
Journal of Power Electronics, Vol. 15, No. 3, pp. 753-762, May 2015                       753                    
 

 http://dx.doi.org/10.6113/JPE.2015.15.3.753 
ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718 

 

JPE 15-3-18 

A Nonlinear Sliding Mode Controller for IPMSM 
Drives with an Adaptive Gain Tuning Rule 

 

Jin-Woo Jung*, Dong Quang Dang*, Nga Thi-Thuy Vu*, Jackson John Justo*, Ton Duc Do*, Han Ho Choi*, 
and Tae Heoung Kim† 

 
*Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Korea 

†Dept. of Electrical Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Korea 
 

 
Abstract 

 
This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent 

magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is 
designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping 
ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast 
convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be 
measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the 
control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is 
guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and 
system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental 
results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these 
experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, 
and less sensitivity to system uncertainties than the linear SMC method. 
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I. INTRODUCTION 
With the well-known advantages of a compact structure, 

small size, high efficiency, low noise, and robustness, 
permanent magnet synchronous motors (PMSMs) have 
become more popular in speed and motion control 
applications. Structurally, PMSMs can be divided into two 
major categories: i) surface-mounted PMSMs (SPMSMs) and 
ii) interior PMSMs (IPMSMs). Due to their geometrical 
differences, IPMSMs have the following advantageous 
characteristics when compared to SPMSMs: higher speed 
operation and higher torque production [1], [2]. The former 
advantage results from a more robust rotor structure with 
magnets buried in the rotor core, while the latter one uses the 

reluctance torque as well as the electromagnetic torque. 
Because of these properties, IPMSMs are extensively applied 
for high-performance variable-speed motor drives such as 
industrial robots, computer-controlled machine tools, 
household goods, electric vehicles (EVs), and plug-in hybrid 
electric vehicles (PHEVs) [3]. Despite their inherent 
advantages, the accurate speed control of IPMSM drives 
presents some difficult challenges in the presence of 
nonlinear coupling terms [4]. In addition, system 
uncertainties such as external disturbances and motor 
parameter variations can considerably deteriorate the control 
performances [5]. Accordingly, it is not easy for conventional 
PI controllers or LQ regulators to achieve good performance 
for IPMSM drives under the system uncertainties stated 
above [6]. 

In recent years, some advanced control methods such as 
adaptive control [7], fuzzy control [8] and [9], and neural 
network control [10] have been developed to satisfy the strict 
control requirements of IPMSM drive systems. In [7], an 

Manuscript received Jul. 16, 2014; accepted Feb. 13, 2015 
Recommended for publication by Associate Editor Shihua Li. 

†Corresponding Author: ktheoung@gnu.ac.kr 
Tel: +82-55-772-1717, Gyeongsang Nat’l University 

*Division of Electronics and Electrical Engineering, Dongguk 
University, Korea 
 

© 2015 KIPE 



754                         Journal of Power Electronics, Vol. 15, No. 3, May 2015 
 
adaptive self-tuning MTPA vector control is presented to 
enhance the performance of IPMSM drives. This method is 
simple and robust to variations of system parameters. 
However, it is only introduced to control the currents. More 
recently, in [8], an online loss-minimization algorithm based 
on a fuzzy logic controller is developed for IPMSM drives to 
yield a high efficiency and a high dynamic performance over 
a wide speed range. In addition, in [9], the authors developed 
a simple fuzzy logic control strategy which is utilized as a 
speed controller with a reduced computational burden to 
achieve high performance for an IPMSM above its rated 
speed. However, these schemes [8] and [9] do not address 
uncertainty problems. A neuro-network control method is 
introduced in [10] to precisely control the speed of IPMSM 
driving systems. In this scheme, the system control achieves 
good performance and the system uncertainty problem is well 
solved. However, this approach requires burdensome 
computation due to a complex online algorithm. 

Among the advanced control methods, the sliding mode 
control (SMC) is superior in comparison with the others 
because of its robustness. The SMC is less sensitive to 
parametric uncertainties, unmodeled dynamics, and external 
disturbances. As a result, it can be invariant to uncertainties 
in many cases and it is able to handle the nonlinearity of 
manipulated plants. On the other hand, the challenging 
problems of the SMC are its chattering phenomenon, 
singularity, and sensitivity to mismatched uncertainties 
resulting from a discontinuous switching gain [11]. This has 
led to the suggestion of various techniques in the literature, 
particularly in the field of motor drives. In [12], a neural 
model based SMC is presented for the trajectory tracking 
control of dc motors. This controller ensures the stability and 
robustness of closed-loop systems in the absence of a plant 
model and in the presence of external perturbations. In [13], a 
high performance discrete-time sliding-mode control is 
presented for induction motor drives. This control structure 
includes an active disturbance estimator, in which a passive 
filter is replaced by another discrete-time sliding mode 
controlled subsystem in order to improve the system 
robustness and accuracy. However, the stability of the system 
is not mathematically proven. In the sliding mode control of 
PMSMs, both an integral sliding surface [14] and a 
differential sliding surface [15] are used to improve the 
system performance. By introducing a boundary layer 
strategy [16], the chattering phenomenon can be reduced at 
the expense of the robustness against parameter uncertainties. 
Therefore, it is important to make a good compromise 
between the robustness and the chattering reduction. In [15], 
the SMC is combined with a fuzzy logic control to mitigate 
the chattering phenomena. However, problems such as 
settling time and overshoot have not been clearly addressed. 
Thus, the time-varying sliding surface technique [17] is a 
good solution to the above mentioned problems of the SMC. 

This paper presents a method to design an observer-based 
nonlinear sliding mode control (SMC) scheme for IPMSMs 
with a variable damping ratio. By using a nonlinear sliding 
surface which is designed based on the variable damping 
concept, the proposed nonlinear SMC can remarkably reduce 
the settling time without any overshoot. In order to make the 
proposed SMC more feasible with a fast convergence in finite 
time, the upper bound of the uncertain term is adaptively 
estimated since it cannot be directly measured or calculated. 
In this paper, the maximum torque per ampere (MTPA) 
control is incorporated to maximize the torque generation in 
the constant torque region. The stability of the nonlinear 
sliding surface as well as the nonlinear SMC is 
mathematically proven using the Lyapunov stability analysis. 
Next, a simple sliding mode observer is applied to estimate 
both the load torque and the system uncertainties. The 
validity of the proposed nonlinear SMC is experimentally 
demonstrated using a prototype IPMSM drive system with a 
TMS320F28335 DSP. The experimental results show that the 
proposed nonlinear SMC attains better control performance 
with a faster transient response, a smaller steady-state speed 
error, and less sensitivity than the corresponding linear SMC 
when the desired speed and load torque change under system 
parameter uncertainties. 

 

II. STATE SPACE MODEL OF AN IPMSM WITH 
SYSTEM UNCERTAINTIES 

A. Dynamic Model of an IPMSM  
Applying Kirchhoff’s voltage law (KVL) to the dq-axis 

equivalent circuits of a three-phase IPMSM yields the 
following voltage equations in the synchronously rotating d-q 
reference frame:  

mdsdsqsqsqssqs ωλiωLiLiRV +++=          (1) 

qsqsdsdsdssds iωLiLiRV −+=            (2) 

where Vds and Vqs are the dq-axis voltages, ids and iqs are the 
dq-axis currents, Rs is the stator resistance, Lds and Lqs are the 
dq-axis inductances, ω is the electrical rotor speed, and λm is 
the magnetic flux. 

In addition, the electromagnetic torque can be obtained 
from the following electrical and mechanical equations: 
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where Te and TL are the electromagnetic and load torques, p 
is the number of poles, B is the viscous friction coefficient, 
and J is the rotor inertia. 

Substituting (3) into (4) yields the following speed 
dynamic equation: 
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By using (1)-(5), the dynamic model of the IPMSM can be 
expressed as: 
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where the k1 to k11 are the coefficients defined in [5]. In 
addition, taking into consideration the system uncertainties 
such as motor parameter variations, external disturbances, 
etc., the system model (6) can be rewritten as follows: 
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where d1, d2, and d3 are uncertain components [5] that 
represent motor parameter variations and external 
disturbances. 
Remark 1: The uncertain components d1, d2, and d3 are 
unknown. However, they are assumed to be bounded, i.e., 
there exist the constants γ1, γ2, and γ3 which satisfy |d1| ≤ γ1, 
|d2| ≤ γ2, and |d3| ≤ γ3. These assumptions are reasonable 
because variations of motor parameters cannot be infinite. 

B. State Space Model of an IPMSM 
The state space variables are defined as: 

dsddsd iizzzωωz −==−= 3121 ,,         (8) 
where ωd and idsd are the desired values of ω and ids, 
respectively. In this paper, only the following assumptions 
are used: ω, iqs, and ids are measurable and an external load 
torque (TL) is unavailable. 

In IPMSMs, the reluctance torque is available because of 
the existing saliency (Lqs > Lds). If the desired d-axis current 
idsd is kept at zero, it is not possible to utilize the potential 
reluctance torque. Thus, in order to maximize the torque 
generation of IPMSMs in the constant torque region and 
increase the efficiency of IPMSM drives, the armature 
current should be controlled according to the maximum 
torque per ampere (MTPA) trajectory operation. In this 
technique, the d-axis current reference is given by the 
equation (9) as in [4]. 
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By taking the derivative of (8) and using (7), the following 
results are obtained: 
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(10) 
Therefore, it is possible to set the following equations: 
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Then the model (10) can be reduced to: 
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From (12), the dynamic model of IPMSMs can be 
expressed in the state space form: 

gBuAzz ++=                 (13) 
where z = [z1  z2  z3]T 
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where u is the control input. Now, the goal of this study is to 
design a control law u for uncertain linear systems (13). 
 

III. NONLINEAR SLIDING SURFACE DESIGN  
A. Nonlinear Sliding Surface Design  

In this section, a nonlinear sliding surface is designed by 
using the principle of the variable damping concept. By 
changing the damping ratio of the system from its initial 
value to the final high value, the system response during the 
transient-state can be fast without overshoot while the 
chances of a singularity can be significantly minimized [11]. 
This idea can be described as follows. 

The dynamic model (13) is rewritten in the following form: 
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The sliding surface is defined as: 
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where F = [F11  F21]T is a constant matrix which is designed 
based on the given settling time ts and damping ratio ζ1. In 
addition, P is a positive constant that is chosen based on the 
desired final damping ratio ζ2 and it satisfies the following 
condition: 

QFAaPPAFa TT −=−+− )()( 111111          (16) 
or 
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QFAPPAF TT =+ )( 11               (17) 

where Q is a positive weighting constant and A1 = [a12  a13] 
= [1  0]. 

It should be noted that (17) is an algebraic Lyapunov 
equation that is required to guarantee the stability of the 
proposed method. The function Φ(y) will be designed later 
and y is the control output of the system. 

[ ]zCzy 001==                (18) 

The selection of the function Φ(y) should satisfy the 
condition that as the output changes from the starting point to 
the origin, the value of the function Φ(y) decreases from 0 or 
a very small value to –β where β is a positive scalar. This is 
the necessary condition to make the sliding surface (15) 
nonsingular. In addition, the function Φ(y) should have the 
first degree differential equation in y. 

In this study, the function Φ(y) is selected based on [16] 
with the following form: 

2
)( kyey −−=Φ β                 (19) 

where k is a positive scalar that should be large enough to 
ensure a small initial value of Φ(y). 

The stability of the sliding surface (15) is verified by the 
following theorem. 
Theorem 1: Assume that there exists a matrix F such that (a11 
– A1F) is stable and a positive definite matrix P that is chosen 
based on the desired final damping ratio ζ2. Also, it satisfies 
the condition in (16) with the function Φ(y) defined by (19). 
Then the nonlinear sliding surface defined by (15) is stable. 
Proof: Refer to the standard sliding mode control method 
presented in [18] and note that during the sliding mode, 

0==σσ  . From (14), it is easy to see that: 
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By using (20), the system dynamics (14) can be expressed 
by the following first-order equation: 

1111 ])([ zPyFz Φ−−=              (21) 

For the dynamics (21), the Lyapunov function can be 
chosen as: 

2
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The derivative of V(z) along with (21) is obtained as: 
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The condition represented by (17) implies that: 
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In this case, the properties of the function Φ(y) guarantee 
that it is a negative function. In addition, it can be concluded 
that the sliding mode dynamics (21) or the sliding surface 
(15) is asymptotically stable. 

B. Sliding Surface Parameters Design 
As indicated in (15), the sliding surface consists of linear 

and nonlinear parts. The function Φ(y) in the nonlinear part 
changes its value from zero to –β when the output changes 
from the initial state to the origin. This reduction makes the 
damping ratio of the system increase from the initial value ζ1 
to the final value ζ2. Consider the system represented by: 
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(25) 
At the initial-state, by choosing a high value for the factor 

k, the function Φ(y) has a small value which is trivial. The 
damping ratio is determined by F. Thus, the matrix F is 
designed for a low damping ratio ζ1. In this paper, the matrix 
F is found by the pole placement approach with a given 
initial settling time and damping ratio. 

At the steady-state, the output reaches the origin point and 
the function Φ(y) attains its final value Φ(y) = –β. As a result, 
the nominal reduced-order dynamics (21) becomes: 
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where: 
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The gain M is calculated in a way that is similar to F for 
the final damping ratio ζ2. It can be seen that in order to 
guarantee the stability of the closed-loop system, the matrix P 
should satisfy the condition (16). In addition, to realize the 
desired damping ratio, the matrix P needs to satisfy (28). 
However, it is difficult to find a matrix P which satisfies both 
(16) and (28). Therefore, the condition in (28) may be 
moderated as follows: 
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where μ > 0 is a sufficiently scalar. Using the Schur 
complement formula, the condition given by (29) can be 
rewritten in the form of a linear inequality as follows: 
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By this approximation, the design goal is to find the matrix 
P which minimizes μ such that: 

0>P                      (31) 

011 >+ FPAPAF TT               (32) 
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IV. NONLINEAR SLIDING MODE SPEED  
CONTROLLER DESIGN 

In the previous section, it was shown that there exists a 
nonlinear asymptotic stable sliding surface whose parameters 
change continuously with time. In this section, a nonlinear 
sliding mode speed control law is designed for systems (13) 
using the nonlinear sliding surface (15). The controller should 
guarantee the reaching condition to ensure that the system 
trajectory goes toward the sliding surface from any initial 
value and then slides along the sliding surface to the origin. 
Such a controller is introduced in the following theorem. 

Theorem 2: Assuming that the uncertain term g is bounded 
by a constant and there exists some positive constant γ such 
that γ ≥ ||S||||g||. Consider the following nonlinear feedback 
control law: 

))(( zSsignKSAzu +++−= σγσ           (34) 
where K is a positive scalar, and σ is the nonlinear sliding 
surface given by (15). Then the state of the uncertain system 
(14) will converge to zero. 

Proof: According to the standard sliding mode control [18], 
the sliding surface will approach zero in a finite amount of 

time if the sliding condition 0<σσ 

T  is guaranteed for all 
σ(t) ≠ 0. 

From (13), (15), and (34), the reaching condition can be 
derived as: 
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Since SB = I, where I is an identity matrix, then (35) is 
rewritten as: 
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(36) 
According to (36), it is obvious that a stable sliding motion 

is induced in a finite amount of time. Then it completes the 
proof. 

Remark 2: In (34), the control law u contains the total 
derivative of the output. In this paper, this derivative can be 

easily calculated by using the robust differentiator given by 
Utkin [19]. In addition, the efficiency of these methods has 
been confirmed via many practical applications. 

Remark 3: The value of γ in the controller (34) is an 
unknown constant. This value can be obtained by the 
following simple adaptation law: 

)(1ˆ σσ
α
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where α is a positive scalar. 
By using this adaptation law, the controller (34) becomes: 
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The validity of the control law (38) and the adaptation law 

(37) is confirmed by Lyapunov theory. 
Define the adaptation error as: 

γγγ ˆ~ −= d                 (39) 

where γd is an unknown real value of γ, and γd ≥ ||S||||g||. 
Choose Lyapunov function as: 

2
1

~
2
1

2
1 γασσ += TV            (40) 

The derivative of V1 along with (39) is as follows: 

γγασσ ~~
1





 += TV               (41) 

From (36), (39), and (40), the following is obtained: 
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Hence, (37) guarantees that: 

02
1 ≤−≤ σKV               (43) 

 

V. SYSTEM UNCERTAINTIES OBSERVER DESIGN 
It well known from (7) and (12) that the proposed nonlinear 

SMC contains load torque disturbances TL and system 
uncertainties d1. These unknown disturbances can make the 
motor speed unstable during the transient-state. In addition, they 
can cause unexpected errors during the steady-state. Thus, in the 
speed tracking control of IPMSMs, the information on these 
disturbances is required. Thus, a simple sliding mode observer is 
used to estimate the load torque TL and system uncertainties d1. 

The first equation of (7) can be rewritten as: 

131121 dkiikkik qsdsqs −+−= ωω            (44) 

In order to design a sliding mode uncertainties observer, 
the following sliding surface is defined: 

ωωσ ˆ−=o                     (45) 

where ω̂  is an estimate of the rotor speed calculated from 
the following: 
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The error dynamics of the sliding mode observer is given 
as: 

)sgn(ˆ 13 oo ldk σωωσ −−=−= 

            (47) 
It is well known by the standard sliding mode method [26] 

that in the steady-state, 0== oo σσ  . By using (40), it is 
easy to see that:  

)sgn(13 oldk σ−≈                (48) 
The estimated uncertainties can be reconstructed as 

follows: 

)sgn(
1

1ˆ
3

1 o
o k

l
s

d σ
τ+

−=             (49) 

where s is the Laplace variable, and τo is a sufficiently small 
filter time constant. 

Remark 4: Actually, the discontinuous function sgn(y) may 
lead to an undesirable chattering phenomenon in the action of 
the sliding mode control (SMC). Thus, if sgn(y) is replaced 
by a continuous approximation such as y/(||y|| + η), where η 
denotes a positive constant value, this chattering problem can 
be considerably attenuated. It should be noted that there is 
almost no performance difference between the approximated 
control law and the actual control law [15] as η approaches 
zero. It should be noted that the chattering and mismatched 
uncertainties problems [20], can be mitigated by methods 
such as the homogeneity approach to high-order sliding mode 
control, the observer-based chattering suppression method, 
the state-dependent gain method, the equivalent control 
dependent gain method, the chattering frequency control 
method using a hysteresis loop, and the integral SMC 
presented in [21]. 

 

VI. NUMERICAL EXAMPLE 
In this section, a prototype IPMSM drive is used to verify 

the effectiveness of the proposed observer-based speed 
controller. The nominal parameters of the prototype IPMSM 
are specified as: rated power Prated = 390 W; rated torque 
Trated = 1.5 N⋅m; rated current Irated = 4.3 A; rated speed ωrated 
= 2500 rpm; p = 4; Rs = 2.48 Ω; Lqs = 113.91 mH; Lds = 
74.98 mH; λm = 0.193 V⋅s/rad; J = 0.00042 kg⋅m2; and B = 
0.0001 N⋅m⋅s/rad. 

Using Remark 4 in Section V, the uncertainties observer 
represented by (42) becomes: 

oo

o

o k
l

s
d

ησ
σ

τ ++
=

3
1 1

1ˆ            (50) 

where l = 8000, τo = 0.01, and ηo = 0.06. 
In order to calculate the sliding surface parameters, it is 

assumed that the initial settling time ts1 is 100 ms and that the 
initial damping ratio ζ1 is 1. In addition, the matrix F can be 
calculated using the pole placement technique which gives: 









=

0
92.127

F                  (51) 

Solving the Lyapunov function (16) with Q = 10−3, the 
resulting value of P is obtained as 5.1×10−6. 

The nonlinear sliding surface is now built by using the 
above matrices F and P with β = 300 and k = 50 as: 
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Again, by using the nonlinear sliding surface (52) and 
Remarks 3 and 4, the nonlinear sliding mode control law (34) 
can be expressed as: 

)
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where K = 250, η = 0.1, and α = 1500. 
In addition, considering the estimated load torque and 

system uncertainties instead of their real values, the controller 
(53) can be rewritten as: 
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where: 
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Finally, the control input signals to the space vector 
pulse-width modulation (SVPWM) are obtained as: 

2
8

1
61

ˆ1,ˆ1 u
k

Vu
kk

V dsqs ==           (55) 

In order to verify the performance and effectiveness of the 
proposed observer-based nonlinear sliding mode controller, 
experiments are carried out with a prototype IPMSM drive 
system based on a TMS320F28335 DSP. 

Fig. 1 shows an overall block diagram of the proposed 
observer-based nonlinear sliding mode speed control system. 
The hardware circuit consists of an IPMSM, a three-phase 
inverter, a control board with a TMS320F28335 DSP, an 
incremental encoder, two Hall-effect current sensors, and a 
load motor. The dc-link voltage (295 VDC) is obtained from 
the utility (AC 220V/60Hz) using a single-phase full-bridge 
rectifier. The two phase currents (ia, ib) are measured by 
LTS6-NP Hall Sensors and then converted into digital form 
using two 12-bit A/D converters. In addition, the rotor 
position (θ), which is used to execute the coordinate 
transformation in the field-oriented control (FOC) technique, 
is measured by a RIA-40-2500ZO encoder and fed to Texas 
Instruments TMS320F28335 DSP via a 32-bit QEP. Note that 
the measured rotor speed (ω) required to perform the 
feedback control can be easily obtained by differentiating θ 
with respect to time. Moreover, the control inputs Vqs and Vds,  
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Fig. 1. Overall block diagram of the proposed observer-based 
nonlinear sliding mode speed control system. 
 
which are given by the proposed observer-based control 
algorithm, are transformed to Vα and Vβ in the stationary α-β 
reference frame. Then, the space vector PWM (SVPWM) 
block generates six gating signals that drive a three-phase 
IGBT smart power module FSBS5CH60 (600V/5A). In this 
paper, the sampling frequency (Ts) and the PWM switching 
frequency (fs) are chosen as 200 µs and 5 kHz, respectively, 
with the system efficiency and control performance taken into 
account. 

In this study, the following two cases are implemented to 
validate the effectiveness of the proposed observer-based 
nonlinear SMC scheme: 

 

- Case 1: The desired rotor speed (ωd) abruptly 
accelerates from 1000 rpm to 1500 rpm while the 
load torque (TL) is kept constant at 1 N∙m, with 
electrical motor parameter variations (∆Rs

 = 
+0.5Rs, ∆Lds = +0.1Lds, ∆Lqs = −0.3Lqs). 

- Case 2: The load torque (TL) suddenly changes 
from 0.5 N∙m to 1.0 N∙m while the desired speed 
(ωd) is kept constant at 100 rpm, with mechanical 
motor parameter variations (∆J = +2J, ∆B = 
+1.5B). 
 

It should be pointed out that Cases 1 and 2 are given to 
demonstrate the robustness of the proposed observer-based 
nonlinear SMC strategy. Actually, it is not easy to 
straightforwardly implement Cases 1 and 2 in real 
experiments. Thus, changing the parameters of the control 
scheme can be an alternative to directly modify the motor 
parameters in actual motor drives. In this paper, the motor 
parameters of the controller are indirectly changed rather than 
those of the real motor drives in order to perform the 
experiments on the proposed observer-based nonlinear SMC 
strategy under variations in the electrical parameters and the 
mechanical parameters. 

Figs. 2 and 3 show the experimental results of the proposed 
observer-based nonlinear SMC method under Cases 1 and 2, 
respectively. Each plot shows the following: (a) The desired  

 
 

(a) 
 

 
 

(b) 
 

Fig. 2. Experimental results of the proposed observer-based 
nonlinear SMC under Case 1. (a) ωd, ω, ωe, and 1̂d . (b) iqs, ids, 
and is. 

 
TABLE I 

PERFORMANCE COMPARISON OF TWO CONTROL METHODS 
BASED ON EXPERIMENTAL RESULTS 

Items 
 

Cases 

Settling time [ms] Speed error [rpm] 
Nonlinear 

SMC 
Linear  
SMC 

Nonlinear 
SMC 

Linear 
SMC 

1 90 130 17 21 
2 30 60 4 13 

 
rotor speed (ωd), actual rotor speed (ω), speed error (ωe), and 
estimated system uncertainties ( 1̂d ); (b) The actual q-axis 
current (iqs), actual d-axis current (ids), and stator current 
amplitude (is). Fig. 2 depicts the dynamic responses of the 
rotor speed (Cases 1). In this case, the control system 
achieves good speed performance with a fast response (a 
settling time of about 90 ms) and almost zero steady-state 
errors under a sudden change in speed from 1000 rpm to 
1500 rpm. Fig. 3 shows the rotor speed stability (Case 2) 
when the load torque varies with a step change. In this figure, 
it can be observed that the proposed control scheme gives a 
rapid and precise estimation of the uncertainties and 
maintains a stable speed response during a sudden change in 
the load torque (i.e. from 0.5 N∙m to 1.0 N∙m). 

To compare the performances of the proposed 
observer-based nonlinear sliding mode controller, a 
corresponding observer-based linear sliding mode controller 
is implemented as follows:  

[ ] zSzIF ll ˆˆ ==σ               (56) 
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(a) 
 

 
 

(b) 
 

Fig. 3. Experimental results of the proposed observer-based 
nonlinear SMC under Case 2. (a) ωd, ω, ωe, and 1̂d . (b) iqs, ids, 
and is. 
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Consequently, the control input signals applied to the space 
vector pulse-width modulation (SVPWM) are given by: 

ldslqs u
k

Vu
k

V 2
8

1
6

ˆ1,ˆ1
==           (58) 

Figs. 4 and 5 show the experimental results of the 
corresponding observer-based linear SMC method under the 
same conditions (Cases 1 and 2) as the proposed 
observer-based nonlinear SMC method. Since the sliding 
surface gain (F) given in (51) is obtained with a fixed initial 
settling time and damping ratio, compared with Fig. 2, the 
speed responses in Fig. 4 are much slower (about 130 ms) 
and indicate bigger steady-state errors (21 rpm). In Fig. 5, the 
steady-state speed error (13 rpm) is much bigger than the one 
(4 rpm) in Fig. 3 when the load torque is suddenly applied, 
i.e., from 0.5 N∙m to 1.0 N∙m. Table I summarizes the 
performance comparison between the proposed 
observer-based nonlinear SMC and the corresponding 
observer-based linear SMC based on the experimental results 
of Figs. 2-5. 

Note that Figs. 2 to 5 indicate the experimental results of 
the proposed and conventional control methods with the 
MTPA operation as shown in (9). In order to demonstrate the 
effectiveness of the MTPA control, the proposed control  

 
 

(a) 
 

 
 

(b) 
 

Fig. 4. Experimental results of the corresponding observer-based 
linear SMC under Case 1. (a) ωd, ω, ωe, and 1̂d . (b) iqs, ids, and 
is. 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 5. Experimental results of the corresponding observer-based 
linear SMC under Case 2. (a) ωd, ω, ωe, and 1̂d . (b) iqs, ids, and 
is. 

 
method without the MTPA operation is carried out under 
Case 1. In this case, the desired d-axis current is set to zero. It  
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(a) 
 

 
 

(b) 
 

Fig. 6. Experimental results of the proposed observer-based 
nonlinear SMC without MTPA control under Case 1. (a) ωd, ω, 
ωe, and 1̂d . (b) iqs, ids, and is. 
 
can be seen that the transient responses and the steady-state 
speed errors of the proposed control scheme with the MTPA 
operation (Fig. 2) and without the MTPA operation (Fig. 6) 
are almost the same. However, due to the ability of the 
MTPA control technique to minimize the stator current to 
generate the maximum torque, the stator current amplitude 
(is=1.8 A) in Fig. 2 is smaller than that (is=2.0 A) in Fig. 6. 
This leads to optimal system efficiency by minimizing losses 
such as the copper losses of the stator windings and the 
conduction losses of the power switches. It is noted that the 
experimental results of the proposed control method without 
the MTPA operation are given under only Case 1 due to 
space limitations. 

From the presented experimental results it can be observed 
that the speed responses of the proposed nonlinear SMC are 
faster than those of the corresponding linear SMC under 
system parameter variations. In addition, the speed tracking 
ability of the proposed nonlinear SMC is significantly better 
than that of the corresponding linear SMC with small 
steady-state errors in the presence of parameter uncertainties. 
 

VII. CONCLUSION 
This paper proposed a robust sliding mode speed controller 

for SPMSM drives to achieve fast and precise speed tracking. 
By combining a FNNC term and an adaptive SMC term, the 
proposed controller did not require any knowledge of the 

nominal system parameters. Therefore, it was very robust to 
system parameter variations. Based on the Lyapunov theory 
and the related lemmas, a stability evaluation of the proposed 
SMC system was presented in detail. For a comparison, both 
the proposed SMC control scheme and a conventional SMC 
scheme were simulated and tested under motor parameter 
variations. Through these experimental results, it was verified 
that the proposed SMC method achieved superior control 
performance (i.e., faster and more robust dynamic behavior 
and smaller steady-state errors) when compared to the 
conventional SMC method. 
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