1,313 research outputs found

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Synchronous control of double-containers for overhead crane

    Get PDF
    The development and wide application of double spreaders overhead cranes have effectively improved the loading and unloading efficiency of the container terminals. However, due to the nonlinear time-varying characteristics and parameter perturbation of the lifting device of the double spreaders, the difficulty of synchronous and coordinated control of the double spreader overhead crane is increased. In order to solve the problem of synchronous control of double spreaders overhead cranes, this work establishes the mathematical model of the double spreaders overhead crane and proposes two main methods. The controller based on the fuzzy sliding mode method is established. Fuzzy logic control can effective estimate the parameters of the system, reduce the chattering of sliding mode control, and improve the performance of its control. Mean deviation coupling synchronization control combined with sliding mode control can effectively control the speed error between the two spreaders, so that they can keep working synchronously. The other controller is established which use fast non-singular terminal sliding mode control to ensure that the system can converge in a finite time. The combination of terminal sliding mode control and super twisting algorithm can enhance the stability of the system.O desenvolvimento e a vasta aplicação de pontes rolantes de duplo espalhamento tem melhorado a eficiência de carga e descarga dos terminais de contentores. No entanto devido ao facto das variações não lineares do tempo e a perturbação dos parâmetros do dispositivo de elevação de duplo espalhamento, é dificultado o controlo sincronizado e coordenado. Com o objetivo de resolver o problema do controlo síncrono das pontes rolantes de duplo espalhamento, este projeto usa o modelo matemático do guindaste de dupla propagação e propõe dois métodos de resolução. O controlo baseado no método do modo deslizante difuso. O controlo lógico difuso pode estimar eficazmente os parâmetros do sistema, reduzir a vibração do controlo do modo deslizante e melhorar o seu desempenho. O control de sincronização do acoplamento do desvio médio, combinado com o control do modo deslizante que pode controlar eficazmente o erro de velocidade entre os dois espalhadores, para que o seu trabalho possa continuar de forma síncrona. O outro controlador usa um controlo rápido e não singular do modo de deslizamento do terminal para garantir que o sistema possa convergir num tempo limitado. A combinação do control no modo deslizante do terminal e do algoritmo de super rotação pode melhorar a estabilidade do sistema

    Optimized Adaptive Sliding-mode Position Control System for Linear Induction Motor Drive

    Get PDF
    [[abstract]]This paper proposes an optimized adaptive position control system applied for a linear induction motor (LIM) drive taking into account the longitudinal end effects and uncertainties including the friction force. The dynamic mathematical model of an indirect field-oriented LIM drive is firstly derived for controlling the LIM. On the basis of a backstepping control law, a sliding mode controller (SMC) with embedded fuzzy boundary layer is designed to compensate the lumped uncertainties during the tracking control of periodic reference trajectories. Since it is difficult to obtain the bound of lumped uncertainties in advance in practical applications, an adaptive tuner based on the sense of Lyapunov stability theorem is derived to adjust the fuzzy boundary parameters in real-time. It is a quite complicated process of parameter tuning, especially for the proposed controller, due to the difficulty arisen from lacking of the accurate mathematical model of a system accompanied with unknown disturbance. Therefore, the soft-computing technique is adopted for off-line optimizing the controller parameters. The effectiveness of the proposed control scheme is validated through simulations and experiments for several scenarios. Finally, the advantages of performance improvement and robustness are illustrated at the end of the optimization procedure.[[conferencetype]]國際[[conferencedate]]20130410~20130412[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Paris, Franc

    Field Oriented Sliding Mode Control of Surface-Mounted Permanent Magnet AC Motors: Theory and Applications to Electrified Vehicles

    Get PDF
    Permanent magnet ac motors have been extensively utilized for adjustable-speed traction motor drives, due to their inherent advantages including higher power density, superior efficiency and reliability, more precise and rapid torque control, larger power factor, longer bearing, and insulation life-time. Without any proportional-and-integral (PI) controllers, this paper introduces novel first- and higher-order field-oriented sliding mode control schemes. Compared with the traditional PI-based vector control techniques, it is shown that the proposed field oriented sliding mode control methods improve the dynamic torque and speed response, and enhance the robustness to parameter variations, modeling uncertainties, and external load perturbations. While both first- and higher-order controllers display excellent performance, computer simulations show that the higher-order field-oriented sliding mode scheme offers better performance by reducing the chattering phenomenon, which is presented in the first-order scheme. The higher-order field-oriented sliding mode controller, based on the hierarchical use of supertwisting algorithm, is then implemented with a Texas Instruments TMS320F28335 DSP hardware platform to prototype the surface-mounted permanent magnet ac motor drive. Last, computer simulation studies demonstrate that the proposed field-oriented sliding mode control approach is able to effectively meet the speed and torque requirements of a heavy-duty electrified vehicle during the EPA urban driving schedule

    Higher Order Sliding Mode Control of MIMO Induction Motors: A New Adaptive Approach

    Get PDF
    In this paper the objective is to force the outputs of nonlinear nonaffine multi-input multi-output (MIMO) systems to track those of a linear system with the desired properties. The approach is based on designing higher order sliding mode controller (HOSMC) with the definition of a new proportional-integral (PI) sliding surface. To this end, a linear state feedback with an adaptive switching gain (ASG) is applied to the nonlinear MIMO systems. Therefore, the switching gain can increase or decrease based on the system conditions. Then, the chattering is completely removed using a combination of HOSMC and ASG. Moreover, the proposed procedure is independent from the upper bound of the matched uncertainty, which is in the direction of system inputs. The finite time convergence to the sliding surface is also proved, which provides an invariance property in finite time. Note that invariance is the most important property of SMC. Finally, the general model of MIMO induction motors (IM) is used to address and to verify the proposed controller.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II (ELKARTEK KK-2023/00051), to the Diputación Foral de Álava (DFA), through the project CONAVANTER, to the UPV/EHU, through the project GIU20/063, and to the MobilityLab Foundation (CONV23/14. Proy. 16) for supporting this work

    A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

    Get PDF
    This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC metho
    corecore