for scenes with multi-objects in the

same field of view and using recorded datasets from the constrained environment

in a laboratory setup and unconstrained environment from real-world scenes and

comparing the model performance.

• Quantifies the performance of the feature extraction and classification pipelines

to validate the information encoded in spatio-temporal patterns and serves to

validate the event-based processing paradigm for complex and cluttered visual

data.

• Investigates various ways of using supervisory signals (i.e. ground truth) in feature

extraction to apply feature selection to improve the classification performance.

• Provides an in-depth investigation into the effects of spatial downsampling on the

classification performance for event-based data.

4.4 Methodology

This section describes the structure and nature of the events generated by the EBC.

The method used to record data in different environments, the method used to label

the dataset and the metrics used to report sensitivity, specificity and informedness from

the event streams. The section further details a complete event-based detection and

classification network.

4.4.1 Generating of Event-based Dataset

The dataset was captured using the DAVIS [Brandli et al., 2014] sensor. We recorded

data in two environments: (1) a real-world environment at the HIE and (2) a constraint

laboratory environment as shown in Figure 4.1(a) and Figure 4.1(b) respectively. The

motivation behind creating a laboratory setup is to obtain a baseline architecture on

a small set of data with less complexity and controllable parameters such as scene

illumination, the colour of the objects, movement of the camera etc. This will help

identify the network’s weaknesses and strengths as early as possible. Given that it

is difficult to obtain real-world agricultural data due to weather, seasons, and fruit

ripeness schedules, having a laboratory setup that mimics these scenes is beneficial to

create an unlimited amount of dataset. This will enable a more extensive and detailed

analysis of the proposed algorithms.

Each recording environment provides different types of challenges. For instance, in

the lab recorded data, we can control the light source to adjust the events SNR, we can
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(a) (b)

(c)

Figure 4.1: Data collection setup. (a) Real world scenes at HIE. (b) Laboratory setup
to control light and motion. (c) A dimetric projection of the events data from natural
scenes which shows a dense spatio-temporal patterns.

control the object properties such as size, appearance, orientation, the degree of occlu-

sion with other objects, as well as the speed of the platform. Real-world data consists

of an unlimited number of non-ripened lemon fruits. It has all possible challenges that

can help explore and exploit the robustness and effectiveness of the event-based algo-

rithm, such as unstructured/noisy background, non-uniform contrast and illumination,

non-linear camera motion, cluttered/occluded objects etc.

As shown in Figure 4.1(b), the laboratory setup comprised of a linear sliding

platform (i.e. a small CNC robot capable of moving in 2D space), a 1304×984,

12.48” red/black/white ink-based static display with a non-flickering LED. The 346x260
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DAVIS camera is attached to the sliding platform, in which its position and velocity

are controlled using G-Code commands. The camera is connected to a PC for data

acquisition, and jAER1 and DV2 are used to write the events to an aedat4 file for post-

processing. All the process is performed offline, which means that both data acquisition

and recognition are separated.

The laboratory recorded data consists of six different recordings, and each recording

has a minor variation such as overlap, object size and appearance. Below we provide

a summary of the statistical analysis of the recorded data in Table 4.1 and Figure 4.2.

The number of events is approximately equally distributed between both ON and OFF

polarities and for both types of datasets, around 51% by 49%. A high imbalance class

was observed by looking at the percentage of events for both classes. In this case, class

1 is the object of interest of the same type and class 2 is everything in the background.

For instance, the classes ratio was an average of 85% by 15% for the lab recorded data

and 97% by 3% for the actual world data.

Table 4.1: A summary of statistical properties for all laboratory recorded data.

Duration (s)
Total Number

of Events (millions)
ON Events (%) OFF Events (%)

Percentage of events
for Class 0 (%)

Percentage of events
for Class 1 (%)

Train 42.30 11.3 51.94 48.06 85.03 14.96
Shapes translation

Test 35.70 9.3 51.65 48.35 86.05 13.95

Train 41.95 10.5 51.78 51.69 79.24 20.75
Two classes occlusion

Test 35.80 10.7 51.69 48.31 81.38 18.62

Train 42.05 10.2 51.83 48.17 85.84 14.15
Multiple objects

Test 40.60 7.8 51.71 48.29 79.56 20.43

Train 42.35 10.6 51.75 48.25 79.51 20.48
Different sizes

Test 39.35 9.1 51.77 48.23 83.82 16.17

Train 42.35 8.5 51.75 48.25 80.47 19.52
One class occlusion

Test 40.05 7.8 51.65 48.35 82.70 17.29

Train 9.05 8.7 49.31 50.69 94.75 5.24
Complex shapes

Test 12.65 11.7 49.59 50.41 94.19 5.80

For real-world scenes, the data was recorded by hand-holding the camera and scan-

ning through the field consisting of several non-ripened lemon trees where the colour

of the fruit is similar to the colour of the leaves. Unlike the laboratory recorded data

that is fully controlled, the data bandwidth is affected by human motion and the soil

floor in real-world scenes. Due to the uneven sensor motion, most of the dataset was

occupied by the ego-motion background cluttering. Still, the realistic outdoor setting

produces data properties that make developing high-level event-based computer vision

solutions challenging. The recordings were performed at different points of view from

the trees and at different directions to diversify the event’s output, which provides dif-

ferent semantic recording scenarios of the same area and includes artefacts from the

environmental influences. Below we provide a summary of the statistical analysis of

the recorded data in Table 4.2 and Figure 4.3.

1https://github.com/SensorsINI/jaer
2https://inivation.gitlab.io/dv/dv-docs/docs/getting-started.html
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Laboratory recorded datasets showing images from training and testing
sets. (a) and (b) train and test of Shapes translation. (c) and (d) train and test of
Two classes occlusion. (e) and (f) train and test of Multiple shapes. (g) and (h) train
and test of Different sizes. (i) and (j) train and test of One class occlusion. (k) and (l)
train and test of Complex shapes.

Table 4.2: A summary of statistical properties for the real-world scenes.

Duration (s)
Total Number

of Events (millions)
ON Events (%) OFF Events (%)

Percentage of events
for Class 0 (%)

Percentage of events
for Class 1 (%)

Train 4.28 3.5 49.48 50.51 97.476 2.52
Sequence 1

Test 3.34 3.5 51.64 48.35 93.51 6.48

Train 2.44 3.5 51.82 48.17 97.94 2.05
Sequence 2

Test 2.93 3.5 52.49 47.50 95.93 4.06

Train 2.94 3.5 52.92 47.07 97.85 2.14
Sequence 3

Test 2.66 3.5 52.74 47.25 97.72 4.06

Train 3.27 3.5 52.94 47.05 97.49 2.50
Sequence 4

Test 2.33 3.5 51.76 48.23 97.51 2.48

Train 3.22 3.5 51.06 48.94 97.95 2.04
Sequence 5

Test 1.53 3.5 53.08 46.91 99.05 0.94

Train 3.02 3.3 51.85 48.14 98.21 1.78
Sequence 6

Test 4.29 4.2 52.20 47.79 99.05 0.94
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: Real world datasets showing images from training and testing sets. (a) and
(b) train and test of Sequence 1. (c) and (d) train and test of Sequence 2. (e) and (f)
train and test of Sequence 3. (g) and (h) train and test of Sequence 4. (i) and (j) train
and test of Sequence 5. (k) and (l) train and test of Sequence 6.
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4.4.2 Labelling the Dataset

Figure 4.4: Data labelling. (a) Illustrates the method used to calculate event volumes’
sensitivity and specificity around labelled data points. A volume of radius r around a
line connecting the labelled points marks the boundary between true and false volumes.
The event density of each sub-region designates its volume as a positive or negative
volume depending on whether it is above or below the mean density of the recording as a
whole (Source: Afshar et al. [2019b]). (b) Show the events data for the whole recording
for both polarities. Panels (c), (d), (e) show the labelled objects for recording 1 in
a dimetric projection and across the x and y-axis, respectively. Colour indicates the
object ID of the same class.

The labels for the event-based data were obtained by building an image-like represen-

tation (i.e. time surface frames) from the events and then manually annotating them

using an annotating graphical user interface tool built by Afshar et al. [2019b] as shown

in Figure 4.5. The labelling was purely performed on the events stream without using

any external sensor type (e.g. a conventional CCD or intensity frames). The labelled

datasets were generated using a multi-stage labelling and editing procedure that in-

volves viewing and labelling visible objects in each recording using a labelling interface
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developed by [Afshar et al., 2019b], allowing the user to move forward or backwards

through 2D time surface frames of the event stream at arbitrary frame rates with a

maximum sampling frequency of 1000Hz. Target entry and exit points and segments of

the trajectory exhibiting acceleration and the object’s radius at each timestep were all

marked manually. These marked points were then linked programmatically via linear

interpolation as illustrated in Figure 4.4.

During labelling, the centre of the object and its radius were labelled at each frame.

The data points are linearly interpolated with each other to form a continuous stream

in the event-based data.

This labelling scheme ensure that every incoming event has a single label. In our

case, in each recording there are two labels, one that refers to the main class and one

that refers everything else such as the entire background.

Figure 4.5: Data labelling graphical user interface (GUI).

4.4.3 Measuring Evaluation Metrics

The most direct measure of the utility of any processing pipeline is the classification

accuracy achieved. However, this particular measure can be both misleading and com-

putationally expensive in most cases. That is because the data is not always well

balanced for each instance and obtaining a rigorous figure of merit for any classifica-

tion system require repeated training of classifiers which can be time-consuming and

resource-intensive.

In this work, the algorithms presented are designed to be operated entirely in the

event-based domain from the sensors to the detectors. For this reason, the timestamp

resolution (in µs) of the sensor is maintained in the whole architecture.

A robust evaluation metrics approach is required to quantify a given event stream

sampled at 1MHz with the frame-based human labelled datasets (e.g. ground truth)
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sampled at a lower frequency (e.g. 1KHz). For that reason, the evaluation metrics

must account for the extreme differences in event rates produced by different recording

conditions, to ovoid bias and skewness in the data. The metrics must also assess the

boisterous raw events of the sensor in the same manner as the highly sparse detection

output event streams.

Event density in the event stream was used as a metric to evaluate the network

performance. This metric separates the spatio-temporal events stream to distinctive

volume with either a positive or a negative state. These states are then compared with

the labelled dataset, which indicates whether the corresponding volume contains the

correctly labelled objects or not. As illustrated in Figure 4.4(a), the spatio-temporal

volume outside this region and in frames with no labelled object is designated as False,

and the spatio-temporal volume slice surrounding the trajectory of a labelled object by

radius r is designated as True for each frame.

The volume is set as positive when the event density is above the global event

density of the whole recording for any spatio-temporal volume. Conversely, the volume

is designated as negative if the event density in the volume falls below the global

event density of the whole recording. Event streams with different event densities and

noise characteristics can be directly evaluated and compared by calculating the mean

True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)

volumes of each recording.

Using these volume-based measures, the event-based sensitivity and specificity of a

particular event stream can be calculated using:

Sensitivity =
TP

TP + FN
(4.1)

Specificity =
TN

TN + FP
(4.2)

Informedness = Sensitivity + Specificity − 1 (4.3)

Accuracy = 1− missclassified

allobservations
(4.4)

The accuracy is a measure to compute how many instances were miss-classified

across all the observations. Sensitivity (Equation 4.1) is the same as recall, it covers

all TN, and it is appropriate when the focus is on minimising the FN. For example,

understanding how many were correctly predicted as class 1 or not against the ground

truth. Specificity (Equation 4.2) covers all TN instances. For instance, if we want

to detect the correct labels for class 1, and we do not want the other features to be
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detected as class 1, then, in this case, FP is intolerable. Informedness, as shown in

Equation 4.3, provides a single statistic that captures the performance of a binary

classification network and quantifies how informed a predictor is for the specified con-

dition. Informedness measure helps in avoiding the biases of other common statistics

which exist in the accuracy and precision metrics, as they are susceptible to population

prevalence and label bias. For that reason, informedness is a more efficient accuracy

measure that is also suitable for the highly imbalanced event-based datasets in which

the vast majority of the spatio-temporal volumes are labelled as False regions.

4.4.4 Event-based Processing and Feature Extraction

Figure 4.6: FEAST Training. Top panels: Shows the adaptation of various neural
signals in the network over a single independent training cycle overtime. Bottom panels:
Shows the progression of learning overtime such as the change in threshold adaptation
per neuron, winner count for each neuron and the missing events (i.e. events filtered
out by the network).

Event-based processing algorithms require memory of recent events as input which

should be processed as a function of time. That is because event cameras output a

continuous stream of events encoding the time, location, and polarity, making each

event carry little information about the scene. An events memory can be generated via

a range of methods which are investigated in Afshar et al. [2019a]. The method used in

this section is the exponentially decaying event time-based surface, which outperforms

other types of memory surfaces.

Figure 4.7 shows an illustration of the event context extraction from time surfaces

in response to an incoming event e. The use of time surface reduces the data stream

into two-dimensional representation, making it possible to generate frame-like repre-

sentations that are continuous in time, as shown in Figure 4.7(b). The frames can be
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Algorithm 1 FEAST Algorithm

Require: ei = [xi, yi, pi, ti]
T , i ε N

Ensure: wn(x, y), n ε 1...Z
1: where Z is the number of neurons
2: and x = [−R..R] and y = [−R..R]
3: and R is the radius of the ROI
4: Initialise: Ti ⇐ −∞, w ⇐ w0, θ ⇐ θ0

5: where w0 and θ0 are random arrays with values between 0 and 1
6: for each event ei do
7: Ti(xi, yi)⇐ ti
8: Pi(xi, yi)⇐ pi
9: ROI(x, y)⇐ et−Ti(x+xi,y+yi)/τ0

10: d⇐ ROI(x, y)/||ROI(x, y)||
11: for each neuron n ε 1..Z do
12: δn ⇐ 〈d, vec(wn(x, y))〉
13: end for
14: q ⇐ argmax(δn)
15: if δn < θn for any n ε 1..Z then
16: wm(x, y)⇐ (1− η)wm(x, y) + ηROI(x, y)
17: θm ⇐ θm + δθ+

18: else
19: θm ⇐ θm − δθ− for all n ε 1..Z
20: end if
21: end for

generated at regular time intervals making it possible to use conventional feature detec-

tion techniques. However, conventional approaches discard the sensor’s high temporal

resolution and potentially result in non-optimal feature sets.

In this work FEAST algorithm, which was initially developed by [Afshar et al.,

2019c], was used as the backbone for feature representation and extraction. FEAST

algorithm is entirely event-based is an event-driven online unsupervised algorithm that

reliably learns distinctive features and captures discriminative structures of the event-

based data. It uses neurons or features with an individually adaptive selection threshold

that updates iteratively using a competition control strategy. The simple adaptive selec-

tion threshold of FEAST maintain homeostasis between the activations of the majority

of the neurons and the weight-update without the need to store the previous neural

activity. Hence, it forgets the previously learnt features once new patterns appear in

the incoming data. FEAST learning rule treats every input event with equal impor-

tance irrespective of them being detrimental to the network. The threshold is adapted

for incoming events such that the features are consistently being contracted by current

events and expanded by rejected or missed events. This event-based competition means

that the thresholds of the neurons do not decay exponentially as a function of time but

the only response to missed input data which represent information to the network.
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Figure 4.7: The construction of a spatiotemporal time surface and features from the
event-based output of an EBC. (a) EBC generate a stream of events consisting of the
pixel location, direction of the change in illuminance and time. (b) An example of
the event stream. (c) An example of the decaying exponentials that generate the time
surface. (d) The exponential decaying time surface. (e) The intensity of the colour
encodes the time elapsed since the arrival of the last event from a particular pixel
(Source: Afshar et al. [2019a])

As shown in Figure 4.7(b), the derived time surface is used to extract an ROI patch

around every incoming event. This approach is beneficial because it does not process

the entire image resolution, which can limit the feature information to the local spatial

ROI and allows a computationally efficient event-based input to feature extraction.

This method weighs each pixel as an exponentially decaying function of time. The

method is implemented as described below:

Ti = R2 ⇒ R (4.5)

Pi = [−1, 1] (4.6)

x : t⇒ Ti(x) (4.7)

Si(x) = Pi ∗ e(Ti(x)−ti/τ) (4.8)

where Ti contains the time-stamp of the most recent event at each pixel address x

and y at the ith event index. Si(x) is the corresponding exponentially decaying time

surface which receives events for both polarities, and τ is the decay constant in seconds.

In the case of active sensing (i.e. when the camera is actively moving and sensing the

environment) and agriculture, the events rate is higher because all the objects in the

field of view are salient and therefore depending on the circuitry biases and settings,

the data bandwidth for both polarities is higher. Given the density and high volume in
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the events readout, the design approach motivates more noise-robust object detection

algorithms that also accounts for highly imbalanced classes. This is crucial because the

network is strictly required to retain enough information about the object of interest

where all the events triggered by this object are considered rare.

For every new incoming events (or observation), the time surface is updated, ROI

of size w ∗ w around the event ei = [xi, ti, pi]
T is selected for processing. The ROIi

associated with event is defined in Equation 4.9.

ROIi = Si(xi + ux, yi + uy) (4.9)

where ux = [−R : +R] and uy = [−R : +R] are subject to the constraint in

Equation 4.10.

√
x2 + y2 ≤ R,∀x ∈ ux,∀yuy (4.10)

Consequently the ROI at the ith event index contains the time surface values Si at

time ti from all pixels within the receptive field of size 2 ∗R+ 1, where R is the radius.

Then the ROIi is processed if Equation 4.11 is satisfied.

L <

xi+R∑
x=xi−R

yi+R∑
y=yi−R

(Ti(x, y) > Φ) (4.11)

Where Φ is the event activation time interval, L is the number of activated pixels

required, and x and y are subject to the distance constraint in Equation 4.10. The

ROI will be accepted only when the number of recently activated pixels on the time

surface within the radius R around the current event ei is above L. In this case, events

recentness is defined as a pixel that has received an event within Φ seconds. The ROI

size was selected around the neighbouring 11x11 pixels. The ROI region is converted

into a descriptor d in the form of a one-dimensional vector in order to perform further

processing on the event, as shown in Equation 4.12.

d = vec(I) = [I1,1...Iw,1, I1,2...Iw,2, I1,w...Iw,w]T . (4.12)

Following Equation 4.12, the descriptor is normalised through a division by its norm

to achieve invariance to temporal scaling.

d =
vec(I)

||vec(I)||
(4.13)

The normalisation of the d as shown in Equation 4.13 result in a time scale invari-
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ance that can effectively discard velocity information in favour of feature robustness.

It also means that the d generated from each event inject an equal amount of infor-

mation into the network by Equation 4.14. For example, a faster-moving object in the

scene with a higher magnitude would significantly affect the learned feature weights

compared to slow-moving features. In this case, the normalisation step makes the net-

work speed invariant. FEAST algorithm captures the most dominant spatiotemporal

patterns observed in an event stream using two main techniques such as adaptation

of all feature neurons toward the observed context allowing the features to evolve to

match the incoming data continuously, and the learning rate balance across all neurons

through the adaptive selection threshold that contract and expand to make each neuron

more or less selective.

During feature extraction, a dot product is applied between the normalised descrip-

tor d and each feature neurons wn such as σn = d.wn. In this case, each neuron is

compared to its selection threshold θn. The threshold is dynamic and given i features.

The thresholds change based on two rules: (1) If the cosine distance between its weights

and the input ROI is within the feature threshold, then the threshold is decreased by

a fixed amount ∆I then the neuron with the largest dot product is selected as the

winner, (2) If multiple features match the input, the best matching feature is selected,

(3) If there is no match between the ROI and any of the feature neurons, then all the

threshold are increased by a fixed amount ∆E then no neuron wins, and the network

misses the event. To perform this weight update, a small mixing rate η is used to move

the winning neuron toward the d slightly:

wn = (1− η).wn + ηd (4.14)

Where wn denote the weights of the winning neuron to the current input ROI and

η is the mixing rate used to update the features. There are two types of mixing rates:

one to move the threshold up and one to move it down. In this work, µup = 0.001 and

µdown = 0.003, and the number of neurons depend is a variable parameter that depends

on the types of dataset.

In this case, FEAST learns unsupervised representations from the incoming events

and each neuron is updated according to the number of events being fed to the system.

The neurons will learn representation for the most salient objects. Initially, the features

training is initialised to random points on the unit hypersphere. Given that the selection

thresholds are also initialised at random, the threshold will increase for some neurons

where every input causes a neuron to fire, and some neurons will not be activated

and will not learn prominent features from the incoming events. Given that the scene

is continuously changing and the camera is in constant motion, at least one neuron

will learn a specific feature from the incoming data. For instance, some neurons will

learn a feature for each class, others will learn noise and hot pixels, and few will learn

rare events. Neurons with great receptivity capture all input events such that there

are no missed spikes and no change in the selection thresholds of the more selectively
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initialised neurons.

As shown in Figure 4.6 by the bottom panel, during the initial stage of learning, the

relative magnitude of change in the threshold and miss event rate were low since only

the threshold of a few neurons are adapting and becoming more selective. The rate of

change in feature weight update is also low due to the network’s imbalanced activity,

which only allows a few neurons to learn and get updated. The standard deviation

of the spike rate is also low. As the training continues, the highly sensory neurons

become more selective and more neurons with a more selective initialised threshold

become activated and begin learning new features. This method of learning results in

an increase in the rate of change in the feature weights and the selection threshold over

time.

The number of activated neurons with decreasing thresholds increases to a tipping

point, and the change in threshold begin to decline as fewer highly receptive neurons

are left for adaptation. Simultaneously, a change in neurons weights and the variance

in the spike rate of the neurons also decreases. As the training advances, the neurons

weights and threshold begin catching the statistics and the dominant representation

in the data such that the neurons orient toward the centroid of the most common

spatiotemporal pattern clusters while the threshold takes on values in proportion to

the spread of the patterns around these centroids.

Thus, all neurons eventually become more selective. The missed spike rate would

cause the final most selective neurons to respond to input and begin adapting their

weights. Once training is completed, the trained weights are stored in the memory.

The trained weights are used during inference. During inference, FEAST adaptive

threshold and weight update rule are disabled, the feature with the smallest cosine

distance to the input is assigned to the incoming event regardless of the absolute value

of the adapted selection threshold.

4.4.5 Per Pixel Spatial Downsampling

This section examines the effect of downsampling operations on the input test patterns

during inference. The advantages of downsampling are significant [Cohen et al., 2018].

Firstly, it makes the network less computationally expensive and reduces resource re-

quirements, resulting in increased accuracy for networks with the same hidden layer

size. It requires fewer time-steps or input channels, speeding up the process and re-

ducing computation time. Also, downsampling inherently reduces the input data size,

requiring less bandwidth to transmit between the input and hidden layer and storing

data in the memory.

Although the DVS output is already spatially sparse in contrast to frame-based

sensors, our work focus on exploring whether the event rate can be further reduced,

as the power consumption of an EBC is a function of the event rate both in terms of

sensing and the processing of the data. Moving further up in our network pipeline and

the processing chain, the size of the attributes of the network is proportional to the

dimensionality of the input data resulting in further power and resource benefits when
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reducing the resolution of the events data.

Reducing the spatial dimension of the data before the classification network can sig-

nificantly impact the size, power consumption, and speed of the event-driven processing

operations. However, it is essential to investigate how much information the system

can afford to lose without harming the network performance during classification. The

spatial downsampling implemented in this work is computationally inexpensive and

easy to implement with one parameter to tune: the downsampling factor, which re-

duces data rate (i.e. total number of events) before embarking on computationally

expensive operations, such as classification. As downsampling is a lossy process, the

results containing the full resolution pattern should achieve the same accuracy bound

as any of the downsampled variants.

Figure 4.8: Diagram of the structure and function of the event-based per pixel down-
sampling filters. The spatial downsampling filter reduces the spatial resolution of the
input data by a fixed downsampling factor, resulting in an output stream that main-
tains the temporal resolution of the input (Source: Cohen et al. [2018]). AER refers to
Address Event Representation.

The downsampling mechanism is performed during inference and in between the

STP filter and the classification network. In this case, the spatial downsampling af-

fects the mapping from x and y addresses to input channels. As shown in Figure 4.8,

the downsampling operates directly on each incoming event, and the pixels values are

adjusted according to the downsampling factor while keeping the polarities and times-

tamps the same throughout the operation. The information contained within each

event is an integer in nature.

The timesteps possess microsecond resolution encoded with a 32-bit integer value.

The x and y pixel addresses are integers within the range of the camera frame, and

the polarity values contain only a boolean value indicating the direction of change

in brightness. As the output of the downsampling filter must conform to the same

conventions as the input, the output events must contain only integer values. The

range of permissible downsampling factors is limited only to integer values, and the

chosen downsampling factors range between 1 and 28.

At minimum downsampling factor 1, the events spatial resolution is 346 ∗ 260, and

at maximum downsampling factor 28, the resolution becomes 12∗9, any downsampling

value greater than 28 will not result in a significant change in the spatial resolution or

the dynamic of the moving object. As shown in Figure 4.9 we displayed the feature
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map through a specific neuron and applied the downsampling mechanism across all the

downsampling ranges.

In this case, the objects in the scene become much more prominent, and all the

information become much more visible as the size of the spatial resolution reduces.

For example, for a downsampling factor σ = 10, every ten neighbour events within the

10∗10 window are combined into a single event where the resolution after downsampling

is ten less than the original resolution (i.e. 34 ∗ 26⇐ 346 ∗ 260).
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Figure 4.9: The exponential time surface of the feature map was generated at 28
different spatial resolutions alongside their associated feature neuron. All surfaces are
all updated in an event-based fashion for each incoming event.

In this work, we show that spatial downsampling improves the accuracy of the

classification system under different circumstances while still reducing the effective

data rate and that there is a strong correlation between the size of the object and the

selected downsampling factor. These findings are particularly significant for designing

processing systems and algorithms that deal with many event data in a complex and

dense environment. Results of the downsampling mechanism are reported in Section

4.5.5.

4.4.6 Spatial Temporal Pooling STP Filter

Figure 4.10: FEAST network with feature neurons. Shows the procedure from extract-
ing features from the data to spatial pooling/flattening the features. The process starts
with the input event stream followed by an 11x11 ROI associated with 16 neurons, each
neuron is colour coded representing which part of the data was learned, a feature map
was created for each neuron, and then a per pixel downsampling approach was applied
to reduce the resolution, finally, the last layer pool the features from the feature maps
using a 3x3 receptive field.

In conventional computer vision algorithms, STP usually involves aggregating frame-

level features into video-level features. Typical pooling operation (e.g. max or mean-

pooling layer) aims to compress the information of two consecutive frames into one

frame. However, the pooling layer processes the entire image using the sliding window

technique, adding redundancy and unnecessary information to the network.

To take full advantage of the compact and sparse representation of DVS data, an

event-based STP filter was designed to eliminate all the unchanging values, processing

only the salient object. That means fewer kernels are required to represent DVS events

than regular images in CNN. Additionally, since there is a large portion of image

regions that are zeros in DVS events, pooling features on those empty regions are

non-informative. A larger pooling receptive field at frontal layers helps to get a more
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compact and meaningful description of sparse DVS image at an early stage of the

network, instead of spending much computation resource on the noisy details.

Afshar [2020] has shown that 2D pooling outperforms 1D pooling. This is because

the event generation methods involve the Pooling of raw sensor data over either time

or space or both, significantly increasing the information content of each event. In

this work, the STP filter is designed and applied in an event-driven way over the

downsampled feature maps on both space and time to increase the information retrieved

for each incoming event as described in Algorithm 26. Thus, the pooling operation is

only performed when the events occur within the field of view, disregarding the inactive

pixels. The feature extraction operation projects the raw event stream onto many

sparsely populated feature surfaces, which shows where a particular feature occurs over

the entire pixel array. For instance, a neuron that activates for vertical lines will only

show lines on the feature map. Similarly, for the neurons that only activate for circle

and horizontal lines, as shown in Figure 4.10, it can also act as events denoiser like an

autoencoder [Ma et al., 2020]. A 3D of size 3 ∗ 3 receptive field is selected as a pooling

window, performed after the per-pixel spatial downsampling.

Applying the 3D pooling layer overall feature maps avoids information loss as the

size of the feature extraction layer expands, the effect of information loss due to Pooling

becomes less significant. The 3D Pooling around the recent events for each feature map

simultaneously is flattened to form a 1D vector including all the pixels information

for the most recent pixel and the neighbouring pixels around it. The resultant is a

pooling vector of size Pooling = 3 ∗ 3 ∗ N where N is the number of neurons. The

process is repeated for every incoming event producing the final STPfilter matrix of

size nEvents*pooling window, where nEvents is the total number of events in the

sequence. This matrix contains all the relevant information for each event, and it is

then used in the cross-validation and classification network.

Investigating the effect of pooling layer window size was out of the scope of this

work, as an increase in the window size will dramatically increase the dimension of the

output data by a minimum of 10X-100X, resulting in several computational overheads.

4.4.7 Event-based Feature Selection

In machine learning, feature selection is vital for extracting meaningful and relevant

features to build an efficient classification model, reduce computation complexity, and

improve its generalisation ability. Generally, feature selection methods are divided into

three categories: (1) filter methods Sánchez-Maroño et al. [2007], the selection process

is independent of classifiers and rank features according to the intrinsic properties, (2)

the wrapper methods, which utilise the model’s predictive power to rank subsets of

features, and (3) the embedded methods, where feature selection interacts with the

machine learning process.

Unsupervised learning deals with finding hidden structures in unlabelled data. How-

ever, when the data is highly imbalanced, an unsupervised feature extraction algorithm

learns the dominant class structure and under-prioritises the non-dominant class, es-
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Algorithm 2 STP Filter Algorithm at Inference

Require: ei = [xi, yi, pi, ti]
T , i ε N

Ensure: wn(x, y), n ε 1...Z
1: where Z is the number of neurons
2: and x = [−R..R] and y = [−R..R]
3: and R is the radius of the ROI
4: Initialise: Si ⇐ 0, Sdi ⇐ 0, Ti ⇐ −∞, Tdi ⇐ −∞, Pi ⇐ −∞, w ⇐ w0

5: where w0 is the trained weight with values between 0 and 1
6: and d is the downsampling factor
7: for each event ei do
8: Ti(xi, yi)⇐ ti
9: Pi(xi, yi)⇐ pi

10: ROI(x, y)⇐ et−Ti(x+xi,y+yi)/τ0

11: d⇐ ROI(x, y)/||ROI(x, y)||
12: for each neuron n ε 1..Z do
13: δn ⇐ 〈d, vec(wn(x, y))〉
14: end for
15: qi ⇐ argmax(δn)
16: xdi ⇐ xi/d
17: ydi ⇐ yi/d
18: if Tdi(xdi, ydi, qdi) < 0 then
19: Tdi(xdi, ydi, qi)⇐ ti
20: Pdi(xdi, ydi, qi)⇐ pi
21: else
22: Tdi(xdi, ydi, qi)⇐ (1− β)Tdi(xdi, ydi, qi) + β ∗ ti
23: Pdi(xdi, ydi, qi)⇐ (1− β)Pdi(xdi, ydi, qi) + β ∗ pi
24: end if
25: STPfilter ⇐ Pdi ∗ Tdi((xdi − 1 : xdi + 1), (ydi − 1 : ydi + 1), :)
26: end for
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pecially when the data from the non-dominant class is considered rare. The problem

becomes more severe and challenging in dense and cluttered environments. To solve

this problem, we implemented an event-driven feature selection technique based on the

filtering method that makes use of the supervisory signals from the ground truth as

input to FEAST and compared the performance with the same architecture where the

supervisory signals were not used. Section 4.4.7.1 and Section 4.4.7.2 describes in detail

the procedure with examples and provide an overview for the whole network pipeline.

4.4.7.1 Without Supervisory Signals

Figure 4.11: First network pipeline which is called ”Standard architecture”. The net-
work is unsupervised from feature extraction to inference to classification.

A diagram of the whole network architecture used in this work is shown in Figure

4.11. Here we present the baseline architecture without applying feature selection. The

events from the EBC are used to generate a time surface [Afshar et al., 2019a] with an

exponential kernel on which FEAST) operates. An example of the features generated

for one of the tests sequences from the lab recorded dataset is presented in Figure 4.15.

In this case, all the events are fed to FEAST to extract unsupervised features based on

the presence of the objects in the scene. It was apparent that more features represented

the lines than the circles.

The lab recorded data are controlled and more structured regarding lights, motion,

and sensor biases, with fewer noise events than real-world scenarios. Therefore, the

network does not generate any variant for the noise features. However, in real-world

scenes, the network produces many variants of the noise features. Since the output
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of these features does not correlate with any particular class, they effectively act as

naturally evolved noise detectors, reducing the event density for the rest of the network.

FEAST algorithm extracts multiple variants of each object, including a variant of the

noise feature from the event stream.

These noise features point to subtle statistical structure in the noise, which likely

depends on the dynamic in the environment and the sensor bias settings. For that

reason, it is impossible to hard-code all the variants in noise features to cover all

biases and scene conditions. Therefore, FEAST account for as many noise features as

possible automatically. After the convergence of the feature detector, the training data

are converted to feature space (i.e. feature map), and the weights (i.e. feature neurons)

are frozen to be used at inference.

At inference, the unseen test sequences were passed through the same FEAST layer

in which the adaptive threshold and the weight update mechanism were disabled. In

this case, each incoming event from the test set is projected into a feature map. The

information was then pooled from each feature map using the STP filter with a 3 ∗ 3

receptive field. A label is assigned for each pooled event and presented to the classifier

through a supervised training regime. After each STP operation, the 3 ∗ 3 receptive

field is flattened to a 1-D vector containing information about the recent event and its

neighbours.

The process is repeated until the end of the test set is reached, resulting in a matrix

of size 9 ∗Nneurons ∗Nevents where Nneurons is the total number of neurons and Nevents

is the total number of events in the test set. This matrix is then used as input to the

classifier network. The training set consisted of random segments from each recording

sequence of about 50%, and the remaining 50% made up the test set.

There was a slight variance in the spatiotemporal patterns in each recording cat-

egory, such as changes in velocity, pose, and the periods of partial occlusion as the

objects enter and exit the field of view. This intra-recording variance significantly adds

to the dataset’s complexity and makes it more diverse and challenging.
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Figure 4.12: Inference with imbalanced features. Shows the uses of the trained weight
during inference to construct a feature map along with the feature pooling layer. The
bottom panels show the number of winner neurons for each class over time.

4.4.7.2 With Supervisory Signals

Figure 4.13: Second network pipeline which is called ”Mixed weights architecture”.
Supervisory signals were fed as input to FEAST to extract robust and discriminative
features. The features were aggregated before using them during inference.
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Figure 4.14: Third network pipeline is called ”Dedicated weights architecture”. In this
network architecture the supervisory labels were used during training and inference.

In Figure 4.13 and Figure 4.14 we present two different architectures where the su-

pervisory labels are used as part of the training in FEAST. Here we make use of feature

selection in the feature extraction phase. The motivation behind using the supervisory

signals is to solve feature biases in conditions where the majority of the feature neurons

belong to the dominant class and under-representing the non-dominant one, resulting

in feature skewness toward one particular class. Given that our datasets were generated

by moving the camera in a dynamically changing environment, the entire field of view

becomes salient, making the events stream noisy and highly imbalanced. For instance,

in conditions where the camera is moving, the events stream are imbalanced and the

events polarities and noise patterns due to the non-ideality of the sensor arbiters.

In this condition, it was evident that during feature extraction, the model became

more selective for the class that has more events and less than 10% of the neurons

end up firing for the non-dominant class, making the network a good background and

noise detector but no a suitable to detect the objects of interest. It was then apparent

that using supervisory labels is a great potential to solve data biases on the feature

extraction level.
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This has the advantage of forcing the network to learn features specific to one class,

resulting in many robust representations and producing an equal amount of features

per class, avoiding feature bias. Instead of learning unsupervised features from all

the input streams, FEAST training was divided into two phases, one for each class

independently. Thus, two weight templates (i.e. neuron population) and two threshold

arrays were initialised with random points. For example, a population of neurons is

assigned for each class weight, such as n neurons for class1 and m neurons for class0.

The exact mechanism of threshold adaptation and weight update rule is applied as

described in detail in Section 4.4.4.

During the initial training phase, if an incoming event belongs to class1, this event

activates the population of neurons for class1 resulting in weights update only for this

group of neurons and an increase in selectivity toward one class. The exact mechanism

is applied for events that belong to class0. After the convergence of the feature detector,

an equal number of unsupervised features are produced for each class, including more

information about the object’s class in the scene and noise features.

For the second architecture in Figure 4.13, the trained weights for each class were

combined into one unified template, unlike during training where the supervisory sig-

nals are used to produce better features, at inference the whole process of pooling

information using the mixed weight template is entirely unsupervised.

On the contrary, the third architecture, as shown in Figure 4.14, is divided into

two phases during training and during inference, segregating the features for training

and test dataset, giving the model additional supervision over the incoming signals

in each processing layer. At inference, the selection threshold is discarded such that

the features with the largest dot product to the input are assigned to the incoming

event, regardless of the absolute value of the adapted selection threshold. Thus, the

unseen test sequences are passed through the same FEAST layer in which the adaptive

threshold and the weight update mechanism are disabled. Every trained weight acts as

an events filter, allowing only events from specific event contexts that correlate with a

specific weight matrix to be passed through and projected to a feature map.

The following layers are the same as the first network pipeline described in Section

4.4.7.1. The main difference is that the features are more robust and balanced in

this network. Similarly, after each STP operation, the 3 ∗ 3 pooled receptive field is

flattened to a 1-D vector which contains all the information about the recent event and

its neighbours. The process is repeated until the end of the test set is reached, resulting

in a matrix of size 9 ∗Nneurons ∗Nevents where Nneurons is the total number of neurons

and Nevents is the total number of events in the test set. A supervisory label is assigned

to each flattened vector in the final matrix denoting its category.

The number of firing neurons for each class was monitored during training and

during inference to ensure each neuron activated to a particular class. In addition to

pooling the information, the spatial coordinate (x, y) of each pixel is recorded, and the

timestamp is used later to visualise the output of the classifier networks. Similarly, the

training set consisted of random segments from each recording sequence of about 50%,
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Figure 4.15: Inference with balanced features. Shows the uses of the trained weight
during inference to construct a feature map along with the feature pooling layer. The
bottom panels show the number of winner neurons for each class.

and the remaining 50% made up the test set.

4.4.8 An Event-based Noise Filter

Figure 4.16: Event noise processing showing the spatio-temporal events with and with-
out applying a noise filter.

Noise in the data from the DAVIS sensor typically has two broad characteris-

tics, such as high-frequency burst events and low-frequency random events that occur

throughout the scene. There are multiple noise filtering methods for event-based data

proposed in the literature such as [Liu et al., 2015, Linares-Barranco et al., 2015, Ieng

et al., 2014, Czech and Orchard, 2016]. The task of filtering away the unwanted noise

outside the classifier is an important post-processing step that helps extract a clear

spatio-temporal pattern of the object. An efficient filter must retain most of the signal

and remove most of the noise events presented in the stream.

A high-frequency movement generates most of the events in our data due to the

camera’s motion, making removing low-frequency events (i.e. noise) a trivial task. In

this case, the filter was considered as a low pass filter. Here, the main focus is to
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apply a noise filter after the classification as the network’s last layer to remove the false

positives and extract the moving objects. In this work, a signal was defined as the

events captured by the classifier that belong to class 1 (i.e. True Positive).

The noise was considered the events or activities presented outside the True Positive.

Note that the EBC not only captures the change in the light intensity at a location due

to moving objects but also produces noise events from the scene at various pixels due

to the movements of background objects and the sensor’s internal noise. A few noise

events pass through the classifier network (i.e. miss classified events), producing an

increased number of False Positives. The filter has to deal with removing noise events

and miss-classified events.

The noise filter has two parameters: receptive field size and temporal window. For

each incoming event, the filter looks at the most recent event and its neighbouring pixels

and check whether this pixel is noise or an actual signal. For instance, if multiple events

occurred within the receptive field within the defined temporal window, then this event

is considered an actual signal. Otherwise, it will be removed as a noise event. These

parameters depend on the types of events the classifier gives, and a parameter search

needs to be performed to find the appropriate parameters.

4.4.9 GLS for Highly Imbalanced Classes

This section proposes a statistical method that consideres all the information in the

input event stream without applying undersampling or oversampling to overcome the

problem of highly imbalanced classes and to address the problem of heteroskedasticity.

Due to the nature of our dataset, which is inherently dense and complex, the class

labels become imbalanced and lead to an unequal distribution of data for the train

and test dataset. For example, the events for class 0 were significantly more numerous

than class1, creating a biased towards the dominant class. In this case, the problem

of heteroskedasticity arises, because the variance of the observations was not constant,

as shown in Figure 4.17 3. We addressed this problem by applying a GLS estimator

method Aitken [1936] which is equivalent to applying ordinary least squares to a linearly

transformed version of the data and takes into account the inequality of variance in the

observations.

GLS assumes that we have the following model:

Y = Xβ + ε (4.15)

E[ε] = 0 (4.16)

3http://halweb.uc3m.es/esp/Personal/personas/durban/esp/web/notes/gls.pdf
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Figure 4.17: Heteroskedasticity. It shows the skewness of the dataset where the variance
of the observations is unequal to the mean. Upon visual inspection of the residual errors,
the tell-tale sign is that they will tend to fan out over time.

V ar[ε] = σ2Ω (4.17)

Where Ω is a known n ∗ n matrix if Ω is diagonal bu with unequal diagonal ele-

ments, the observations y are uncorrelation but have unequal variance, while if Ω has

non-zero off-diagonal elements, the observations are correlated. The optimal solution

is to transform the model to a new set of observations that satisfy the constant vari-

ance assumption and use the least square to estimate the parameters. Since σ2Ω is a

covariance matrix, Ω is a non-singular matrix. The generalised least squares estimator

of β is:

β = (X ′Ω−1X)−1XΩ−1y (4.18)

The value of Ω dictates how far or how close the class labels are from each other,

which also adjust the distribution between the dataset.

4.4.10 Classification Algorithms

In this work, the choice of a classifier plays a crucial role in the performance of the

feature extractor. For that reason, two classifiers were used to perform the learning

and classification tasks on the feature events generated from the network pipeline. The

baseline test was performed using a linear classifier to measure how linearly separable

the underlying data is after processing. In addition to this baseline classifier, an ELM

was used, which not only has a large number of random hidden layer neurons but also

projects the non-linearities of the dataset into a linearly separable higher dimensional

feature. In this work, we present the results from both classification algorithms to show
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the model performance on different classifiers and show the linearity of the data after

feature extraction.

The linear classifier is the first algorithm used to classify data into labels based on

a linear combination of input features. It separates data using a line or plane, and

it is used to classify data that is linearly separable. The classifier consists of only

one layer that uses Online Pseudo-inverse Update Method (OPIUM) van Schaik and

Tapson [2015] to iteratively update the linear output weights which project from the

input layer to the output neurons. An iterative method of solving the pseudo-inverse

for the linear classifier allows the classification network to be updated in response to

each event. Because this method classifies each event individually, the bigger the size of

the event-based data and the scale of input channels, the more computational resources

needed, which make the classification prohibitively challenging, which was the primary

motivation to apply the event-driven downsampling as described in Section 4.4.5.

The second classifier is an iterative implementation of the ELM Huang et al.. It

consists of a standard three-layer configuration and uses random weights to project

from the input layer to a hidden layer. This hidden layer input is passed through

a nonlinear activation function, typically a sigmoid function. A set of linear output

weights are learned to map the hidden layer output to the output classes, thus per-

forming classification. The ELM network also makes use of the OPIUM to learn the

input/output weight mapping.

In this work, both of the classifiers are backpropagation-free as they only require a

single feed-forward pass to compute the weight mapping between the input and output

and then predict the labels for the test samples. Both classifiers were applied to all

test sequences. For instance, the linear classifier was used to investigate the linearity

of the data and understand its complexity in high dimensional space. However, the

only drawbacks of the linear classifier are that it gives the same outcome at every

run because there is no random weight initialisation, and at each feed-forward pass,

the same outcome is generated with no further improvement. Therefore, the linear

classifier was used as a baseline for the performance of the other classifier. In contrast,

the ELM classifier was used with different hidden layer neurons and different random

weight initialisation to help to compute the accuracy error over multiple runs.

4.5 Results

In the sections, we evaluated the performance of the event-based detector and classi-

fier algorithm on the events dataset described in Section 4.4.7.1 and Section 4.4.7.2.

The architectures were first evaluated on a well-known dataset such as N-MNIST and

DVS gestures in Section 4.5.1 and Section 4.5.2, respectively in a view to forming a

baseline for the model performance. While we are targeting per-pixel classification in

this thesis, it is worth to note that the structure of the N-MNIST and DVS gestures is

different from our agricultural data mainly because we deal with multiple objects of the

same class per recording, whereas N-MNIST and DVS gestures involve single object

per recording. The performance of the algorithm on the lab recorded data was inves-
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tigated in detail in Section 4.5.3 and was evaluated on the real-world scene in Section

4.5.4. We investigated the effect of per-pixel downsampling and event-based feature

selection in Section 4.5.5 and Section 4.5.6 respectively. We showed how applying a

noise filter after the classification can reduce the false positives for the predicted signal

and potentially lead to better results. Finally, we proposed a solution for the problem

of highly imbalanced data by using GLS method, which was described in Section 4.5.8.

All networks in this work were trained with the same parameters such as the number of

neurons, learning rate, time constant, STP filter size and the number of hidden neurons

in the ELM and train/test cross-validation in a view to providing a valid comparison

of the network performance.

4.5.1 N-MNIST Digit Classification Results

(a) (b)

Figure 4.18: N-MNIST Dataset. (a) Showing the three saccade-inspired motions across
each digit (Source: Afshar et al. [2019b]). (b) N-MNIST patterns are represented in
the time dimension to static images with pixel intensity proportional to the event rate
of the pixel.

To prove and demonstrate the feasibility and reliability of the network for classifica-

tion tasks, we first evaluated the network performance on well-known datasets, which

can be considered the baseline performance for the architectures proposed in this thesis.

This section examines several approaches to performing recognition and classifica-

tion tasks on the N-MNIST dataset. The N-MNIST dataset [Orchard et al., 2015] as

shown in Figure 4.18(b)4 contains only 10 different classes, the digits 0–9. The digits

were recorded using a neuromorphic vision sensor by moving it in a pre-defined saccadic

motion in front of a display screen. Through the heuristic examination described in

Section 4.4.7, this approach primarily makes use of the same network architecture as

a mechanism of learning and classifying spatio-temporal patterns. This section char-

acterises the performance of a linear and ELM classifier using two methods of pooling

features from feature maps and investigates the model performance with regularisation.

4http://greg-cohen.com/project/datasets/
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Table 4.3: Parameters used during training and inference.

Parameter Value

Number of features 120

Time constant 1e4

Learning rate 0.001

ROI 11x11

Threshold open 0.001

Threshold close 0.003

Downsampling factor No Downsampling

STP filter 3x3

Regularisation 1e-3 to 1e3

ELM hidden neurons 1-1e3

Figure 4.19: Learned weights during FEAST training. 11x11 feature learned from the
ON and OFF events of the N-MNIST dataset. Each feature represents a normalised
vector reshaped to match the size of the incoming feature patches.

For each digit, 12 feature neurons were selected using both polarities with a size of

11x11. When the training for all digits was completed, the features were aggregated

to form 120 features for all the digits similarly to the ”mixed weight” architecture in

Figure 4.13. Only the training samples were used to generate the features and made

use of the feature extraction parameters configured as shown in the Table 4.3. The

first pooling layer is the same described in Section 4.4.6 where a spatio-temporal filter

of size 3x3 is selected for each incoming event to pool all the features from all features

surfaces. For example, for a network containing 120 neurons with a 3x3 STP filter

with the image size of 34 × 34 pixels and the 5500 events (average of the total number

of events for digit 0) results in a required input size of 5.94 million events per digit.
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The second pooling layer counts the pixel through the whole image (i.e. pooling by

counting). It reduces the layer’s size to a single feature per time-step, reducing the

input layer by more than an order of magnitude. For example, a network with 120

neurons will result in an input pattern size of 660000. Both polarities were processed

and pooled from the feature map and then fed to a linear and an ELM classifier. Given

the computational resources needed to classify all test digits in an event-driven fashion,

only a portion of the test was selected to reduce the computation cost and time. In this

case, 250 event files were randomly chosen for each digit producing a large matrix of size

250*Nevents*Nneurons for the pooling by counting and 250*Nevents*Nneurons*3*3 for

the STP filter. After applying cross-validation and shuffling, this matrix is then fed to

the classifier to randomise the order.

(a)

(b)

Figure 4.20: Comparison of the classification test accuracy. (a) Test accuracy with
regularisation. (b) Test accuracy with different hidden layer size.

Figure 4.20(a) presents the model accuracy using both pooling operations using the

ELM classifier. The results show that the pooling by counting operation outperforms
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the STP filter. The pooling by counting operation achieved 98.87% in accuracy when

the regularisation factor was 478, while the STP filter achieved 79.29% and then it

started to reduce. The results in Figure 4.20(b) show that the model accuracy increases

gradually increases with the size of the hidden layer. Similarly, the pooling by counting

operation shows superior performance and achieved higher accuracy with a smaller

number of hidden neurons in comparison with the STP filter, which seems that it

requires more hidden neurons to achieve higher accuracy.

(a) (b)

(c) (d)

Figure 4.21: Confusion matrices for the 10-category classification problem. (a) and (b)
Showing the results using the pooling by counting operation using the linear and ELM
classifier, respectively. (c) and (d) Showing the results using the STP filter operation
on the linear and ELM classifier, respectively.

These results show both the importance of regularising and increasing the classi-

fier’s hidden neurons. Also, it shows that providing a single value per time-step (i.e.

pooling by counting) can provide sufficient information for the classifier. In contrast,

the STP filter operation shows that the data became non-linearly separable and made

the input attribute for the classifier much larger, which affect the computational and
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memory limits. Thus, counting the values through the whole image is a well-suited op-

eration to the nature of the events produced by FEAST, as they are inherently sparse

spatio-temporal patterns. Figure 4.21 shows the confusion matrices for both pooling

operations and classification networks. For comparison purposes, the pooling by count-

ing also had a higher accuracy across all digits for both the linear and ELM classifier

as high as 99.8% for digit one and 99.3% for digit 92.2% for digit three the linear clas-

sifier, which increased to 98.8% using an ELM classifier. In contrast, using the STP

filter show much lower performance in the range of 56.8% and 83.0% for digit 9 and

1, respectively, and the linear classifier showed to have superior performance than the

ELM classifier.
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Figure 4.22: Correctly classified events for each digit using the Pooling by Counting
operation. The digits were randomly selected for visualisation purposes. The dig-
its patterns are collapsed in the time dimension to static images with pixel intensity
proportional to the spike time of the pixel using exponential time surface.

In Figure 4.22 and Figure 4.23 the results of the classification output for each pooling

operation are projected into a time surface to show the event patterns for each digits.

Given the higher accuracy of the pooling by counting in terms of hidden layer size and

regularisation, this pooling operation demonstrates better and clearer spatio-temporal

patterns for each digit in comparison with the STP filter operation, which was spatially

sparse.
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Figure 4.23: Correctly classified events for each digit using the STP filter operation.
The digits were randomly selected for visualisation purposes. The digits patterns are
collapsed in the time dimension to static images with pixel intensity proportional to
the spike time of the pixel using exponential time surface.

4.5.2 DVS Gesture Dataset Results

To test our network architecture on more complex datasets and instead of creating new

datasets from scratch, we utilised the DVS gestures datasets from IBM [Amir et al.,

2017], which were recorded using a DVS128 sensors. This data presents several funda-

mental properties, such as being recorded using natural motion rather than simulating

movements used in the generation of DVS-converted datasets like the N-MNIST and

Caltech101 [Orchard et al., 2015]. This dataset has 11 distinct human gestures exe-

cuted by one subject in each trial, providing 1342 samples divided into 122 trials. Each
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gesture has an average duration of 6 seconds combining all the polarity events recorded

by the sensor. Three lighting conditions, including LED light, natural light, and fluo-

rescent light, are selected to control the effects of the flicker on the DVS camera and

the background shadow, providing a bias improvement for the data distribution. In

this case, spatial and temporal information are essential components.

Figure 4.24: DVS Gesture dataset. Three different gestures are shown where each
frame represents all the events at different time interval. Right Hand Clockwise (top);
Arm Roll (middle); Other Gesture (bottom). Pixel are colour-coded according to the
pixel time.

For DVS gesture dataset, we used the ”standard weight” and ”mixed weights” archi-

tectures described in Section 4.4.7.1 and Section 4.4.7.2 to investigate the effect of using

the supervisory signals during the initial features training. The method of processing

the DVS gesture dataset was the same as that used for the N-MNIST dataset. However,

we only used the pooling by counting operation as it is less computationally expensive

compared with the STP filter, which requires rigorous optimisation for pseudo-inverse

weights multiplication (i.e. OPIUM) and GPU support due to the immense data size.

The investigation was based on the ROI size that ranged from 7x7 to 31x31, the num-

ber of features, and the downsampling σ size using both linear and ELM classifier

networks. As with the N-MNIST dataset, the system was trained on a subset of the

gesture dataset. The training set consisted of 98 sequences of human gestures, with

the remaining 23 making up the test set. The gestures’ spatio-temporal pattern signifi-

cantly varies for each recording due to the change of the gesture velocity, pose, and the

activity’s periods. An example of the features generated for the gesture for different

ROI size is presented in Figure 4.25 which shows the resulting features set learned at

five trials on a randomly selected train set with different ROI sizes. The trained feature

shows the consistency in learning discriminative features with some features coding the

human hand from a different point of view and the variation in noise events. One of

the main advantages of the feature extraction network is the dynamic learning of the

noise variants in the events, which can vary with the sensor bias, removing the need to
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hard-code a noise filter. The features that learn the noise can filter out these events

for the rest of the network. Once the training is completed, the trained neurons (i.e.

features) are used to project the latent features back to the original event pixel space

(i.e. feature space) to remap the learned features over to the shape generation process

to unravel the latent space the classifier. Here we show the events captured by each

winner neuron during inference at different network sizes. At inference, each neuron

act as a spatio-temporal filter. For example, if a particular neuron learned the shape of

the human hand, then at inference, this neuron will only allow events from the human

hand to be passed through to the feature space, and the same applies to noise events.

(a) (b)

(c) (d)

(e) (f)

Figure 4.25: Features generation at multiple network scales showing the network con-
sistency in learning features. Panels (a) are features generated using an ROI of size
7x7. Panels (b) are features generated using an ROI of size 11x11. Panels (c) are
features generated using an ROI of size 15x15. Panels (d) are features generated using
an ROI of size 19x19. Panels (e) are features generated using an ROI of size 23x23.
Panels (f) are features generated using an ROI of size 31x31.

As shown in Figure 4.26 the magnitude of the change in the features thresholds

and weights are similarly low at the beginning of the training due to the random ini-

tialisation of the weights and thresholds as well as the early unbalanced activity of
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Figure 4.26: Evolution of the FEAST neural signals and parameters during training
using 20 neurons. Top panels show the network’s adaptation of various neural signals,
such as the change in the threshold (Left) and the neuron weight (Right) over three
trials and a randomly selected test set. The bottom panels show the interneural spike
rate variance (Left), which demonstrate the neuronal homeostasis showing how the
network maintained a target level of spike activity and the missing spike rate over time
(Right).

the network. As the learning progressed, the neurons became more selective and ac-

tive, which increased/decreased the rate of change in the neuron weight and threshold.

Besides, the missing events rate is reduced once the rate of the change increases, in-

dicating that fewer events are being filtered out over time, and the majority of the

events are being processed. The network has also maintained a homeostasis state be-

tween all the neurons resulting in a relatively equal firing rate per feature as shown

in Figure 4.26(Bottom left panel). That means that the firing rates remain relatively

constant, ensuring that the network treats each neuron equally and dynamically adjust

the synaptic strengths in the correct direction to promote stability.

In Figure 4.27, the trained weights are used during inference using randomly selected

test sets to convert the events to feature space. The network demonstrated that it is

possible to segregate discriminative events even at different scales. However, the number

of output events slightly increase as the ROI increase which was expected because a

larger ROI contain more information about the scenes. At inference, the downsampling

factor σ was varied between 1 and 10. Two classifiers were used, a linear classifier and

an ELM classifier with 100 hidden neurons, to compare the network performance. The

process was repeated for ”standard weights” and the ”mixed weights” architecture. For

evaluation, the accuracy measure was used for both classifiers. These networks results

are shown in Table 4.4 and Table 4.5.

As the results in Table 4.4, the highest classification accuracy is achieved using a

15x15 ROI, 50 FEAST neurons, without downsampling (σ=1) using a linear classifier,

resulting in 92.95%. Overall, we observed the following: (i) the highest accuracy was
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(a) (b)

(c) (d)

(e) (f)

Figure 4.27: Filtering mechanism at inference. The spike events output generated by
each winner neuron shows that each neuron selects events based on the learned feature.
Only a subset of neurons is shown here for visualisation purposes. Panels (a) are
features generated using an ROI of size 7x7. Panels (b) are features generated using
an ROI of size 11x11. Panels (c) are features generated using an ROI of size 15x15.
Panels (d) are features generated using an ROI of size 19x19. Panels (e) are features
generated using an ROI of size 23x23. Panels (f) are features generated using an ROI
of size 31x31.

achieved without downsampling for most of the cases, (ii) having more features led to

better classification performance, (iii) in most cases, the linear classifier outperformed

the ELM network with a tiny margin, (iv) the network performance showed to be con-

sistent at different ROI sizes and (v) the ELM had lower classification error with larger

ROI size over 20 trials indicating a consistent performance. Table 4.5 show the results

using the ”mixed weights” architecture. The highest accuracy was achieved using a

31x31 ROI, 50 FEAST neurons, without downsampling (σ=1) using a linear classifier,

resulting in 94.51%. The aggregation of the features during inference increased the

classifier’s performance by an additional 1.56% slightly. Almost all results were higher

using the linear classifier than the ELM classifier showing that FEAST managed to pro-

vide enough information to the linear classifier even without the use of downsampling.

Overall, the results from the ”standard weights” and the ”mixed weights” architectures

were not significantly different. That was was due to the high degree of similarity be-

tween the features where the human arms and torso were dominant in the visual field,
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making the neurons learn wide variations of the same subject. For that reason, the out-

put activation of FEAST neurons has already provided a linearly separable mapping to

the output classes for both architectures. However, the feature similarity and the high

variance in the activity velocity and the recording condition (e.g. lighting condition,

background, etc.) impacted the algorithm’s perfect classification performance. Figure

4.28 shows the correctly classified events for each activity using the ”user28 natural”

recording and Figure 4.29 shows the confusion matrices using the model architecture

that had the highest performance. Computational and memory limits prevented further

experiments.

Table 4.4: Comparison of classifier performance on DVS gestures with different hyper-
parameters using ”standard weights” architecture as described in section 4.4.7. Twenty
trials of each network configuration were performed using the ELM classifier consisting
of 100 neurons. σ is the downsampling factor. LC is the linear classifier.

ROI Features σ Test Accuracy LC (% Correct) Test Accuracy ELM (% Correct)

7x7

20
1 91.67 91.26 ± 1.24

10 86.46 81.77 ± 2.56

50
1 92.39 90.68 ± 2.41

10 87.35 81.24 ± 3.12

11x11

20
1 82.47 86.98 ± 2.87

10 86.42 78.36 ± 2.34

50
1 91.82 88.83 ± 2.15

10 88.00 83.84 ± 4.23

15x15

20
1 88.22 84.08 ± 1.26

10 78.98 77.58 ± 3.25

50
1 92.95 87.55 ± 2.56

10 90.17 82.48 ± 1.19

19x19

20
1 89.85 89.75 ± 1.69

10 83.00 79.97 ± 3.58

50
1 92.09 87.99 ± 2.59

10 90.66 83.22 ± 2.58

23x23

20
1 88.05 88.47 ± 1.44

10 84.53 81.49 ± 1.67

50
1 90.37 90.23 ± 0.98

10 86.56 84.48 ± 1.63

31x31

20
1 86.81 86.92 ± 1.35

10 85.54 81.16 ± 2.33

50
1 92.54 88.73 ± 1.31

10 92.91 83.31 ± 1.75
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Table 4.5: Comparison of classifier performance on DVS gestures with different hyper-
parameters using ”mixed weights” architecture as described in section 4.4.7. Twenty
trials of each network configuration were performed using the ELM classifier consisting
of 100 neurons. σ is the downsampling factor.

ROI Features σ Test Accuracy LC (% Correct) Test Accuracy ELM (% Correct)

7x7

20
1 90.27 89.56 ± 1.54

10 89.72 83.50 ± 2.00

50
1 91.96 90.04 ± 0.97

10 92.67 85.61 ± 1.62

11x11

20
1 90.07 91.27 ± 0.92

10 88.38 83.31 ± 1.89

50
1 91.99 90.02 ± 1.22

10 91.43 85.40 ± 1.66

15x15

20
1 88.10 89.01 ± 0.98

10 83.73 82.04 ± 1.77

50
1 92.54 90.87 ± 0.91

10 90.74 85.50 ± 1.35

19x19

20
1 90.27 88.84 ± 1.39

10 88.61 83.06 ± 2.07

50
1 93.60 91.17 ± 0.96

10 92.44 86.27 ± 1.55

23x23

20
1 87.24 90.53 ± 1.22

10 83.05 82.09 ± 1.55

50
1 93.42 90.83 ± 0.83

10 91.54 85.45 ± 1.93

31x31

20
1 91.82 90.88 ± 1.30

10 86.93 81.62 ± 2.58

50
1 94.51 92.34 ± 0.77

10 93.32 83.53 ± 3.09

4.5.3 Performance on Laboratory Recorded Data

The lab recorded datasets were primarily recorded to simulate each real-world challenge

individually to understand the network behaviour in specific scenarios more efficiently.

We conducted several experiments to test the robustness of the feature extraction al-

gorithm against high dimensional noisy events and test the classification network using

balanced and imbalanced data. Below are the experiments conducted on each test

sequence:

1. Linear classifier using standard network approach with imbalanced data

2. Linear classifier using standard network approach with balanced data

3. Linear classifier using dedicated weights network approach with imbalanced data
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.28: Correctly classified events for each activity using user28 natural recording.
The activity patterns are collapsed in the time dimension to static image representation
with pixel intensity proportional to the spike time of the pixel using the time surface.
(a) Arm roll. (b) Air drum. (c) Other gestures. (d) Air guitar. (e) Hand clapping. (f)
Left-hand wave. (g) Right-hand wave. (h) Left-arm clockwise. (i) Right arm clockwise.
(j) Left-arm counter clockwise. (k) Right arm counterclockwise.

4. Linear classifier using dedicated weights network approach with balanced data

5. Linear classifier using mixed weights network approach with imbalanced data

6. Linear classifier using mixed weights network approach with balanced data

7. ELM classifier using standard network approach with imbalanced data

8. ELM classifier using standard network approach with balanced data

9. ELM classifier using dedicated weights network approach with imbalanced data

10. ELM classifier using dedicated weights network approach with balanced data
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Figure 4.29: Results and confusion matrices using the network with a linear classifier
and an 11x11 ROI and 20 features using the ”standard weights” architecture.

11. ELM classifier using mixed weights network approach with imbalanced data

12. ELM classifier using mixed weights network approach with balanced data

In Figure 4.30, each row represents the classification output for each test sequence

across different timestamps. Events were represented using a time surface with an

exponential decay kernel, and red events belong to class1, and black events belong to

class0. Due to the skewness and imbalanced nature of the data, the accuracy metric

was not used to evaluate the network’s performance. Instead, sensitivity, specificity,

informedness and correlation coefficient were used for the final model evaluation. This

section shows the model’s performance in detail using the balanced and imbalanced

data to show (i) the effect of highly imbalanced data vs perfectly balanced classes and

(ii) form a baseline comparison for each network architecture. Given that all datasets

were recorded with the same movement patterns and translation speed, the same time

constant τ = 0.5 was applied in data labelling, feature extraction, and inference. The

time constant value was chosen by inspection during the data labelling process to ensure

the noise events fade quickly without dominating the signal from the true objects.
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Figure 4.30: Performance of the network on the laboratory recorded dataset from the
best performing architecture. Correctly classified instances as red dots, black dots
are other classes. (a), (b), (c), (d), (e), (f) show the spatio-temporal patterns of the
classification output for each test sequences. Original datasets are described in Section
4.4.1.

Each test sequence in Figure 4.30 presents a unique challenge to the classifier net-

work, such as occlusion, variation in size and complex shape. In ”Shape translation”,

the events were well segregated after the classification, showing a clear stream of events

for each class. However, due to the uneven motion of the platform and the presence of

noise events, there were few noticeable miss-classified events in each class. As shown

in Table 4.6 and Table 4.7, the model achieved the highest informedness of 82.35% on

the imbalanced data and 88.24% using the imbalanced data, both using the ”mixed

weights” architecture with an ELM classifier with 100 neurons indicating the signifi-

cance of the mixed weights method and the effectiveness of the ELM classifier network.

In ”Two classes occlusion”, it was evident that the border between both classes

became no longer visible due to the overlap, changing the circles’ appearance. For that

reason, the classification task became more challenging, resulting in a high rate of miss-

classified events (i.e. false positive). The model achieved high informedness using the

mixed weights method of 86.32% with the imbalanced data using the ”mixed weights”

architecture, followed by 69.42% using the ”dedicated weights” method with the bal-
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Table 4.6: Summary of classification performance for all laboratory test sequences using
three network architecture and two types of the classifier on the imbalanced dataset.
LC refers to the linear classifier, and ELM refers to the extreme learning machine
classifier.

True Positive
(%)

False Positive
(%)

Sensitivity
(%)

Specificity
(%)

Informedness
(%)

LC ELM LC ELM LC ELM LC ELM LC ELM

Standard Weights 65.6 72.5 30.5 5.3 80.76 92.90 96.46 96.17 77.25 77.03
Dedicated Weights 15.3 15.6 25.3 24.5 10.1 17.85 99.66 98.58 15.5 16.44Shape translation

Mixed Weights 55.6 63.2 24.5 35.4 72.60 85.00 98.08 97.34 70.68 82.35

Standard Weights 23.5 15.5 35.8 25.6 38.82 37.75 90.60 90.44 29.42 28.19
Dedicated Weights 30.5 15.7 27.5 26.5 19.34 41.30 97.78 95.26 17.12 36.56Two classes occlusion

Mixed Weights 10.2 25.6 50.5 45.2 28.55 27.16 86.32 85.69 86.32 12.85

Standard Weights 45.5 34.9 36.5 23.2 13.05 8.37 98.12 98.37 11.17 6.74
Dedicated Weights 32.5 28.5 52.5 45.2 53.36 52.37 93.75 93.22 47.11 45.60Multiple objects

Mixed Weights 10.2 31.2 23.5 31.8 25.37 19.43 96.49 96.36 21.86 15.79

Standard Weights 45.3 35.6 32.5 47.5 64.69 62.49 93.64 93.70 58.33 56.19
Dedicated Weights 21.2 15.3 10.2 10.9 8.26 27.37 98.99 97.29 7.25 24.66Different sizes

Mixed Weights 50.3 45.5 32.5 45.5 66.54 62.25 93.41 93.39 59.96 55.64

Standard Weights 40.2 45.5 32.5 15.5 46.25 47.52 95.02 94.23 41.27 41.75
Dedicated Weights 10.7 5.7 15.6 14.5 4.55 17.03 99.74 99.03 4.30 16.07One class occlusion

Mixed Weights 25.5 28.5 26.3 30.5 54.76 37.90 95.35 92.92 50.11 30.81

Standard Weights 20.5 15.3 12.5 12.9 28.15 28.17 99.80 99.71 27.98 27.81
Dedicated Weights 20.6 15.8 18.5 24.5 13.85 23.42 99.99 99.79 13.79 23.22Complex shapes

Mixed Weights 50.6 65.5 69.5 15.5 65.21 73.52 97.46 96.83 62.66 70.33

anced data, both using a linear classifier which was well above the chance (e.g. 50% in

this case). This was due to two main reasons: (i) the network has to account for the

lines edges, circles curves and the edges between the overlapped objects, which diversi-

fies the learned features and adds another dimension of complexity to the network and

(ii) labelling the overlapped objects was challenging as it became harder to separate the

events between two overlapped objects during labelling. Since it is a binary classifica-

tion problem, a particular feature has to be classified as either line or circle, which made

the network struggle to classify the overlapped surface. For that reason, fewer events

were mislabelled, resulting in a bias in the data toward the dominant class. In the

”Multiple objects” recording, there were more objects with different shapes in a view

to test the robustness of the network. In this scenario, the network has to make more

discriminative representations about each object to differentiate between the classes.

The model achieved 45.6% informedness on the imbalanced data using the ”dedicated

weights” method with the ELM classifier, and a slight improvement to 47.58% using

the balanced data with the ”mixed weights” method ELM classifier. There were two

classes with different sizes in the ”Different size” recording to test the model robustness

against a different object with different scales. The highest informedness was achieved

using the mixed weights method with 59.96% using the ”mixed weights” method and a

linear classifier, and a noticeable increase in the model informedness with 74.46% on the

imbalanced data using the same architecture and classification algorithm. This shows

that in cases where the objects have different sizes, it is beneficial to have dedicated

weights for each class to help the model better generalise the object of interest and be

size invariant. Another type of occlusion was introduced in the ”one class occlusion”

sequence, where only the circles were overlapped. This overlap changes the shape and

appearance of the circle. Thus, two occluded circles resemble the shape eight instead of
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Table 4.7: Summary of classification performance for all laboratory test sequences using
three network architecture and two types of the classifier on the balanced dataset. LC
refers to the linear classifier, and ELM refers to the extreme learning machine classifier.

True Positive
(%)

False Positive
(%)

Sensitivity
(%)

Specificity
(%)

Informedness
(%)

LC ELM LC ELM LC ELM LC ELM LC ELM

Standard Weights 65.3 45.5 56.5 35.8 94.70 91.51 80.31 76.93 75.00 68.44
Dedicated Weights 34.5 35.5 21.7 38.9 91.87 85.82 77.44 82.35 69.31 68.17Shape translation

Mixed Weights 42.9 35.6 11.5 12.5 98.42 96.12 89.82 87.89 88.24 84.02

Standard Weights 32.5 25.5 15.5 10.8 73.48 70.58 66.54 68.35 40.01 38.93
Dedicated Weights 57.5 59.8 45.5 39.8 92.39 86.78 77.03 77.76 69.42 64.55Two classes occlusion

Mixed Weights 12.5 32.5 18.5 20.5 67.67 64.48 67.67 60.11 25.62 24.60

Standard Weights 35.6 34.7 23.5 24.8 74.41 72.26 70.54 72.26 44.95 42.48
Dedicated Weights 10.5 9.5 25.5 17.5 10.84 16.30 99.99 99.93 10.79 16.23Multiple objects

Mixed Weights 47.8 35.8 39.5 45.5 74.30 70.14 73.29 73.32 47.58 43.46

Standard Weights 65.8 55.4 35.4 25.8 87.73 86.20 84.46 85.63 72.19 71.83
Dedicated Weights 45.3 45.2 25.7 17.8 82.02 79.84 81.54 85.34 63.56 65.18Different sizes

Mixed Weights 65.5 45.6 23.5 15.9 87.33 85.44 87.13 86.94 74.46 72.38

Standard Weights 45.5 48.9 12.5 18.9 80.10 73.54 76.91 81.16 62.36 54.70
Dedicated Weights 45.8 23.5 55.6 39.7 83.24 76.76 71.26 79.37 54.51 56.13One class occlusion

Mixed Weights 51.8 37.4 34.8 38.4 84.03 76.91 85.18 85.29 69.21 62.19

Standard Weights 12.5 19.5 38.4 34.5 41.07 43.52 76.35 73.68 17.42 17.20
Dedicated Weights 55.2 59.5 45.3 38.5 99.19 94.93 70.85 74.81 70.04 69.74Complex shapes

Mixed Weights 12.5 16.5 35.5 38.6 42.38 44.78 77.50 73.24 19.88 18.01

two separate circles. The highest informedness was achieved using the ”mixed weights”

architecture on the balanced data with 69.21% using the linear classifier followed by

50.11% using the same architecture and classifier but on the imbalanced data. The last

sequence, ”Complex objects”, consists of a 2D representation of a plant with two hang-

ing fruits and a few leaves. Complex non-uniform shapes were passed to the event-based

classifier pipeline in this scenario. The network achieved 81.3% informedness using the

mixed weights method on the balanced dataset using the linear classifier, followed by

an informedness of 76.8% using the standard network using the linear classifier.

To improve the model performance during classification, we regularised OPIUM by

slightly changing the regularisation factor during the feedforward pass. The weights

mapping between the input and output was regularised within a specified regularisa-

tion range. In this work, we experimented with a regularisation range from 1 to 1000

and showed the classification informedness for linear and ELM classifiers as shown in

Figure 4.31 and Figure 4.32 respectively. The regularisation effect on informedness was

somewhat mixed for both classification methods and network architectures since each

condition present a unique challenge to the classifier. For instance, for test sequence

1, we observed an increase in informedness using the imbalanced data using the ”dedi-

cated weights” method with the linear classifier, and a decrease in performance using

the balanced data, showing that balancing the classes can change the distribution and

statistics of the data and lead to different network behaviour. We noticed that the im-

pact of regularisation was more evident using the linear classifier than with the ELM.

For instance, all the informedness results on the test sequences showed a fluctuation in

the model performance for different regularisation values with a slight increase in the

informedness at different regularisation values. This was reasonable and expected be-

cause, in the ELM classifier, the weights in the first layer are randomly initialised, which

change the statistics on the input attribute before computing the output weight with
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OPIUM. The investigation of the regularisation helped identify the highest and lower

performance of the classification network in a view to select the correct regularisation

value for the suitable dataset.

These results demonstrate the effectiveness of the end-to-end system in transform-

ing boisterous raw input events into sparse, highly informative noise-free event streams

in various scenarios. Overall the mixed weights approach achieved superior perfor-

mance compared to the other methods. This demonstrates the benefit of having fea-

ture selection during the initial training. On the other hand, balancing the dataset

by undersampling the dominant class improved the model performance. More detailed

results about the model performance were summarised from Figure C.8 to Figure C.13

in Appendix C.

Figure 4.31: Performance comparison of the linear classifier for each architecture and
for balanced and non-balanced classes on the laboratory recorded datasets.

Figure 4.32: Performance comparison of the ELM classifier for each architecture and
for balanced and non-balanced classes on the laboratory recorded datasets.
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4.5.4 Performance on Real World Scenes

Unlike N-MNIST and DVS gesture which is more structured, the real-world datasets

pose an exciting challenge for the event-based processing pipeline. The structure of

this dataset represents the actual real world and provides more spatially and tempo-

rally rich information that does not exhibit the same consistency between samples of

the same class. One major obstacle in real-world processing scenes was the highly im-

balanced classes and the non-uniformity of the input data, as shown in Table 4.2, the

percentage of the average event between class 1 and class 0 was 98% by 2% making the

problem extremely imbalanced. Events from class1 can be considered rare events. To

tackle this extremely challenging problem, we explored the use of GLS in section 4.5.8

which utilised the same framework with only minor modifications made to support the

differing nature of the input events and showed the model performance without under-

sampling or oversampling. All the work performed on the real-world dataset attempted

to use as much of the same processes and methodology as used in the classification of

the lab recorded dataset detailed in Section 4.5.3. The detailed results for all real-world

recordings were summarised in Figure 4.33.

Figure 4.33: Performance of the network on the real-world recorded dataset. Correctly
classified instances as red dots, black dots are other class. (a), (b), (c), (d), (e), (f)
show the spatio-temporal patterns of the classification output for each test sequences.
Original datasets are described in Section 4.4.1.
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Table 4.8: Summary of classification performance for all real-world test sequences using
three network architecture and two types of the classifier on the imbalanced dataset.
LC refers to the linear classifier, and ELM refers to the extreme learning machine
classifier.

True Positive
(%)

False Positive
(%)

Sensitivity
(%)

Specificity
(%)

Informedness
(%)

LC ELM LC ELM LC ELM LC ELM LC ELM

Standard Weights 0.1 0.5 0.2 1.2 1.3 2.3 99.99 98.78 0.8 1.08
Dedicated Weights 0.2 3.5 3.2 12.3 2.5 0.4 98.85 99.99 1.35 0.39Real world Sequence 1

Mixed Weights 1.3 2.5 5.6 11.2 1.1 1.4 99.85 99.99 0.95 1.39

Standard Weights 2.3 6.8 8.6 25.3 9.67 9.68 95.31 96.45 4.98 6.13
Dedicated Weights 0.1 4.7 3.9 5.3 1.4 1.23 99.99 99.99 1.39 1.22Real world Sequence 2

Mixed Weights 0.1 2.7 5.6 10.2 2.3 2.4 98.52 98.85 1.82 1.25

Standard Weights 0.6 6.5 0.2 12.3 2.3 4.5 99.99 99.99 2.29 4.49
Dedicated Weights 0.2 5.9 0.6 10.2 2.7 4.5 99.99 99.78 2.69 4.37Real world Sequence 3

Mixed Weights 0.8 2.4 0.9 18.6 1.7 2.8 98.85 99.99 0.55 2.8

Standard Weights 0.6 3.5 0.1 2.3 0.2 0.8 99.99 99.97 0.19 0.77
Dedicated Weights 1.2 4.5 0.3 1.8 1.6 4.3 99.55 99.99 1.15 4.29Real world Sequence 4

Mixed Weights 2.3 8.7 1.1 5.6 1.57 0.53 99.95 99.54 1.52 0.07

Standard Weights 0.5 6.5 0.5 7.5 0.5 0.9 99.99 99.97 0.49 0.87
Dedicated Weights 0.3 3.5 0.6 8.7 5.6 0.5 98.32 99.99 3.92 0.49Real world Sequence 5

Mixed Weights 0.7 7.8 0.6 8.9 2.6 5.6 99.99 99.99 2.59 5.59

Standard Weights 1.2 5.6 0.9 4.5 2.3 4.6 99.99 99.75 2.29 4.59
Dedicated Weights 2.5 8.9 1.8 10.5 3.5 0.5 96.57 99.99 0.7 0.49Real world Sequence 6

Mixed Weights 0.2 3.5 1.1 24.5 0.9 5.3 99.97 99.99 0.87 2.29

Table 4.9: Summary of classification performance for all real-world test sequences using
three network architecture and two types of the classifier on the balanced dataset. LC
refers to the linear classifier, and ELM refers to the extreme learning machine classifier.

True Positive
(%)

False Positive
(%)

Sensitivity
(%)

Specificity
(%)

Informedness
(%)

LC ELM LC ELM LC ELM LC ELM LC ELM

Standard Weights 26.7 15.9 24.8 17.7 26.69 24.78 88.18 84.62 14.87 9.40
Dedicated Weights 27.3 3.3 26.7 4.1 27.26 26.72 93.35 91.82 20.60 18.54Real world Sequence 1

Mixed Weights 17.4 11.3 16.4 13.6 37.43 46.44 87.40 92.79 24.83 39.23

Standard Weights 19.7 5.9 25.1 11.7 39.67 25.11 88.15 86.51 27.82 11.62
Dedicated Weights 39.2 3.8 36.8 6.2 59.17 36.77 92.45 87.53 51.62 24.30Real world Sequence 2

Mixed Weights 13.2 8.7 14.7 11.2 33.20 44.73 82.62 77.56 24.18 37.71

Standard Weights 40.3 31.8 28.4 21.2 91.23 58.36 95.52 77.60 86.75 35.95
Dedicated Weights 37.7 5.0 35.8 6.4 37.72 35.79 90.05 87.29 27.78 23.08Real world Sequence 3

Mixed Weights 44.4 36.5 35.5 26.6 44.40 35.50 77.08 86.71 21.52 22.21

Standard Weights 31.3 22.2 27.6 19.6 41.30 57.63 85.58 80.89 56.88 38.52
Dedicated Weights 39.0 9.6 40.6 12.0 38.96 40.65 80.78 76.09 19.74 16.73Real world Sequence 4

Mixed Weights 27.7 21.2 34.3 24.2 47.67 54.27 77.52 51.54 25.19 5.81

Standard Weights 37.1 25.8 30.7 23.7 77.12 50.75 48.32 72.60 25.44 23.35
Dedicated Weights 39.4 32.7 32.7 5.5 39.36 32.72 89.32 89.02 28.69 21.74Real world Sequence 5

Mixed Weights 38.6 28.1 39.5 28.5 78.65 89.53 73.90 42.96 52.55 32.49

Standard Weights 20.6 12.0 27.8 16.7 60.59 37.80 76.10 76.57 36.69 14.37
Dedicated Weights 36.8 2.8 39.8 4.0 36.79 39.77 94.30 91.96 31.09 31.73Real world Sequence 6

Mixed Weights 26.9 16.2 22.6 13.7 39.90 52.55 77.64 72.65 17.54 25.24

Figure 4.33 shows the classification output on the real-world dataset where the

classes were equally balanced before the fully connected layer. The undersampling was

applied to the data because the background contains no valid objects, which can pro-

duce unexpected and erratic results if trained with the existing network architectures.

The network performance can be dramatically deteriorated by including background

events as they occupy most input signals. The challenge was primarily a practical one

relating to mapping pixels to the classifier input channels. The network performance

increased when class0 was undersampled. Each row in Figure 4.33 represented the clas-

sification results on a single test sequence from the real-world environment. Each test
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sequence has a different event structure (e.g. temporally and spatially), recorded with

different non-linear motion, in different directions, and has different points of view to-

ward the objects of interest. Although the undersampling was applied on the dominant

class, the noise rate was extremely high due to the low SNR in the events data. The

network segregated the events that belong to the fruits vs the ones that belong to the

background. However, the results were less significant compared with the lab recorded

datasets.

Figure 4.34 and Figure 4.35 presented the results of all the classification architec-

tures. The same parameters were used for the balanced and imbalanced classes to allow

a valid comparison between the methods. It was obvious from the results that the clas-

sification was not far from a chance using the balanced dataset, which would be 50%,

thereby displaying little predictive power especially using ”mixed weights” architec-

ture. On the other hand, the classification shows poor performance on the imbalanced

data due to the high skewness of the data toward the dominant class, making the data

non-linearly separable. The highest informedness was achieved on the test sequence 3

with 86.75% using the ”standard weights” architecture on the balanced dataset with

a linear classifier as shown in table 4.9. Overall, it was evident that by using the

”dedicated weights” architecture, the network produced better results using both the

ELM and linear classifier. However, the results were just below chance for some test

sequences. As shown in Table 4.8 the classifier failed to classify the highly imbalanced

data resulting in informedness resulting in a below chance overall architectures, which

indicates the limitation of the network to classify highly imbalanced data. Given that

the lab recorded datasets provides a far easier challenge due to the consistent motion

and the lack of background or clutter in the data, it is likely that a network trained

on more complex data, such as the sequences in the real world scenes, will require a

higher number of training samples before the accuracy will converge. It is also likely

that the equations for the number of hidden layer nodes will change, primarily due to

the increased number of input channels.

To validate the performance of all the network pipelines, we regularised the classi-

fiers using a regularisation range from 1 to 1000 to find the value that gives the lowest

classification error and highest informedness, similarly to the one performed in Section

4.5.3. Regularisation results for linear classifier and ELM classifier are illustrated in

Figure 4.34 and Figure 4.35 respectively. There was a dramatic increase in the in-

formedness for the linear classifier using the ”mixed weights” and ”standard weights”

architecture, which peaked at a higher regularisation value using the balanced dataset.

With the ”dedicated weights” architecture, the informedness increased only for test

sequences 3 and 6 with the balanced data. All the imbalanced data showed a reduction

in the network performance at a higher regularisation value. On the other hand, the

results for the ELM classifier were very similar to the results in Figure 4.31. In this

case, regularising the ELM slightly improves the network classifier due to the random

weight initialisation in the hidden layer, which changes the weight distribution with

every regularisation value. However, this regularisation remains essential to help to
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select the correct regularisation value for the suitable dataset.

The object classification task on the real-world dataset is a difficult problem. Im-

plementing such a task using the networks proposed in Section 4.4.7 presents additional

challenges due to the immense size of the problem, the data and the input channels.

The size of the problem also demands significant computational power, and a full clas-

sification pipeline can take a longer time to complete and a higher memory capacity.

The number of input channels required to cater for patterns in real-world scenes is one

of the major contributing factors. As described in Section 4.4.5 and Section 4.4.6, the

size of the input channels can exceed a few million attributes depending on the chosen

downsampling factor to fully cater for all data sizes. In the case of ELM classifier,

the number of hidden neurons was limited to only 100 neurons to prevent memory

overload during weight mapping. This can increase as the number of data samples

increases, which presents a difficult problem for optimisation as these input channels

need to interact with a similarly large matrix of random weights. The essence of this

operation is a large multiplication requiring either sequential execution on the CPU or

to incur the penalties involved with transferring the entire input pattern vector to the

GPU for parallel execution. More detailed results about the model performance were

summarised from Figure C.14 to Figure C.14 in Appendix C.

Figure 4.34: Performance comparison of the linear classifier for each architecture and
for balanced and non-balanced classes on the real world datasets.

4.5.5 Investigation of Spatial Downsampling

This section explores the effects of performing per pixel downsampling operations on

the input patterns before learning them with the event-based object classifier described

in Section 4.5.5. A full downsampling sweep from σ = 1 to σ = 28 was investigated to

evaluate its contribution to the network performance. The downsampling method was

performed on the x and y addresses using the same downsampling factor to maintain

the original aspect ratio of the events. The same trained weights were used at inference,
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Figure 4.35: Performance comparison of the ELM classifier for each architecture and
for balanced and non-balanced classes on the real world datasets.

and the only variable in the network was the downsampling factor σ.

The results revealed a strong correlation between the size of the object and the

selected σ using the laboratory recorded datasets. In this case, the downsampling

technique slightly improved the model results. As shown in Figure 4.36(a), for σ =

10, the spatio-temporal pattern from the classification output produced fewer false-

positive and had a peak performance of 0.75 for the correlation coefficient metric. The

downsampling factor ”σ” matched the object’s size, leading to better generalisation in

the classification network. The same results were observed on other laboratory recorded

test sequences, especially when the object shape was uniform as shown in Appendix C

from Figure C.24 to Figure C.28. In addition, increasing σ has increased the percentage

of the event correctly predicted as class1, showing that a higher downsampling factor

leads to a higher true positive. In contrast, the number of events classified as class0

decreased with a higher σ, which indicates less false positive as shown in Table 4.10.

The same downsampling sweep was repeated on all real-world test sequences. The

results vary from those achieved on the laboratory recorded dataset in that the effect

of the downsampling sweep was more visible in space-time. For example, it was evident

that higher σ lead to fewer events from the classification output without having any

significant reduction in the classification performance as shown in Figure 4.37(a), the

same behaviour was also observed for other test sequences from Figure C.29 to Figure

C.32. The changes in the event’s output may result from the non-uniform object size

as opposed to the laboratory recorded data, where the objects were uniform in shape

and size. In this case, the spatial downsampling showed that the model could produce

the same performance with less data than the classifier as illustrated in Figure 4.37(b).

Hence, the resolution of high dimensional data can be reduced without harming the

classification performance, which proved the advantage of this technique. On the other

hand, it was observed that with a higher σ the percentage of true positive decrease for
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(a)

(b)

Figure 4.36: Results of the downsampling sweep on the shapes translation sequence.
(a) The output spatio-temporal patterns were generated from the classification output
at 28 different spatial resolutions. It shows that for σ = 10 the network classified events
with less noise and fewer false positives. (b) The results of the evaluation matrices used
28 different downsampling factors for all test sequences.

class1 and leading to an increase in the false positive for class0 as shown in Table 4.11,

however, this had minimal effect on the classification performance.

These results were insightful, as the chosen spatial resolutions were based on logical

extensions from the camera’s parameters, and the number of input channels was derived
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(a)

(b)

Figure 4.37: Results of the dowsampling sweep on the real world sequence 1. (a)
The output spatio-temporal patterns generated from the classification output at 28
different spatial resolutions. (b) The results of the evaluation matrices using 28 different
downsampling factors for all test sequences.

directly from the number of pixels. These results showed that the per-pixel downsam-

pling technique could help in situations where the size of the objects are uniform in the

scenes. It was also evident that it did not lead to a significant information loss, and the

performance showed little predictive error even with a high downsampling factor. This

was because when the events were pooled using the STP filter and passed through the
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input and the hidden layer of the classifier, it masked the originating channels, as the

hidden layers only attend an aggregated sum of all input layer activity even with a set

of random weights. Therefore, the spatial structure of any input was inherently lost

when the data arrived at the hidden layer neurons as the downsampling step maps a re-

gion of the input to a single channel, effectively creating a small receptive field for each

input to classifier networks. However, the classifier networks still ignored the input’s

spatial relationships as each input now encodes a little spatial information. Hence, the

larger the spatial downsampling, the more spatial information is encoded.

4.5.6 Investigation of Event-based Feature Selection

This section explores the effect of performing feature selection on feature extraction,

which was described in detail in Section 4.4.7. In this work, feature selection aims

to optimise the number of features in the subsequent network to enhance classifica-

tion performance and generalisation. The actual raw events usually contain redundant

features, which provide irrelevant and superfluous features that provide no useful infor-

mation to the network due to the scenes’ structure and highly skewed number of events

in each class. For that reason, these features are best removed. Feature selection is

helpful as a part of the data analysis process, which can determine the importance of

each feature in classification, revealing the relationship between the selected features

and the incoming data.

To generate balanced features during feature extraction, the supervisory signals

were fed as input to FEAST and the features training was divided into two phases to

manage the number of neurons for each class. The number of events was highly imbal-

anced in our datasets, where class0 occupied 75%-90% of the original data. Learning

all these events will produce bias features. For that reason, two neurons were assigned

for class0, and a variable number of neurons between 4 and 28 were allocated for class1

to have more robust representations for the object of interest. Figure 4.38 and Figure

4.39 show the results of feature selection on the lab recorded datasets. It showed that

the model became an efficient circle detector by increasing the number of neurons for

class1 instead of having fewer neurons for class0. The output events stream shows

a clear stream of events for the class of interest in space-time as shown in red and

the other class (blue events) with fewer false positives. This allowed for better events

segregation during feature extraction and led to a more reliable generaliser.

As shown in Figure 4.38 the classification slightly increased when the number of

feature/neurons for class1 were higher. For instance, the classifier sensitivity for test

sequence-4 was 0.45 when two neurons were for class0 and four for class1. The sensitiv-

ity became 0.82 when the number of neurons for class1 increased to 28. Likewise, the

informedness for test sequence-6 increased from 0.14 to 0.71, showing the positive effect

of selecting more neurons for class1. The accuracy measure was not displayed as it does

not fully reflect the model performance for highly imbalanced data. Based on this, the

model performance was judged on other evaluation metrics. Overall, these results vary

for each recording depending on the balance ratio for class1/class0 and the uniformity
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of the sequence. This method was tested on all laboratory recorded test sequences.

The output of the classifier in space and time are presented in Figure 4.39. In contrast

to the results on the imbalanced dataset across the laboratory recorded datasets, the

model performance showed little performance difference on the balanced dataset for

each real-world test sequence as shown in Figure 4.40 and Figure 4.41. For example,

for test sequence-1, the sensitivity increased from 0.20 to 0.24, and the informedness

increased from 0.05 to 0.20.

Moreover, the increase in the model performance was similar to all other test se-

quences. This was expected because, for real-world scenes, the fruits’ shape was identi-

cal to the shape of the leaves. Both contain curves with the same structure, confusing

the network during feature extraction and classification. It then led to a slight im-

provement over the balanced dataset.

The results of the event-based feature selection show that we need more neurons

and have more neurons for the class of interest to help the network learn as much

representation as possible from the object of interest.

Figure 4.38: Feature selection investigation on the lab recorded datasets. (a), (b),
(c) and (d) show the spatio-temporal pattern from the classification output where the
number of neurons for class1 is increased from 4 to 28 neurons. (e) provides a summary
of the model performance for all other laboratory recorded test sequences.

4.5.7 Comparing Performance with a Noise Filter

As shown in Figure 4.16, a simple background activity filter was used and applied for

each incoming event as described in Section 4.4.8. The filter checks whether one of

the eight neighbouring pixels has had an event within the last temporal window µ in

microseconds. If not, the event is considered as noise and removed. The output of the

noise filter consists of a noiseless events stream with less false positive that primarily
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Figure 4.39: Feature selection investigation across the laboratory datasets. (a), (b),
(c) and (d) show the spatio-temporal pattern from the classification output for all
laboratory recorded test sequences. (a) Two classes occlusion, (b) Multiple objects, (c)
Different sizes, (d) One class occlusion, (e) Complex shapes.

Figure 4.40: Feature selection results on the real world datasets. (a), (b), (c) and (d)
show the spatio-temporal pattern from the classification output where the number of
neurons for class1 is increased from 4 to 28 neurons. (e) provides a summary of the
model performance for all other real world recorded test sequences.
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Figure 4.41: Feature selection investigation across the laboratory datasets. (a), (b),
(c) and (d) show the spatio-temporal pattern from the classification output for all real
world recorded test sequences.

depends on the value of µ. In order to quantify the noise filtering performance using our

event-based classification algorithm, we used the SNR as described in Section 3.5.1 as

the primary evaluation metrics where the µ is the only variable used. The results of the

noise filter are illustrated in Figure 4.42. We noticed that by using a smaller temporal

window such as µ ≤ 300ms, the noise filter removes most of the surrounding noises

resulting in a high SNR signal. For example, in Figure 4.42(a), it was clear that the

miss-classified events that belong to the line class were removed using the noise filter,

and the events that belong to the circle class were kept, which shows the superiority of

applying a noise filter after classification. It was also apparent that the µ and the SNR

are inversely proportional to each other. The noise filter shows the same behaviour

using real-world scene data as shown in Figure 4.42(b), which is considered noisier

with more complex non-uniform patterns. With a µ ≤ 300ms the SNR was higher,

removing a large portion of the noise events and resulting in higher signal retention for

the object of interest.
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(a)

(b)

Figure 4.42: The effect of using different sizes of the temporal window after the clas-
sification output removes the false positive. (a) shows the results using the laboratory
recorded sequence and (b) shows the results using the real-world recorded sequence.
The output events representing class1 are made less noisy by applying a small temporal
window. Top panel: A dimetric projection of the classification after applying the noise
filter on the output events stream with different temporal windows. Bottom panel: The
SNR results for different temporal windows starting from 1ms to 1s.
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4.5.8 Classification Performance with GLS

As described in Section 4.4.9, Ω is the main parameter to optimise to make the data

more linearly separable and make the classifier converge. Figure 4.43 shows the classi-

fication output using different values of Ω and the linear/rank correlation between the

ground truth labels and the predicted labels. We found that for a low Ω, the linear

classifier performs poorly on the test set resulting in a correlation coefficient of 0.071,

and as the value increases, the correlation also increases. However, the relationship

between Ω and the correlation was not linear because at Ω ≥ 9, the correlation started

to decrease again. Note that the closer the Ω to the ratio between class1 and class0, the

better the results. The detailed results for all recordings in the dataset are summarised

in Figure 4.44. Each row shows the classification output in a space-time plot for an

individual test set. Each data point represents the activated (ON and OFF polarities)

pixels belonging to class1. When there are more objects in the field of view, the value

of Ω needs to be higher and vice versa.

Based on the results, GLS is considered an essential and crucial pre-processing

method for highly imbalanced datasets. It served to help to mitigate the effects of

heteroskedasticity and skewness in the data. These results were insightful, as they

demonstrated how important to add an imbalanced bias to the non-dominant class.

However, one must choose the correct Ω value depending on the ratio between the

events, which is required to be optimised and learned.

Figure 4.43: Classification output results after applying GLS. (a), (b), (c) and (d) show
output spatio-temporal pattern of the classifier with different imbalanced bias value.
(e) shows the results of the correlation coefficient with different imbalanced bias.
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Figure 4.44: Classification output results after applying GLS on real world test se-
quences.

4.6 Discussion and Future Work

The results presented in this section determine that the primary challenge is not only

the processing of complex environments but also the ability to extract relevant features

with a low SNR and with high variance in the event rates. An algorithm needs to handle

a large amount of unstructured data in a feature-rich scene with significant variations in

the internal sensor properties such as different camera biases and circuit types. In this

context, all the events are triggered due to the high-frequency movement of the sensor

in front of a static scene, making it impossible to eliminate the event using a high pass

or low pass filter. In addition, while the sensor is moving, the field of view continuously

changes, altering the previously learned features and forgetting the old representations

leading to catastrophic forgetting Parisi et al. [2019], which is a common problem

in computer vision. While deep learning shows success in this particular domain, it

requires an enormous amount of data and computational resources, removing the main

vital properties of the sensor as being low-power, high-bandwidth etc. The entire

system presented in this section operates in an event-driven paradigm and retains the

dense event-based representation generated by the DAVIS sensor. The system is tested

and validated on lab recording data and real-world scenes with different conditions.

The purpose of the first datasets is to test the system on simpler challenging tasks such

as object occlusion, different object size, different orientation etc. to understand the

system behaviour against each challenge, while the goal of the real-world datasets was

to put the sensor and the system under extreme conditions and evaluate the network

behaviour. While the EBC is an efficient sensor to detect saliency, in our case, the entire
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scene becomes salient due to the camera motion. The problem is not only to detect

salient objects but also to have an efficient adaptive filter that removes the unwanted

events and adequately differentiate between the background and the object of interest.

This will ensure that such event-based datasets will be noisy and need robust detection

and classifier algorithms.

One of the critical aspects of the algorithm is the use of supervisory signals in fea-

ture extraction. While FEAST is an efficient feature extractor algorithms, it becomes

difficult to construct representation for the object of interest in the very dense and

complex scene. For that reason, supervisory enabled feature selection, allocated a spe-

cific number of neurons for the class of interest and boosted the network’s performance.

However, the feature selection takes the number of neurons for each class as an input

parameter depending on the event ratio between the classes. We aim to investigate

optimisation methods to learn the number of neurons and weigh them according to any

input data in future work.

One important hyperparameter was the downsampling factor that removes the need

for applying conventional downsampling methods. This serves in mapping a region of

the input to a single channel, effectively creating a small receptive field for each input

to the classifier network. Given the event-driven behaviour of the network and the

sheer amount of data in each recording, it becomes computationally impossible to

pass all the events to the input layer of the classifier locally, creating a computational

bottleneck. For that reason, a full sweep of the downsampling factors was tested on the

data to find the amount of data that can be removed without harming the network’s

performance. Fortunately, the downsampling method has been shown to maintain

network performance even with a significant downsampling factor. On the other hand,

we found that the classifier performance peaks when the downsampling factor matches

the object’s size in the scene. In future work, we aim to investigate the downsampling

method when the objects exhibit different sizes by having an ensemble of networks each

operate using different downsampling factors that match a specific object size.

In this work, the noise events were examined before and after classification. A

portion of them was efficiently learned and eliminated by FEAST, and the rest of the

noise events that pass through the classifier network were removed using a noise filter

that looks at the active vs non-active pixels within a specified temporal window. This

lead to less false positive events. The noise filter is a crucial element in the network

pipeline.

Another essential technique is applying GLS before classification. As shown in the

result section, by replacing the one-hot encoding method with the GLS, the skewness

of the data is reduced, which makes the data more linearly separable for the classifier.

The proxy signal Ω was used to estimate the value of class1 labels. This eliminates

conventional methods such as undersampling and oversampling input data for each class

and solving the problem statistically while keeping all the information in the loop. The

implementation of this method can benefit from algorithmic optimisation, but they are

presented here in their simplest form as they constitute the basis of the work presented
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in the succeeding chapter.

The algorithms were tested on four different tasks: (i) multi-object detections of the

same instance (i.e. laboratory dataset), (ii) fruit detection datasets, (iii) digits classifi-

cation using N-MNIST and (vi) human activity recognition using DVS gestures dataset.

However, we did not make a direct comparison based on the model performance across

all the datasets because the classification task in the fruit detection data significantly

differs from N-MNIST data and DVS gesture. For instance, in the fruit detection data,

there are always multiple instances of fruits within the same field of view in front of

noisy scenes, and the algorithm has to precisely detect the multiple instances of the

same object, whereas, in the N-MNIST, the goal was to classify a single object per

recording and the same also applies for the DVS gesture data. For that reason, the

model performance was evaluated based on the task individually, and each dataset was

considered a single-use case for the algorithm and separated into different sections.

The end goal of this work is to deploy the model on a low power automated robotics

platform to detect and count fruits continuously throughout the season. However, it is

important to acknowledge that the agricultural application as a use case using the event

camera has several drawbacks. For instance, there is little need to high speed reactions

or closed loop control, and the application is not specifically power constrained by the

sensor and the processor, therefore, this limits the suitability of the EBC in this specific

area.

An important future work is to investigate the use of events to frames generation

method and use a CNN-based pre-trained model to investigate the benefits of the pre-

cise timing carried by the events data. Another important future work direction for

this work is to build a large scale dataset from real-world scenes which take advan-

tage of the environment’s geometry and the continuous streams of information. As

the results of this work demonstrate the potential of such systems, the practical and

real-time implementation of the components also forms a portion of the future direc-

tions for this work. The implementation of the feature detector FEAST Afshar et al.

[2019c] algorithms open the door to explore many other fundamental research ideas

such as (1) continual lifelong learning [Parisi et al., 2019] as well as long-term memory

consolidation and retrieval, which gives the system the ability to continually learn over

time by accommodating new knowledge while retaining previously learned experiences

and potentially overcome the problem of catastrophic forgetting or catastrophic inter-

ference. (2) Explore an approach to adaptively learn the sensor bias in environments

where depth, light, size of the object continuously change, that way, it can overcome

the problem of manual focusing the sensor and potentially reduce the data rate. (3)

Explore the possibilities of using a closed-loop system where the human is included in

the loop against the system. The system can be evaluated based on its accuracy and

performance against humans.
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4.7 Conclusion

This work presents an event-based detector and classifier network for agricultural ap-

plications to detect and classify fruits. It addresses the problem of detecting objects

in cluttered scenes with highly imbalanced classes and shows the challenges and lim-

itations of performing such tasks. The labelled datasets provided a test bench for

investigating event-based algorithms for unique and challenging complex scenes. All

the recorded datasets were carefully labelled, providing analytically defined ground

truth. The labelling procedure provided a highly accurate label set across a wide range

of environments.

Statistical measures were used to evaluate the classification performance based on

event density activated Spatio-temporal volume slices such as sensitivity, specificity,

informedness and correlation coefficient. This facilitates the comparison of the archi-

tecture against the raw events stream at each processing stage and provides valuable

insights into the dataset’s properties.

Several event-based architectures were tested on both types of data where different

types of complexity were introduced. The algorithms include an event-based feature

detector with and without the supervisory signals that enabled feature selection tech-

niques with an optimised and iterative classification algorithm.

The algorithms were evaluated in terms of their output statistical properties of the

data by measuring an optimised proxy measure over the downsampling factor size,

feature class distribution and the GLS offset size, which showed to provide superior

performance on a very challenging noisy and complex dataset. The same detection-

classification architecture was used on the N-MNIST and DVS gesture datasets to

evaluate the model performance against different types of events input. In this case,

the algorithm proposed in this thesis demonstrated its capabilities in classifying multi-

class objects, such as in N-MNIST and efficiently classifying complex human gestures.
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Chapter 5

CONCLUSION

5.1 Applicability of Colour Event-based Dataset

A large body of literature concentrates on colour event-based sensor design without

providing information about the colour event internal properties and their behaviours.

This thesis explores the behaviours of colour event-based vision data and their poten-

tial applications. We used the CDAVIS sensor, which features high temporal resolution

colour events inspired by precise-timing biological models. This sensor has a Bayer fil-

ter that can detect colour variations between two surfaces. Given that the colour DVS

pixels only send spikes data, the complete colour information can only be obtained

using either the APS readout or events-to-frames reconstruction techniques, which are

considered computationally demanding. Based on our research questions in Section 3.2

we have found that it is challenging to estimate the true colour of the object purely

based on the output of the event spikes, that is because the spike output output from

each colour filter does not correlate with the true colour of the object. That is because

the behaviour is influenced by two factors: the colour of the observed object and the

background colour. The lack of universal approaches to characterising colour events

was the primary motivation for this work, as the current characterisation approaches

are made for the monochromatic output of the EBC and cannot be directly applicable

to the colour events. The CDAVIS has been used in imaging of neural activities [Moeys

et al., 2017] by reconstructing images with HDR from the DVS colour pixels eliminat-

ing the need of expensive CMOS sensors. It is also applicable when fast transitions

between colours need to be detected in automated industrial processes or systems that

need to detect transitions between radiation in the near-infrared band and the visi-

ble spectrum [Farian et al., 2015, Lenero-Bardallo et al., 2013]. It can also eliminate

spatial redundancy and noise in boisterous scenes and recover the border between two

overlapping objects.

Furthermore, the HDR of the DVS pixels tackles the luminance adaptation issue,

which can be helpful in applications such as self-driving cars or robot grasping. In this

work, we identified several areas of improvement for the sensor that would benefit future

algorithm’s implementation. These improvements require hardware development. For

example, one of the CDAVIS weaknesses is its lack of sensitivity to short wavelengths
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(e.g. blue wavelength). Most silicon-based photodetectors share this limitation, but

it is also aggravated by the DAVIS low sensitivity to low light. An increase in sensor

sensitivity and a decrease in sensor mismatch will potentially lead to better results.

Our characteristic experiment provides more understanding of the behaviour of colour

events under different conditions using different camera biases such as threshold and

pixel bandwidth. These are crucial for future data collection, algorithms, and processing

techniques that take advantage of colour events.

5.2 Viability of Event-Based Object Classification

The work in this thesis deals primarily with the classification of objects from the event-

based sensor in complex and dense scenes in the domain of fruits detection. This work

explores two primary means to perform such classification. To address the research

questions in Section 4.2, in Chapter 4 we present three approaches that operate on

the event-streams directly in order to perform classification, maintaining both the spa-

tial and temporal information directly throughout the network pipeline. The network

described extracts discriminative features from the event-based data to perform the

classification task. Two feature extraction and classification methods were explored in

this work, with and without the supervisory signals as input to the network, provid-

ing a detailed description and analysis of the nature of these features and methods to

assess the quality and usefulness of such features. One of the essential aspects of this

network is the ability to remove noise and features that have less contribution to the

classification system, and the analysis of the feature detectors includes details on their

feature selectivity abilities. This is particularly relevant as learning relevant features in

very complex scenes with various cluttered objects is crucial. We found that include su-

pervisory signals during training is beneficial for the network to perform better during

inference, this method has significantly outperform unsupervised method.

The results from these approaches demonstrate the viability of an event-based clas-

sification using the DAVIS sensor. The event-based nature of most of the systems

presented in this work maintains the data-driven paradigm of event-based vision and

computation. Although dense real-world scenes heavily impact the system performance,

dense scenes remain an incredibly complex task to be solved using an event-based due

to the dense temporal structure. This work serves as a framework and investigation

into the applicability and efficacy of event-based classification.

5.3 Future Work

Moving forward, we will investigate the many open lines of inquiry indicated in each

chapter. The most immediate next step would be creating a large scale agricultural

dataset and allow the network to learn all the possible variations in the dataset. Increas-

ing the depth of the network combining multiple feature extraction layers to account for

more complex shapes. Integrating the proposed methods into physical robotics systems
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is also considered a next step. While the benefit of these methods has been demon-

strated on datasets offline, event cameras have yet to be tightly integrated into real-time

robotics tasks, such as closed-loop control and model predictive control (MPC). In terms

of learning methods, temporal consistency appears to be a crucial factor in robust oper-

ation for event cameras in the real world, as the cameras respond only to changes in the

scene, the most common way to perceive static parts of the scene is through a memory

of the past. For example, when the camera is scanning through a farm to detect and

count fruits, it will continuously generate many events. As a result, an algorithm needs

to process many events, learn robust features, and continually retain the information

that belongs to the fruits during motion. For that reason, an algorithm has to account

for different camera motions to improve the detection performance.

Since the fruit detection task is usually performed in a dense and complex environ-

ment, as future work, one can transform the dense input stream into a much sparser

representations and use SNN algorithms as an alternative paradigm for learning, which

show great promise in taking full advantage of the sparse, asynchronous output from

event cameras. SNNs are more biologically inspired. The update of the activation at

layer is performed asynchronously and in an event-driven fashion, which results in sig-

nificantly lower bandwidth for sparse representations. By implementing SNN, one can

have a fully asynchronous pipeline that goes from sensing to perception, which takes

advantage of the low latency, high dynamic range as well as low power advantages of

event cameras. However, the big question remains in converting dense data to sparse

representation without losing the input stream’s primary information. Developing a

stable SNNs is still an open problem.

Furthermore, more work need to be devoted to produces high quality colour event

datasets and focus on areas where colour contrast is a more relevant feature than

shape and appearance. Secondly, characterising the colour sensor should focus on its

colour responses using colour-based measurements. However, the colour event sensors

prototype have been unavailable until lately, which has limited access to colour datasets.

Moreover, event camera’s resolution has been significantly lower than that of traditional

cameras. As more colour prototypes are now available and more companies working on

these types of sensors and developing hardware, it is expected that the price will come

down and the resolution will go up, resulting in wide adoption of colour events cameras

and more application-specific datasets for real-world applications.
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Appendix A

Object Classification using Statistical

Properties with K-Nearest Neighbors

(a) (b)

(c) (d)

Figure A.1: The classes selected for classification.

As described in Section 3.5.6, we concluded that colour events are best to be used

in cases where shapes and appearances are not a relevant source of information. It

was shown that it is possible to classify circles with the same shape and appearance

purely based on colour events internal properties. In this section, the aim was to show

that classifying objects based on their geometrical appearance led to a similar outcome

using the standard DAVIS sensor. In this experiment, different objects with different
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colour are used as an input stimuli (See Figure A.1) to two types of network: (1) KNN

classifier and (2) FEAST with an ELM.

Table A.1: Statistical summary of the 4 classes dataset. Results are shown separately
for the training set of 50 recordings per class, and the testing set comprising of another
50 recordings

Training Set Test Set

Statistics Mean Std Mean Std

Duration of Recordings (s) 2.04 1.36 2.04 1.36

Number of Events (*1e5) 3.60 0.31 3.60 0.35

Number of ON Events (*1e3) 2.34 0.52 2.32 0.53

Number of OFF Events (*1e5) 3.36 0.27 3.36 0.27

X Address (px) 186.74 2.94 186.74 2.84

Y Address (px) 133.87 0.97 133.87 0.97

As the nature of each training and testing item is no longer a static image, but

rather an event sequence from a physical device, the specific characteristics relating

to events of each sequence varies slightly, which was similar to what was observed in

Section 3.5.6 due to the nature of the patterns and the event-based nature of the DAVIS

device. Table A.1 shows the characteristics of the sequences in the training and testing

dataset, respectively. It can be seen that the structure of both the testing and training

set are similar. That is because the pattern lengths are consistent between the testing

and training sets, and based on this data, a fixed pattern length of 2 seconds was chosen

to contain all the patterns sequences fully.

The first classifier was based on KNN algorithm. K was set to be
√
x where x is

the total number of the training set. Cross-validation of 50/50 between the training

and testing set was applied to the data. Figure A.2 shows the results of the KNN

classifier when applied to all classes. The classifiers based on a total number of events

and OFF events yielded statistically insignificant classification results. As the original

objects are positioned at the centre of the camera field of view and using the same

motion movement with the same recording duration, it holds that the datasets exhibit

this same property. It is to be expected that the number of events and OFF Events

should hold no statistical values. Other statistical results demonstrated that the object

x and y addresses contain significant classification power, which was expected due to

the differences in the original shape.

The second classifier was based on FEAST algorithm, which was followed by a

backend classifier. Two methods were implemented to extract robust and discriminative

features from the original datasets: (1) extract features individually from each class as

shown in Figure A.3(a) (2) extract unsupervised features from all classes from the

training set as shown in Figure A.3(b). The latter extracts unsupervised features from
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each object regardless of their class, taking advantage of the adaptive threshold and

the weight updated rules which exist in FEAST—however, the former use supervisory

signals during feature extraction. A set of feature neurons were assigned and dedicated

for each class, forcing FEAST only to learn relevant features from each object. For

the first method, 20 neurons were selected for each class, making the total number of

neurons 80 for all the classes combined, and 80 neurons were assigned for the second

method to make a valid performance comparison between both implementations. The

same linear and ELM classifier with the same number of hidden neurons were used in

both methods. Table A.2 and Table A.3 presents the results on both methods using

the linear classifier. It was evident that having dedicated features for each class led to

better classification results. For instance, the network achieved 0.99 informedness on

the circle while the second approach achieved 0.55, which is a significant drop. The

model accuracy was 98.99% for network pipeline one and 71.33% for pipeline 2. These

results indicated the significant improvement in performance by using the supervisory

labels as input to FEAST as opposed to learning all the features from all the classes

combined. Figure A.4 shows the classification results using ELM with different numbers

of neurons in the hidden layer by performing a sweep from 1000 neurons to 8000 neurons.

As expected, the classifier based on the first network architecture (i.e. using dedicated

features per class) achieved superior performance, evident in overall evaluation metrics.

The average accuracy across all hidden neurons was between 60% and 80% for network

architecture one and between 40% and 60% for the network architecture 2. Increasing

the number of neurons in the hidden layers produce no significant improvement in the

classification performance.

Based on these observations and the results in Section 3.5.6, we concluded the

following: (1) the classification task is one of the least challenging classification tasks

for the DAVIS and CDAVIS where there is a single object per recording and each object

has a different shape, (2) having dedicated features for each class will always guarantee

superior results and (3) colour events are suitable to be used where colour features are

more visible and relevant than the shape of the object.
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Figure A.2: Classification results for the KNN classifier based on the statistical prop-
erties of the events.

(a)

(b)

Figure A.3: Two types of classification architectures using FEAST algorithm. (a) A
feature detector for each class followed by a classifier network. This is called ”Archi-
tecture 1”. (b) A feature detector for all the classes followed by a classifier network.
This is called ”Architecture 2”.
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(a)

(b)

Figure A.4: A summary of the performance of the classification architecture using ELM
classifier. (a) shows results on network Architecture 1 using dedicated features for each
class. (b) shows results on network Architecture Architecture 2 using features from all
the classes.
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Table A.2: Linear classifier performance for network architecture 1

Circle Line Star Triangle

Accuracy 98.99

Sensitivity 0.99 0.97 0.98 0.99

Specificity 0.99 0.99 0.99 0.99

Informedness 0.99 0.97 0.97 0.99

Table A.3: Linear classifier performance for network architecture 2

Circle Line Star Triangle

Accuracy 71.33

Sensitivity 0.73 0.83 0.47 0.80

Specificity 0.82 0.91 0.91 0.96

Informedness 0.55 0.75 0.39 0.77
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Appendix B

Dichromatic Sensor Assembly:

Camera Synchronisation

We built a dichromatic event-based colour sensor as an association of two DAVIS cam-

eras acquiring red and green light exposures. The sensor captures light through a hot

mirror reflecting infra-red light. A dichroic beam splitter directs photons with wave-

lengths larger than 610 nm towards the red sensor. The other photons are reflected

towards the green sensor, allowing photons with a wavelength between 335 and 610 nm.

Before hitting the red and green sensors, photons cross-band filters mimic the filtering

functions of the conventional colour filter array or Bayer matrices pixels. Each sensor

uses a C-mount objective. Consequently, each sensor is calibrated individually. Figure

B.1(a), Figure B.1(b) and Figure B.1(c) illustrates the camera assembly with all the

optical components. To account for the mechanical imperfections of the prototype, a

spatial calibration step is required to ensure the colour sensor camera shares the same

field of view. A calibration board was used with the sensor before each recording. The

spatial calibration is valid only when the object within the camera field of view share

the same size. The camera associated with each colour component generates an inde-

pendent stream of events. To ensure both of the streams are triggered simultaneously,

we have synchronised both of the camera timestamps. To achieve this, we utilised the

synchronisation protocol associated with the camera. In this protocol, a device must

be told whether it is a master, which produces synchronisation pulses, or a slave, which

receives synchronisation pulses. A 10 kHz clock is used to advance the timestamps. In

slaves, timestamps are allowed to advance on the falling edge of the clock. If the falling

edge is delayed by a short period, then any events in that waiting period continue to

take the same timestamp until the falling edge is detected. After a short period, a

falling pulse is assumed to represent a reset pulse.

The synchronisation of multiple DAVIS cameras was performed by using 3.5 mm

audio jacks connected at both sides of the camera labelled ”IN” and ”OUT”. To min-

imise the synchronisation delay, we used the event-based software processor jAER 1. We

modified the process of writing events to the .aedat file format by removing the unnec-

1https://github.com/SensorsINI/jaer
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essary headers and information in the binary file, including the camera specifications.

Therefore, it takes less time to synchronise without writing this extra information. The

synchronisation delay was reduced from between 200-300ms to as low as 0.5ms.

This was considered as an initial dichromatic colour EBC prototype. However, the

cost of assembling two cameras and a beam splitter is much higher than colour filter

arrays, and the error rate is much higher due to the physical position of the colour

filter, beam splitter and the lens-camera flange distance. Therefore, the attention was

shifted toward characterising the CDAVIS as described in Chapter 3.

(a) (b)

(c) (d)

Figure B.1: Dichromatic sensor assembly. (a) The two chips EBC is an assembly of two
monochromatic DAVIS cameras. (b) The two chips EBC with the beamsplitter to split
the incoming light. (c) A 3D render of the entire setup in full assembly on the optic
table. (d) Colour filters and hot mirror wavelength range and transmission percentage.
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Appendix C

Additional Tables and Figures for the

Event-based Classifier

Figure C.1: A green circle rotated over a red background. In this case only the rotating
circles can be seen through the red filter.
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Figure C.2: A blue circle rotated over a red background. Due to the contrast between
the red and the blue the circle can be seen through all colour filters.

Figure C.3: A blue circle rotated over a green background. In this case the circle is
visible through the red and green filter but not the blue due to the contrast difference
between the blue and the green.
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Figure C.4: A red circle rotated over a blue background.

Figure C.5: A red circle rotated over a white background.
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Figure C.6: A blue circle rotated over a white background.

Figure C.7: A green circle rotated over a white background.

159



Figure C.8: Lab recorded data ”Shapes translation”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.

Figure C.9: Lab recorded ”Two classes occlusion”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.10: Lab recorded data ”Multiple objects”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.

Figure C.11: Lab recorded data ”Different sizes”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.12: Lab recorded data ”One class occlusion”. Each plot shows the classifi-
cation output for each architecture using both classification methods on the balanced
and imbalanced dataset.

Figure C.13: Lab recorded data ”Complex shapes”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.14: Real world data ”test sequence 1”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.

Figure C.15: Real world data ”test sequence 2”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.16: Real world data ”test sequence 3”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.

Figure C.17: Real world data ”test sequence 4”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.18: Real world data ”test sequence 5”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.

Figure C.19: Real world data ”test sequence 6”. Each plot shows the classification
output for each architecture using both classification methods on the balanced and
imbalanced dataset.
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Figure C.20: Comparison of the linear classifier results for balanced and non-balanced
classes for each testing sequence using the lab recorded datasets.

Figure C.21: Comparison of the ELM classifier results for balanced and non-balanced
classes for each testing sequence using the lab recorded datasets.
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Figure C.22: Comparison of the linear classifier results for balanced and non-balanced
classes for each testing sequence using the real-world datasets.

Figure C.23: Comparison of the ELM classifier results for balanced and non-balanced
classes for each testing sequence using the real-world datasets.
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Figure C.24: Space-time plot generated at 28 different spatial resolutions on the ”Two
object occlusion” test sequence.

Figure C.25: Space-time plot generated at 28 different spatial resolutions on the ”Mul-
tiple objects” test sequence.
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Figure C.26: Space-time plot generated at 28 different spatial resolutions on the ”Dif-
ferent sizes” test sequence.

Figure C.27: Space-time plot generated at 28 different spatial resolutions on the ”One
class occlusion” test sequence.
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Figure C.28: Space-time plot generated at 28 different spatial resolutions on the ”Com-
plex shapes” test sequence.

Figure C.29: Real world data ”Test sequence 2”. Space-time plot generated at 28
different spatial resolutions on the lab recorded data. It shows the classification output
for each downsampling value on the test set in 3D space-time.
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Figure C.30: Real world data ”Test sequence 3”. Space-time plot generated at 28
different spatial resolutions on the lab recorded data. It shows the classification output
for each downsampling value on the test set in 3D space-time.

Figure C.31: Real world data ”Test sequence 4”. Space-time plot generated at 28
different spatial resolutions on the lab recorded data. It shows the classification output
for each downsampling value on the test set in 3D space-time.

171



Figure C.32: Real world data ”Test sequence 5”. Space-time plot generated at 28
different spatial resolutions on the lab recorded data. It shows the classification output
for each downsampling value on the test set in 3D space-time.

Figure C.33: Real world data ”Test sequence 6”. Space-time plot generated at 28
different spatial resolutions on the lab recorded data. It shows the classification output
for each downsampling value on the test set in 3D space-time.
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Appendix D

Representations of Colour Events in

Various Scenes

Figure D.1: Time collapsed image in the time dimension with pixel representing the
colour events index. Recording shows different geometrical shapes with different colours
with horizontal translation in the field of view.
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Figure D.2: Time collapsed image in the time dimension with pixel representing the
colour events index. Recording shows 2D complex shapes of fruits and leaves with
horizontal translation in the field of view.
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Figure D.3: Time collapsed image in the time dimension with pixel representing the
colour events index. Recording shows two classes objects with different size with hori-
zontal translation in the field of view.
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Figure D.4: Time collapsed image in the time dimension with pixel representing the
colour events index. Recording shows two classes objects with different size with hori-
zontal translation in the field of view.
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Figure D.5: Time collapsed image in the time dimension with pixel representing the
colour events index. Recording shows three circles with different colour in rotation
mode.
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