24 research outputs found

    Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data

    Get PDF
    River phytoplankton blooms can pose a serious risk to water quality and the structure and function of aquatic ecosystems. Developing a greater understanding of the physical and chemical controls on the timing, magnitude and duration of blooms is essential for the effective management of phytoplankton development. Five years of weekly water quality monitoring data along the River Thames, southern England were combined with hourly chlorophyll concentration (a proxy for phytoplankton biomass), flow, temperature and daily sunlight data from the mid-Thames. Weekly chlorophyll data was of insufficient temporal resolution to identify the causes of short term variations in phytoplankton biomass. However, hourly chlorophyll data enabled identification of thresholds in water temperature (between 9 and 19 °C) and flow (<30 m3 s−1) that explained the development of phytoplankton populations. Analysis showed that periods of high phytoplankton biomass and growth rate only occurred when these flow and temperature conditions were within these thresholds, and coincided with periods of long sunshine duration, indicating multiple stressor controls. Nutrient concentrations appeared to have no impact on the timing or magnitude of phytoplankton bloom development, but severe depletion of dissolved phosphorus and silicon during periods of high phytoplankton biomass may have contributed to some bloom collapses through nutrient limitation. This study indicates that for nutrient enriched rivers such as the Thames,manipulating residence time (through removing impoundments) and light/temperature (by increasing riparian tree shading) may offer more realistic solutions than reducing phosphorus concentrations for controlling excessive phytoplankton biomass

    Adaptive forecasting of phytoplankton communities

    Get PDF
    The global proliferation of harmful algal blooms poses an increasing threat to water resources, recreation and ecosystems. Predicting the occurrence of these blooms is therefore needed to assist water managers in making management decisions to mitigate their impact. Evaluation of the potential for forecasting of algal blooms using the phytoplankton community model PROTECH was undertaken in pseudo-real-time. This was achieved within a data assimilation scheme using the Ensemble Kalman Filter to allow uncertainties and model nonlinearities to be propagated to forecast outputs. Tests were made on two mesotrophic lakes in the English Lake District, which differ in depth and nutrient regime. Some forecasting success was shown for chlorophyll a, but not all forecasts were able to perform better than a persistence forecast. There was a general reduction in forecast skill with increasing forecasting period but forecasts for up to four or five days showed noticeably greater promise than those for longer periods. Associated forecasts of phytoplankton community structure were broadly consistent with observations but their translation to cyanobacteria forecasts was challenging owing to the interchangeability of simulated functional species

    Real-time observation, early warning and forecasting phytoplankton blooms by integrating in situ automated online sondes and hybrid evolutionary algorithms

    No full text
    Phytoplankton bloom is one of the most serious threats to water resource, and remains a global challenge in environmental management Real-time monitoring and forecasting the dynamics of phytoplankton and early warning the risks are critical steps in an effective environmental management. Automated online sondes have been widely used for in situ real-time monitoring of water quality due to their high reliability and low cost. However, the knowledge of using real-time data from those sondes to forecast phytoplankton blooms has been seldom addressed. Here we present an integrated system for real-time observation, early warning and forecasting of phytoplankton blooms by integrating automated online sondes and the ecological model. Specifically, based on the high-frequency data from automated online sondes in Xiangxi Bay of Three Gorges Reservoir, we successfully developed 1-4 days ahead forecasting models for chlorophyll a (chl a) concentration with hybrid evolutionary algorithms (HEM). With the predicted concentration of chl a, we achieved a high precision in 1-7 days ahead early warning of good (chl a = 25 mu g/L). Our study shows that the optimized HEM achieved an acceptable performance in real-time short-term forecasting and early warning of phytoplankton blooms with the data from the automated in situ sondes. This system provides an efficient way in real-time monitoring and early warning of phytoplankton blooms, and may have a wide application in eutrophication monitoring and management. (C) 2014 Elsevier B.V. All rights reserved

    Constraining uncertainty and process-representation in an algal community lake model using high frequency in-lake observations

    Get PDF
    Excessive algal blooms, some of which can be toxic, are the most obvious symptoms of nutrient enrichment and can be exacerbated by climate change. They cause numerous ecological problems and also economic costs to water companies. The process-representation of the algal community model PROTECH was tested within the extended Generalised Likelihood Uncertainty Estimation framework which includes pre-defined Limits of Acceptability for simulations. Testing was a precursor to modification of the model for real-time forecasting of algal communities that will place different demands on the model in terms of a) the simulation accuracy required, b) the computational burden associated with the inclusion of forecast uncertainties and c) data assimilation. We found that the systematic differences between the model’s representation of underwater light compared to the real lake systems studied and the uncertainties associated with nutrient fluxes will be the greatest challenges when forecasting algal blooms

    Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems

    Get PDF
    El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua. El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua.The monitoring of pollutants in urban sewer systems is generally conducted by sampling campaigns, and the resulting samples must be transported, stored and analyzed in laboratory. However, the developments in optics and electronics have enabled the merge of them into the UV-Vis Spectrometry. UV-Vis probes have the purpose of determining the dynamics of loads of organic materials (i.e. Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD5)), nitrates, nitrites and Total Suspended Solids (TSS). In addition to the methods used for the calibration of the probes and the analysis of the time series of UV-Vis absorbance spectra, it is necessary to develop forecasting methods in order to use the online control monitoring in real time. The information from the collected data can also be used for decision making purposes and for real-time control applications. Forecasting is important for decision-making processes. Therefore, the objective of this research work was to develop either a forecasting method or forecasting methods applied to UV-Vis spectrometry time series data for online water quality monitoring in operating urban sewer systems. Five UV-Vis Absorbance time series collected at different on-line measurement sites were used, for a total of 5705 UV-Vis absorbance spectra data: four sites in Colombia (El-Salitre Wastewater Treatment Plant-WWTP, San Fernando WWTP, Pumping Station (PS) sewage called Gibraltar and constructed-wetland/reservoir-tank (CWRT)) and one site in Austria (Graz-West R05 Catchment outlet). The complete process proposed to be applied to UV-Vis absorbance time series has several stages and these are: (i) inputs, the UV-Vis absorbance time series,(ii) the time series pre-processing, outliers analysis, complete missing values and time series dimensionality reduction,and (iii) forecasting procedures and evaluation of results. The methodology proposed was applied to the time series with different characteristics (absorbance), this consists of Winsorising as a step in outlier removal and the application of the Discrete Fourier Transform (DFT) to complete the missing values. The new values replaced either outliers or missing values present the same, or almost the same, shape as the original time series, granted the macro vision of the time series coherence. Dimensionality reduction of multivariate absorbance time series allows to have less variables to be processed: PCA linear transformation captures more than 97% of variability for each time series (PC ranging from one to six, depending on absorbance time series behavior), and Clustering process (k-means) combined with Markov Chains. Forecasting procedures based on periodic signals as DFT, Chebyshev, Legendre and Polynomial Regression were applied and they can capture the dynamic behaviour of the time series. Several Machine Learning technics were tested and it was possible to capture the behaviour of the time series at calibration stage, the forecasting obtained valúes can follow the general behaviour compared with observed valúes (with exception of ANFIS, GA and Kalman Filter). Therefore, ANN and SVM have good forecasting performances for first part of forecasting horizon (2 hours). The evaluation of each forecasting methodology was done using four statistic indicators as Absolute Percentage Error (APE), Extended Uncertainty (EU), Set of observed values within Confidence Interval (CI) and sum of EU and Set of observed values within CI. The performance indicators provided valuable information about multivariate forecasting results to estimate and evaluate the forecasting time for a given forecasting methodology and determine which forecasting methodology is best suited for different wavelength ranges (absorbance spectra) at each study site s UV-Vis absorbance time series. Results from different comparison of several forecasting methodologies, highlight that there is not possibility to have a best forecasting methodology among the proposed ones, because all of them could provide a wide forecasting values that would complemented each other for different forecasting time steps and spectra range (UV and/or Vis). Therefore, it is proposed a hybrid system that is based on seven forecasting methodologies. Thus, the forecasted absorbance spectra were transformed to Water Quality Indicators (WQI) for practical uses. The multivariate forecasting results show lower APE values compared to the univariate forecasting results (APE values) using the observed WQI. These results, probably, were obtained because multivariate forecasting includes the correlation presented at whole absorbance spectra range (captures complete or at least great part of time series variability),one wavelength interferes with another and/or other wavelengths. Finally, the results obtained for a constructed-wetland/reservoir-tank system show that it is possible to obtain valuable forecasting results in terms of time detection for some rainfall events. In addition, the inclusion of runoff variables (water level in this case) improves the water quality forecasting results.Doctor en IngenieríaDoctorad

    Assessing and Forecasting Chlorophyll Abundances in Minnesota Lake using Remote Sensing and Statistical Approaches

    Get PDF
    Harmful algae blooms (HABs) can negatively impact water quality, lake aesthetics, and can harm human and animal health. However, monitoring for HABs is rare in Minnesota. Detecting blooms which can vary spatially and may only be present briefly is challenging, so expanding monitoring in Minnesota would require the use of new and cost efficient technologies. Unmanned aerial vehicles (UAVs) were used for bloom mapping using RGB and near-infrared imagery. Real time monitoring was conducted in Bass Lake, in Faribault County, MN using trail cameras. Time series forecasting was conducted with high frequency chlorophyll-a data from a water quality sonde. Normalized Difference Vegetation Index (NDVI) was generally well correlated to chlorophyll-a measured by a sonde (R2 = 0.678 for all data from 5 flights, between 0.323-0.986 for individual flights), while Visible Water Residence Index (VWRI) showed a weaker and less consistent correlation with chlorophyll-a (R2 = 0.027 for all data from 5 flights, between 0.17-0.866 for individual flights). While RGB cameras (trail cameras or UAVs) were useful for visual inspection and spotting blooms, these results suggest that quantitative remote sensing of chlorophyll in Minnesota Lakes should use near-infrared cameras at a minimum. Univariate time series forecasts using sonde chlorophyll-a data were compared using classical (ARIMA, wavelet-ARIMA) and machine learning techniques (LSTM, wavelet-LSTM). Chlorophyll-a was positively correlated to temperature and precipitation, while negatively correlated to conductivity and turbidity. Peak summer chlorophyll concentrations also appeared to be positively correlated to recent precipitation totals. 10-day chlorophyll-a forecasts using univariate LSTM and ARIMA outperformed a multivariate forecast (using conductivity, turbidity, temperature, and precipitation as predictors), suggesting that lower cost monitoring setups (a single chlorophyll probe) may be practical. To assist in understanding meteorological factors impacting interannual variability of blooms in Bass Lake, the relationship between peak summer chlorophyll-a (from Sentinel-2 satellite imagery) and temperature and precipitation were analyzed at Bass Lake. The impact of meteorological factors on patterns in chlorophyll-a for lakes in the Western Corn Belt Plains (WCBP) was also examined, using Sentinel-2 imagery (imagery was available for 160 lakes in the WCBP during 2019 and 2020). Peak summer Chlorophyll-a (from Sentinel-2 imagery) at Bass Lake was positively correlated to 2-week precipitation totals, suggesting a potential role of precipitation induced nutrient loading in initiating blooms; a negative correlation between peak chlorophyll-a and 60-day precipitation totals also suggested that increased residence time during drier periods may be a driving factor as well. While a slight negative correlation between precipitation and peak summer chlorophyll-a was present in a larger scale analysis of 160 WCBP lakes, too many confounding factors were present to show the impact of precipitation on blooms at a broader scale in Minnesota

    Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements

    Get PDF
    High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function

    Investigating summer thermal stratification in Lake Ontario

    Get PDF
    Summer thermal stratification in Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). Summer temperature differences establish strong vertical density gradients (thermocline) between the epilimnion and hypolimnion. Capturing the stratification and thermocline formation has been a challenge in modeling Great Lakes. Deviating from EFDC's original Mellor-Yamada (1982) vertical mixing scheme, we have implemented an unidimensional vertical model that uses different eddy diffusivity formulations above and below the thermocline (Vincon-Leite, 1991; Vincon-Leite et al., 2014). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers; and lake bathymetry is interpolated on a 2-km grid. The model has 20 vertical layers following sigma vertical coordinates. Sensitivity of the model to vertical layers' spacing is thoroughly investigated. The model has been calibrated for appropriate solar radiation coefficients and horizontal mixing coefficients. Overall the new implemented diffusivity algorithm shows some successes in capturing the thermal stratification with RMSE values between 2-3°C. Calibration of vertical mixing coefficients is under investigation to capture the improved thermal stratification
    corecore