10,819 research outputs found

    The safe administration of medication within the electromagnetic scenarios of the Internet of Things (IoT): looking towards the future

    Get PDF
    This paper has focused on analyzing the impact of Information and Communication Technologies (ICTs) to prevent or reduce errors during therapeutic drug administration. The methodology used has included scientific literature and marketed appliances reviews and laboratory tests on radiant devices. The role of the patient has been analyzed, both in terms of compliance with the prescribed treatments and user of technical solutions designed for administering medication. In addition, it has taken into account, how a future characterized by multiple technologies designed to support our daily routines, including health care, might affect the current model of relationship between health professionals and patients. Particular attention has been given to safety risks of ICTs in environments characterized by concurrent electromagnetic emissions operating at different frequencies. Implications and new scenarios from Internet of Things or IoT, have been considered, in light of the approach taken jointly by the European Commission and the European Technology Platform on Intelligent Systems Integration – EPoSS, in their 2008 report Internet of Things in 2020: a roadmap for the future, and how the concept has evolved since then.Chapter 1. Adverse drug events. Chapter 2. ICTs in everyday life and healthcare. Chapter 3. the challenge of electromagnetic safety. Chapter 4. ICTs in health care and in the prevention of medication errors: IoT. Chapter 5. A more effective and safer alternative approach. Chapter 6. Technological proposal 7. Conclusions.N

    ACR guidance document on MR safe practices: 2013

    Full text link
    Because there are many potential risks in the MR environment and reports of adverse incidents involving patients, equipment and personnel, the need for a guidance document on MR safe practices emerged. Initially published in 2002, the ACR MR Safe Practices Guidelines established de facto industry standards for safe and responsible practices in clinical and research MR environments. As the MR industry changes the document is reviewed, modified and updated. The most recent version will reflect these changes. J. Magn. Reson. Imaging 2013;37:501–530. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96674/1/24011_ftp.pd

    Occupational exposure to electromagnetic fields in magnetic resonance environment: an update on regulation, exposure assessment techniques, health risk evaluation, and surveillance

    Get PDF
    Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance. Graphical abstract: [Figure not available: see fulltext.

    Proceedings of the Scientific Workshop on the Health Effects of Electric and Magnetic Fields on Workers

    Get PDF
    "Participants in this workshop discussed various aspects of the health effects of worker exposure to electric and magnetic fields. Specific topics discussed included low frequency electromagnetic fields, biological effects of extremely low frequency electromagnetic fields, health effects of exposures, occupational exposure assessment for electric and magnetic fields in the 10 to 1000 hertz frequency range, and magnetic field management. Research recommendations from workshop panels concerning in-vitro/cellular mechanism studies, epidemiologic studies, exposure assessments, and methods for reducing exposures were provided." - NIOSHTIC-2Held Jan. 30-31, 1991, Cincinnati, Ohio.Also available via the World Wide Web.Includes bibliographical references

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 327)

    Get PDF
    This bibliography lists 127 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during August, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Comparison of wearable measurement systems for estimating trunk postures in manual material handling, A

    Get PDF
    2017 Fall.Includes bibliographical references.Epidemiologic studies have established that awkward trunk postures during manual materials handling are associated with an increased risk of developing occupational low back disorders. With recent advances in motion capture technology, emerging wearable measurement systems have been designed to quantify trunk postures for exposure assessments. Wearable measurement systems integrate portable microelectromechanical sensors, real-time processing algorithms, and large memory capacity to effectively quantify trunk postures. Wearable measurement systems have been available primarily as research tools, but are now quickly becoming accessible to health and safety professionals for industrial application. Although some of these systems can be highly complex and deter health and safety professionals from using them, other systems can serve as a simpler, more user-friendly alternative. These simple wearable measurement systems are designed to be less intricate, allowing health and safety professionals to be more willing to utilize them in occupational posture assessments. Unfortunately, concerns regarding the comparability and agreement between simple and complex wearable measurement systems for estimating trunk postures are yet to be fully addressed. Furthermore, application of wearable measurement systems has been affected by the lack of adaptability of sensor placement to work around obstructive equipment and bulky gear workers often wear on the job. The aims of the present study were to 1) compare the Bioharness™3, a simple wearable measurement system, to Xsens™, a complex wearable measurement system, for estimating trunk postures during simulated manual material handling tasks and 2) to explore the effects of Xsens sensor placement on assessing trunk postures. Thirty participants wore the two systems simultaneously during simulated tasks in the laboratory that involved reaching, lifting, lowering, and pushing a load for ten minutes. Results indicated that the Bioharness 3 and Xsens systems are comparable for strictly estimating trunk postures that involved flexion and extension of 30° or less. Although limited to a short range of trunk postures, the Bioharness also exhibited moderate to strong agreement and correlations with the Xsens system for measuring key metrics commonly used in exposure assessments, including amplitude probability distribution functions and percent time spent in specific trunk posture categories or bins. The Bioharness is suggested to be an a more intuitive alternative to the Xsens system for posture analysis, but industrial use of the device should be warranted in the context of the exposure assessment goals. In addition, a single motion sensor from the Xsens system placed on the sternum yielded comparable and consistent estimates to a sensor secured on the sternum relative to a motion sensor on the sacrum. Estimates included descriptive measures of trunk flexion and extension and percent time spent in specific trunk posture categories. Using one motion sensor instead of two may serve as an alternative for sensor placement configuration in situations where worker portable equipment or personal preference prevents preferred sensor placement

    Ancient and historical systems

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 394)

    Get PDF
    This bibliography lists 71 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Patient Safety in Radiology

    Get PDF
    AbstractMedical imaging (in short radiology) includes diagnostic and interventional procedures and has an essential role in the diagnosis and treatment of diseases. The objective in this field of medicine is focused on providing diagnostic and therapeutic benefit to the patients along with protecting them from the possible hazards associated with the procedures. By continuously upgrading imaging technologies and improving imaging modalities, such as ultrasound imaging, X-ray-based imaging (radiography, fluoroscopy, and computed tomography), magnetic resonance imaging (MRI), and interventional radiology, safety has become more and more crucial. The potential hazards in radiology for the patients and the staff are multidimensional and will be discussed in the chapter
    corecore