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ABSTRACT 

In this thesis, the application of digital signal processing for the analysis of 

fetal breathing movements (FBM) is presented. The background history and the 

possible significance of FBMs in antenatal monitoring is discussed. 

Prior to analysis of fetal breathing movements, they must be monitored and 

detected. Therefore a non-invasive transducer was developed to monitor FBMs 

using Polyvinylidene Flouride (PVDF) based piezo film and the nonstationary 

nature of the resulting data and analogue preprocessing designs are discussed. 

Autoregressive (AR) spectral analysis techniques are presented to model FBMs. The 

least-mean-square (LMS) and the optimum tapered Burg (OTB) algorithms were 

used. The problems of deciding the optimum data block length and of selecting the 

correct model order are also discussed. The performance of the OTB algorithm and 

the LMS algorithm are,  compared for highly nonstationary signals. 

A rule based expert system which was used to estimate FBM rate is described. 

The expert system was implemented using the C programming language. 

A new FBM pattern was discovered during this research. This pattern is 

referred to as the "augmented breath" or "deviant pattern'. Pattern recognition algo-

rithms are used to identify these deviant patterns and hence quantify their 

incidence. Conventional classifiers using quadratic and linear Bayesian discriminant 

functions and Mahalanobis distance are discussed as are classifiers using a neural 

network structure based on multilayer perceptrons (MLP). The MLP uses the back 

error propagation algorithm to train the network. The performances of the MLP 

based neural network and conventional classifiers are discussed in the context of 

identifying deviant fetal breathing patterns. 
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CHAPTER 1 

INTRODUCTION 

Digital signal processing (DSP) is mainly concerned with the computer process-

ing of signals represented as discrete time series in digital form. Autocorrelation is 

one common DSP technique which is used to analyse temporal data, and highlight 

some of its characteristics, for example periodicities. Analysis is not restricted to the 

time domain. The digitised data can be transformed, for example, to the frequency 

domain for analysis. Analysis in either the time or the frequency domain may be 

used to reveal information contained in the data. 

Digital signal processing has undergone phenomenal growth in application in 

the past two decades. This is largely due to the impact of computers with real-time 

DSP capability. The availability of powerful digital computers has aroused greater 

interest in the field and fostered the development and application of increasingly 

sophisticated and computationally complex algorithms. DSP has become increasingly 

used in engineering and in non-engineering fields. Applications include: the reduc-

tion of noise introduced by a transmission channel; data compression with minimal 

loss of information, for example in speech and image systems. Prediction of future 

outcomes of a process from knowledge of the past events, such as in economics, and 

market forecasting; the detection of underlying periodicities in a given data set, such 

as periodicities in the sun spot data, or the periods of structural vibration in build-

ings and mechanical structures; modelling and analysis of physiological activities in 
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biomedical engineering. These are just few examples of the wide variety of applica-

tions of digital signal processing. 

1.1. REVIEW OF FETAL BREATHING LITERATURE 

The development of accurate and objective antepartum assessment of fetal 

health in urero has long been a challenge to both obstetricians and technologists 

alike. Antenatal assessment must date back to the dawn of man, when gravid moth-

ers took fetal movements as a reassuring, sign of fetal well being. Practice moved 

away from such non-specific markers, and more objective intrauterine assessment of 

fetal health was introduced in the nineteenth century, where fetal auscultations were 

monitored using the simple Leannec stethoscope[1]. With the limitations of human 

aural perception however, fetal auscultations were only used to provide fetal heart 

rate (FHR), and hence, fetal distress was only indicated by gross changes of FHR. 

As science and technology advanced, so facilities were rendered to provide a more 

specific and accurate diagnostic tests for recognising the fetus at risk in utero. 

At the turn of the century, Ahlfeld[2] observed rhythmic movements on the 

maternal anterior abdominal wall during late pregnancy. He ascribed these move-

ments to fetal breathing. These observations of the fetus making breathing move-

ments were discounted by his contemporary peers. The disbelief came about, how-

ever, due to the inability of corroborating maternal abdominal wall movements with 

fetal breathing movement (FBM). Over the years, such observations have been 

documented using exteriorised fetal lambs[3, 2]. The presence of FBMs in exterior-

ised fetal lambs was attributed to exposure, tactile and asphyxial stimuli. Sceptism of 

the presence of FBMs was not overcome until the development of catheter place-

ment techniques and advancements in blood gas determination in the 1960's. These 

observations were correlated with both intra tracheal flow and recorded pressure 

changes[3, 4] In addition, numerous investigators have observed rhythmic episodes 
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in human fetus in utero[5, 6, 7, 81. 

FBMs in utero are not associated with alveolar expansion or gas exchange. 

Fetal lungs are relatively small in size compared to the rest of fetal organs (figure 

1.1). The size of the fetal lung grows with gestation age until taking their final form 

and size just before term. Figure 1.2 depicts the relative sizes of organs in the newly 

born. 

A reason for having fetal breathing movements in utero was proposed by 

Boddy and Dawes 121. They postulated it to be a method by which the diaphrag-

matic musculature develops and as a consequence prepares the human respiratory 

system to maintain breathing after parturition. Research has been conducted to 

ascertain the clinical significance of FBMs in urero and their possible correlation to 

interpartum mortality, post natal health and post natal mortality. The clinical value 

of FBMs as an indicator of fetal health is assuming increasing significance[9, 10]. 

The mechanisms which control fetal breathing movements are complex and the 

medical explanation of such mechanisms are well documented for the interested 

r.eader[3, 4, 2]. 

The parameter extracted from FBMs was the breathing rate, and it was 

observed by many investigators of fetal breathing that FBM rate lies in the range of 

30-90 breaths/minute[2, 11, 5, 41. It was also observed that certain factors, other 

than fetal health and gestational age, influence FBMs in humans. According to the 

extent of this influence the behaviour of FBMs would change. Studies have been 

documented showing that maternal blood glucose level, maternal intake of medica-

tion, smoking, alcohol and coffee all have an effect on the incidence of FBMs and 

on the FBM rate[12, 4] 
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Figure 1.1: A diagram showing the size of fetal lungs relative 

to the sizes of other fetal organs 
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Figure 1.2: A diagram showing the size of lungs for neonates relative to other 

organs (compared with the size of fetal lungs, figure 1.1) 
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1.2. FETAL BIOPHYSICAL PROFILE 

In the past, fetal biophysical variables were monitored and examined individu-

ally, with few interrelationships between the different variables being considered. 

The individual analysis of fetal variables disjointly provides some assessment of fetal 

health in utero, but leaves considerable room for improvement. This sceptism is con-

firmed in the fetal mortality rate and the unnecessary medical interventions. Assess-

ment of fetal health entails the synthesis of knowledge from a spectrum of condi-

tions. Manning et al [13] developed the fetal biohysical profile. 

Five fetal parameters are combined to provide the above biophysical profile. 

These are: 

- 	Fetal heart rate and patterns 

- 	Fetal breathing movements. 

- 	Fetal trunk movements. 

- 	Amniotic fluid volume. 

- 	Fetal tone. 

The above features are classified into two categories: dynamic and static 

parameters. Figure 1.3 presents the fetal biophysical profile, depicting the two 

categories. The fetal biophysical profile analysed fetal parameters in amalgamation 

to distinguish the normal fetus from the fetus in distress. All variables were con-

sidered as being equally significant. 

1.3. METHODS OF DETECTING FETAL BREATHING MOVEMENTS 

During the late nineteenth century, when fetal breathing movements were first 

observed, investigators made Kymographic recordings of rhythmic fetal movements 

as detected from the maternal abdominal wall[14]. Some of the current methods of 

recording FBMs, are outlined below. 

S 
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1.3.1. ULTRASONOGRAPHY 

Boddy and Robinson [5, 151 first described the detection of FBMs using A-

mode (Amplitude mode) ultrasonography. A narrow beam pulsed transmitter was 

placed on the maternal abdomen and the selected echos from the A- scan display 

representing movements of fetal chest wall were recorded. Fetal heart movement 

was recognised on the display and from this orientation, echos pertaining to FBMs 

were identified. Unfortunately, it.was often difficult to distinguish FBMs from gen-

eral fetal movement and signal interference. 

The introduction of real time ultrasonography (B-mode or Brightness mode) 

has overcome the problems encountered using the above method. With B-mode 

ultrasonography, fetal structures can be observed continuously. The B-mode scanner 

comprises linear array transducer, and a two-dimensional cross sectional image of 

the fetus is obtained. The ultrasound beam is aligned with the fetal thorax, and the 

A-scan output from the distal or proximal chest wall echoes can be recorded. The 

recorded output varies in sympathy with fetal chest wall movements and hence indi-

cates FBMs[7, 15, 16, 4, 17, 5]. 

Although FBM is characterised by fetal thoracic wall movements, it can also 

include diaphragmatic movements. Rapoport and Cousin[18] used a real time 

ultrasound scanner, but adapted it to incorporate a multiple gate tracking facility. 

The latter provided simultaneous tracking of both fetal thoracic wall and diaphrag-

matic movements. The instrument was capable of tracking the different fetal move-

ments simultaneously. 

Gough and Poore [8] recorded FBMs using continuous wave (cw) doppler 

ultrasound. This method does not monitor fetal chest wall movements, but it meas-

ures FBMs indirectly through its presumed effect on blood velocity in the fetal 

hepatic vein and the fetal inferior vena cava, at the level of the liver. 



The above methods suffer from their need for the presence of a trained 

observer throughout the recording for frequent realignment of the ultrasound beam 

following fetal movement. 

1.3.2. TOCODYNAMOMETRY 

Tocodynamometry involves the recording of signal generated by movements of 

the fetus with respect to the maternal abdominal wall. Boddy and Mantell[11] 

demonstrated the use of a strain gauge on the maternal abdominal wall as means of 

recording FBMs. Tocodynamometry was also used to measure FBMs by Timor-

Tritsch[19]. 

1.3.3. PHONOGRAPHY 

Phonocardiography is one of the oldest methods of detecting biophysical activi-

ties in the body. The application of ultrasound has raised the question of its possible 

biological effect on the fetus, particularly in the case of long term monitoring. 

Unfortunately, such fears have not yet been alleviated. Phonography has not been a 

favourable method in the past due the relative inefficiency of the transducers. Tal-

bert et al[l] developed a phonographic transducer using a piezoelectric bar. This 

transducer was capable of detecting fetal heart sounds as well as fetal breathing 

movements and was compliance matched to the maternal abdomen to ensure a more 

efficient energy transfer, and hence an improved sensitivity. Goovaerts et al[14] 

developed a similar transducer but based on the inductive principle. 

1.4. ANALYSIS OF FBMs 

Conventional time-domain analysis of FBMs was conducted by visual inspec-

tiont of the recorded signal. This is prone to error and is laborious, especially in the 

t This entailed measuring the percentage time a fetus spends breathing and the estimate of breathing rate. 
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presence of noise. However, investigators have come to rely on this method as it 

provides them with a quick result. Visual inspection is the only available method 

when real time ultrasound imaging is used to monitor FBMs. 

Stagg and Gennser[20] used the phase-lock-loop (PLL) principle to analyse 

FBMs. The signal used was recorded using a real time ultrasound imaging scanner. 

The analogue filtered output of the phase comparator provided an analogue esti-

mate of FBM rate. The PLL had a free running frequency of 1.1 Hz, and the max-

imum capture range of ± 50%. The implicit assumption in this PLL design is that 

FBM rate lies between 40-80 breaths/minute. 

1.5. THESIS LAYOUT 

The description of the work commences in chapter 2, where system layout and 

analogue preprocessing is discussed, and a brief outlook on the different processing 

methods contained in this thesis. Chapter 3 outlines a non-invasive transducer 

designed to detect FBMs represented as maternal abdominal wall movements 

(MAM). The transducing medium used is a piezo film based on Polyvinylidene 

Flouride (PVDF). It is designed to measure displacements of the order of microns, 

and the transducer is capable of detecting both FBMs and fetal heart sounds. 

Chapter 4 extends the work to the analysis of recorded FBMs. Spectral analysis 

algorithms are outlined before concentrating on the least-mean-squared algorithm 

which uses the steepest descent principle and the Burg algorithm and its variants 

(i.e different weighted windows). At the end of chapter 4 the performance of the 

various algorithms is compared for the specific application case of modelling nonsta-

tionary signals. 

Chapter 5 presents a brief review of different realisation of expert systems and 

their merits. A rule based expert system is discussed which was developed to track 

- 10- 



the peaks of an autoregressive spectral model pertaining to FBM rate. The results 

of the peak tracking algorithm to estimate FBM rate is presented. 

The detection of the incidence of deviant breathing patterns is presented in 

chapter 6. Pattern recognition algorithms were used to detect their occurrence. In 

the absence of a universal definition of these patterns, a definition is presented. The 

features selected to describe both normal and deviant breathing patterns are 

presented. Different conventional classification techniques were used, and these 

were outlined: 

- 	Equal and non-equal Bayesian discriminant functions 

- 	Mahalanobis distance classifier. 

In recent years, there has been a new interest in computational models based 

on human biological neural structures. These so called "neural networks" are gaining 

popularity as tools for artificial intelligence and pattern recognition. Chapter 6 also 

outlines the principles of neural networks in pattern recognition. The, structure of 

the neural network which was used is the multilayer perceptron (MLP) with back 

error propagation algorithm. The performance of the different classification tech-

niques is also compared at the end of chapter 6. 

In the final chapter, the conclusions drawn from the work in this thesis are 

presented. 
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CHAPTER 2 

SYSTEM LAYOUT AND ANALOGUE PREPROCESSING 

This chapter presents the outline of the system used to analyse FBMs. Figure 

2.1 is a system block diagram. It shows the signal path and the preprocessing carried 

out from the maternal abdomen through to the output showing FBM rate. This 

chapter deals mainly with the analogue signal preprocessing required prior to the 

digitisation. Section 2.1 discusses the signal properties and characteristics. The trans-

ducer design and associated aspects are presented in chapter 3 in detail. Section 12 

discusses the patient isolation incorporated with; the transducer. Section 2.3 intro-

duces the analogue filtering and preemphasis used. Section 2.4 presents the digitisa-

tion prior to downloading the signal to a digital computer for analysis. 

2.1. SIGNAL PROPERTIES 

Fetal breathing movement in utero is considered as either thoracic or diaphrag-

matic movements or both. The use of a single gate tracking real time ultrasound 

imaging scanner only allows one of these two movements to be monitored. The fact 

that either or both movements may occur simultaneously means that the single gate 

tracking scanner may not provide the true reflection of FBMs. A scanner incor-

porating two gate tracking[18] has provided the ability to monitor both fetal thora-

cic and diaphragmatic movements. In this thesis, FBMs are monitored and recorded 

using phonography. Sound waves are acoustic pressure waves travelling through a 
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medium. In the cases of fetal breathing movement, fetal thoracic and diaphragmatic 

movements generate pressure waves which travel through the amniotic fluid towards 

the maternal abdominal wall. The surface of the maternal abdomen oscillates in 

sympathy with the pressure waves travelling through the abdomen. 

Unfortunately, IBM is not the only biological activity generating pressure 

waves in the maternal abdomen. There are maternal and fetal biological organs 

which also transmit pressure waves to the surface of the maternal abdominal wall. 

Fortunately most of these corrupting signals have different amplitudes and are in a 

different frequency band. The corrupting signals generated from fetal biophysical 

activities are: fetal heart sounds and fetal trunk and limb movements. The most sig-

nificant corrupting signals generated from maternal biophysical movements are: 

maternal heart sounds generated through the maternal abdominal artery and mater-

nal breathing movements. 

The significant information detected from maternal abdominal wall movements 

is contained in two frequency bands. In the low frequency band (0.1 - 2 Hz) com-

ponents relating to fetal breathing and maternal breathing are present. In the upper 

frequency band ( 40 - 60 Hz ) fetal and maternal heart sounds are present. Fetal 

and maternal heart sounds, which are present in the upper frequency band have 

amplitudes of the order of 40 dB below that of fetal breathing movements. In 

chapter 3, aspects of the design of the transducer to monitor fetal breathing move-

ments and fetal heart sounds are discussed in detail. 

2.2. PATIENT ISOLATION 

When connecting patients to electrical apparatus, one of the main points which 

must be taken into consideration is patient safety. It is a prerequisite that patients 

must be isolated from the parts of the apparatus connected to the mains. The pur- 



pose of this isolation is to protect the patient from electric shocks. It must be borne 

in mind that currents in milliamperes can damage living tissue applied through the 

skin (British standards BS5724), and if such a current is applied for a prolonged 

period of time then it could also be fatal. There are clinical requirements set for 

patient safety. Principally, there must be voltage isolation of at least 800 volts 

between parts connected to the patient and those connected to the mains. 

9v 

9V 

  

RTED 
JT 

Figure 2.2: Opto-isolator circuit. 

There are different principles commonly applied to provide patient voltage iso-

lation. These are based on optical, capacitive or inductive transfer of signals applied 

to the patient or transduced from the patient. 

In this research, isolation is using a commercially available opto-isolator (OPL 

1264A). The opto-isolator consists of a GaAsP light emitting diodes optically cou-

pled to an NPN silicon phototransistor. The form of the construction used for this 
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particular isolator provides a 10 KV isolation between the input and the output. 

Figure 2.2 depicts the final circuit incorporating the chosen opto-isolator which 

provides effective voltage isolation and an efficient signal transfer. The resistor Ri 

at the cathode of the light emitting diode (LED) controls the quiescent current for 

the light emitting diode. The resistors R2 at the collector of the phototransistor and 

R3 at the emitter of the phototransistor control the collector current, the bias points 

of the phototransistor and the gain of the system. This design performs well down 

to zero Hertz. This DC coupling results, because the output signal is dependent on 

the intensity of the LED which depends on the current passing through the diode, 

which, in turn, is a function of the input signal. 

2.3. ANALOGUE FILTERING AND PREEMPHASIS 

This section outlines the active filters which were used to extract FBMs from 

raw maternal abdominal wall movements. Theoretical analysis of the analogue 

filters is not presented in this section as these are to be found in common text books 

on filtering[21, 22,23]. 

Fetal breathing usually occurs in the range of 30 to 90 breaths/minute[3, 1, 16]. 

Talbert et at [1] suggested filtering the transduced signal in a frequency band of 0.5 

- 2.0 Hz. This was achieved by cascading a high pass filter and a low pass filter, 

each with the appropriate cut off frequencies. In the course of this research, it was 

observed that the use of the high pass filter distorts FBM signals due to the non-

linear phase characteristics of the high pass filter in the transition band[21, 22]. 

Consequently, only a low pass filter was used to highlight FBMs. Figure 2.3 depicts 

the second order Sallen-Key low pass filter which was used[22, 23]. The cutoff fre-

quency is given as: 

1 
- 2\/2(7rCR) 

(2.1) 
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Figure 2.3: Second order low pass Sallen-Key filter. 

C 

INPUT JT 

Figure 2.4: Second order high pass Sallen-Key filter. 

Fetal heart sounds are also important parameters in fetal monitoring. Section 

2.1, outlined the detection of fetal heart sounds using maternal abdominal wall 

movements. Colley et a/[24] have detected fetal heart sounds by high pass filtering 
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maternal abdominal wall movements with a 50 Hz cutoff frequency filter. In this 

research, it was found that using a second order low pass filter with a cut off fre-

quency at 60 Hz cascaded with a high pass filter with a cut off frequency of 40 Hz 

provides a clear record of fetal heart sounds. The amplitude of fetal heart sounds 

was found to be about 40 dB below that of FBMs. Figure 2.4 depicts the second 

order Sallen-Key high pass filter which was used. The cut off frequency of this high 

pass filter is similar to that given for the low pass filter (equation 2.1). 

In order to provide FBMs and fetal heart sounds (FHS) with comparable 

amplitudes, some preemphasis is required. This preemphasis reduces the dynamic 

range requirement of the subsequent analogue to digital conversion. Figure 2.5 is a 

block diagram of the analogue filtering and the preemphasis. 

2.4. ANALOGUE TO DIGITAL CONVERSION 

So far the signal has been processed (filtering and preemphasis) in analogue 

form. However, there is a significant advantage offered by processing this continu-

ous signal in discrete-time form. The processing of the discrete-time signal can be 

implemented using digital techniques which are potentially more stable and have 

more dynamic range than their analogue counterparts. The digitising process 

represents an analogue signal in a sequence of digital codes. The baseband signal, 

being maternal abdominal movements in this application, is in analogue form and 

contains desired and undesired information. Consequently, the digitising process 

comprises three basic steps: sampling, quantising and encoding (figure 2.6). 

2.4.1. SAMPLING 

Sampling is the process of representing signals by samples taken at appropri-

ately spaced intervals. One of the conditions for proper sampling is that it must be 

possible to recover the continuous signal from the sampled data, without any loss of 
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Figure 2.6: Digitising analogue signal. 

information. 

x b(t) = X 	(t — nT) 
	

(2.2) 

Where x(t) is the continuous signal, x 8(t) is the sampled data, T  is the sampling 

interval, and 6(T) is the dirac delta function which is a unit impulse and has the 

value of zero everywhere except at T = 0. 

However, there are some restrictions imposed on the signal to ensure the suc-

cessful recovery of the continuous data. The restrictions are stated in the uniform 

sampling t/zeore,n425, 26]. This theorem requires that the signal does not contain 

any components above a certain frequency, W, and that the sampling interval must 

be less than 1/2W (the Nyquist interval). Therefore, prior to sampling, the continu-

ous analogue signal must be low pass filtered with a lower stopband frequency of 

less than half the sampling frequency. The Fourier transform of equation (2.2) 

is[26, 25]: 

X(f) = X(f) * [f 	BY —nf ' )] 
	

(2.3) 

= f3 X(f—nf) 
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Where X (f) is the Fourier transform of the bandlimited signal, X 8(f) is that of the 

sampled signal and f is the sampling frequency. 

Therefore sampling a band limited continuous signal results in a periodic 

repetition in the frequency domain of the signal X (f) with spacing of f5. When the 

sampling frequency is reduced, this results in the reduction in the frequency spacing 

of the periodic repetition. When sampling frequency is less than twice the max-

imum frequency content ( 2W  ) in the continuous, signal, f3 < 2W, then the 

periodic repetitions of the spectrum X (f) will overlap; which will result in aliasing. 

To alleviate distortion introduced by aliasing, an anti-aliasing filter must be used 

prior to digitisation, and in particular before sampling. In the previous section, low 

pass filters were used to separate the different frequencies of interest. The second 

order low pass filter with a cut off frequency of 60 Hz acts as an anti-aliasing filter 

for the sampling frequency of 200 Hz and the composite signal from the output of 

the preemphasis stage is sampled at 200Hz. 

The FBMs which are contained in frequencies below 2 Hz may be separated 

by first filtering the sampled composite signal using a Kaiser windowed FIR digital 

filter [25, 26] with a 2 Hz cut off frequency. After digital filtering, the composite 

signal is undersampled at 10 Hz sampling frequency prior to FBM processing. 

2.4.2. QUANTISATION 

Quantisation constrains the sampled signal to conform to one of a finite set of 

fixed amplitude levels. If there are L quantisation levels, where L = 2" (k is a posi-

tive integer), then the quantisation process can at best resolve half a quantisation 

step, where a step size is i/L. The conversion of sampled data from amplitudes of 

continuous value to a discrete set of amplitudes introduces quantisation noise. The 

mean-squared-error of quantisation noise is given as [27]: 
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Eq 	12 

	

- q1 	2 	
(2.4) 

Where q, is the quantisation step. 

This brief discussion of quantisation, explains one of the reasons why the 

preemphasis of FHS was carried out. The dynamic range of a quantiser is propor-

tional to its number of levels, and as FHS are well below FBMs then in order to 

represent FHS data as well as FBMs, the dynamic range of the quantiser must be 

more than the signal dynamic range. 

2.4.3. ENCODING 

The specification of the continuous baseband signal is limited to a discrete set 

of values. The encoding represents the quantised signal in binary form suitable for 

computer processing. For L levels of quantisation the number of binary digits 

required is given by 1092L. 

2.5. SUMMARY 

This chapter has presented a brief description of the system layout used prior 

to digital processing. hence, emphasis has been on the analogue preprocessing. A 

second order analogue low pass filter was used to extract FBMs from the raw mater-

nal abdominal signals. A second order band pass filter is also used to extract FHS 

from the raw maternal signal. Preemphasis was applied to the FHS component of 

the signal. This preemphasis was required to provide a composite FBM and FHS 

signals with comparable amplitudes of both components. Analogue to digital 

conversion was discussed and a commercially available digitising oscilloscope, HP 

5183T, was used to digitise the analogue signal. The digitised signal was down 

loaded to a computer for digital processing using an HP 210 desk top computer. 
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CHAPTER 3 

TRANSDUCER FOR DETECTING FETAL 

BREATHING MOVEMENTS 

3.1. INTRODUCTION 

It was discussed in early chapters, that movements of organs in the maternal 

abdomen results in the abdominal wall oscillating in sympathy. Any physical move-

ment or deformation in an organ results in pressure variations in the medium, 

which will traverse to the surface. These waves will be refracted and reflected at 

discontinuities in refractive index of the medium. Their arrival at the skin surface 

will cause it to move. The magnitude of the resulting displacement is dependent on 

the size of the organ, the intensity of the physical activity and its distance from the 

surface. 

Fetal activities i.e. fetal breathing, heart sounds and body movements may be 

detected by monitoring maternal abdominal wall displacements. These displacements 

are typically in the order of micrometers. Accordingly, a sensitive detection method 

is described which will transduce these activities to a voltage representation. The 

technique exploits the piezoelectric effect. 

This chapter outlines two PVDF transducer designs used to monitor fetal 

breathing movements, and presents a performance comparison of the two PVDF 

transducer structures with that of a cantilever design. Finally, typical FBMs moni- 
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tored using the transducers are presented. It was also found that the same transduc-

ers are capable of monitoring fetal heart sounds. 

3.2. PIEZO ELECTRICITY 

"Piezo" is the Greek for "pressure'. Piezoelectric phenomenon refers to the 

production of electrical charge in response to physical deformation. This 

phenomenon was first discovered by Pierre and Jacque Curie more than one hun-

dred years. ago. They observed that quartz crystals produce an electric charge when 

subject to physical stress or physical deformation; conversely the crystals changed in 

physical dimension when exposed to an electric field. 

Piezoelectric activities exist in quartz and certain ceramics. These ceramics are 

polycrystalline in nature and therefore do not possess piezoelectric properties in 

their natural state. Piezoelectric behaviour is induced in these ceramics by polaris-

ing (poling), which aligns the polar axes of the individual crystallites. Poling is 

achieved by exposing the material to a strong electric field ( - 500 KV/cm.). 

Quartz and piezo electric crystals are stiff and brittle in nature, and they lack flexi-

bility. In spite of these drawbacks these materials were used in diverse applications 

from sonar to medical signal measurement. 

Further work was conducted in 1968[28] to investigate the piezoelectric pro-

perties in organic materials, such as wood and other biological substances. One of 

the fascinating findings was that the human skin, bone and tendon are piezoelectric. 

It was thought that our sense of touch may derive from electric charge on the sur-

face of the skin as a result of touch stimulus, this charge being transferred to the 

brain by the nervous system. Kocharyan et a! [28] subjected a number of polar and 

non-polar polymers to a high poling voltage. They discovered that the higher the 

polarity of the 'unit cell " of the polymer, the higher the 'induced" piezoelectric 
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effect. Polytriflouroethylene, plasticised polyvinyl chloride (PVC) and rigid PVC 

exhibited the highest piezoelectric activities. Kawai [29] discovered that polyvi-

nylidene flouride could be poled to a level of piezoelectric activity, previously unat-

tainable with other polymers. 

3.3. EQUIVALENT ELECTRICAL MODEL FOR THE PVDF TRANSDUCER 

In this section an equivalent electrical circuit model of the film is presented. 

When piezo film has undergone some physical deformation, the charge induced 

must be processed in order to provide a useful output which will faithfully represent 

the deformation. To understand the performance of the film, it is helpful to use its 

basic electrical circuit equivalent. 

charge 
generati 

Q 

Voltage 
generati 
V=Q/C 

(a) 	 (b) 

Figure 3.1: Equivalent electric circuit of PVDF piezo film 

Figure 3.1(a) shows an equivalent circuit based on a charge generator, film capaci-

tance C1  and internal film resistance R1 . The volume resistivity of the film is 1.5 

GO-metre and the internal film resistance is very high and can be ignored. Figure 

3.1(b) shows the simplified voltage mode equivalent circuit. The open circuit vol-

tage output may be found from the film capacitance, V = Q IC1 . This equation indi-

cates that a higher open circuit output voltage may be obtained with the same 
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applied force by using a thicker film and a smaller surface area (i.e. smaller C1  ). 

3.4. SIGNAL CONDITIONING 

Many different circuits are available to interface electronically with the PVDF 

film. If the input resistance and input capacitance of the interface circuit is R, 

and C, respectively, then the induced charge on the film plates decays with a time 

constant given by: 

time constant = R. C, 

Where total capacitance is C, = C1  + C, 

In most practical charge amplifier circuits R. and C, are very small, which 

results in a short time constant. This, in turn, makes the film suitable for dynamic 

measurements rather than static measurements. If the need arises, longer time con-

stants may be obtained by using a circuit with a high input resistance and high input 

capacitance. R 

Figure 3.2. The charge amplifier 

In small signal applications a charge amplifier is used to convert the induced 

charge to a voltage output. A charge amplifier is a current operated circuit with 

zero input resistance. It quickly removes the charge induced on the film plates, 
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resulting in zero voltage developing across the film. With the induced charge 

removed as soon as it is developed , and with nothing left across the plates, the sys-

tem then exhibits time constant of zero seconds. A variety of circuits may be used 

as charge amplifiers. Figure 3.2 shows the film connected to an operational amplif-

ier based charge amplifier. The transfer function (T.F.) of the above charge amplif-

ier is given by: 

T. F. = Voltage out 
Charge in 

YL 	sT 	1 
Qin 	(sT + 1) 	

(3.1) 

where T = time constànt= R . C for the charge amplifier. 

GRIN 

V 

Q 

Figure 3.3: Frequency response of charge amplifier. 

Figure 3.3 shows the frequency response of the charge amplifier. The low fre-

quency breakpoint of the circuit is controlled by the amplifier and the high fre-

quency breakpoint is controlled by the film's high frequency characteristics. 

3.5. PVDF FILM MOUNTING 

Any stress applied to a PVDF film will develop charge across the film plates. 

The stress constant of piezo film is maximum along axis 1 (appendix B), and hence 
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PVDF PVD F NEUTRAL 

the PVDF film is used with force applied along this axis. The objective is to max-

imise the net stress generated and hence the charge developed. Extension along the 

film's length produces positive charge; compression produces negative charge. Fig-

ure 3.4(a) shows a PVDF film in a horizontal position. If the film is deflected then 

the output due to extension on one surface will cancel the equal and opposite output 

due to compression on the other surface. The neutral axis of the above case • is 

along the centre of the film. 

Figure 3.4: Neutral axis for (a) Unlaminated PVDF (b) Laminated PVDF 

Mounting the PVDF film onto a polyester strip which does not expand nor 

contract will result in shifting the neutral axis towards the common surface of the 

film and the polyester. This results in a net extension or compression when deflected 

and the output is hence maximised, fig. 3.4(b). Therefore mounting PVDF film on 

a nonextendible substrate would invariably utilise the pizoelectric properties more 

effectively. Henceforth, the assumption that the film is laminated using a nonexten-

dible substrate will be made. 

Two transducer structures are described and compared below: 

Horizontally mounted film. 

PVDF film vertically mounted in a curvature. 



Performance comparisons are made of the two types of transducers assuming a 

10 pm vertical displacement of the maternal abdominal surface. 

3.5.1. HORIZONTALLY MOUNTED FILM. 

diaphragm 	length 	PVDF film 	
nolvesfer 

Figure 3.5: Horizontally mounted transducer. 

The structure of this transducer is shown in figure 3.5. The film is placed hor-

izontally on a diaphragm comprising an unstretched rubber balloon. As shown in 

appendix D, it is necessary to evaluate the stress on the film as a first step in the 

computation of charge developed due to a vertical displacement. When the trans-

ducer is strapped down to the maternal abdomen, the diaphragm, will assume a 

static curvature. From figure 3.5 it can shown that: 

2r 
	 (3.3) 

and the radius of the curvature is given by: 

I = (1 —cos (®)) 	
(3.4) 

where I is the original length of the film. Using equations (3.3) and (3.4) then: 
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r 	 1 	
(35) 

	

dli 	(1 - cos 0 - ®sin 0) 

Let t be the thickness of the film and let 1 be the length of the outer stretched 

surface of the film. The length of the outer surface of the film is stretched from I to 

I and hence: 

Is 	- I 
(r +t) - r 

Differentiating equation (3.6) yields: 

(3.6) 

dlç II 	dr 
(3.7) 

And therefore the change in strain with respect to the height h is given by: 

d13/15 - i 	t 	dr 	
38 

dli 	- 	' r' dli 

The change of the curvature radius with respect to the height, dr/d/z, is shown 

plotted in figure 3.6 as a function of the height h. The function d15 113 /dh is also 

shown plotted in figure 3.7 as a function of the height h. From figure 3.7 it can be 

seen that over the expected range of static deflections, i.e. 0 to 0.75 cm, the sensi-

tivity is approximately constant and of the order of 0.15 x 10 -2  strain per cm. 

Using the design calculation criteria presented in appendix D the charge 

developed is: 

q = C931  t Y strain 	 (3.9) 

= Cg 31  t 	
d(strain) 	

(3.10) 
dli 	 dli 

= 0.15 . 10_2e 1 w 9 31  Y 

Where 9 31  is the piezoelectric constant (216 x 10 
), 

€ is the dielectric constant of 

the piezoelectric material, w is the width of the film and Y is Young's modulus of 

elasticity. Using the constants presented in appendix B and using a sensor where 1= 

4 c and it' =1.5 cm yields: 
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Figure 3.6: First derivative of the radius of curvature with 
respect to height (cm.) for the horizontal transducer. 
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Figure 3.7: First derivative of strain with respect to 
height (cm.) for the horizontal transducer. 
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dh 3.21X10 -' coutombs/cin 

= 3.21 pC/micron 

3.5.2. VERTICALLY MOUNTED FILM. 

PVDF film 
polyester 	\ 

0 
C,) 

diaphragm 

Figure 3.8: Vertically mounted transducer. 

The structure of this transducer is shown in figure 3.8. The film is mounted on 

a substrate which forms a vertical curvature. One end of the film is connected to the 

metal case; the other end is connected to the diaphragm which also comprises an 

unstretched rubber balloon. The assumption here is that the curvature of the film 

will take the shape of a semi-ellipse. Any vertical displacement /z, will result a 

change in the vertical span from d to d —h, which will in turn induce a strain on 

the film surface. The length of the film is of length 1, and is fixed onto the neutral 

axis. The length of the outer stretched surface is: 

1 

11 

(d —h) = 	 (3.11) 

And in a similar manner shown for the horizontal transducer in the previous sec- 
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tion: 

(d13113) - 	2t 
d/z 	- (d—h)(d—h-2r) 

(3.12) 

The sensitivity of the vertical transducer is shown plotted in figure 3.9. It is 

seen that the strain sensitivity for d =2 cm is of the order of 0.25 x 10 -2  strain per 

cm over the range of 0 to 0.75 cm. 

3.6. PERFORMANCE COMPARISON 

A film structured to operate as a cantilever possesses linear characteristics to 

displacement and is independent of static position. The voltage induced for a dis-

placement of 8 using a bimorph as a cantilever is: 

g 31  . Y . 
ME 	1 2 

	 (3.13) 

Using the PVDF film in a bimorph structure and with dimensions, 4 cm. long 

1.5 cm wide and 28 p.m thick, will develop a charge of 0.6 pC for a vertical dis-

placement of 10 p.m. This charge is far less than that developed when using the 

same dimensions for horizontally mounted and or for the vertically curved trans-

ducer, each of which develop a charge in excess of 40 nC. Therefore the perfor-

mances of both structures surpass that of the bimorph cantilever. 

3.7. TRANSDUCER COUPLING 

The energy of signals at the maternal abdomen due to fetal biological activities 

is low, and in monitoring these signals, the maternal wall surface should not be 

mechanically loaded. Interestingly, the simple Laennec tube stethoscope, which was 

introduced some hundred years ago does not load the surface. The shortcomings of 

this latter method was that the stethoscope needed to be close to a powerful source. 

The transducers designed in this project were found to operate satisfactorily as con- 
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Figure 3.9: First derivative of strain with respect to 
height (cm.) for the vertical transducer. 
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tact and non-contact microphones. It is necessary to have an efficient mechanical 

coupling to ensure more efficient transduction of fetal signals. When the transducer 

is installed on the patient, the diaphragm is tightened, which exerts some force onto 

the abdominal wall. The transducers depend on displacement of the surface for 

their operation, therefore minimum force must be exerted by the transducer and 

diaphragm for faithful reproduction of the abdominal wall displacements. Talbert 

and Southall[1] approached this problem by compliance matching. The compliance 

of the transducer head was adjusted to approach that of the maternal abdomen, 102 

rn/N. 

The force the transducer exerts on the maternal skin was experimentally meas-

ured for varying static positions of the diaphragm. Figure 3.10 shows the displace-

ment versus the force exerted by the diaphragm. The force increases with increasing 

static position, but not in a linear fashion. Figure 3.11 depicts the compliance of 

the diaphragm with increasing displacement. The compliance of the diaphragm is 

far greater than the compliance of the skin( 102  mIN), which indicates that the 

transducer head does not load the signals arriving to the maternal abdominal wall. 

The static position of the diaphragm is dependent on the characteristics of the 

maternal abdominal wall. The biggest factors determining the compliance of the 

maternal abdominal wall is the obesity of the mother and the gestational age of the 

fetus. The skin stretches and tightens as the fetus approaches term. 

Physiological variabilities, including the above factors, render it pointless to 

attempt and match compliances, as this is patient dependent. If the transducer's 

compliance is kept high, and if possible, higher than that of the maternal abdomen 

then low energy fetal biological activities can be effectively monitored. 
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Figure 3.10: Force exerted by diaphragm. 
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Figure 3.11: Compliance of diaphragm. 
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3.8. RESULTS 

The transducers discussed were used to monitor maternal abdominal wall 

movements. Figure 3.12 shows maternal abdominal wall displacement. In figure 

3.12 both maternal and fetal breathing movements can be seen clearly, but FHS can 

not be identified. This is due to the fact that the intensity of FHS is about 30 to 40 

dB below fetal breathing movements. 

Figure 3.13. shows FHS .when the maternal abdominal signal is band pass fil-

tered between 40 and 60 Hz and then amplified by a factor of 100. The 10 seconds 

of data shown in figure 3.13 displays clear fetal heart sounds, with each heart beat 

comprising two heart sounds. The first heart sound relates to the closure of the 

mitral and tricuspiad heart valves, while the second heart sound relates to the clo-

sure of the pulmonary and aortic valves. There are two large signals which look like 

spikes in figure 3.13. These two events are related to fetal movements. The detec-

tion of fetal movements in the same frequency band as that for FHS has advantages 

and disadvantages. There is the advantage of the detection of another fetal parame-

ter using the same transducer; while the detection of fetal movements create a prob-

lem in the analysis-of FHS. Nevertheless as can be seen from figure 3.13., the dis-

rupting effect of the transient fetal (limb) movements is minimal although gross 

body movements could disrupt severly the FHS signal. 

FBM can also be separated by bandpass filtering the MAM signal. In the 

analogue filtering a second order low pass filter with a cutoff frequency of 2 Hz was 

used. The resulting filtered waveform would be similar to the unfiltered waveform 

of figure 3.12 as FHS has relatively low intensity and does not create a significant 

visual impact on the signal. Passing the digital signal through a bandpass filter with 

upper and lower cutoff frequencies of 2.0 Hz and 0,5 Hz respectively, this separates 

FBM signals as shown in figure 3.14. The identification of these signals as a 
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Figure 3.13: Fetal heart sounds (Fl-IS). 
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Figure 3.14: Fetal breathing movements (FBM). 



representation of FBMs was corroborated by an obstetrician using a real time 

ultrasound imaging scanner and a switch to indicate every perceived breathing 

cycle. 

3.9. DISCUSSIONS AND CONCLUSIONS 

Many assumptions were made in the mathematical modelling of the transduc-

ers. The curvature of the horizontally mounted transducer was assumed to form an 

arc, the vertically mounted transducer was assumed to curve into a semi-elliptic 

form. The other assumption was that the neutral axis is at the common surface 

between the substrate and the film. In reality the position of the neutral axis is 

dependent on the elastic properties [30] of the two materials used. For the neutral 

axis to be positioned at the common surface of the two materials, then the thickness 

of the substrate for a given thickness of film is given by: 

'subs - YPVdJ 

'PVDF 	'subs 
(3.14) 

where I is the second moment of area of the cross section of each material about 

the neutral axis, and Y is Young's modulus of elasticity: 

= L._L 	 (3.15) 

where I = length and t = thickness. 

And the thickness of the substrate is 

(_!!f±f_) = 	pvdf 	
(3.16) 

tpvdf 	 Ysubs 

The Young's modulus of the substrate dictates the position of the neutral axis. But 

since this modulus is more than 20 times greater than that for the PVDF film, the 

change in length of the common surface will be small, and the opposing charge due 

to the neutral axis being at some distance from the common surface may be-

neglected. 
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The principles of piezo film were introduced and used to develop two different 

transducer structures for the detection of fetal biological activities observed at the 

maternal abdomen. The transducers can also be used to detect any displacement 

whether originating from a biological activity or any other physical phenomenon. 

The linearity of the transfer characteristic of the transducer for different displace-

ment is presented in figure 3.15, which shows the output in millivolts with respect to 

displacement measured at 10i.m and 100m. 

The transducers were used on a series of 10 patients totalling some sixty 

thousand breath cycles. In nine of these cases both fetal breathing and heart sounds 

were detected. In the one case, fetal breathing was detected, but fetal heart sounds 

were not. This patient was slightly obese and this could have contributed in block-

ing the low energy fetal heart sounds. 
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CHAPTER 4 

SPECTRAL ANALYSIS 

4.1. INTRODUCTION 

FBM data monitored and recorded in chapter 3 must be analysed to estimate 

FBM rate. In this chapter an outline of the principles of different signal processing 

algorithms is presented. Traditional spectral estimation, which uses the FIT algo-

rithm is briefly discussed in section 4.2 and its properties outlined. Parametric 

modelling is presented in section 4.3 and in section 4.4 autoregressive spectral esti-

mation and its properties are discussed. Section 4.5 presents different algorithms 

used to model and estimate the spectrum of given stochastic signals. These include 

the gradient LMS, Yule-Walker and the Burg algorithms. Section 4.6 presents a 

performance evaluation of the LMS and the optimum Burg algorithms. Finally the 

conclusion is presented in section 4.7. 

4.2. TRADITIONAL SPECTRAL ESTIMATION 

Spectral estimation of a signal may be achieved using traditional Fourier 

transforms. The power spectral density (PSD), P . (f), may be computed by taking 

the Fourier transform of the autocorrelation of the signal R,,., (m )[26, 31, 32, 33]. 

M 

Pm  (f) = 	R (nz) exp ( -j 2irf,nir) 
	

(4.la) 
m -M 

More direct spectral estimation can be obtained by taking FFT of N data, 
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x0,x1 ..... . XN_1, and squaring the coefficients. 

nN-1 

Pm(f) = 	xexp(—j2irmn/N)I 2 	 (4.1b) 

The problems of traditional spectral estimation are: 

- Spectral resolution 

- Spectral leakage 

4.2.1. SPECTRAL RESOLUTION 

The resolution of a given spectral estimation technique is its ability to discern 

closely spaced frequency components. In classical spectral estimation a rule of 

thumb is often used to define resolution: 

RResolution= 1 Hz
NT 

N = Number of the samples in the observation interval 

T = Sampling interval. 

For the discrete Fourier transform the frequency quantisation is also given by the 

same equation, which represents the spectral resolution limit at which a single peak 

in the spectrum may be located. By zero padding to M samples, the resolution due 

to quantisation interval reduces to 11MT. This artificial increase in the number of 

samples improves the frequency quantisation interval but does not effect the spectral 

resolution, since the total interval of observation has not changed from 1/NT. 

4.2.2. SPECTRAL LEAKAGE 

The spectral leakage encountered in traditional methods can be traced to an 

assumption about the data outside the measurement interval. In all cases, the data 

is assumed to have infinite length which is multiplied by some form of a window, 

whose length is the measurement interval. This forces the data outside the window 
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to be zero, which is usually not the case. This multiplication in the time domain by 

a window is equivalent to convolution of the transform of the infinitely long data 

sequence with the transform of the window function. The transform of a rectangu-

lar window is a sinc function, and if the power of the unwindowed signal is concen-

trated in a narrow bandwidth, then windowing will spread the power into the adja-

cent frequency regions. This effect is known as leakage. 

In addition to degrading the spectral estimates, leakage has detrimental impact 

on power estimation and on the detectability of multiple sinusoidal components. 

Sidelobes from adjacent components may add constructively or destructively. In 

extreme cases a sidelobe from a strong frequency component may mask the main 

lobe of a weak frequency component, or sidelobes of adjacent frequency com-

ponents may add to present a significant power, hence inferring the presence of a 

frequency component which is absent. 

So far, rectangular windowing, which is characterised by a sinc function in the 

frequency domain has been assumed. Other windowing functions may be applied 

[26, 34, 32] e.g. Hanning window, Hamming window, Bartlett window etc. . These 

alternate windows, which are tapered, reduce the magnitude of the sidelobes near 

the main lobe - the signal frequency - at the expense of increasing the width of the 

main lobe. The resolution defined in the previous section assumes a rectangular 

window and is the best which can be achieved using N data samples. 

In summary, traditional spectral estimation has the following advantages: 

Computationally efficient. 

Power spectral density (PSD) magnitude is directly proportional to 

the power of Sinusoidal component. 

The disadvantages are: 
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Weak signals may be masked by strong signal sidelobes. 

Introduction of distortion in the spectrum due to sidelobe leakage. 

Frequency resolution is limited by the available data record length, 

independent of signal characteristics or signal-to-noise ratio (SNR). 

4.3. PARAMETRIC SPECTRAL ESTIMATION 

As mentioned in the previous section, classical spectral estimation based 

Fourier transforms is the' most commonly used technique This technique has 

shortcomings for short data blocks[32, 34], which make it inadvisable for use in the 

analysis of FBM signals. These shortcommings may be overcome by employing 

parametric techniques. 

Parametric spectral estimation depends on the assumption that the PSD of the 

observed signal is the result of passing a white noise sequence through some filtering 

process. The white spectrum of the noise sequence may be shaped by the filter to 

provide the PSD of the observed signal. Figure 4.1(a) shows this signal generation 

model. Equation (4.2a) presents the Wiener-Kintchine equation relating the PSD 

of the observed signal P (w) to the PSD of the driving noise P. (w) and the transfer 

function of the shaping filter !J(e(_1T)). 

P(iv) = IH(e(_iT))I2P (IV 
 ) 

	

(4.2a) 

The transfer function of the filter is not always known and in particular, its 

frequency characteristic is normally the subject of investigation. For example, we 

modelled the FBM signal as though the generating system is driven by a white noise 

sequence, and the purpose of the investigation is to determine the transfer function 

of the respiratory system. This assumption does not have any physical correlate. 

In the parametric spectral estimation, the characteristics of the filter shaping 

the white noise sequence are achieved by passing the observed signal through a 



whitening filter. This is shown in figure (4.1b). This whitening process is the inverse 

of the generating process, and hence, the transfer function of the whitening filter is 

assumed to be the inverse of the transfer function of the generating filter. Figure 

4.1(b) shows a block diagram of the whitening process, and the transfer function 

H_I(e(_frT)) of the filter which whitens the observed signal to a PSD of Pe (W). 

P, (w) = I  _l(e(_i'T))I2  P (w) 
	

(4.2b) 

The motivation for using these parametric techniques is the ability to produce 

better PSD estimates than by the classical approach previously outlined. Improved 

spectral resolution independent of data length is the main motivation. In classical 

techniques, PSD is estimated from a windowed set of data (eq. (4.1b) ) or its auto-

correlation sequence (ACS) ( eq. (4.1a) ). The data outside the window is assumed 

zero, which is an unrealistic assumption that leads to distortion in PSD estimates. A 

priori knowledge of the stochastic process generating the data is often available. 

This a priori knowledge may be used to construct a generating model with more 

realistic assumptions about the data outside the window. Degrees of improvement in 

spectral resolution and spectral fidelity over classical technique are determined by 

the selected model and its ability to fit the measured data. 

4.3.1. AUTOREGRESSIVE MOVING AVERAGE (ARMA) 

Figure 4.1c illustrates a causal rational model which assumes the time series x 

{,z = 0,1,2.....N —11 to be generated according to: 

kp 	 mq 
X, 	E ak X -k  + C E bm  11n -m 

	 (4.3) 
k1 	 m0 

The excitation input time series, U rn , is assumed to be white noise with zero 

mean and variance one (i.e. the autocorrelation is a unit impulse at zero lag). 

From eq. (4.3) one can define the "output" of the model at time index n, as linear 

function of the past p "outputs" and a linear combination of the present and past 
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"input" samples (excitations). The constant G is the gain of the system. 

The transfer function of the generating model is given by: 

1 + 
mq
Eb z -1  

H(z) = G 	 (4.4) 
1 + Y, akz 

k=1 

= G" 
A (z) 

Where 

G = The gain 

B (z) = Moving average (MA) transfer function 

= 1 + 

A (z) = Autoregressive (AR) transfer function 
k =p 

= 1 + 	akz 
k=1 

For equation (4.4) to be stable and causal, all its poles - determined by 

a 1 ,a 2 ,a 3  ....... a and all its zeros determined by b 1 ,b 2 ,b 3  ...... bq  - must lie within 

the unit circle of the Z-plane. 

the PSD for a real system is given by[32, 34]: 

P(z) = 11(z) H*(lIz*)  P. (z) 

= B(z )B*(1/ z ) 
P(z) 	 (4.5) 

A(z) A(lI z *) 

Where P. (z) = autocorrelation of the input driving sequence ii,,. 

PSD estimates from ARMA models, exhibit both poles due to AR modelling, 

and zeros due to MA modelling. PSD estimates based on ARMA models display 

good modelling and resolution properties, but the generation of the optimal AR 

parameters, ak , and MA parameters bm , necessitate the implementation of computa-

tionally complex nonlinear algorithms, with the possibility of convergence [32,34] to 

CII-Ov.  k 
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a local minima. There exist, however, relationships [32,34] between ARMA, MA 

and AR model parameters. An ARMA or MA process may be represented by an 

AR process of generally infinite order and conversely an ARMA or an AR process 

may be represented by MA model of generally infinite order. Therefore an AR 

process of suitably high order may be a good approximation of an ARMA pro-

cess[35, 361. 

4.4. AR SPECTRAL ESTIMATION 

An AR model assumes that a data sequence can be predicted from a weighted 

sum of its past samples. 

kp 
x =  — >akxfl_k + U,, 	 (4.6) 

k=1 

Where u,, is the driving source with zero mean and variance u 2 , p is the limit of 

regression ( model order of the process), a,, :k= 1,2......,p. is the vector of 

parametric coefficients. 

Rearranging eq. (4.6) and taking the Z-transform: 

X(z) = kp 
	 (4.7) 
a,, z' 

k =O 

a 
A (z) 

The PSD of an AR process, PA R (f), can be evaluated on the unit circle[32]. 

PAR (f = f(Z 	.. )I2zejw 	
(4.8) 

a2  
- kp 	 2 

I 2 ak exp(—jwk)I 
k =0 

Where a 0  is always 1. 

Therefore the AR PSD can be evaluated after estimating the AR parametric 
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coefficients. Prior to outlining algorithms which estimate these coefficients, some 

general aspects pertaining to AR modelling are discussed. 

(1) SPECTRAL RESOLUTION: In section 4.2.1 resolution using traditional 

spectral estimation was shown to depend totally on the observation inter-

val, with the data outside this interval assumed to be zero. In an AR pro-

cess no assumption is made for the signal outside the observation inter-

vat, and nonzero extrapolation is used for the autocorrelation sequence 

[32,34] for lags beyond p. This extrapolation, although damped beyond. 

lag p, effectively provides a long data interval. Resolution of the model-

ling process for two frequency components with equal powers is shown to 

depend[34] on signal characteristics and model order. 

ResolutionAR = 

where 

1.03 
Tp [SNR (p + 1)] 0

' 

(4.9) 

T = sampling interval. 

p = model order. 

SNR = Linear signal-to-noise ratio of a single sinusoid. 

SPURIOUS PEAKS: It is implied from the previous section that an 

increase in model order results in an increase in resolution. For particu-

larly low SNR, the use of a high model order results in the modelling of 

noise as well as.signal which then results in spurious spectral peaks which 

appear to represent nonexistent signal components. 

SPECTRAL LINE SPLITTING: This occurs when the PSD spectrum 

represents a single frequency as two distinct adjacent components. This 

has different causes with different algorithms, but, in general, it is the 

result of:(1) Too high a model order, as discussed in the previous section. 
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(2) The data comprise some phase shift along its observation interval. (3) 

The initial phase of the sinusoidal component is an odd multiple of ir/4. 

(4) The interval duration is an odd number of quarter wavelength. (5) 

AR model order is a high percentage of the number of data samples 

used. 

BIAS OF SPECTRAL ESTIMATES: An estimate is biased if the 

estimated expected value differs from the true expected value. All esti-

mates have bias of different quantities. The causes of bias may be attri-

buted to the length and initial phase of the data sequence, in addition to 

the algorithm used in estimating the parametric coefficients. 

MODEL ORDER SELECTION: Selection of correct model order is a 

controversial issue. The best choice of filter model order p is not gen-

erally known a priori, since the exact AR process generating the data is 

not generally known a priori. Some criterion is required to indicate the 

correct choice of model order. Too low a model order results in a 

smoothed spectral estimate; too high a model order results in an increase 

in resolution which could introduce spurious peaks into the spectrum. 

Akaikie [37, 32, 34] and Parzen [32, 34, 38] have proposed postulates for 

correct model order selection, which are based on the prediction error 

criterion. Ulrych and Clayton[39] showed that for short data blocks, the 

performances of these criteria were unsatisfactory. Ulrych and Ooe[40] 

determined, experimentally, that model order selection of 1/3 to 1/2 of 

the data block length would perform satisfactorily. This presumes that the 

data block is itself a good representation of the signal. 

NOISY AR PROCESS: Noisy observations produce smoothed AR PSD 

estimates[32, 311, which manifests itself as bias and limits the practical 
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utility of AR PSD estimation. An AR process embedded in white noise 

is an ARMA process, and therefore, the bias due to smoothing in an AR 

model could be reduced if large model orders were used, but choosing a 

high model order may result in spurious peaks, as discussed earlier. 

Choice of model order according to Ulrych and Ooe[40] provide accept-

able PSID estimates. In high noise conditions, the traditional periodogram 

method can be superior to AR modelling[32]. 

4.5. AUTOREGRESSIVE ALGORITHMS 

In order to develop the AR PSD, the parametric coefficients of the model (eq. 

4.8) must be estimated. As stated earlier, the current sample of an AR process may 

be estimated from a linear combination of its past p samples. 

P 

 

In = — akxfl _k + ufl 	 (4.10) 
k=1 

An error signal is generated due to the difference between the estimated value, 

I,,, and the true value x. 

= x, - .i. 	 (4.11) 
P 

X + E akx_k 	11 n 
k=1 

In a random process, The mean-squared-error (MSE), E is: 

= E{e,} 	 (4.12) 
P 	 2 

= E{(x +. I akxfl_k - u) } 	 - 
k=1 

Where E {*} denotes the expectation function. 

The parametric coefficients are estimated for minimum mean-squared-error 

(MMSE) in eq. (4.12) 

There are a number of algorithms which estimate these parametric coefficients. 

These may take a sequential form[41,42,43,44], 	or block form[31,45,34]. The 
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following algorithms are discussed in the proceeding sections: 

1 	Least-mean-squared (LMS) gradient algorithm. 

2 	Yule-Walker algorithm. 

3 	Burg algorithm. 

4 	Weighted Burg algorithms: 

Energy weighted. 

Optimum weighted. 

Data-adaptive weighted. 

4.5.1. LEAST-MEAN-SQUARED (LMS) GRADIENT ALGORITHM 

This is one of a number of algorithms that may be used for system identifica-

tion and AR coefficient estimation, and is one of the simplest to implement. 

Expressing eq. (4.11) in matrix form we have: 

2 

= E{(x - 	akxfl _k) } 	 (4.13) 
k=1 

=E{(x—A'X) 2} 

Where A is the coefficient vector, A = [ a. 1 , a 2 ......, a] and X is the data 

vector of past p samples, X = [x_ 1 , x_2 ,..... , x,, _P  ]. Expanding eq. (4.13) 

= Ex,} + AE{X X}A - 2E{xX 1 1'}A 	 (4.14) 

=E{x 2}+A'RA —2PA 

• Where R = EfXnX D = Autocorrelation matrix. 

P = E {x X 11 = Cross correlation vector. 

For a stationary stochastic signal, the MSE is a quadratic function of A , the 

parametric coefficients. In the gradient method, the first derivative of the error per-

formance surface, t, is minimised to get the optimal solution of A . 
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V = 	= 2RA - 2P 	 (4.15) 

=0 

If R is non singular, the optimal solution is: 

A' = R 1 P 	 (4.16) 

Equation (4.16) is the Wiener optimal solution for the coefficients vector 

(weights). 

In the method of steepest descent, a recursive estimate of the filter coefficients 

is given by[42]: 

A 1  = A + (—V) 
	

(4.17) 

/ 

where V,, = The gradient of iteration n. 

= A constant which regulates the step size. 

Thus an estimate of the gradient V is required. This involves computation of 

the autocorrelation vector (eq. 4.16 ). The LMS algorithm takes e, as/an estimate 

of ,,. This makes the estimate of the gradient 

1 

= 3(e =2e 

= —2eX 
	

(4.18) 

Hence, for the LMS algorithm, the recursive estimate of the filter coefficients is 

given by: 

• A 1 = A + 2eX 	 (4.19) 

The convergence of eq. (4.19) towards the Wiener optimal solution is only 

guaranteed [42] if the input data is a stochastic stationary signal and provided the 

adaptation gain p. is in the range: 

(4.20) 
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Where Xm  is the largest eigenvalue of the autocorrelation matrix R. 	has the 

dimension of the reciprocal signal power. Linkens [46] and Griffiths[47] have 

presented an adaptive method for computing the gain : 

tr(R) = pr(0) 	
0<a<2 	 (4.21) 

Where tr(R) is the trace of the autocorrelation matrix, p is the filter length and 

r(0) is the mean power of the data in the filter. The selection of a and subsequently 

p. determines the convergence rate of the LMS algorithm. The, gain p. also deter-

mines the misadjustment M which is defined as: 

M 	Excess MSE 
minimum MSE 

= p. tr(R) (4.22) 

The adaptation time constant which is measured in iterations, is defined 

as[47, 46, 42] as: 

T0  = 
	—1 	 (4.23). 

liz(1 - 

Therefore by choosing the required adaptation time constant and the filter length p, 

a is given by: 

a = p(l - elka ) 
	 (4.24) 

The adaptive choice of a and hence the gain constant p., guarantees the con-

vergence of the LMS and greatly improves the robustness of the algorithm. 

4.5.2. YULE WALKER ALGORITHM 

Differentiating eq. (4.11) with respect to the coefficients, and setting the 

derivative to zero gives: 

kp 	2 

	

= (x + I akx_k) 
	

(4.25) 
n 	k=1 

: 



kp 
-- = 2(x, + 	 (4.26) 
aa, 	 k=1 

O 	1<i.5p 

k -p 
R (i) = 	= - ak EX.  _kX n  -i 	 (4.27) 

n 	 k-i 	n 

Solving eq. 4.26 gives: 

kp 
R. (i) = — akR(i — k) for i >0 	 (4.28a) 

k=1 

By substituting eq. (4:27) into the expanded form of eq. (4.25) 

kp 
R. (0) 	EakR(k) + K i = 0 	 (4.28b) 

k=i 

If the noise is white and gaussian then K is its variance ( Cr2  ). 

Equations (4.28) are the Yule-Walker equations. The coefficients can be 

estimated by solving a set of p linear equations. The Gauss elimination method for 

solving eq. 4.28 requires p 2/3 + 0(p 2) operations. If the summation in eq. (4.27) 

is taken over a finite data interval, then this would result in the covariance expres-

sion and an efficient solution for the coefficients could be achieved using the Chole-

sky decomposition, which requires p 216 + 0(p 2 ) operations. The summation in eq. 

(4.27) was taken over an infinite duration and the coefficients were expressed in 

terms of the autocorrelation function of the data. In practice, analysis is carried out 

using data of finite duration. The finite duration case is equivalent to having data of 

infinite duration which is multiplied by a window whose length is the observation 

interval N. 

For a stationary stochastic signal, the autocorrelation matrix is Hermitian and 

Toeplitz[34, 32,45,48, 31]. The matrix representation of equations (4.28) is: 

IR,(0) 
R,,, (1) 

R(-1) 
R(0) 

	

... 	R(—p) 	11 	I 1 	1 	
(721 R(—(p -1))I 	I 	a . 	. 

R,, (2) R,,., (1) 

	

i 	i 	0 

::: 	
R(p —2)) i 	a2 	

. 

= 	. 	

(4.29) 

[R) R (p —1) I 	I 	ôI : 	: : 	R(0) 	] 	i  
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The Levinson-Durbin algorithm[31, 32,34,45,48, 33] provides an efficient 

order recursive solution to the Yule-Walker eq. (4.29) requiring 0(p 2) operations 

only. The Levinson-Durbin algorithm solves for coefficients of order p from the 

predictor coefficients of order (p-i). Hence, a byproduct of the Levinson-Durbin 

solution for model order p is a set of coefficients and residual predictor output 

power for the lower model orders. If am  [n] denotes the nih  coefficient of the 1th 

order linear predictor then: 

am  {n ] = am  _1 [n] + am  [uui ]a,,_1  [in —fl ] 	 (4.30) 

in  

n = 

The superscript ( * ) denotes complex conjugate and: 

a,, [nz] = 

k=m-1  
- 	am  _1 [k ]R, [in —k] 

k =0 

Or m  -1 

(4.31) 

The procedure for solving eq. (4.30) and (4.31) up to model order p is as fol- 

lows: 

= R. [0] 

am  - 1 [0] = 1 	 in = 

a l [l] = - R [1] 
 R[0] 

rj 	(1 — a?[0])R2j0] 

a, 2 =  (1 - a,[nz] )if 

In an AR process, the residual error power, u,,, is progressively reduced as it 

approaches the correct model order p. For the AR process to be stable and 

minimum phase, the coefficients am  [m] must satisfy 

Iam  [in ]I 	1 	 in =1,2..... 'p 	 (4.32) 

Lattice formulation of the prediction error filter is also possible, fig. 4.2. Two 

prediction errors are presented, the forward error efm  and the backward error ebm . 

9 MOM 
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r 

ef 1 	 ef 2  
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ef m  

Figure 4.2: Lattice filter structure. 

The latter attempts to predict the sample x [n —in ] form knowledge of samples 

x [ii —in + 1], x [n —in + 2]........v [ii 
] 

k m 
ef 1 [n] = x[n] +2 am[k]x[it —k] 

	
(4.33) 

- 	 k=1 

which reduces to: 

elm ['i] 	elm - I  [it + am  [iii lebm  _1[,t —1] 	 (4.34) 
k m 

ebm [n] = x[n —rn] + E am  [k ]*x [n —in +k] 	 (4.35) 
k=1 

In a similar fashion eq. (4.35) can be reduced to: 

eb,[n] = ebm _i [n —1] + a,[nz]efm_i[n] 	 (4.36) 

The intermediate coefficients, a [1] ,a 2[2],. ., ,a,, [m] are termed the reflection 

coefficients from transmission theory, or PARCOR (PARtial CORrelation) coeffi-

cients k[m]. These coefficients are considered as the negative partial correlation 

between x,, and Xn+m  with the intermediate values x,,, 1 ...... , Xn + m _1 being fixed. 

k[m] = am[rn] 
	

(4.37) 
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4.5.3. BURG ALGORITHM 

The Burg algorithm uses the lattice structured filter discussed in sec. 4.5.2 

where the forward and backward errors and total error power P are expressed as: 

efm[n] = efm_i[n] + k  [in ]ebm_i[n —1] 	 (4.38) 

ebm [n] = ebm _i [n —1] + k[m]efm_i[n] 	 (4.39) 

Where k*  denotes the complex conjugate of the reflection coefficient. 

Pe = E{ef 2[n] + eb2 [n]} 	1 	 (4.40) 

Burg minimised eq. (4.40) with respect to the PARCOR coefficients and 

found the solution for k [m ][32, 33] 

2 E{efm._i[n]  ebm _i [n —1]} 

E{ef,_ 1  [n J + eb,_1  [n —1]} 
N-1 

—2 	efm _1 [n ]ebm  _1[iz —1] 

= n=N-1 
nm 	 (4.42) 

(Iefm_i[n]12 + Iebm _i [n _1]1 2) 
n m  

The procedure for solving the Burg algorithm is to initialise the forward and 

backward errors: 

ef o [n] = ebo[nJ= x[n] n =0,1,2,...,N-1 

and then solve recursively for m = 1 to p (equations 4.38 and 4.39 ) using the 

reflection coefficient given by eq. (4.42). 

The Burg algorithm may be viewed as computing the PARCOR coefficient of 

the lattice filter by taking the harmonic mean of the forward and backward predic-

tion error. Other functions of error power are possible eg. geometric mean and 

arithmetic mean, but the Burg algorithm is guaranteed to produce a stable 

minimum phase filter[32, 341 

k[rn] = (4.41) 
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4.5.4. WEIGHTED BURG ALGORITHMS. 

The Burg algorithm discussed previously exhibits line splitting[49, 32, 34] and 

some bias in estimation of sinusoidal frequencies. The Burg algorithm may be 

regarded as windowing the squared error power by a rectangular function Wm  [n]. 

The total error power P , using a window is given by: 

Pe  = E{W m [fl] (ef 2[n] + eb 2[n])} 	 (4.43) 

Which changes the estimate of the reflection coefficient (eq. (4.42) ) to: 

n =N -1 
—2 Z Wm  _[uz ]efm _1 [n ]ebm  _1[iz —1] 

n = m 
k[rn] = 	 (4.44) 

Wm _[ ](ef 	 _1  [n ,_[n] + eb, 	—1]) 
= m 

Where W 1 _1 [n] = 11N. 

Variations of the above windowing function have been proposed by many 

researchers to mitigate estimation bias and line splitting. Swingler [49] showed that 

a Hamming window can reduce the estimation bias: 

1 
W m  [n] = 0.54 - 0.46cos I 2ir(n —in )  + 	 (4.45) 

N—rn 	N+mj 

n = i7z,nz + 1 ...... N —1 

Scott[50] proposed a data adaptive window which uses the power in the pred-

iction error filter in order to weight the forward and backward PARCOR coeffi-

cients separately. 

Forward weights = Wfm[/Z] = 	 (4.46) 

Backward weights = Wb m  [,z J = 	 (4.47) 

for 	n =rn,rn+1 ...... N-1 

The final reflection coefficients are obtained as the harmonic mean of the forward 

and backward PARCOR coefficients: 

- 63 - 



Kaveh[51] proposed a parabolic window, which is close to the theoretical 

optimum. This windowing function alleviates spectral splitting and also minimises 

frequency estimation bias. The weighting function is given by: 

W [n' = 	6(n'—m+l)(N—n) 	
(448) 

(N —in )(N —in +1)(N —in +2) 

n = rn,rn+1 .... N-1 

The weights can be recursively computed as: 

Wm  [in 1 ] 	0 

Wm  Em 
] 
= •(N —rn 

Wm  [it ]= 2Wm  [n —1] Wm  [ii —2] - X. n = in + 1,..,N —1 

A 	
12 

m 

Helme[52] proposed data adaptive weighting which depends on the common 

data energy in the forward and backward prediction errors. 

kn-1 

Wm_i[/Z] = 	 (4.49) 
kn —m +1 

4.6. PERFORMANCE EVALUATION 

In this section the relative performance of the gradient LMS and the optimum 

tapered Burg algorithms are presented.. The gradient LMS algorithm is one of the 

most popular algorithms used for system identification and channel equalisation. 

This popularity arises from its relative simplicity. In the analysis of LMS[42, 53, 43] 

the convergence time is a function of the eigenvalues of the autocorrelation matrix. 

For the LMS to converge, the adaptation gain i. must be less than the inverse of the 

largest eigenvalue[42, 47, 53]. Therefore, the greater the eigenvalue spread, the 

more coloured the input signal and the longer the algorithm takes to converge to the 

solution. The OTB algorithm is more computationally complex. Similar to the 

LMS, the autocorrelation matrix for the OTB is assumed to be Toeplitz and 

(N —in) (N —in + 1)(N —in +2) 
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semidefinite, but its performance is not dependent on the eigenvalue spread of the 

input autocorrelation matrix. OTB is a block data algorithm which models the 

input signal using a lattice filter. 

The frequency tracking of the LMS and OTB algorithms are evaluated below 

using two types of nonstationary signals: 

Type 1: A Frequency modulated signal (FM). Carrier frequency fc  = 1 Hz, 

FM modulating frequency fm(FM) = 0.1 Hz and frequency deviation 

M = 0.5 Hz. 

Type 2: Combined frequency modulated (FM) and amplitude modulated 

(AM) signal. This is AM modulation of the FM signal of type 1 (fig. 

4.3). AM modulating frequency fm(AM) = 0.1 Hz, with modulation 

index of 60%. 

The signal presented by type 2 above is more representative of real FBM sig- 

nals. 

4.6.1. RESULTS AND DISCUSSIONS 

Figure 4.4 through to figure 4.7 show the tracking performance of the algo-

rithms for the FM signal case (type 1). Figure 4.4 depicts the tracking perfor-

mance of the OTB algorithm with a data block of 20 samples (2 seconds) and 

model order of 8. The performance of the OTB algorithm is dependent on the data 

block length used and on the model order. In the case of the LMS algorithm, its 

performance is depicted in figure 4.5 through to figure 4.7. The tracking perfor-

mance of the LMS algorithm is dependent on many criteria as discussed in section 

4.5.1. for example, if the filter is lengthened then the filter would tend to span more 

nonstationarities of the signals. This degrades the tracking performance. The spuri-

ous spikes in tracking (most evident in figure 4.5) may be alleviated by increasing 
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Figure 4.3 FM-AM modulated time series for performance evaluation. 

the adaptation time. However, signal type 1, which comprises FM modulation only 

is not a close representation of real FBM signals as FBM signals may have variations 

in both the amplitude and the frequency. 

Signal type 2, which is a combined FM and AM modulated signal, is more 

representative of real FBM signals, and the difference in performance of the two 

algorithms is more obvious. Although the frequency deviation has remained the 

same as that for type 1, introduction of the AM signal has added an extra degree of 

nonstationarity. Figure 4.8 through to figure 4.13 show the performance for track-

ing the FM-AM signal case (type 2). Figure 4.8 shows the performance using the 
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OTB algorithm, while figure 4.9 through to figure 4.13 show the racking perfor -

mance of the LMS algorithm. From these results it can be seen that the perfor-

mance of the LMS algorithm is worse than for type 1. Again the performance of 

the LMS algorithm depends on the choice of filter length and adaptation time. As 

the filter length is decreased and the adaptation time is increased the presence of 

spurious peaks in the tracking is alleviated. This is seen is figure 4.11. However, the 

tracking ability is degraded in the regions of high nonstationarity, as reflected in the 

amount of frequency and amplitude variations within the filter length. 

The OTB algorithm provides an acceptable tracking capability for the com-

bined FM-AM signal model. The LMS algorithm's performance is dependent on the 

filter length, as shorter filter lengths will make the filter content more stationary. 

Spurious peaks in tracking are reduced with increased adaptation time which conse-

quently decreases the convergence rate (eq. (4.21) ). Unfortunately, however, 

increased adaptation time also smooths the tracking of sudden variations in fre-

quency (figure 4.11). 

From the results presented, one may conclude that, for time varying frequency 

components, the tracking ability of the OTB algorithm is much better than that of 

the LMS algorithm. For best results both the LMS and the OTB algorithms must 

have a stochastic stationary input signal, which makes the autocorrelation matrix 

Toeplitz. A stochastic signal is one that is governed by probabilistic laws, and it 

must be pointed out that the FBM signal which was analysed was found not to be 

strictly stochastic. nor stationary. However, although the algorithms discussed were 

originally developed for stochastic signal, they performed acceptably for non-

stochastic signal sinusoidal in nature, and the OTB algorithm has shown more toler -

ance to departure from the Toeplitz conditions. 
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4.7. SPECTRAL ESTIMATION OF FETAL BREATHING MOVEMENTS 

The OTB algorithm was used to model fetal breathing movements as detected 

in maternal abdominal wall movements, using a passive, non-invasive, transducer ( 

discussed in chapter 3). FBM signals were obtained by filtering MAM signals using 

a low pass filter with a cutoff frequency of 2.5 Hz cascaded with a high pass filter 

with a cutoff frequency of 0.5 Hz. The filtered signals are depicted in figures 4.14a 

and 4.14b. FBM signals are nonstationary and may be modelled as frequency and 

amplitude modulation. of a carrier which may not be sinusoidal, but which will at 

least have a dominant fundamental. 

In this chapter we discussed the properties of the OTB algorithm for short data 

blocks and found its performance favourable to other algorithms. Hence the OTB 

algorithm was chosen for the analysis of FBMs. The data block length in the 

analysis was of two second duration ( 20 samples). This data block length was long 

enough to ensure that a full wavelength of the lowest frequency of FBM was 

present; while being short enough to permit a quasi-stationary data assumption. 

These conditions lead to a Toeplitz autocorrelation matrix, which is necessary for 

the Levinson-Durbin decomposition[45, 31, 34,48]. 

An 8'  order AR spectral model was assumed in the analysis of FBMs. This 

choice of model order was based on the observations of Ulrych and Ooe [40] and 

has proved satisfactory. Figures 4.15 and 4.16 depict waterfall representations of 

the AR spectral estimates, each of 100 seconds duration. In figures 4.15 and 4.16 

time traverses along the vertical axis with one second between each estimate and 

frequency traverses along the horizontal axis from 0 Hz to 3 Hz. The boxed 

waveform represents the 100 seconds of filtered MAM signal used in the analysis 

shown in each figure. The analysis uses a 2 second sliding window with 50% over-

lap ( 1 second shift). This demonstrates the ability of the OTB algorithm, applied 
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to typical clinical FBM signal, results in a stable model which reflects the coherence 

properties of the original time domain signal. 

4.8. CONCLUSIONS 

In the previous section AR spectral estimation was used to provide spectral 

information pertaining to fetal breathing movements. The waterfall diagram was 

used as a tool for visual representation of spectral estimates of overlapped data 

blocks. In the previous section, the OTB algorithm was used to produce waterfall 

diagrams from a two second sliding window with 50% overlap (10 samples shift). 

One of the advantages offered by AR estimation is that spectral information is 

abstracted from the temporal data irrespective of amplitude, provided the signal is 

not below the noise floor. Even in this latter case, algorithms do exist which 

enhance the coherent signal in a background of white Gaussian noise, and to some 

extent against a background of coloured noise. 

Figure 4.17 and figure 4.18 are waterfall digrams following AR analysis of an 

FBM signal using a two second sliding window with a 95% overlap (19 samples). 

The data shift between each analysis is a single sample ( 0.1 second). The two 

waterfall diagrams shown in figure 4.17 comprises contiguous data, and similarly for 

figure 4.18. 

From visual inspection of figures 4.17 and 4.18, two interesting observations may be 

made: 

1- The continuing presence of FBM throughout this record segment is con-

firmed clearly by the spectral coherence in the waterfall diagrams. This 

coherence is seen even when the temporal data drops to a level that 

makes it difficult to confirm the presence of FBMs by visual inspection of 

the time domain. 



2- 	In both figures 4.17 and 4.18 underlying oscillations in FBM rate are 

visible. These oscillations are similar to those observed in FHR. This 

physical phenomenon does not appear to have been reported in the litera-

ture. The underlying periodicities in FBM rate is discussed further in the 

following chapter. 

Therefore, transferring the temporal data into a different domain (in this case 

the frequency domain) the above observations have been facilitated. This is a good 

example why we must employ transformations in signal processing to improve the 

interpretation of the signal of interest. 
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CHAPTER 5 

EXPERT SYSTEM FOR THE 

ESTIMATION OF FETAL BREATHING RATE 

5.1. INTRODUCTION 

In the previous chapter, spectral modelling of FBM was performed using short 

data. In the absence of noise and other corrupting signals (e.g. maternal breathing 

etc.) it is easy to identify the peaks from which fetal breathing rate may be derived. 

This ideal condition seldom occurs, and noise degrades the integrity of spectral 

modelling. Therefore some decision making algorithm must be deployed which is 

capable of discerning the relevant peaks and estimating FBM rate. FBM rate is 

non-deterministic and cannot be modelled by a closed form mathematical expres-

sion. A heuristic approach is needed to select the pertinent peak. An expert system 

was used to perform this task of identifying and tracking the FBM peaks. Such a 

system uses the expertise of a trained observer or a domain expert to perform the 

required task. Algorithms used in expert systems are only capable of performing 

tasks which may be carried out by human experts, but they are often faster more 

accurate and more consistent. 

In the following sections, an insight into expert system and knowledge 

representation is provided. The steps and principles of the rules and reasoning used 

to track FBM peaks is outlined, with graphical representation of the results. 



5.2. EXPERT SYSTEMS 

The majority of computer programmes are designed to perform some "simple" 

reasoning tasks. These tasks may be performed by adhering to some conventional 

well established mathematical formulae which describe the problem, e.g. interest 

rate calculation, salaries, mathematical formulae etc.. When writing such simple 

reasoning tasks, an inside knowledge of the underlying problem is not essential. 

The traditional structure of these types of programmes may be defined as 

DATA + ALGORITHM = PROGRAMME 

In certain circumstances, and in certain applications, such well established 

mathematical formulae and algorithms which accurately model the problem and 

provide a solution may not exist. Such problems may be solved by exploiting heuris-

tic knowledge acquired by a human expert as a results of many years of experience. 

This type of programme, which is called an expert system, stipulates an in-depth 

knowledge of the problem . The expert system may be defined as: 

DATA + KNOWLEDGE + REASONING = SYSTEM 

The structure is also depicted in figure 5.1. The characteristics and objectives of 

expert system are: 

The main objective of the expert system is to solve the problem encountered. 

An expert system is problem-oriented. Its knowledge base is dedicated to the 

domain of the particular problem. 

In some applications, explanation of the steps leading to the solution are 

required. These may be required for two reasons: 

1- If the user is an expert in the domain, then he may require the pathology 

of reasoning which led to the solution. This is necessary, since well 
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Figure 5.2: Verbose expert system. 

established formulae do not exist, and the the expert is required to check 

the reasoning and strategies used to develop the solution(figure 5.2). 

2- If the user is not an expert in the domain, then the:system is required to 

train the user in order to enhance his knowledge in the domain by expli-

citly explaining the steps of reasonings used (figure 5.2). 

d) Some expert systems use a dynamic knowledge base which automatically 

updates its own knowledge to improve its performance. These expert systems 

SEE 



INPUT I INFERENCE t 	I SOLUTION 
DATA 	I ENGINE 	 8.. 

I 	I 	 I 	I RERSONINGI 

KNONL ED GE 
BASE 
(RULES) 
	CRITIQUING 

SYSTEM 

LEARNER 

Figure 5.3: Machine learning system. 

are sometimes called "machine learning systems". They attempt to emulate the 

expert by updating the knowledge base as a result of feedback from some criti-

quing system which can judge the success of the expert system's decision (fig-

ure 5.3). The need for this type of an expert system arises from the difficulty 

of extracting all the relevant information from the domain expert during the 

formulation of the system. 

5.3. THE STRUCTURE OF AN EXPERT SYSTEM 

Expert systems have different structures for different applications, but they all 

contain the basic elements shown in figure 5.1. 

5.3.1. KNOWLEDGE BASE 

The knowledge base is the knowledge that is specific to the domain of applica-

tion. Such knowledge is extracted from the domain expert. 

The knowledge base may take many forms such as: 

1- Production rules: These are statements which encapsulate rule of thumb 

knowledge of the problem. Each rule comprises patterns that determine the 
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applicability of the conditions and the action to be performed if the conditions 

are true. The rule may be represented in the familiar IF - THEN format e.g. 

IF (number of peaks> 1) THEN (check for maternal) 

IF (maternal component) THEN (remove maternal fundamental and harmonics) 

Production rules in the knowledge base are basic relationships and conditions 

between the different aspects of data. In general, there are no mathematical 

formulae to replace the knowledge represented in the above rules. 

	

2- 	Structured networks: 

Associative networks: In this type of knowledge base, it is required to 

locate knowledge which is not explicitly mentioned in the data. Data 

could state some action e.g " X flew to Paris" and the question might be 

"did X catch the plane ?". The knowledge base should have the different 

meanings of the same word according to context. 

Semantic networks: Knowledge is represented by a set of nodes, linked to 

one another by arcs which describe the relationship between each node. 

The nodes may stand for objects, concept or events; the arcs are the 

agents which put the nodes in perspective 

Both semantic and associative networks represent knowledge in conceptual 

structures. They attempt to represent knowledge in a similar fashion to the 

human brain. 

	

3- 	Representation using logic. 

Using logic relationships to represent knowledge is a powerful tool to derive 

answers to questions and to make mathematical deductions. Logic representations 

take many forms: 
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a) 	Propositional logic. [541: In propositional logic, facts can be represented as 

logical propositions which may be used to deduce answers to questions. 

The rules apply directly to the facts. 

"B may be deduced given A is true" is denoted by A -. B 

Propositional logic is attractive because it is simple to construct and use. 

Predicate logic[54]: Currently this is the most popular form of logic. It 

- 	 has a "mechanistic" way of. dealing with "truth" and "falsehood". It is 

widely used in natural language processing. It comprises a functor which 

describes the property of the object, and a predicate which is the object. 

Probabilistic logic.[54, 55]: So far it has been assumed that some condi-

tions are either "true" or "not-true". Unfortunately the world is not so 

clearly dichotomised, and there are situations where knowledge is "prob-

ably true". This type is applicable where the relevant outcome is random, 

or in some cases, where enough data are not available to establish a 

proper model. In such cases one has to resort to probabilistic reasoning. 

Fuzzy logic[56, 57]: Thus far, an attempt has been made to outline some 

basic forms of knowledge representation, where information is 

represented in a precise form. There exist cases, where information may 

not be represented in a precise form. Such cases fall in the more subjec-

tive realm of human judgement, e.g. tall - very tall, far - very far etc.. 

The question 'How far is far?' may not be quantified in a precise 

fashion. Fuzzy sets and logic - sometimes called 'possibilistic logic' - pro-

vide a• method of representing these imprecisions. Objects in Fuzzy sets 

are mapped into some Continuous scale from 0 to 1 (figure 5.4). The 

function which describes the fuzzy object is not universally defined, but is 
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Figure 5.4: Mapping differential frequency to a measure of Nearness. 

Figure 5.4 depicts a function which describes 'the nearness of a peak'. 

The differential frequency is the difference in frequency of the peak in ques-

tion from some running mean. The mapping function used here is a Gaussian 

function. This same function may be used to describe nearness of different 

dimension. For example, 0.75 near might be 50 miles distance between cities 

in small countries and hundreds of miles in large countries, or even millions of 

miles if one is looking at the stars. 

Often, there are no rational grounds for choosing a particular mapping 

function to quantify an imprecision. These mapping functions are chosen by 

the expert as a result of experience. The final appraisal of the function which 

has been chosen is based on "as long as it performs satisfactorily" then it is 

acceptable. There are some expert systems which allow the user to modify the 

mapping function to suit the user's beliefs and experience. 
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A procedure is also required to manipulate the information provided by 

this fuzzy representation. Boolean logic deals with integer truth values. To deal 

with fuzzy truth which has non-integer truth values - multi levelled truth 

values - an extension of the classical Boolean logic is used[56]: 

Suppose the truth value for a proposition is x 1  and for another proposition is 

X2, where x 1  and x 2  E [0,1]. 

x 1  AND x 2  is min(x 1  , x) 

.x 1  OR x2  is max(x 1  , x2 ) 

NOTTx 1  is 1 -x 1  

Where min() denotes minimum value and max() denotes maximum value. 

5.3.2. INFERENCE ENGINE 

The inference enginë[58, 54, 59, 56] is that part of the system which manipu-

lates knowledge in order to solve problems. It uses preassigned strategies for 

knowledge manipulation. The inference engine could be considered as the thinking 

part of the system and the knowledge base is what the inference engine thinks 

about. This analogy equates an expert system to the 'human expert'. 

There are many possible strategies which may be used for example: 

Forward chaining: This involves reasoning through knowledge to find the 

hypothesis that satisfies the observed data. It starts from the data and some 

base facts which are available, and attempts to match these, in search of the 

solution, by invoking new rules. 

Backward chaining: In this reasoning strategy, the goal - the solution - is 

hypothesised. The system is asked to find the data which proves the given 

hypothesis or generates the solution provided. 
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c) 	Rule value approach: This strategy uses neither forward nor backward chain- 

ing. It considers each item of evidence and then assigns a value to each rule 

and attempts to form a hypothesis using the evidence with the highest value 

first. 

5.4. PEAK TRACKING 

The basic structure of expert systems was outlined in section 5.2. This section 

describes the rule-based and fuzzy logic knowledge based approaches used to track 

FBM peaks. The rule-based approach is currently the most commonly used 

knowledge base for implementing diagnostic expert systems. Peak tracking, although 

not a diagnostic system in the true sense, may be considered as a psuedo diagnostic 

system. This is because in peak tracking all the peaks in a spectrum are taken into 

consideration. Peaks which do not fit in a pattern - or the ones which constitute 

potentially erroneous FBM rate - are eliminated. Fuzzy logic is used to measure the 

"nearness' of the peaks to some running mean. This measure of "nearness" must be 

defined in a continuous multivalued logic, in this case fuzzy sets. 

In general, rule based systems require a great deal of "expertise" knowledge in 

the domain of application. The final rule based system provides an acceptable per -

formance and an understandable solution which will be in agreement with the actual 

human expert; provided knowledge had been successfully acquired and properly 

defined. 

Special expert system shells are available which use Prolog, LISP etc.. These 

shells provide fast tools for producing and testing prototypes. They are very useful 

in testing some hypotheses, but have no arithmetic capabilities. Daku and Grant 

[60] developed an expert system to determine the correct model order selection for 
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linear prediction filters using C- language to perform the mathematical manipula-

tions, and a Prolog blackboard shell to reason through the results. 

This chapter describes a peak tracking algorithm for FBM rate estimation 

which was implemented using C- programming language. The rules were generated 

through "expert knowledge" of the problem in hand. This knowledge was used to 

define the conditions for accepting or rejecting a peak as being due to FBM. 

5.4.1. RULE GENERATION 

In chapter 4, FBMs were modelled using a two second sliding window with 

50% overlap. During periods of FBM, the spectrum of each data block included a 

fundamental FBM Fourier component and, possibly harmonics. It also also included 

maternal breathing movements and harmonics and components relating to other 

fetal and maternal activities. The significance of maternal and other corrupting 

components were dependent on the intensity of FBMs. The main objective is to dis-

cern peaks pertaining to FBMs, despite the presence of these corrupting com-

ponents. 

There are some basic facts and underlying characteristics, some of which were 

discussed in chapter 1 and 2, which must be stated: 

FBM rate lies mainly in the range of 30 - 90 breaths/minute. Although 

rates below and above this range have also been observed. 

Maternal breathing movements (MBM) and its harmonics may be present 

and may corrupt FBMs. 

MBM rate normally lies below 20 breaths/minute. 

Fetal and maternal heart components, which may lie in the same range as 
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FBM rate do not contribute to the noise. This is because their intensities 

are normally of the order of 40 dB below FBMs. 

The rules which were used in the peak tracking algorithm are presented in the 

form of a decision table. The table may be partitioned to four sections (figure 5.5): 

Condition section and the condition values, the action section and the action 

entries. 

Condition section 	Condition values 

Action section 	Action entries 

Figure 5.5: Decision table. 

A decision table may have both deterministic and non-deterministic condi-

tions. Deterministic conditions conform to fixed predetermined values such as the 

current number of peaks or the presence of MBM; non-deterministic conditions take 

values which reflect a subjective measure of the parameter, such as the current dis-

tance of a peak from the running mean. The combination of the two types is more 

representative of an expert tracking the peaks manually. Once nondeterministic con-

dition entries are used in the decision making, then the system becomes sensitive to 

subjective evaluation, which is introduced by subjective definition of the imprecise 

information. A sensitivity index (SI) provides a measure of the extent of subjec-

tivity embedded in the reasoning and judgements. 

SI C R  
- M TR 

Where C is the number of nondeterministic conditions used; R is the number of 

rules which deal with nondeterministic conditions; M is the number of possible 

values which a condition value can take. For nondeterministic conditions the possi- 
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ble number of values is taken 1; TR is the total number of rules in the table. 

This gives an index SI E [0,1], where 0 index implies that decisions are totally 

the result of deterministic conditions and index of 1 implies decisions are completely 

dependent on the user's subjective judgements. 

RULE 1 2 3 4 5 

No. of peaks . 1 1 >1 >1 

MBM. . T F F T 

DC 	Corn- 
ponent (x 1 ) 

f 1 (x 1)> 0.4 . . 

NO FBM Pos- 
sible 

(1) (1) . 

Rate 
Extract 	FBM  

Maternal 	& 
Harmonics 

Remove  

CALL(RATE) . . . (1) (2) 

EXIT (2) (2) (2) . 

Figure 5.6: Decision table for peak tracking algorithm. 

Figure 5.6 and 5.7 represent the decision tables used to track the peaks. The 

rules were processed in order from left to right in the table. The numbers in the 

action entries represent the order of execution of the routines to satisfy the associ-

ated rule. Figure 5.6 is the top level decision table, and within this top level deci-

sion table second level table is called - e.g. CALL(RATE). Figure 5.7 depicts the 

rules in decision table RATE. Figure 5.8 and 5.9 depict the main top level and the 

second level decision tables in tree chart form respectively. 
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Decision Node 

Figure 5.8: Reasoning tree for top level decision table. 



;ion Node 

Figure 5.9: Reasoning tree for the second level decision table (RATE) 
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RULE 1 2 3 4 5 

No. of peaks 1 >1 . 1 >1 

Harmonics  

Weight Peaks  

Extract FBM Rate (1) . . (1) (2) 

Check Harmonics  

Remove Harmonics  

Check 	No. 	of 
Peaks 

. . (2) 

EXIT (2) . .   

Figure 5.7: Decision table for RATE. 

Fuzzy representations used in the algorithm are: 

DC component: Despite the fact that the mean in the analysis window is 

cancelled prior to applying optimum tapered Burg modelling, there are 

cases where complete cancellation of the DC component from the tem-

poral data is not possible. This results in a large component around 0 Hz 

in the spectrum. The presence of this large DC component in the spec-

trum may reduce or in some adverse cases obliterate other peaks. In 

addition, the presence of large DC components may reduces the confi-

dence in the estimates of the spectral peaks. 

Weighting of Peaks: After removing the maternal breathing fundamental 

component and its harmonics, the remaining peaks are weighted using a 

Gaussian function centered on the current estimated running mean (see 

figure 5.4). The previous 10 second estimates of FBM rates are used as 

the running mean. 



The deterministic conditions are: 

Number of peaks: Although the number of peaks in the spectrum may be 

represented in a fuzzy set, such representation will not serve.any purpose 

in this application. There are two conditions either one peak exists in the 

spectrum or more than than one peak exists. 

Presence of maternal breathing movements: The presence of MBM is 

investigated before the inferencing is started. Its existence is either 

TRUE or FALSE. The presence of a strong maternal fundamental 

Fourier component of breathing will provide a method of removing 

higher harmonics due to maternal breathing. 

The expert system was developed and tested on the spectral model of the 

MAM signal. The spectral modelling of the MAM signal was discussed in chapter 

4. As mentioned. previously, this data was corroborated as comprising FBM and 

MBM. The condition stub was built to suit this type of recording. The output of 

the peak tracking mechanism is presented in figure 5.10. 

5.5. PERIODICITIES IN FETAL BREATHING RATE 

Estimates of FBM rate using the autoregressive analysis and the peak tracking 

algorithm are shown in figure 5.10. Although this provides second-by-second esti-

mates of FBM rate, it presents a noisy representation of the rate, as far as seeing 

underlying rate patterns is concerned. 

Estimation of a signal which is corrupted by additive noise may be achieved by 

passing the signal and noise through an adaptive filter that suppresses the noise 

while leaving the signal relatively unchanged. Such filters are designed in the 

domain of optimal filtering[42, 33]. If a priori knowledge of both signal and noise 
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characteristics exist then fixed filters may be used, otherwise the filter must have the 

ability to change its parameters adaptively. The enhancement of signal in presence 

of broad band noise is called adaptive line enhancement (ALE). ALE is performed 

using the LMS algorithm [61, 62,42]. 

Basically, the ALE structure decorrelates the broad band noise by using a 

delayed version of the desired signal as the reference signal, figure 5.11. When try-

ing to reveal the presence of long term rate variations, the short term variations 

which are visually predominant (figure 5.10) may be regarded as noise added to the 

long term variations. 

S + no 
REFERENCE 

SIGNRL 	 INPUT 

DELR 

• S 	
1 

LMS 

DESIRED 
INPUT 

Y 

OUTPUT 

ERROR 

Figure 5.11: Adaptive line enhancer (ALE). 

The input comprises the signal s and n 1 . The noise at the desired input n o  is 

the decorrelated input noise. The assumption is made that s, n 0 , ,z 1  and y are sta-

tistically stationary with zero mean and that the noise is white. Then due to the 

delay, we can also assume that s is uncorrelated with n 0  and ,z 1  , and s is corre-

lated withy. Also n 0  and n I  are uncorrelated as a result of the noise being white. 

The error output of the filter was shown in equation 4.11 to be the difference of the 

signal estimate and the desired signal input. 



€ = S + fl0 - y 
	

(5.1) 

= nj + (s—y)2  + 2n 0(s—y) 
	

(5.2) 

Taking expectation of both sides for mean-squared-error and realising that the noise 

component n o  is uncorrelated with s and y yields: 

E{e 2} = E{zfl + E{(s—y) 2} + 2E{n 0(s—y)} 

= E{n j } + E{(s —y) 2} 	 (5.3) 

Minimising the MSE does not affect the first term of eq. (5.4) which is the 

power of the input noise, cr. 

E m in{€2} = or + Em j n{(S —y )2} 
	

(5.4) 

When the second term of eq. (5.4) is minimised, then the filter output y is a 

best least-squares estimate of the input signal s. The filter tap adjustments for the 

ALE configuration (fig. 5.8) are achieved using the LMS algorithm discused in 

chapter 4. 

The value of the delay, in the ALE structure, must be large enough to ensure 

decorrelation between the noise components at the reference and desired inputs of 

the filter. Only a unit delay is really necessary if the noise is white. 

5.6. RESULTS AND DISCUSSIONS 

Figure 5.10 presents the output of the peak tracking algorithm for a 300 

second duration block of data. FBM varied from about 30 breaths per minute up to 

120 breaths per minute. On one occasion FBM rate is seen to go up to 160 breaths 

per minute. FHR is known to vary between 90 and 200 beats per minute with a sig-

nal intensity about 40 db below the intensity of the FBM signal. During this 

episode of high FBM rate the intensity of FBM was high which discounts the possi-

bility of confusing the two activities. 

Figure 5.12 depicts the spectral density of the estimated FBM rate. This 

reveals the presence of many peaks which may be due to short term fluctuations in 
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Figure 5.12: FFT of the unfiltered estimate of FBM rate. 
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FBM rate or due to noise. Filtering the 'raw' FBM rate signal which is represented 

in figure 5.10 using adaptive line enhancement techniques, cancels the effect of 

noise and short term fluctuations from the signal. The result is shown in figure 

5.13. The adaptive line enhancement reveals underlying periodicities in the signal as 

shown in figure 5.14. Short term periodicities of 0.04 Hz (25 seconds) can be 

measured from figure 5.14. This periodicity does not appear to have been reported 

previously in the literature. 

5.7. SUMMARY 

This chapter has outlined the general principles and structures of expert sys-

tems. Specifically the expert system is used to track peaks pertinent to FBM rate in 

the presence of noise. The expert system was developed on the basis of rule based 

knowledge having also fuzzy sets and logic. 

Estimates of FBM rate were successfully achieved using the expert system and 

results were presented. Adaptive line enhancement of the output of the peak track-

ing algorithm illustrated the presence of underlying periodicities in FBM rate similar 

to periodicities in FHR[63]. 
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CHAPTER 6 

RECOGNITION OF NORMAL AND DEVIANT 

FETAL BREATHING PATTERNS 

6.1. INTRODUCTION 

In the last chapter, an expert system was used to estimate FBM rate by spectral 

peak tracking based on overlapping data blocks of two second duration. The 

knowledge base of the expert system was built to estimate FBM rate for normal 

breathing patterns. These normal breathing patterns comprise inspiratory movements 

followed by expiratory movements. During the course of this research, a new fetal 

breathing pattern was identified. This new pattern was observed to have a short 

breathing cycle instantiated in the inspiratory and expiratory movements of the main 

breathing cycle. The intensity of this intermediate cycle was observed to be less 

than that of the main cycle. These patterns were named "deviant breaths" or "devi-

ant patterns". If one looks at fetal breathing in the same light as adult breathing or 

neonatal breathing, then it is possible to think of these deviant FBM patterns as 

being "augmented breaths". In this chapter, detection of these new patterns is out-

lined. 

Pattern recognition algorithms are used here to classify fetal breathing patterns 

as "normal" or "deviant'. In this chapter the principles of pattern recognition are 

outlined. Statistical classification using multivariate statistical analysis, and classifica- 
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tion using neural network are discussed in detail. 

Finally, the performances of the different classification techniques are com-

pared and presented in tabulated form. 

6.2. PATTERN RECOGNITION 

Pattern recognition [64, 65, 66]. may be divided into two application 

categories, recognition of concrete objects e.g. pictures, shapes, music etc. and 

recognition of abstract-objects e.g. an argument or a solution etc. This chapter is 

only concerned with the recognition of concrete objects, in this case fetal breathing 

movements. 

The recognition of concrete objects by humans may be regarded as a psycho-

physiological problem which involves certain interdependences between the person 

carrying out the recognition and the physical stimulus generated by the object. 

When a person perceives a visual pattern, an inductive inferencing process is carried 

out which relates the perceived object with some general concept derived from past 

experience. In reality, human pattern recognition is a matter of decision making 

and classification of an object to one of a number of predetermined population 

groupings. 

This chapter is concerned primarily with automatic pattern recognition sys-

tems. The operation of the system may be divided into three tasks: data acquisition 

( transduction), feature extraction and selection, and finally classification. Data 

acquisition was discussed in chapter 3 and was achieved using a PVDF transducer. 

The PVDF transducer converted physiological movements to electrical signals, 

which were represented in the computer by a sequence of numbers. In this chapter, 

feature extraction, selection and classification techniques are discussed. 
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6.3. THE REPRESENTATION OF A PATTERN IN A FEATURE SPACE 

An observation is a set of measurements containing relatively large amounts of 

data describing a given pattern. Often, the information content of such observations 

is much smaller than the relative size of the data vector used to describe the pattern. 

Certain key features pertaining to the pattern can often be abstracted in order to 

increase the ratio of the amount of information to the size of the data. Feature 

selection is a mapping process of the observation from a higher-dimension to a 

lower dimension, with minimal loss of information. This reduction in dimensional-

ity (vector length) makes the classification process computationally faster and less 

complex. The feature vector comprises several different attributes which are charac-

teristics of the individual object it represents. This type of data representation and 

analysis is classed as multivariate data analysis. Multivariate analysis simultaneously 

considers with equal importance each variate within the multivariate structure. 

o0 

1 

Figure 6.1: Two dimensional feature space. 

A feature vector may be regarded as representing a point in an n-dimensional 

Euclidean space, where n is the number of attributes in the feature vector. A set of 

feature vectors belonging to the same group correspond to an ensemble of points 
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scattered within a confined region of feature space. Figure 6.1 shows a 2-

dimensional feature space with two groups and two attributes ( x 1  and x2  ). For 

representation purposes, two dimensional feature space is considered, because this is 

easier to represent and visualise than higher dimensions. 

The ultimate objective in feature extraction is to minimise the number of attri-

butes representing an object, while making sure information loss is acceptable and 

kept to a minimum. Feature vectors must have the following characteristic: 

Discriminant qualities: Features should have significantly different 

characteristic values for patterns belonging to different classes, and simi-

lar characteristic values for patterns belonging to the same class. Each 

vector is a point in an n-dimensional space; and the discriminant qualities 

would ideally result in disjoint sets (figure 6.1). In reality, such neatly 

disjoint sets may not be possible. 

Independent features: Features which are used to describe a pattern 

should be uncorrelated with each other. Using two or more highly corre-

lated features will not add much new information, and either one of 

these features could provide essentially the same information. An exam-

ple of this could be the voltage amplitude and the power of an FBM sig-

nal. These are highly correlated, and the use of either of these attributes 

would provide the information regarding signal intensity. The perfor-

mance of a classifier is generally degraded when correlated features are 

used. 

Reduction in dimensionality: The complexity of an automatic pattern 

recognition system increases with the size of the feature vector. Hence, 

the size of the feature vector for a given pattern should represent a signi-

ficant reduction in the dimensionality of the original data. 



Feature extraction and selection have received considerable attention. Algo-

rithms exist which may be used to guide the system designer in the extraction of 

pertinent features [65, 67]. Unfortunately, there is no clear set of rules to guide the 

selection of these features. However, there are commonly used features [66] that 

may be used to describe length, width, perimeter, shape, rectangularity, circularity 

etc., but in general, the selection of features are based on intuition. The general 

tendency is to extract a large number of features where some are not independent. 

These dependent features increase the dimensionality of the feature space and in 

most cases degrade the performance of the system. Therefore, it is necessary to 

identify the independent features in the vector. It is also necessary to identify the 

most relevant features. Feature reduction techniques are well docu-

mented[68, 69, 65], and generally use principal component and factor analysis, 

which are the eigenvalue and eigenvectors, to map the feature onto a new space. 

6.3.1. FEATURE SELECTION FOR FBM PATTERNS 

Prior to selecting features for the two fetal breathing movement patterns dis-

cussed, the characterising features of the deviant pattern must be defined. In the 

absence of a definition for these deviant patterns, the following definition was used: 

A normal breathing pattern comprises an inspiratory movement followed by all  

expiratory movement. The relative expanse of the two movements should be 

approximately equal. A deviant brepth is one that has two breathing patterns 

augmented to form a single breathing cycle. The intensity of the intermediatory 

pattern, must be less than that for the main breathing cycle. In other words, a 

deviant breathing pattern comprises four movements with the expanse of the two 

consecutive movements in the middle being significantly smaller than the outer 

two. 
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Figure 6.2:Templates of normal breathing patterns based on a feature set 

comprising the normalised amplitudes of 5 consecutive turning points. 
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Figure 6.3:Templates of deviant breathing patterns based on a feature set 

comprising the normalised amplitudes of 5 consecutive turning points. 
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For the detection of deviant breathing patterns, a time window is used similar 

to the one used in AR spectral analysis outlined in chapter 4. The length of the 

window was not of fixed time duration, but was dictated by the duration of five 

consecutive turning points. These turning points represent the points of maximum 

inhalation and exhalation. The use of common features, e.g. shape etc., was exam-

ined, and found not to possess the desirable characteristics outlined in sec. 6.3. 

However, The amplitudes of the five turning points in the window were found to 

constitute suitable feature set. It is hypothesised that a trained observer would use 

these features when detecting deviant patterns. Knowledge of the time base 

between these turning points was found not to contribute significantly towards an 

improved classification of the patterns, and hence timing information was not con-

sidered. Figures 6.2 shows some examples of normal patterns and figure 6.3 shows 

some example of deviant patterns. 

6.4. CLASSIFICATION 

There are basically three different modes in a classification process. Mainly 

learning, testing and usage. In the next sections, these three modes are clarified: 

6.4.1. TRAINING (LEARNING) MODE 

Before assigning an unknown pattern to some predefined group or class, the 

automatic pattern recognition system must learn the properties of the different 

classes in the n-dimensional space, where n is the dimension of the feature vector. 

The classifier learns these properties using a set of feature vectors, called training 

samples or the training set. The training set is used to "teach" the system the proper -

ties of each group. It is important to bear in mind that the training process takes 

place only during the design stage of an automatic pattern recognition system, and 

only the properties deduced from the training samples are used. Training may take 
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different forms depending on the a priori knowledge about the training samples. 

Principally these are: 

Supervised training: In supervised training it is assumed that the class 

memberships of the training samples are known. With this a priori 

knowledge the system develops some quantitative properties for each 

group. These properties are totally dependent on the pre-assignment of 

the training samples and how well they represent the different groups. 

Unsupervised training: In some applications, a priori knowledge of class 

memberships is not available. Additionally, the number of groups may 

also be unknown. In such cases, it is desirable to determine the different 

possible groupings from the available data. There exist algorithms which 

cluster together feature vectors whose properties are closely similar. This 

process is known as cluster analysis,[64, 65]. 

6.4.2. TEST MODE 

After training, some method of evaluating the performance of the classifier is 

required. There are several methods of doing this. In all of these methods, the sys-

tem is tested on a set of features vectors (the 'test set") whose class memberships are 

known a priori. 

Testing provides error rate measurement which may be used as a yard-stick for 

performance evaluation. The error rate may be used as a forecast of performance 

when classifying unknown observations. Some of the many methods of estimating 

the error rate, [66, 65, 701 are: 

a) 	Actual error rate: To evaluate classifier performance, the test features used for 

the evaluation, are different from those used to train the system. The error 

rate is estimated as the percentage of features misclassified in relation to the 
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total size of the training set. 

Apparent error rate: This method uses the training features to test the perfor-

mance of the classifier. Since the same samples are used for both training and 

testing, then obviously the resulting misclassification rate estimate shall be 

lower than the true error rate. This false impression of a good performance 

may lead to disappointment when the system is used on unknown data. 

Nevertheless, the apparent error rate provides an idea of the best possible per -

formance achievable by the system. 

Leave-one-out method: This method uses the training features as the testing 

features but in a different manner to that used in estimating the apparent error 

rate in method (a) above. Assume there are M samples in the training set. The 

leave-one-out method uses M-1 samples for training and uses the remaining 

sample for testing. This procedure is repeated M times, leaving out a different 

sample each time. When the classifier ahs been tested for every case, then the 

error rate is estimated as the number of misclassifications divided by the size 

of the set M. 

6.4.3. USE MODE 

Once the training phase is satisfactorily completed and the performance is 

estimated, then the system is applied to the task for which it was designed. The per-

formance of the system is largely dependent on the choice of training set and how 

well it resembles the actual unknown data. 

6.5. CLASSIFICATION ALGORITHMS 

The main design task is to define some criteria by which a new observation 

may be correctly assigned to one of a number of possible groups. There are a 

number of algorithms which may be used for classification purposes, and the 
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following examples are discussed in the proceeding section: 

1 	Statistical classification algorithms. 

Bayesian discriminant functions (Quadratic and linear). 

Distance measurement functions (Euclidean and Mahalanobis distances). 

2 	Deterministic Approach. 

a) Artificial Neural Network. 

6.5.1. STATISTICAL CLASSIFICATIONS 

Characteristically multivariate analysis may be applied to a large set of obser-

vations, where there are n features per observation. The most basic concept of mul-

tivariate analysis is the idea of a multivariate probability distribution in which the 

decision making process may be considered as a statistical prob-

lem[70, 68, 64, 65, 691. There are many strategies which may be used for this solu-

tion. The Bayesian discriminant and distance measurement approach will now be 

described: 

6.5.1.1. BAYESIAN DISCRIMINANT FUNCTIONS 

In statistical methods, conditional probabilities can be used to summarise any 

information regarding an event (P(AIB) = probability of event A given that B has 

occurred). The Bayes' decision rule assigns an object to the class (or group) with 

the highest conditional probability. If there is an observation, denoted by vector X, 

and there are m groups to which this observation may belong, then the Bayes' rule 

assigns the observation to group G. provided: 

P(G IX) >P(G IX) 	for all i * j 	 (6.1) 

It is very difficult to find the a posteriori probability of G1  ( P(G 1  IX)). On the 

other hand, it is easier to find P(XIG 1 ), the probability of a feature vector X given 
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that it belongs to group G.. Equation (6.2) shows the relationship between the two 

conditional probabilities[67, 65]. 

Pf(IY' = 
P (X JGj ) P (G1 ) 

P(X) 
	 (6.2) 

Applying eq.(6.2) to eq.(6.1) results in: 

P(XJGI ) P(G1 ) > P(X!G J ) P(G) for all j 0 i 	 (6.3) 

If the population is assumed to be governed by a multivariate normal density 

function with a distribution: 

1 
(27r)n 	

exp[ —½(X _)T  C (X —i)j 	 (6.4) 

Where: 

X is the point in multidimensional space 

C is the Covariance matrix 

i. is the mean vector 

n is the size of the feature vector ( number of attributes) 

Then: 

P (X G1) = exp[ —%(X _p. )T C 1 (X - ji.j)] 	 (6.5) 
() 	IC1  I 

The above expression for P(XIG I ) reduces the problem of classification in 

eq.(6.3) to estimates of group covariance matrix, C 1 , and group mean vector, 

Estimation of the covariance matrix and the mean vector for all the groups provide 

information pertaining to the shape and size and the position of the groups in n-

dimensional space. The mean vector, i.1, indicates the centre of the distribution for 

group i in an n-dimensional space. The diagonal terms of the covariance matrix 

indicate the spread in each direction, and the off diagonal terms are a measure of 

association (correlation) between the variables. 
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Using the normal density function, eq.(6.3) yields: 

P(G1 ) 
_l exp[ —(X _p1)Tci(x  —i)]> 

(2irY"IC1112 I 
P (G j ) 	exp[ —(X 	)T  C 11(X — ij)] 	 (6.6) 

(2ir)nIC 

If eq.(6.6) is true then observation X is assigned to group G 1 . 

Taking natural logs of both sides of the inequality (6.6) yields: 

lnIC 1 I + (X- 1 )T C 1 (X- 1 ) - ln(p(G1 )) < 

lnlCI + (X —p)T C 1 (X — ii.,) - ln(p(G)) (6.7) 

for all i#j 

The decision function of eq.(6.7) is a hyper-quadratic one. This is because no 

terms higher than second order of X appear in these equations. This implies that 

the best a Bayes' classifier can do is place a second order decision surface between 

each pair of classes. Furthermore, if the classes are truly characterised by normal 

densities, then there is no other decision surface which can perform better. This is 

by virtue of the fact that normal distribution was used to derive the decision boun-

dary. Equation (6.7) is called a quadratic discriminant function. 

If the covariance matrices for all the groups are assumed equal, C = C , then 

the Bayes' decision rule reduces to[67, 65, 70]: 

~LITC 1X - 1ILITC - ' ~L j  + ln(P(G1 )) > 

'.X - ½pj'C 'i + ln(P(G)) 	(6.8) 

The decision function of eq.(6.8) is a linear function of X. 

Statistical classification using Bayes' quadratic or linear decision boundaries 

provides some metric whereby an observation may be assigned to a predefined 

group. The equation for the quadratic function comprises two parts: one part has 

the units of distance squared; the other part is the logarithm of the volume of the 

n-dimensional ellipsoid (lnIC 1 I). For the linear decision function case, this latter 
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13 

variable is assumed equal for all the groups and cancels out. 

6.5.1.2. DISTANCE MEASUREMENT 

A number of methods can be used to measure the distance between two points 

and X 2  in an n-dimensional Euclidean space. The simplest measure is the 

Euclidean distance: 

UP  

Figure 6.4: Three dimensional feature space. 

	

D1 2 = (X 1 —X 2 )T  (X 1—X 2) 	 (6.9) 

When measuring distances between a multivariate population and a point in an n-

dimensional space, (figure 6.4), the Euclidean distance provides some measure of 

the distance between the point and the mean of the population. 

	

= (X1_p.1)T(X1_j.) 	 (6.10) 

The distance metric of equation (6.10) does not take into consideration the 

shape of the distribution, or possible correlation between the features. In Euclidean 

distance measurement, two highly correlated features individually contribute the 

same value to the distance measurement as a third independent feature. The 

Mahalanobis distance measurement [65, 67, 68] takes into account the correlation 
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between all the features in the feature space (equation (6.11) ): 

= (X1_i.1)TC_l(X1_.i.) 	 (6.11) 

The Mahalanobis distance, DM , may be thought as the distance of an observa-

tion X from the centre of a multivariate distribution taking into account 'the effect 

of all the variables and their possible correlations. The Mahalanobis distance can 

also be considered as the distance to the centre of a group, with this distance nor-

malised to a unit covariance along each direction. 

For both discriminant functions (sec. 6.5.1.1) and distance measurement (sec. 

6.5.1.2), the population distributions are considered multivariate normal. For nor-

mal distributions, the Mahalanobis distance, D, 'follows the Chi-squared distribu-

tion with n-degrees of freedom. A significantly large value of D 2  corresponds to an 

observation which is unlikely to belong to that particular population. If there is 

more than one preclassified group, then the assignment of the observation is to the 

group with the smallest Mahalanobis distance. 

6.5.2. DETERMINISTIC APPROACH 

So far, we have discussed the design of classifiers based on direct computation 

	

of the decision boundary from estimates of the mean vector and of the covariance 	- 

matrix for each class. In the deterministic approach the decision function of the 

classifier is generated from the training feature set by means of "iterative learning" 

algorithms. 

Figure 6.5 introduces the concept using a 2-dimensional feature space. The 

decision boundary separating the two classes can be represented by: 

d(x) = w 0  + w 1x 1  + 1V2x2 

2 
=W11 X11 where x 0 1 	 (6.12) 

,7=0 
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Figure 6.5: Two dimensional feature space with a decision boundary. 
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W = ( w 0 ,w 1 ,. . . , w) is the weight vector and n is the number of attributes in the 

feature vector. 

In eq.(6.12), group membership is assigned by the linear decision function. 

After estimating the weights of the decision boundary, the observation is assigned to 

group 1 if: 

d(x) > 0 

and to group 2 if: 

d(x) < 0 

6.5.2.1. ARTIFICIAL NEURAL NETWORK 

The above decision function may be realised using a node in a linear combiner 

mode [42], where the solution for the decision function is the solution to a set of 

linear equations (one equation in the 2-dimensional example above). A neural ele-

ment is a linear combiner whose output is taken through a nonlinear limiting func-

tion (figure 6.6). Neural elements are also known as neurons[71] or perceptrons[72]. 

- 120- 



Some of the commonly used nonlinear limiting functions are: hard limiter and sig-

moid functions. The output of the perceptron is in the form: 

'C t 

'Ca  

x 
r- I 

'C 
I.' 

LLJ Y f C~ 

Figure 6.6: A neural element. 

Y = output •  = 	 (6.13) 

Where f() is the threshold function used. 

A single perceptron forms two decision regions separated by a hyperplane. The 

equation of this hyperplane depends on the weights of the combiner and the thres-

hold function. There are a number of different algorithms which may be used to 

estimate these weights. The original perceptron convergence procedure to estimate 

the weights was developed by Rosenblatt[72]. Widrow and Hoff[71,72] developed 

a perceptron convergence algorithm based on the least-mean-square (LMS) princi-

ple. The LMS algorithm was covered in chapter 4 of this thesis. 

For the case of the LMS algorithm, the perceptron may be trained using the 

desired input to indicate the class membership of the feature vector. A desired input 

of 1 indicates membership to class A while 0 indicates membership of class B. If a 
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bipolar threshold function is used, then 1 and -1 would indicate class memberships. 

A single perceptron can only discern between two groups, and complex decision 

boundaries may be achieved by using a multi -layered -perceptron structure 

(MLP)(figure 6.7). MLP comprises an input layer, an output layer and hidden 

(intermediate) layers. [72, 73,71]. 

x l  

'<2 

x 

yl  

Y2 

yn  

Figure 6.7: Multi-layer-perceptron (MLP). 

In MLP network, the desired outcome for the entire network is the same as 

the desired response for the output perceptron. Therefore, given the desired 

response, adaptation of the output layer may be achieved using the LMS algorithm. 

The difficulties associated with the convergence of MLP structures lie in acquiring 

the desired response for the perceptrons in the hidden layers. The back-propagation 

algorithm was developed to estimate the desired response in the hidden 

layers[71, 72], and is one method which can be used to converge the weights in the 

hidden layers. 

The back-propagation algorithm is a generalisation of the LMS algorithm. It 

uses a gradient search technique to minimise a cost function which is equal to 

mean-squared-error (MSE) between the actual output of the network and the 
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desired output. The desired output in this case is the a priori knowledge of class 

membership. 

The MLP is trained using the back-propagation algorithm by initially selecting 

small random values for the weights. The training set is presented to the network 

repeatedly until the weights converge and the value of the cost function (MSE) is 

reduced to an acceptable level. 

A COMPUTATIONAL. PROCEDURE FOR THE BACK 

PROPAGATION ALGORITHM 

Initialise weights 

Present training set 

Calculate the actual output using the existing weight values. 

Adapt weights according to: 

W 11  [,z ](r + 1) = W.1  [,z ](t) + 11 61 [1 ]x1 	 (6.14) 

Where W ij 	the value of the 1Ih  weight of the JIh  node in the 11rh  layer 

at the t "  iteration. 6.[n] is the error of the j" node in the ,z" layer. If the 

output node is denoted as the kth node in the mth  layer of the MLP structure, 

then for a unipolar sigmoid threshold function the error is given by: 

aj  [in] = y[m](1—y[m])(d—y 1 [m']) 	. 	 (6.15) 

Where d is the desired outcome, y1  [m] is the JZh  output of the system. 

The error function for the internal I" node of the n ? layer is given iteratively 

as: 

= xJ[n](1—xJ[n])k[n —1]WJk [n] 	 (6.16) 
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Where k is over all nodes in the layers above n, connected to j' node of the 

n 1 layer. 

Fast convergence of the weights is sometimes achieved if a momentum 

term, a, is added: 

W 1 [n](r+l) = W 11 [n](t) + 	 (6.17) 

+ a(Wjj 	- W 1 [n](t —1) 

In the above procedure, the convergence is controlled by the adaptation 

gain , and the momentum term a which smooths the weight changes. 

5- Repeat the procedure by presenting new training vector ( repeat from 

step 2). 

In the selection of the MLP structure, the number of nodes chosen must be 

large enough to form a complex decision region that attempts to satisfy the needs of 

the problem in hand. However, it must not be so large that, given the available 

training samples, the weights cannot be estimated reliably. The three-layer MLP has 

become popular due to its ability to form very complex decision regions[72], and is 

the neural network structure used in this chapter to classify fetal breathing move-

ments. 

6.6. PERFORMANCE EVALUATION 

Classifiers based on different classification techniques were trained using thirty 

observations per group, and the performance of each was then evaluated using ten 

observations per group. The testing samples were not used in training the system. 

Table 6.1 presents the performance of three conventional classifiers using respec-

tively: the equal linear Bayesian discriminant function, the non-equal quadratic 

Bayesian discriminant function and the Mahalanobis distance classifier. The 
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performance of these classifiers is presented as the percentage of features assigned to 

their correct groups in relation to the total number of features. The training column 

depicts the performance of the classifiers when the training samples are the same as 

those used to test the systems. The test column indicates the performance of the sys-

tem after training, for the case where the testing samples used were different from 

those used for training. The quadratic Bayesian discriminant function seems to per-

form better than the other two conventional techniques. This is expected as the qua-

dratic function takes into account the logarithm of the volume of the ellipsoid (in 

n_dimensional space) generated by the population distribution of each group. It is 

noteworthy that the assumption of normality which is required for statistical classif-

iers might not be strictly generally true; Despite this, the performance of the qua-

dratic Bayesian classifier is superior to the other conventional classifiers. 

Classification Training(60) Testing(20) 
Equal Covariance 
Bayesian 83.3% 75% 
Non-equal Covariance 
Bayesian 96.6% 85% 
Mahalanobis 85% 75% 

Table 6.1: Performance of Conventional Classification 

Neural Net Training(60) Testing(20) 
(3,3,1) 93% 80% 
(3,5,1) 93% 85% 
(5,3,1) 98% 90% 

Table 6.2: Performance of MLP Classification (Hard Trained). 

The performance of the classifiers using the neural network structure is dep-

icted in table 6.2 and 6.3. The notation for the MLP structure is (i,j,k), where i is 
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Neural Net Training(60) Testing(20) 
(3,3,1) 88.3% 90% 
(3,5,1) 95% 85% 
(5,3,1) 98% 90% 

Table 6.3: Performance of MLP Classification (Soft Trained). 

the number of perceptrons in the input layer, j is the number of perceptrons in the 

hidden layer and k is the number of perceptrons in the output layer. Unfor-

tunately, definite rules to guide the selection of the structure type, the size of neural 

network, and other parameters do not exist. For many applications, these are 

selected by experimenting with different structures and learning parameters. The 

nonlinear threshold function used was bipolar sigmoid with + 1 indicating features 

belonging to normal breathing patterns, and -1 indicating features belonging to the 

deviant patterns. In addition, two modes of training were used, hard training and 

soft training. With hard training, the system was trained to provide an output very 

close to ±1; while with soft training the features were assigned on the polarity of 

the network output; 

Figure 6.8 shows the convergence of the neural network for a 5-3-1 structure, 

and figure 6.9 depicts the corresponding tap values after convergence. This MLP 

structure had performed best in both training ( 98% matching) and testing mode 

(90% matching). The problem in using the neural network for pattern recognition 

lies in selecting the optimum structure to achieve the best performance using the 

available training features. In addition, due to the nonlinear properties of the neural 

network, the number of iterations required for convergence and the asymptotic 

error rate are both dependent on the initial conditions used for the tap weights. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1. SUMMARY 

This thesis has investigated various digital signal processing algorithms for the 

analysis of fetal breathing movement. It has presented a set of algorithms which may 

be of clinical use in fetal antenatal monitoring, 

A PVDF transducer was developed to monitor FBMs from maternal abdomi-

nal wall displacements. The transducer was also found to detect FHS which displace 

the maternal abdominal wall by much smaller amounts than FBMs. Although trans-

ducer compliance matching is crucial for optimum energy transfer, it was found less 

crucial for monitoring displacement as long as the transducer is made more compli-

ant than the maternal abdomen. In general, the transducer was found to perform 

well in detecting both fetal breathing movements and heart sounds. 

Analogue preprocessing was carried out on maternal abdominal wall move-

ments. Although this thesis was mainly concerned with FBMs, the capability of the 

transducer to monitor both FBMs and FHS has provided a single transducer for 

both tasks. The preemphasis stage in the analogue preprocessing is only necessary if 

both FBMs and FHS are to be analysed after passing through a low resolution ADC 

or an analogue tape recorder. The analogue filtering has come to serve two pur-

poses. Firstly it filters the two bands of interest as FBM rate lies mainly between 0.5 
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and 2.0 Hz and fetal heart sounds lie between 40 and 60 Hz. Secondly it serves as 

an anti-aliasing filter to ensure that signals are faithfully represented in discrete form 

without any corruption due to aliasing 

The analysis was carried out off line after storage on an analogue tape 

recorder, and the digitising process was performed using HP 5183T digitising oscil-

loscope. The digitised signal was down loaded to a main frame computer using an 

HP 210 desk top computer. 

FBMs can be characterised as nonstationary signals. Spectral analysis tech-

niques based on the FF1' algorithm applied to short data blocks has its short corn-

mings due to resolution and sidelobe interference. A number of AR spectral 

analysis algorithms were discussed. The performance of both the gradient LMS and 

the optimum tapered Burg (OTB) algorithms were evaluated using simulated nons-

tationary signals. The LMS algorithm performed well in slightly nonstationary con-

ditions, however, its performance deteriorated drastically when highly nonstationary 

signals were used. The OTB algorithm was found to exhibit the best modelling 

capability under highly nonstationary conditions. 

FBM rate was estimated using a rule based expert system which discerned and 

tracked pertinent peaks in the AR spectral estimates using the OTB algorithm. 

Identification of augmented breathing patterns was achieved using pattern 

recognition techniques. The extraction of features which represent the pattern was 

discussed and the performance of different classification algorithms presented. Fol-

lowing the current interest in neural network structures, pattern recognition using a 

multi layered perceptron was carried out and its performance compared with the 

two conventional classification techniques. The performances of the classifiers were 

largely dependent on the choice of the training sets and how well the chosen set 

resembles the actual data. 
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This thesis has been successful in presenting a set of algorithms for antenatal 

monitoring of FBMs. Analysis of FBMs using digital signal processing algorithms 

does not appear in the literature. At present the method of analysis is to use an 

ultrasound scanner and count manually the breathing movements. Therefore the 

work presented in thesis represents a significant advance over the present approach 

to FBM analysis. Also, an underlying periodicity in FBM rate has been discovered. 

This periodicity does not appear to have been reported previously in the literature. 

7.2. CONCLUSIONS: 

During the course of this research interference due to maternal breathing was 

not found to be a problem, as gravid mothers were requested to breath gently and 

slowly, and to refrain from moving or talking. This control ensured that maternal 

breathing movement (MBM) was kept to a low rate and that harmonics of MBM 

were kept to a minimum. But it has been reported by Goovaerts[74] that maternal 

breathing rate could rise close to FBM rate and that it could have high harmonic 

content. However, the expert system designed could deal with these unforeseen 

conditions. MBM and its harmonics could be extracted using a separate chest trans-

ducer which monitors MBM only. 

Another method of alleviating the interference due to the maternal com-

ponents is to use an LMS adaptive transversal filter, as discussed in chapter 4 and 

chapter 5. To cancel the maternal components from the abdominal signal, the 

transversal filter uses the chest transducer output (comprising MBM and its harmon-

ics) as the input to the filter and the abdominal transducer output (comprising FBM 

and its harmonics in addition to MBM and its harmonics) as the desired input to 

the filter as described by Widrow[62]. The error output of the transversal filter pro-

vides an FBM signal without MBM components. There are, however, some prob-

lems with this latter method. If for some reason maternal breathing was suppressed 
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from the abdominal signal then the transversal filter would either become unstable 

or the error output would contain maternal breathing and its harmonics as well as 

fetal components. 

The transducer has also provided the possibility of simultaneously measuring of 

fetal heart sounds. Unfortunately the detection of FHS is localised to the anterior 

fetal shoulder, and if during recording, the fetus undergoes gross body movement 

then the detection of Fl-IS would be lost, and consequently, the transducer must be 

repositioned. This could be overcome using a belt incorporating many transducers,. 

say 6, and an algorithm can be developed which tests each transducer and chooses 

the output from the one which is closest to the anterior shoulder and contains the 

strongest FHS signal. 

7.3. FUTURE WORK 

This thesis was mainly concerned with investigating different algorithms for 

FBM analysis. The processing and analysis were successfully carried out off line, 

and the proposed algorithms operated disjointly. 

For use in a bedside monitor, these algorithms must be adapted to operate in 

real time and they must be amalgamated to provide a comprehensive FBM analyser 

of the type proposed in figure 7.1. Prior to this the transient response of the spec-

tral estimation algorithms must be tested for a step change in frequency, and their 

robustness for high noise level. Opto-isolator was used for patient safety, a 

transformer coupled isolator could be used to ensure a more linear performance 

down to DC level. 

Once a real time FBM analyser is achieved, then the analyser can work in 

conjunction with other algorithms to develop a comprehensive fetal analyser provid-

ing the following fetal parameters: 
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a) 	Fetal breathing rate estimation. 

Incidence of deviant breathing. 

Fetal heart rate (FHR) estimation. 

FHR patterns. 

Systolic time interval estimation. 
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Figure 7.1: Proposed FBM analyser 



APPENDIX A 

PIEZO FILM 

Polyvinylidene flouride (PVDF) is a semi-crystalline high molecular weight 

polymer. As its name suggests, it is constructed from the vinylidene flouride mono-

mer (fig. Al). The monomer has a large dipole moment. The polymerisation of the 

monomer provides a structure where the "vinyl' unit (CH 2  CF2) is repeated essen-

tially head-to-tail (fig. A2). 
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Figure Al: Monomer 	 Figure A2: Vinyl polymer 

The principle crystalline form of this polymer is the nonpolar CL forms (fig. 

A3), where the dipole moments are randomly oriented with respect to each other. 

The non-polar a form is polarised (poled) to the highly polar 3 form, fig. A4. As 

mentioned above, poling exposes the polymer to a high electric field (- 500 

KV/cm. ) at elevated temperature 1000 C) for an extended period followed by 

slow cooling. The 3 form has the hydrogen and flourine atoms per "unit cell" 

arranged to render maximum net dipole moment, hence large net polarisation. 

/ 
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CARBON ATOM 

rLOURINC ATOM 

0 HYDROGEN ATOM 

Figure A3: Nonpolar a form. 

0 CARBON ATOM 
PLOURINC ATOM 

0 HYDROGEN ATOM 

Figure A4. Polar 13  Forms. 

The poling also aligns the 13  phase crystallites along the thickness direction ( 

the direction of extrusion) fig. A5. This makes it possible to use the piezo in film 

sheets, by coating each side of the film. The metallisation process is essential for 
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Figure AS. Dipole Alignment of and 13  Forms. 
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APPENDIX B 

CHARACTERISTICS OF PIEZOACTIVE MATERIALS 

The alignment of the polymer dipoles is along the axis of poling and the orien-

tation of the crystallite chains in the direction of stretch, render the piezo film 

anisotropic:- direction dependence of piezoelectric activities. 

-J 

Figure Bi: Numerical Convention of Axes. 

Conventions have been established which identify the film's axes by the 

numerals indicated in fig. BI where: 1 corresponds to length, 2 to width and 3 to 

thickness. By the same conventions, direction-dependent constants have two sub-

scripts: the first identifies the axis of applied ( or induced) electric field (or charge) 
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and the second identifies the axis of induced mechanical strain( or applied stress). 

B.! Properties of PVDF Piezo Film. 

Relevant characteristics of PVDF films are summarised in appendix C. Some 

of these properties are self explanatory, but the most pertinent to piezoelectric pro-

perties which require some clarification are : the piezo stress and piezo strain con-

stants. 

B.2 Piezo Stress Constant (g-constant). 

The g-constant is the negative of the electric field developed by the film, under 

open circuit conditions, along axis j, relative to the stress applied along axis i. The 

axes i and j may take any of the values of 1, 2 and 3 (figure Bi). 

- = Field 	 rn developed along axis j = V/ 
stress applied along axis i 	N/rn 2  

Vrn 
N 

The stress constant may also be expressed as the amount of strain induced along axis 

j relative to the applied electrical charge per unit area of electrode (mostly across 

axis 3), under stress free conditions 

	

_93i 
	developed along axis j - in in 

g31 	
applied c/zarge/elctrode area 	C/rn 2 	 - 

In 
C 

B.1.2Piezoelectric Strain Constant ( d-constant). 

When deformation in a piezo material is caused by an applied electrical field, 

then the degree of deformation (strain) under stress-free conditions is given by: 

—d.. = 

 

strain developed along axis j - 

	

' 	applied electric field across axis i 
in In: 
v/rn 
hi 

V 
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Strain constant can also be expressed as the ratio of short circuit charge per 

unit area across the plates (normally across axis 3) to the stress applied along axis j. 

—d31= 
charge  per electrode area across axis 3 

 stress applied along axis3 

	

_C/rn2 	C 

	

N/rn 2 	N 

Piezo electricity involves the electrical and mechanical characteristics of the 

material. Definitions of constants such as Young's modulus, permittivity etc., are 

not included in this section, but their values are shown in Appendix C. 
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APPENDIX C 

TYPICAL PROPERTIES OF PVDF FILM USED 

PROPERTIES OF THE PVDF FILM USED 

Property symbols Values Units 

Piezo strain constant d31  

d32  

d33  

23x10 12  

3x10 12  

3x10 12  

(rnlrn)(V/m) 

or (C/m2)/(mlm) 

or (N/m2)/(V/m) 

Piezo stress constant 931  

932  

933  

216x10 3  

19x10-3  

-399x10 3  

(V/m)/(N/m2) 

or 

(mlrn)/C/m 2) 

Permittivity E 106x10 12  F/rn 

Capacitance C 379x10 12  F/cm2  

Young's Modulus Y 2x109  N/rn2  

The properties shown above are the ones relevant for this thesis. 
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APPENDIX D 

DESIGN CALCULATIONS 

FOR PVDF TRANSDUCER 

In appendix B, we have defined some of the constants which characterise piezo 

electric activity and provided a tool in calculations. In this appendix we shall out-

line briefly the relevant steps required to calculate the voltage induced and the 

charge generated by an external force stressing the film in one of the three axes. 

When the transducer is used to detect small displacements, the objective is to 

use the plastic properties of the film. By holding one of the axes as the neutral axis 

any deformation is going to compress or expand the other surface, with minimum 

stress exerted on the neutral surface. This deformation may be converted to a 

corresponding stress value using Young's law of elasticity. Assuming that the defor-

mation of a film length 1 metres, width w metres and thickness t metres, changes 

the length of the film from / to I . then the strain on the film is 

- 	 strain = (1 T 1) 	
(4B.1) 

The stress applied can be found by 

Stress S = strain . Y 
	

(4B.2) 

Where Y is Young's modulus of elasticity. 

If the force is exerted on axis 1 and the induced voltage is across axis 3, then 

once the stress is calculated, the voltage developed across the plates of the film is 
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given by: 

V = 93 1  . S . t 	 (413.3) 

Regarding the film structure which uses parallel plates, then the capacitance is C = 

e area /thickness. The permittivity of the piezo film is given in appendix C, and can 

be expressed as € = Er  €, where EO is the permittivity of free space and is given as 

8.854 x 1012  F/rn, and e, is the relative permittivity Therefore the charge developed 

across the plates is given by: 

Charge = Q =C V 
	

(4B.4) 

From the above brief outline of the calculations one can conclude that for an 

effective voltage output the higher percentage of the film area should come under 

the influence of the force in order to increase the strain, hence the stress. If only a 

part of the film metallised surface is excited by the force then the passive parts of 

the metallised area act as capacitance in parallel with the capacitance of the active 

part. This distributes the charge over the entire area (charge sharing) which in turn, 

reduces the total charge available at the charge amplifier. 
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Autoregressive Spectral Esti mat ioii of Fetal 13 real h ii g 
Movement 

V1EGEURDITCH N. ANSOURIAN. JAMES H. DRIPI'S, GERALD J. BEATTIF. AND KEN lt()l)l)Y 

Abstract—Fetal breathing movement (FilM) in utern may he an in-
dicator of trial health. This paper provides a second-h ..,m5s,titl ('sli-

mate of FIlM rate. In the absence of a statistical model for the Fetal 
breathing movement, hlcwk data structured autusregressise spectral es-I, 

motion is used. The optimum tapered Burg algorithm trovides a miss-
Imum variance breathing rate estimate from a short lulmuck of data. tile 
data were recorded using a ,i'VI)F (l'oivVlnsljlteneFtm,rldml tran, 
d cer which picks up maternal abdominal null nuosenuents. A peak 
tracking algorithm is used to extract the Fetal breathing rate. Reutts 
from these signals are presented In graphical form. Further aiu:utis 
of the Fetal hreathiiig rate has revealed perlodlcitles, similar to that 
observed In the Fetal heart rate. 

I. INTRODUCTION 

HUMAN fetal breathing movements (Fi3M were first 

recorded, by Ahlfeld, at the turn of this century. His 

observation of maternal abdominal wall movements 

(MAM) representing fetal breathing movements in them 
was disbelieved by his peers. The development of cathe-

ter placement techniques and advancements in blood gas 

determination made it possible to confirm FilM in exte-

riorized fetal lambs. Such observations were attributed, at 

that time, to external or asphyxial stimuli. FilM were sub-

sequently confirmed to be normally present using fetal 
lambs in ulero. Developments in ultrasound have now 

made it possible to conduct examinations of [lie human 
fetus in illero with minimum external stimuli. 

Gough and Poore 171 used a em nit i um us - Wa SC C W 
Doppler ultrasound to detect FLtM indirectly through its 

presumed effect on blood velocity in the hepatic vcitt atid 
the inferior Vena cava. 

In 121-161. (81-1101, real-time ultrasound imaging was 

used. The ultrasound beam was aligned with the fetal 

thorax and the X-scan output from the distal or proximal 

chest wall echo was recorded. The output varied in sym- 

pathy with fetal chest wall movements and thus indicated 
FBM 141. Stagg and Gennser 191 processed the fetal tho- 

racic wall movements using a phase-locked loop (PLL) 

where the filtered phase comparator output provided FilM 

rate directly in analog form. The PLL method is an analog 

realization of mean-squared phase error optimization. In 

the above, commercially available real-time ultrasound 

scanners were used with a single gate movement tracker. 

Rapoport and Cousin lilt adapted a Commercially avail-

able scanner to incorporate a multiple gate movement 

tracking facility. This provided sittiultatteous tracking of 

both the fetal chest wall and diaphragm Iltovctltcnts. 

The recording methods described thus far require fre-

quent realignment of the ultrasound beam following fetal 

movements. This method necessitates the presence of a 
trained observer throughout the recording. 

The aim of this paper is to present a digital analysis 

using autoregressive (AR) power spectral estimation or 

perceived FBM signal, transmitted through maternal ab-

dominal wall (I]. [3). Section Ii discusses the data acqui-

sition. Section III reviews the concept of AR spectral 

analysis and discusses the advantages of the optimum ta-

pered Burg algorithm, which is based on the maximum 

entropy spectral estimation. Section IV presents the re-

sults in graphical form. 

11. DATA ACQUISITION 

In this paper, we used maternal abdominal wall nose-

nients (MAM) to indicate FilM 131. A PVI)F tr,mtmsmluci,'r  

was used It) cottvett titatcrtial ahulotittttal wall ItsovionlIls 

into electrical signal. These signals were corrohoratd is 

an FBM signal by an obstetrician using a real-time ultra-

sound scanner. In Fig. I. the square pulses indicate the 

obstetrician's perception of FBM by observing fetal thorax 

and diaphragm the top trace is the transduced maternal 

abdominal wall movements. As observed by 121-141. 161-
191. and till, the FI3M rate lies between 30-0 

breaths/mm (0.5-1.5 Hz). The transduced signal is fil-

tered using a cascaded second-order low-pass filter with 

2 Hz cutoff frequency and a second-order high-pass filter 

with a cutoff frequency of 0.5 Hz. The resultant hand-

passed MAM signal will contain FBM and other signals 

pertaining to fetal and maternal biological activities. The 

significance of these undesired signals will vary according 

to the FilM intensity, and will become of relative signif-

icance when the FIlM component becomes small. 

Fig. 2 shows 5 min of filtered MAM signal, and Fig. 3 

shows three 60 s blocks of contiguous data. From Figs. 2 

and 3. the following conclusions nt:iv he deduced: 

I) the FilM rate varies thrintghoitt time rcciiidittg 

2) the MAM signal processes a time-varying ampli-

tude. 

Therefore, the filtered M AM signal may he modeled as 

being a frequency and amplitude modulated signal where 

the earner may not be a pure sinusoid. 

In the absence of a statistical model for the above van-

ations I) and 2), one is compelled to analyze the data in 

short data blocks. This forces the signal to behave as 

small-sense stationary. Spectral estimation using the clas-

sical FFT approach suffers froin poor frequency restilu-

lion for short data blocks. Mixed autorcgressive.mnoving 

average (ARMA ) displays good immodel ing and resolmit ion 

properties, but the algorithm is nut guaranteed to con-

verge to a global minimum. In addition, the Citimiplita-

tional complexities involved emlctiiii:tt!c one to w':tmcii tither 

less complex algorithms. FITht. which is stiieli:tsti sig-

nal, can be modeled as an AR process. The resolution of 

an AR analysis is not dependent on data block length, but 

rather on model order, sampling interval, and signal-to-

noise ratio 1221. 1231. 

1.03 

	

resolutionAR = 	 ( I 
Tpn(p + 14 

17 = SNR of a single sinusoid (linear) 

T, = sample interval 

p = model order. 

111. AUTOREGRESSIVE (AR) SPECTRAL ANALYSIS 

An AR spectral analysis is a process whereby the pres-

ent data sample x 5  is estimated from knowledge of its past 

samples. 

	

= - 	O)Cn k 	 (2) 
k-I 

where x 5  is the nth data sample, p is the filter length. and 

a5 : k = 1, 2, ' ' , p ) is the filter characteristics of the 

generating (AR) process. 

The above process is modeled as an all-pole (recursive) 

filter where the transfer function is 
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H(z) = k-p 	 (3) 

(4Z 
k-0 

where 00 is always 1. 
The relationship between the autocorrelation function 

of the input signal and the modeling parameters is given 
by [13], [14] 

--------_J ( k=p 

I? (is) = I - 	a,R,,(it - k) 	ii > 0 
r ---i 	 ( 4) 

- 	
(lR, ,(k) + a 	it = (I 

where a 2  is the variance of the output. 
Expressions in (4) are the well-known Yule-Walker 

equations. In order to develop an AR power spectral es-
timate. the coefficients ( a, : k = 1. 2. '' . p I must he 
evaluated. 

The Levinson-Durbin algorithm provides an cflicient 
recursive solution to the Yule-Walker equations requiring 
Of P ) (order of p 2 ) operations. The Levinson-Durhin 
algorithm computes recursively the filter coefficients and 
the variance o. It was shown in 1131. 1141. 1191 that 
a,,k I. which denotes the nth coefficient of the pth-order 
linear prediction, is given by 

a,,Iii I = a,, - i [n I + a,,l p la; 	I p - oJ 	(5) 

for 	= 1.2. 	, p - I. 
The superscript ( * ) denotes the complex conjugate. 
a, (n J. which is also equated to the reflection coefficient 

K,,. is 

0r ,jitjR,,(p - is) 

	

a,,[p] = K,, = --- 	(6) 
CI, - I 

Equation (4) can also be expressed in terms of the re 
flection coefficient 

ml = a .. I I' I + A,,, - (j, -- is 	( 7 ) 

The final set of coctlicienis for (7) at titssdel or,k, p is 
the desired solution. The procedure lor solving (7) uses 
the following: 

= R,,(0) 

= I 	for all p 

a,[lJ = K1  = — R,,( I )/R,,(0) 

= (I - K0R,,(0) 

and 

= (I - 

lithe linear prediction error filter is implemented USilig 
the lattice filter structure, as shown in Fig. 4. then the 
forward and backward prediction errors are defined as 1191 

ef[n] = x[n] + 
	

a,,[k]x[,i - kI. 	(8) 

And the backward prediction error is 

eb,,[n] 	x[n — p] +a;[kI.rIn + k —p1. (9) 

Using p - I in (9) and substituting into (8). the forward 
and backward prediction errors become 

ef[n] = ef,,. 1 [n] + K,,eb_,In - I] 	(10) 

cb,,[n].= eb,,_,[n - 11 + K,ef_ 5 [nJ. 	(II) 

The negated reflection coefficient K,, is also known as 
the PARCOR coefficient (Partial correlation coefficient) 
between the forward and backward linear prediction er-
rors. 

The Burg algorithm 1131. 1151-1171, 1191 uses the Lev-
inson-Durbin recursive solution to the Yule-Walker 
equations. The PARCOR coefficient is based on the min-
imization of the arithmetic mean of the forward and back-
ward linear prediction error power. This yields the PAR-

COR coefficient estimate 

K,, 

—2 	' 	1f,(kIeJ,...iIkI,.h, 	Ilk 	II 

[ k ](Pef,, , IkJl 2 ; 

(12) 

where 14'.- Ilk)  is a nonnegative weighting function I l't. 
Burg selected a uniform  weightiittz fit net in where 

IF,, 1k I = I/N and where N is the total number of data 
samples available. 

A uniform tapered window provides an AR power spec-
tral estimate with errors in the estimated frequencies Ilfil. 
1171. The errors are dependent on tlte length of the data 
block, the signal phase, and tlte sampling frequency. 
These frequency errors can he reduced if the window is 
optimized 1191. Such optimization is achcivcd fv' mini-
mizing the average variance of the estimated frequency. 
The optimum weighting function is not a constant value, 
and may be computed recursively 1191 as follows: 

W,,,[k] = 2W,,,[k - 11 - w,,,[.k - 21 - 

= 
	 12 
(N - in + l)(N - in + 2)(V— pn-l-3) 

w 
where X,,, is the Lagrange multiplier, and W, = 0. and W, 
=NX 5 /2. 

The Burg algorithm and the optimized Burg algotithttt 
yield the same desired properties, i.e., guaranteed stabil-
ity, spectral resolution. But the optimized tapered Burg 
algorithm alleviates spectral line splitting and decreases 
errors in the estimated freqiienck's. 

IV. Rnssi.ts 

1 he optinitini tapered lliirg ale'risl,iii was 
litsni fetish breathing stsoveiIseTits. 1 his sIg'5ithIIiI is ahle 
to accurately determine spectm;if ci'iitcnts t'tti slims mtai;u 
blocks. The data block length used in our analysis was 
2 s duration (20 samples). The data block chosen is long 
enough to ensure that a full wavelength of the lowest pos-
sible frequency of FBM (0.5 Hz) is present for tIme iii-
tocorrelation estimates, while still being short enough for 
the data block to he stationary, hence validating a Time-
plitz autocorrelation matrix assumption 1141. The loc-
plitz characteristic of the matrix is necessary for the Lev-
inson-Durbin decomposition. 

Akaikie 1241 and Parzen 1251 developed diflerent cri-
teria for model order selection. Ulrych and Ooc (26) have 
tried different information criteria for model order selec-
tion and suggested that for a short time series, a ttmodeh 
order of 1/3 to 1/2 of the data length would give satis-
factory results. Hence. an cigtli-order autmsegmccsivs' 
special model was assumed in our analysis. 

Fig. 5 outlines the signal flow at each stage of 'mscess-
ing. Analysis of the data is presented graphically in Figs. 
6-I1. Figs. 6. 7. and S depict waterfall representation of 
the AR spectral estimate for 100 s each. The analysis uses 
2 s sliding window with a I s overlap. The time traverses 
along the horizontal axis from 0 to 3 Hz. The boxed 
waveform represents the 100 s of filtered MAM signal 
used for each figure. 

In biomedical signals, the problem of time-varying 
characteristics is nearly always present. Such character-
istics for ISlAM signals were discussed in Section II. The 
tracking of the relevant frequency components under these 
time-varying characteristics is not a straightforward task. 
Nevenheless, these characteristics may often possess 
some significant biological activity. 

-154- 



BME Novcnli,er 19119 IEEE 

At the onset, the analysis was to provide if last tin) tI-

ficient method for a second-by-secotid estimation of I 

rate. This was achieved by enipitivitig;fit tile) I iculi peak 

tracking algorithm. This is a nile-based alr ,riiliiit which 

looks retrospectively at the running HIM NI I teat a id 
weights. in a Gaussian spread, the spectral peaks in ac-

cordance to their distance from the mean. The nile-based 

peak tracking algorithm takes into consideration file alit-

plitude of the FBM signal to provide a figure of cenhi-

dence in the tracked peak. 

Fig. 9 depicts the tracked FBM rate. This satisfies the 

main objectives of the analysis. but further filtering of tlte 

estimated FBM rate reveals short-term periodicitv. Fig. 

It. which depicts the spectral estimate of the tracked 

FBM, reveals signal corrupted by noise. The filtering was 

achieved through a transversal filter employing the \Vid-

row least mean-square (LMS) algorithm 1281, 1291. which 

enhances periodic signals corrupted by colored or white 

noise. Fig. 10 depicts the filtered FHM rate. The short. 

term periodicity in FBM rate is clearly identified. Fig. 12 
depicts the spectral density of the filtered FIlM rate. The 

short-term periodicity is identified from Fig. 12 to he 

about 25 S (0.04 Hi.). 

Discusstos 

The system described monitors FBM represented by 
maternal abdominal wall movements. Estimation Of 

breathing rate is achieved using digital signal processing 

(optimum tapered Burg algorithm). These estimates pres-

ent the supervising obstetrician a quantified parameter of 

FBM rate, which is another dimension in the assessment 

of fetal health in utero. 

Most biological activities possess both long-term and 

short-term periodicities. In our study, we have observed 

the presence of short-term periodicities in FBM rate: the 

period, shown in Figs. 8 and II), was found to he about 

25 s. The FBM rate normally varies front 30 hreatlts/titiri 

to 90 brcaths/min 121. 131. but on a few itccasjiitts, the 

rate went up to 100 breaths/mitt. Fetal heart rate (1:1  Ilh ) 

is known to vary between 90-20() heats/thu. 1)itriiui iii-

stances of high FBM rate. the FIIR was ol'',ertcth ti he 

different: hence, the rates of die two activities 5R' lit 

confused. 

This is an ongoing research program. and the depeti-

dcnce of short-term periodicity on gestation age and other 

criteria will be investigated in the future. 

Cosct.tistrt 

Most biological processes are nonslatiltriary. I lence. 

proper modeling of signals from biological act ivit es Ic-

quires analysis based on short-time series. The ipuiiitutti 

tapered Burg algorithm provides a good capability for 

modeling short-time series, and offers greater resolution 

over the classical FFT 1221. It also minimizes the average 

variance of estimated frequency and alleviates spectral 

line splitting. The advantages of the optimum tapered 

Burg algorithm arc gained at the expense of increased 

computational complexity compared to that of die classi-

cal FFT. 
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