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ABSTRACT 

 
 
 

A COMPARISON OF WEARABLE MEASUREMENT SYSTEMS FOR ESTIMATING TRUNK 

POSTURES IN MANUAL MATERIAL HANDLING 

 
 

Epidemiologic studies have established that awkward trunk postures during manual 

materials handling are associated with an increased risk of developing occupational low back 

disorders. With recent advances in motion capture technology, emerging wearable 

measurement systems have been designed to quantify trunk postures for exposure 

assessments. Wearable measurement systems integrate portable microelectromechanical 

sensors, real-time processing algorithms, and large memory capacity to effectively quantify 

trunk postures. Wearable measurement systems have been available primarily as research 

tools, but are now quickly becoming accessible to health and safety professionals for industrial 

application. Although some of these systems can be highly complex and deter health and safety 

professionals from using them, other systems can serve as a simpler, more user-friendly 

alternative. These simple wearable measurement systems are designed to be less intricate, 

allowing health and safety professionals to be more willing to utilize them in occupational 

posture assessments. Unfortunately, concerns regarding the comparability and agreement 

between simple and complex wearable measurement systems for estimating trunk postures are 

yet to be fully addressed. Furthermore, application of wearable measurement systems has been 

affected by the lack of adaptability of sensor placement to work around obstructive equipment 

and bulky gear workers often wear on the job.     

The aims of the present study were to 1) compare the BioharnessTM 3, a simple 

wearable measurement system, to XsensTM, a complex wearable measurement system, for 

estimating trunk postures during simulated manual material handling tasks and 2) to explore the 
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effects of Xsens sensor placement on assessing trunk postures. Thirty participants wore the two 

systems simultaneously during simulated tasks in the laboratory that involved reaching, lifting, 

lowering, and pushing a load for ten minutes.  

Results indicated that the Bioharness 3 and Xsens systems are comparable for strictly 

estimating trunk postures that involved flexion and extension of 30° or less. Although limited to a 

short range of trunk postures, the Bioharness also exhibited moderate to strong agreement and 

correlations with the Xsens system for measuring key metrics commonly used in exposure 

assessments, including amplitude probability distribution functions and percent time spent in 

specific trunk posture categories or bins. The Bioharness appeared to be an a more intuitive 

alternative to the Xsens system for posture analysis, but industrial use of the device should be 

warranted in the context of the exposure assessment goals. 

In addition, a single motion sensor from the Xsens system placed on the sternum yielded 

comparable and consistent estimates to a sensor secured on the sternum relative to a motion 

sensor on the sacrum. Estimates included descriptive measures of trunk flexion and extension 

and percent time spent in specific trunk posture categories. Using one motion sensor instead of 

two may serve as an alternative for sensor placement configuration in situations where worker 

portable equipment or personal preference prevents preferred sensor placement.    
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INTRODUCTION 

 
 
 

Background 

 For decades, low back disorders (LBDs) have been recognized as a major cause of 

injury and disability among many occupational populations (NRC, 2001; Marras et al., 2009). A 

low back disorder refers to an inflammatory and/or degenerative form of cumulative trauma that 

affects musculature, bones, tendons, ligaments, and other supporting structures of the back 

(OSHA, 2016a, NRC, 2001). According to the Bureau of Labor Statistics (LBS), the United 

States had an incidence rate of 17.3 per 10,000 full-time workers who experienced occupational 

back injuries in 2015 (BLS, 2016a). The trunk and back were the third most affected areas by 

injuries that caused workers to lose days away from work in 2015 (BLS, 2016b). Globally, it has 

been estimated that LBDs are responsible for causing over 800,000 disability-adjusted lost 

years annually (Punnett et al., 2005). Some of the most common LBDs include, but are not 

limited to, muscular strains and tears, herniated discs, and radiculopathy or sciatica (Andersson, 

1997). Common signs include chronic pain, discomfort during activity or static postures, and 

loss of mobility (Cooper, 2015; OSHA, 2016b). Signs of LBDs may emerge periodically as result 

of cumulative trauma in the workplace and consequently lead to possible muscular failure and 

physical disability (Konz and Johnson, 2007). More than 22 million cases of low back pain 

lasting at least one week or more happen each year and result in about 150 million days away 

from work (Guo, Tanaka, Halperin, et al., 1999). On average, people with low back pain acquire 

health care expenditures about 60% higher than those without low back pain (Luo et al., 2004). 

Direct costs, including lost wages and medical treatment, from low back pain have been 

estimated to range between $12 billion and $90 billion each year in the United States 

(Dagenais, Caro, and Haldeman, 2008). The symptoms and prevalence of LBDs are 

consistently underreported in compensation data suggesting that cost could be higher than 

previously recorded (Wuellner, Adams, and Bonauto, 2016; Evanoff, Abedin, Grayson, et al., 
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2002). Low back disorders place a substantial physical and financial burden on workers, their 

families, and the rest of society.  

 A combination of physical risk factors has been identified to increase the probability of 

developing LBDs in occupational settings (da Costa and Vieira, 2010; Putz-Anderson and 

Bernard, 1997; Trask, et al., 2016; Wai et al., 2010; Bao et al., 2016; Waters et al., 2007). 

Physical factors such as forceful lifting, heavy physical work, whole body vibration, and static 

and dynamic awkward postures have been associated with increasing the risk of LBDs (Putz-

Anderson and Bernard, 1997). A number of systematic reviews have suggested a causal 

relationship between LBDs and awkward postures, specifically postures of the trunk (Andersen, 

Haahr and Frost, 2007; Punnett and Wegman, 2004; Putz-Anderson and Bernard, 1997; Marras 

et al., 1995; da Costa and Vieira, 2010: Jonsson, 1988; Punnett et al., 1991). To meet job 

demands, workers often experience these types of trunk postures from lifting materials while 

stooped, twisting to reach tools, and holding static trunk positions (Dempsey, 1998; Ayoub and 

Mital, 1989). Certain tasks such as manual material handling (MMH) routinely demand workers 

to engage in movements that induce awkward trunk postures (Coenen et al., 2013; Putz-

Anderson and Bernard, 1997; Marras; 2010). Manual material handling involves subtasks such 

as lifting, lowering, carrying, pushing, and pulling materials, products, and/or people (Dempsey, 

1998). In 2007, the National Institute for Occupational Safety and Health (NIOSH) published the 

Ergonomics Guidelines of Manual Material Handling acknowledging that awkward trunk 

postures may lead to injury, wasted energy, and wasted time at work. In an attempt to improve 

work conditions, NIOSH has called for improved exposure assessment methods, emphasizing 

on the importance of effectively quantifying exposure to awkward postures in MMH tasks (CDIR, 

2007).  

 Direct exposure methods have become common tools used in the quantitative analysis 

of trunk postures. Direct exposure methods focus on estimating the magnitude, duration, and 

frequency of trunk postures by focusing on the motions of the trunk (e.g. trunk flexion, rotation, 
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lateral bending). Direct exposure methods have been popular because of their precision and 

accuracy but have been limited by being intrusive for workers, constrained to laboratory use, 

and costly for industrial application (Li and Buckle, 1999). In recent years, interest in wearable 

measurement systems for measuring human motion as an alternative to traditional direct 

exposure methods has increased significantly (Chaffin et al., 2017; Chan et al., 2012). Wearable 

measurement systems rely on miniature motion sensors to quantify body and segment 

acceleration, velocity, and orientation. As a result of recent technological advancements, 

wearable measurement systems have become more portable for field application, conformable 

to wear, and cheaper to manufacture than traditional methods (Chaffin et al., 2017).  

 

Figure 1: Individual fitted with Xsens system. 

Wearable measurement systems can be categorized into two groups: complex and 

simple wearable measurement systems. A complex wearable measurement system can be 

defined as a system that requires extensive preparation, intricate calibration and data 

processing procedures, and a certain degree of proficiency to operate and troubleshoot. One 

example is XsensTM (Awinda, Xsens Technologies, NL), an inertial measurement system that 

uses inertial measurement unit (IMUs) sensors to estimate human motion, including motion of 

the trunk (Roetenberg, 2009). The Xsens system requires background knowledge of 
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biomechanics, placement of multiple sensors on different anatomical landmarks, and knowledge 

of data management and data extraction (Figure 1). The Xsens system has been used primarily 

as a research tool in human motion studies, with a limited number of studies focusing on its 

effectiveness in industrial application (Cuesta-Vargas et al., 2010; Nahavandi et al., 2016; 

Vignais et al., 2013; Wang, Dai, and Ning, 2015; Colombo et al, 2012; Schmuntzsch, Yilmaz 

and Rotting, 2015; Ciuti et al., 2015). Complex systems such as Xsens are crucial in research 

application, but a high degree of sophistication may prevent occupational professionals from 

adapting them in field application. 

 

Figure 2: Individual wearing Bioharness 3. 

In contrast to complex wearable measurement systems, simple wearable measurement 

systems allow users to measure trunk motion with more ease. A simple wearable measurement 

system can be defined as a system that requires minimal time to secure on users and short 

calibration and data processing procedures. One example is the Zephyr™ Bioharness 3 (Zephyr 

Technology Corporation, USA), a physiological monitoring system capable of quantifying trunk 

posture as well as heart rate and breathing rate (Zephyr Technology, 2012). The Bioharness 3 

only relies on one sensor and data can be accessed without the need of intricate data extraction 

techniques (Figures 2). Although the Bioharness 3 has been used in field studies focusing on 

industries such as construction and firefighting, it is yet to be used consistently in evaluating 

trunk postures in industrial settings (Cheng et al., 2013; Migliaccio et al., 2012; Gatti et al., 2014; 
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Hernandez, Cowings, and Toscano, 2012; Różanowski et al., 2015; Miszuk, Hurt, and Rannam, 

2015; Wang et al., 2015; Wang and Fu, 2016).  

Another limitation of current wearable measurement systems is the lack of knowledge on 

of the effects of different sensor placement on estimating trunk postures. Studies have analyzed 

trunk postures using sensors located on the chest or sternum, the lumbar and thoracic regions 

of the back, shoulders, head, and side of the trunk (Fethke et al., 2011; Wong et al., 2009; 

Faber et al., 2009; Lee et al., 2017; Driel et al. 2012; Graham et al., 2009; Schall et al., 2015a; 

Yan et al., 2017). No consensus on ideal placement of sensors on different parts of the trunk 

has been established. With limited research focused on different methods for assessing trunk 

postures, further investigation continues to be in demand. 

Scope of Study 

The lack of understanding between simple and complex wearable measurement 

systems for trunk posture estimation is a primary concern in occupational health and safety 

(David, 2005; Chiasson, Imbeau, Aubry, and Delisle, 2012). The purpose of this study was to 

evaluate the comparability and agreement between the Bioharness 3, a simple wearable 

measurement system, and Xsens, a complex wearable measurement system, for estimating 

trunk postures during simulated MMH tasks. Specifically, the study focused on metrics of trunk 

posture that are commonly used in exposure assessments. The proposed research was 

necessary because comparative studies between commercially-available wearable 

measurement systems continue to be scarce.  Information on occupational trunk postures 

derived from wearable measurement systems can be beneficial for characterizing work based 

on physical demands, assessing risk of low back injury, managing high-risk jobs, implementing 

protective interventions, and improving return-to-work strategies. By establishing a degree of 

comparability and agreement between the Bioharness and Xsens system, the Bioharness 3 can 

be considered an alternative to complex systems for posture analyses.  
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Furthermore, the study explored the effect of sensor placement for evaluating trunk 

postures using Xsens sensors. Determining potential similarities among motion sensors placed 

on different regions of the trunk can improve the adaptability of wearable measurement systems 

in the field. Having the ability to secure sensors on different parts of the trunk without significant 

effects on trunk posture estimates can help overcome challenges health and safety 

professionals often face. Challenges include obtrusive protective equipment preventing sensor 

placement, sensors being disturbed by thermal, electromagnetic, and mechanical forces, and 

worker anthropometrics preventing the identification of necessary body landmarks.  

Aims of Study 

1. Compare trunk posture estimates from the Bioharness 3, simple wearable measurement 

system, to estimates from Xsens, a complex wearable measurement system. The 

variables that were compared included: trunk flexion and extension in the sagittal plane, 

time spent in posture categories of trunk flexion and extension (<0°, 0°-30°, 30°-60°, and 

>60°), and number of times flexion thresholds were exceeded (above 30°and 60°). 

Objective 1.1: Evaluate any similarities between summary measures of trunk 

flexion and extension estimates from the Bioharness 3 and Xsens systems  

Objective 1.2: Evaluate agreement of trunk flexion and extension estimates from 

the Bioharness 3 and Xsens systems 

Objective 1.3: Evaluate potential agreement and correlations between the 

Bioharness 3 and Xsens for measuring key metrics used in exposure 

assessments  

2. Evaluate the effect of different sensor placement on trunk posture estimates for 

wearable measurement systems. Variables compared included were the same as those 

presented in Aim 1. 
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Objective 2.1: Evaluate any similarities between summary measures of trunk 

flexion and extension estimates from Xsens sensors placed on the shoulder, 

sternum, and sacrum  

Objective 2.2: Evaluate agreement of trunk flexion and extension estimates from 

Xsens sensors placed on the shoulder, sternum, and sacrum 

Objective 2.3: Evaluate potential agreement and correlations among Xsens 

sensors placed on the shoulder, sternum, and sacrum for measuring key metrics 

used in exposure assessments  
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REVIEW OF LITERATURE 

 
 
 

Awkward Trunk Postures 

Trunk postures regarded as awkward or non-neutral have been defined as mild to 

extreme deviations from resting positions (Putz-Anderson and Bernard, 1997). Awkward trunk 

postures include motions such flexion and hyperextension or bending in the sagittal plane, 

twisting in the transverse plane, and lateral bending in the frontal plane. No consensus on the 

definition of awkward postures exists in the literature as it tends to be dependent on the context 

of the job tasks, the type of posture analysis, among other factors. Occupational awkward 

postures have been suggested to have potential effects on the musculoskeletal integrity of the 

back and trunk. When working in awkward trunk postures, spinal loading and intervertebral disc 

pressure increase, potentially resulting in impairment or injury due to overexertion (Jäger et al., 

2000; Kumar, 2001; McGill, 1997). The effect of awkward trunk posture has been suggested to 

increase as the deviation of the trunk increases (Putz-Anderson and Bernard, 1997).  In periods 

of prolonged awkward trunk postures, stress on the spine progressively increases joint 

hypermobility and reduces the safety margin of tissue strain (Adams et al., 1980). Sustained 

awkward trunk postures can also result in a reduction of blood supply to stabilizing musculature 

due to compressed capillaries and veins (Vieira and Kumar, 2004; Astrand et al., 2003). The 

supply of oxygen and other nutrients to back muscles becomes limited, allows waste products to 

build up, and leads to fatigue and discomfort (Garg, 1979). Highly repetitive postural changes 

have also been suggested to increase tissue fatigue and induce micro-strain on the low back 

(Dolan and Adams, 1998). When lifting or lowering loads, increasing the rate has been 

suggested to cause the activating muscle tissue to reach failure at the earlier periods of the task 

(Carter and Hayes, 1977). Experiencing increased spinal loading while in awkward postures is 

normal and part of daily living, but if necessary recovery is not met, the probability of 

experiencing muscular strain and injury increases (Brinckmann, Biggemann, and Hilweg, 1988). 
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Since LBDs can also be a result of social or personal factors, no consensus on the causal 

relationship between LBDs and awkward trunk postures exists, so further investigation on this 

matter still requires attention (Marras, 2000).  

Specific thresholds or limits at which trunk postures become an occupational hazard 

continue to be undefined (Hoy et al., 2010). For instance, thresholds that separate mild, 

moderate, and extreme trunk postures have been inconsistent in the literature and more 

concrete standardization continues to be in need. Studies that use different thresholds to 

classify trunk postures make it difficult for cross-evaluations of their findings. In a systematic 

review, Wai et al. (2010) evaluated 35 studies where a variety of defined trunk posture 

categories were used to evaluate awkward trunk postures. Wai et al. (2010) concluded that 

most epidemiologic studies have used thresholds at 45° of trunk flexion or greater to define 

extreme trunk postures (Jansen et al.,2004; Hoogendoorn et al., 2002; Yip, 2004; Josephson et 

al., 1998; Tubach et al., 2002). Another review by Juul-Kristensesn et al. (2001) evaluated a 

series of posture assessment methods and also indicated that a threshold of 45° of trunk flexion 

has been one of the most repetitively used in observation-based methods. The National Institute 

of Occupational Safety and Health suggested that researchers should consider classifying trunk 

postures into four major categories based on increments of 30° (i.e. 0°-30°, 30°-60°, 60°-90°, 

and >90°) (NIOSH, 2014). Although this classification was largely designed to facilitate how 

assessors differentiate ranges of trunk flexion using observational methods, it can serve as the 

basis for standardizing how trunk postures are categorized for assessing risk. Studies such as 

Villumsen et al. (2015), Lee et al., (2017), and Coenen et al. (2014) have utilized this posture 

categorization system to determine the severity of awkward trunk postures. The classification of 

trunk postures is critical in exposure assessment studies and in the continuing effort to improve 

how awkward trunk postures are evaluated in the job.  
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Manual Material Handling  

The presence of awkward trunk postures is common in jobs that require worker 

engagement in manual material handling (MMH), one of the most practiced intensive manual 

tasks across industries (Putz-Anderson and Bernard, 1997; Hoogendorn et al., 1999; Putz-

Anderson and Bernard, 1997). In a longitudinal study at a large automotive company, 

Keyserling et al. (1992) assessed the exposure of assembly line workers to awkward trunk 

posture. Keyserling et al. (1992) indicated that mild trunk postures (>20° of flexion) were present 

in 89% of the jobs and severe trunk postures (>45° of flexion) accounted for 59% of the jobs. 

The mild and severe trunk postures were observed to be a result from workers reaching for 

parts inside bins or lifting and carrying objects from the ground to a higher level. Punnett et al. 

(1991) investigated the exposure to awkward postures of assembly line workers who were 

mostly responsible for MMH tasks. Of the 259 workers involved in MMH tasks, 84% were 

exposed to mild trunk postures (> 20° of flexion) and 51% were exposed to severe trunk 

postures (>45° of flexion). Workers in the sample reported to be mostly responsible for 

transporting and handling tools and small parts.  

Workers who engage in MMH tasks have been suggested to be at a greater risk of injury 

than workers who do not handle materials as part of their job (Matsui et al., 1997; Putz-

Anderson and Bernard, 1997; Snook, 1978; Bigos et al., 1986).  There has been a series of 

epidemiologic studies that suggest a level of association between LBDs and MMH tasks 

(Teschke, 2009). In a cross-sectional study, Burdorf et al. (1991) investigated the effect of MMH 

tasks on the development of low back pain for concrete workers. After a 12-month follow up, 

Burdorf et al. (1991) determined that low back pain of concrete workers who were repetitively 

engaged in lifting with awkward postures was significantly more prevalent than low back pain of 

workers who did little lifting (OR 2.8, 95% CI 1.3–6.0). In a prospective cohort study, Anderson 

et al. (2007) looked at almost 4,000 service and industrial workers to explore possible 

associations between increased exposure to MMH tasks and severe pain. The MMH tasks 
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studied included symmetrical and asymmetrical lifting (i.e. lifting in multiple planes of motion), 

pulling and pushing loads, squatting, standing, and repetitive movements. The results of this 

study indicated that highly repetitive MMH was significantly associated with low back pain 

(Hazard Ratios [HR],1.7, 95% CI 1.2–2.6). Lifting more than 100 kilograms (kg) per hour was 

also associated with increased low back pain (HR 1.5, 95% CI 1.0–2.3). Squatting was shown to 

be marginally associated with regional pain, not just pain of the low back (HR 1.5, 95% CI 1.0–

2.1). In a prospective study by Tubach et al. (2002), researchers recruited about 2,000 workers 

in electrical and gas industry to investigate the prevalence of severe cases of low back pain and 

physical work load in MMH tasks. Severe cases of low back pain were defined as cases that 

required sick leave. Work load was defined as bending, twisting, and carrying loads. The results 

indicated that carrying loads over 10 kg (Relative risk [RR] 4.1, 95% CI 2.2–7.5) and bending 

repetitively (RR 8.2, 95% CI 3.7–17.9) everyday were strongly associated with sick days due to 

low back pain. Other studies have also shown associations between low back disorders (LBD) 

and trunk postures exceeding 20° and 45° of flexion in MMH (Josephson et al., 1998; Tubach et 

al., 2002; Jansen et al., 2004; Hoogendorn et al., 2002; Yip 2004). It is still difficult to establish a 

concrete dose-response relationship between LBD and MMH, however. This is mostly in part 

due to the multifactorial nature of LBDs (Marras, 2000; Christie et al.,1995). Awkward trunk 

postures adapted in MMH jobs have been a target of health and safety professionals who aim to 

recognize, quantify, and control their prevalence in occupational settings (Mital, 1997). To 

achieve that, professionals have relied on a number of exposure assessment methods over the 

years. 

Types of Exposure Assessment Tools 

The National Institute of Occupational Safety and Health (NIOSH) has acknowledged the 

importance of having highly tested exposure assessment methods and has consistently 

encouraged the improvement of existing and new methods (NIOSH, 2016). Exposure 

assessments allow researchers and other professionals to improve injury prevention strategies, 
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physical demand programs, job classification systems, and control implementation systems 

(Burdorf et al., 1992; Li and Buckle, 1999; Tescke et al., 2009). Exposure assessment methods 

are separated into three major categories: self-report, observational, and direct. Due to the 

multifactorial nature of MSDs and LBDs, each type of method addresses a variety of factors and 

their use depends on the goals of the assessment, the access to resources, and limitations of 

the procedure (Li and Buckle, 1999; David, 2005). An appropriate exposure assessment method 

should be comprised of task distribution, occurrence of different tasks in the job, and affected 

body parts involved (Winkel and Mathiassen, 1994). A number of methods have been 

developed to assess the exposure to awkward postures, each possessing their respective 

advantages and disadvantages.  

Self-reports  

Self-reports, such as surveys and questionnaires, are designed to collect data on 

physical, psychosocial, and perceptual factors in the working environment. This is one of the 

oldest methods and heavily relies on written reports based on perceived sensation from 

participants and reported prevalence of certain activities (David, 2005; Spielholz et al., 2001). 

Posture-based reports typically identify discomfort and pain of a body part for a specific amount 

of time. These methods are adequate for large sample sizes, but they are expensive to 

administer and analyze and are significantly affected by participant recall and reporting bias 

(Burdoff, 1992; Viikari-Juntura, et al., 1996). Self-reports have limited reliability and precision for 

estimating exposure to awkward postures (Van der Beek and Frings-Dresen, 1998; Burdorf, 

1995). They are also limited to qualitative classification of physical exposure (e.g., light, 

moderate, heavy loads). In addition, poor design of the surveys or questionnaire may yield 

difficulty for participants to read and interpret what is asked of them (Spielholz et al., 2001). 

Observational Methods 

Observational methods require raters to collect data by watching participants perform 

tasks. Data collection can be gathered through on-site assessments or using advanced tools 
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(e.g. video, biomechanical models) aided by computer software (Chaffin, Anderson, and Martin, 

1999; Li and Buckle, 1999; David, 2005). Although field methods are limited by observation 

time, video-based methods provide a more detailed and quantifiable source of exposure data for 

long durations of data collection (Spielholz et al., 2001). Some examples of observational 

methods include the NIOSH Lifting Equation, Oak Working Posture Analysis System, the Rapid 

Upper Limb Assessment, PLIBEL, and Rapid Entire Body Assessment, among others (Li and 

Buckle, 1995). Simple observational methods are less expensive and can be applied to a 

number of workspaces, but more advanced methods require highly skilled raters and expensive 

equipment (David, 2005). Observation methods that rely on video recording also are prone to 

not adequately representing the tasks at hand (Spielholz et al., 2001). This is due to limited 

recording of partial task cycles and behavioral effects yielding systematic bias. Other problems 

with these methods include high time consumption and insufficient reliability (Burdorf et al., 

1992).  

Direct Methods 

Direct methods quantitatively measure a combination of kinematics or kinetics exerted 

on the human body and are often complemented with physiological estimates. In a systematic 

review of posture-based assessments, Li and Buckle (1999) described direct methods as 

sensing devices attached to the full body or specific limbs to quantify biomechanical response to 

physical work. Direct methods are effective in measuring all the elements that characterize work 

postures (i.e. intensity, frequency, duration) simultaneously in dynamic environments (Burdorf 

and Van der Beek, 1999, Burdorf, 1995; Winkel and Mathiassen, 1992). Motion-based direct 

methods are praised for their high degree of data resolution, precision, and accuracy. The first 

types of direct methods could only be used to evaluate static postures, making it difficult to 

analyze dynamic activities, such as lifting (Li and Buckle, 1999). In the past two decades, 

however, advancements in technology used in direct assessments has made it possible to 
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evaluate job tasks in the field with little disruption and user-friendly systems (Burdorf and Van 

der Beek, 1999; David, 2005; Marras et al., 2010).  

 Some of the types of direct methods popular for exposure assessments include 

optoelectronic, goniometric/electrogoniometric, and electromagnetic systems, along with more 

modern accelerometry-based and inertial measurement systems (Li and Buckle, 1995; Garg 

and Kapellusch, 2009; Marras et al., 2010). Other tools include electromyography, physiological 

monitoring systems, and force plates/gauges (Konz and Johnson, 2007). Optoelectronic 

systems, such as Vicon (Vicon, Oxford, UK), use reflective markers appended to limb 

landmarks and high frame cameras to calculate and log continuous streams of kinematic data.  

Optoelectronic systems, however, are often limited by being restricted to laboratory conditions 

(Marras et al., 2010; Li and Buckle; 1999). Goniometric systems rely on goniometers to estimate 

the joint angle between two adjacent limbs or segments but, despite having well-established 

precision and accuracy, are sensitive to unstable environments and inconsistent in highly 

complex movements (e.g. shoulder) (Clarkson, 2000; Marras et al., 2010). Electromagnetic 

systems use magnetic fields to sense the positions and orientation of different receivers 

allowing estimated motion at six degrees of motion, unlike other simpler direct tools (Meskers et 

al., 1999; LaScalza, Arico, and Hughes, 2003). Electromagnetic systems allow for exposure 

estimates of complex tasks but often lack versatility when operating under highly magnetic 

environments (Li and Buckle, 1999). These systems have the ability to calculate exposure but 

are limited in field application due to restraining movement and workflow (Kim et al., 2012; 

Faber et al., 2008; Morlock et al., 2000). For the purpose of this thesis, accelerometry-based 

and inertial measurement systems methods will be explored at a greater depth.  
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Accelerometry Based Systems 

Introduction 

Quantification of occupational physical exposures typically focuses on the kinematics 

(e.g. acceleration, angular displacement) or the kinetics (e.g. ground forces, moments) placed 

on the body through interactions with the work environment. While kinetic measures are often 

acquired using biomechanical modeling or instruments such as force plates, kinematic 

measures can be obtained through the use of accelerometer-based systems. Accelerometer-

based systems, often referred to as accelerometers, have been used to recognize and evaluate 

human activity/tasks, vibration, energy expenditure, and body and segment position and 

orientation (Zimmerman and Cook, 1997; Berquer, Smith and Davis, 2002; Bouten et al., 1997; 

Joshua and Varghese, 2010; Tulen et al., 1997; Walker et al., 1997; Ray and Teizer, 2012). 

Accelerometers are motion sensors that can measure the acceleration of moving objects, which 

can be used to estimate orientation with respect to a reference axis (e.g. horizontal, gravity). 

Acceleration is proportional to the force acting on the sensor and can be used to determine the 

magnitude and repetition of a movement (Yang and Hsu 2010). To measure acceleration 

changes, accelerometers rely on the shifts in movement of a seismic crystal or mass attached to 

a mechanical suspension system inside the sensor (Godfrey et al., 2008). The physical changes 

of the seismic mass are then transduced into electrical signals that can be interpreted as 

acceleration data (Yang and Hsu 2010). Through integration of acceleration, accelerometers 

can yield linear and angular velocity and position of a segment over time. Two of the most used 

types of accelerometers are piezoresistive and piezoelectric accelerometers (Fahrenberg et al., 

1997; Godfrey et al., 2008). Piezoresistive accelerometers have a cantilever beam with a proof 

mass that, when moved, produces an electrical signal corresponding to the resulting changes in 

acceleration. In a piezoelectric accelerometer, the sensing component bends resulting in an 

electrical output that can be transduced into digital data (Fahrenberg et al., 1997). 

Recommendations on the most ideal locations of accelerometers include body segments that 
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are least prone to artifact movement: the collarbone, the sides of ribcage, waist, thighs, shin, 

and top of the foot (Fahrenberg et al., 1997). However, placement depends on the part of the 

body that is being measured, with the trunk being the most commonly used for measuring full 

body movements and postures. No specific consensus on the optimal placement of sensors has 

been reached in the current literature.  

Validity and reliability of postural measures 

 Segment orientation or inclination is a basic accelerometer metric based on the 

acceleration from body segments (e.g. head, arms, legs) and acceleration from gravity 

(Karantonis et al., 2006; Yang and Hsu, 2009). Although segment orientation can be estimated 

using a uniaxial accelerometer, this does not take into account acceleration on other planes of 

motion, failing to limit noise and represent orientation adequately (Fahrenberg et al., 1997; Juul-

Kristensen et al., 2001). To close this gap, triaxial accelerometers have been developed to 

measure orientation around orthogonal axes (3 degrees of freedom) (Juul-Kristensen et al., 

2001). To compliment this relatively new technology, a number of mathematical algorithms have 

been developed for estimation of static and dynamic trunk postures in clinical and ergonomic 

studies (Fisher, 2010; Jovanov et al., 2013; Wong and Wong, 2008; Wong and Wong, 2009; 

Amasay et al., 2009; Juul-Kristensen et al., 2001). Triaxial accelerometers have been validated 

as posture assessment tools in laboratory and field studies.   

Amasay et al. (2009) used a triaxial accelerometer (Virtual Corset, Microstrain Inc., USA) 

to measure the orientation of objects during static conditions and orientation error during 

dynamic conditions. Static conditions were created by attaching the accelerometer to a vase 

and rotating it accordingly to desired rotation angles (10° to 360°, 10° increments). Dynamic 

conditions were created by attaching the accelerometer and potentiometer (reference sensor) to 

a pendulum that was released at different heights (0–10 cm, 2 cm increments; 10–25 cm in 5 

cm increments) to simulate the movement of a body segment (e.g. shoulder) around a joint.  

Amasay et al. (2009) determined that the sensor accurately estimated orientation under static 



 17 

conditions (RMS angle error = <1°). Under dynamic conditions, the orientation error from the 

sensor was relatively low (RMSD = 3°).  

Hansson et al. (2001) used triaxial accelerometers fixed to a head model (“jig”) as part of 

a posture analysis of static and non-static postures. Orientation was calculated from 

acceleration data using spherical coordinate transformations. Under static conditions at 0°, 30°, 

60°, 90°, 120°, 150°, and 180° of sagittal tilting, results indicated that the sensors accurately 

calculated the orientation of the head model (angular error = 1.3°, angular noise = 0.04°). For 

non-static conditions, Hansson et al. (2001) concluded that although acceleration data was 

accurate, orientation data could not be interpreted from the acceleration data due to high 

angular error from inconstant speeds. Hansson et al. (2001) explained that higher angular errors 

occurred because of the sensitivity of accelerometers to radial and tangential accelerations. 

Since accelerometers use the line of gravity as the reference vector to estimate orientation, the 

presence of dynamic accelerations can cause the reference vector to deviate from the line of 

gravity (Hansson et al., 2001).  The effect of inconstant speeds on orientation estimates from 

accelerometers has been explored in other studies.  

In Korshøj et al. (2014), a triaxial accelerometer (ActiGraph GT3X+, ActiGraph, LLC, 

USA) was validated against a magnetic tracking device for estimating arm postures in simulated 

working tasks. Simulated working tasks included a 30-minute protocol of dynamic arm 

elevations at a fast (0.50 Hz), intermediate (0.25 Hz) and slow (0.125 Hz) pace. Low root-mean-

square errors indicated accurate measures in slow and medium tasks (RMSE=2.2°-3.6°), but 

failed in fast paced tasks (RMSE= 10°).  

In a comparative study, Lee et al. (2017) focused on using two commercially distributed 

accelerometers, the Bioharness 3 (Zephyr Technology Corporation, USA) and the ActiGraph 

GT9X Link (ActiGraph, LLC, USA), to analyze the effect of speed and sensor placement on 

trunk posture estimates. The sensors were placed on chest and under the armpit for the 



 18 

Bioharness 3 and the head, shoulder, chest, side of waist, and lower back for the ActiGraph as 

the reference system. The systems measured trunk flexion at a “fast” (1.00 Hz); “medium” (0.67 

Hz), and “low” (0.50 Hz) speeds during lifting tasks. The results indicated that the Bioharness 3 

placed on the chest and under the armpit had an acceptable level of agreement for measuring 

trunk postures at slow speeds (0.5 Hz) for tasks that induced trunk flexion at 45° or less. 

Agreement was reported to be unacceptable between the systems for tasks that involved faster 

speeds and trunk flexion of 90°. Lee et. (2017) also presented metrics of time spent in certain 

posture categories but no further statistical analysis was performed with those metrics.  

Although investigators have presented evidence to support the accuracy of 

accelerometers and comparability among different accelerometer types, research focusing on 

the reliability or agreement of accelerometers is still in need. There are also insufficient studies 

supporting the use of accelerometers to assess more dynamic, complex postures. No 

consensus on the specifications of accelerometer for postural analysis has been established so 

selection of sensor should continue to be a major of emphasis of studies testing the practicality 

and versatility of accelerometers (Trost et al., 2005). 

Application 

 Accelerometers have been primary tools in measuring body motion as a way to evaluate 

exposure to occupational awkward postures in various industries. In Ribeiro et al. (2011), an 

accelerometer (Spineangel, Movement Metrics, NZ) was used to measure the exposure of 

health workers to trunk posture changes. Ribeiro et al. (2011) relied on an approach to examine 

a combination of three domains of cumulative exposure: magnitude, frequency and duration. 

The results indicated that the workers spent about 5.0% of their time in trunk flexion greater 

than 30°and 0.2% of the total time in trunk postures with greater than 60° of flexion. In addition, 

the number of times workers transitioned above specific thresholds (30°, 45°, and 60°) were the 

following: 30° of flexion was exceeded 1069 times per hour; 45°of flexion was exceeded 121 

times per hour, and 60° of flexion was exceeded 8 times per hour. Ribeiro et al. (2011) 
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concluded that the Spineangle had an excellent within-day reliability for measuring postural 

changes for numerous workers (ICC=0.84), but made no final remarks on the potential effects 

the measured exposure had on the workers. Ettinger et al. (2013) assessed the exposure of 

dental hygienists to awkward upper extremity postures using accelerometers (Virtual Corset, 

Microstrain Inc., Williston, USA). Exposure to awkward postures during full workdays of workers 

was analyzed and was compared to office workers in the same company. The results suggested 

that the dental hygienists spent an average of 7% of their workday with arms above 60◦ of 

humeral elevation and 71% of their work time was spent in pseudo-static working postures. 

Ettinger et al. (2013) indicated that this type of research helps professionals take a step closer 

to better understanding association between working postures and upper extremity disorders. 

Hess et al. (2010) investigated exposure of masons to repetitive heavy lifting and buttering 

through the use of accelerometers attached to the upper arms (Virtual Corset, Microstrain Inc., 

Williston, USA). Physical exposure of 41 workers who handled two different types of concrete 

blocks was quantified to determine which concrete blocks imposed the greatest percent time 

spent in certain shoulder postures (above 30°, 60°, and 90° of elevation). Hess et al. (2010) 

successfully characterized the shoulder posture of workers in the specific job and concluded 

that there were no significant differences between the two types of blocks (p>0.05). 

Accelerometers have been popular to in posture-based exposure assessments for different 

body segments and have shown to be versatile in a number of industries.  

Advantages and Disadvantages  

Accelerometer-based systems exhibit their own advantages and disadvantages. Their 

application heavily depends on the purpose of the assessment, the work environment, the 

number of people being studied, and the duration of data collection (Li and Buckle, 1999). Body-

mounted accelerometers exhibit versatility in field and lab application. They possess the ability 

to simultaneously measure full work days of multiple workers, have large memory logging 

capacity, and impose minimal interruption in workers’ daily activities and duties (Li and Buckle, 
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1999). Accelerometers are capable of obtaining on-body recordings, measure motion with three 

degrees of freedom, and estimate body postures or orientation more accurately than traditional 

uniaxial sensing systems (Yang and Hsu, 2010). There has been a consistent flow of literature 

using accelerometers to investigate physical exposures in a number of industries, with the 

accelerometer being the primary sensor or a component of a larger system (Berquer, Smith, 

and Davis, 2002; Jorgensen and Viswanathan, 2005; Bernmark and Wiktorin, 2002; Grant, 

Johnson, and Galinsky, 1995). However, issues such as the failure to capture rapid and 

noncyclic movements limit the application of accelerometers in occupations that are fast paced 

and require complex movements (Hansson et al. 2001).  

Inertial Measurement Systems 

Introduction 

 Inertial measurement systems use a combination of sensors and complementary 

algorithms to record human motion. Although there a number of different models of 

commercially-available inertial measurement systems on the market, these systems are based 

on the same technology and principals for quantifying human motion, including segment 

orientation. The major physical component of inertial measurement systems is the inertial 

measurement unit. Inertial measurement units (IMU) are miniature and lightweight electronic 

devices that can estimate orientation or postures of body segments by combining the output 

from multiple microelectromechanical sensors. Microelectromechanical sensors (MEMS) for 

measuring human motion typically include accelerometers, gyroscopes, and magnetometers. 

Accelerometers measure proper and gravitational acceleration (g=9.81 m/s2) of body segments 

which can provide orientation data relative to a global reference system (Roetenberg et al., 

2009). Accelerometers are not sensitive to changes in vertical rotation and are limited in 

measuring orientation during rapid movements (Giansanti, Maccioni, and Macellari, 2005). 

Gyroscopes measure angular velocity which can be integrated to estimate changes in 

orientation with respect to an initial orientation in the global reference system (Roetenberg et al., 
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2009). Gyroscopes can be subject to error from integration over time, making orientation 

estimates accurate for a limited time (Giansanti, Maccioni, and Macellari, 2005). Magnetometers 

can detect the direction of Earth’s magnetic field (as a compass), estimate axial rotation, and 

give orientation information that can be used to reduce integration drift error (Roetenberg, 

Luinge, and Veltink, 2003). However, ferromagnetic materials, such as metal equipment, and 

other sources that emit magnetic fields can disrupt magnetometers, increasing the error in 

estimating orientations. To yield accurate estimates of orientation, IMUs combine the output 

from MEMS and utilize complimentary filtering methods to reduce the effect MEMS have 

separately (Roetenberg et al., 2009). Kalman filtering, for example, is a signal processing 

method that uses combined estimates from MEMS to keep orientation drift errors bounded 

(Kalman, 1960; Sabatini, 2006). Kalman filtering combines gyroscope, accelerometer, and 

magnetometer data with potential noise and weights the sources over time. Weighting the 

orientation data from the three sources with information based on their signal characteristics 

allows the IMU to determine the best use of the data from the MEMS under different conditions 

(Roetenberg, 2005). Kalman filtering provides a combined orientation estimate with a reduced 

integration drift error and robust to magnetic interferences, making inertial measurement 

systems a more preferred alternative to other motion based systems. 

Validity and reliability of postural measures 

 The validity and reliability of inertial measurement systems needs to be investigated 

extensively to support its use in trunk posture analyses. Jasiewicz et al. (2007) investigated the 

accuracy and repeatability of an inertial measurement system (Inertial Cube 3, Intersense Inc., 

USA) for measuring neck flexion in the sagittal plane with an IMU placed over the location of 

seventh cervical vertebra (C7). By comparing the inertial measurement system to an 

electromagnetic motion system (3Space Fastrak, Polhemus, Colchester, USA) that has been 

considered to be a ‘gold standard’ for motion analysis, the study reported high cross-

correlations (>0.97) and low root mean errors (RMSE) (rotation = 2.3 ± 0.9° flexion/extension = 
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2.1 ± 1.1°, lateral bending = 2.5 ± 0.9°). Results indicated that the inertial measurement 

exhibited a proper level of concurrent validity and high level of reliability and could be 

considered a proper motion assessment tool for this task.  

Schepers et al. (2009) compared an inertial measurement system (Xsens Mtx with Xbus, 

Xsens Technologies, NL) to a validated optoelectronic system (Vicon, Oxford Metrics, UK) for 

measuring orientation of the trunk. Trunk orientation was derived from an IMU placed on the 

upper back at the level of the first thoracic vertebra. The RMSE reported for the rotation and 

flexion of the trunk were 4.3 ± 0.3° and 4.5 ± 0.7°, respectively. The study determined that 

inertial measurement system allowed accurate tracking of relative orientation of the human 

trunk.  

Goodvin et al. (2006) verified the accuracy of an inertial measurement system (Xsens 

Awinda, Xsens Technologies, NL) by comparing it to an optical motion capturing system (Vicon 

460, Vicon Motion Systems Inc., USA) for simple human motions (e.g. lifting, sitting, standing 

up). The orientations of the neck region between C1 and C7T1, the torso region between C7T1 

and L4, and the lower back region between L4L5 and the sacrum were measured by both 

systems to model the motion of the spine. The results indicated low average deviations between 

the systems for all three regions: the neck region (roll = 0.1°, pitch = 0.42°, yaw = 0.2°), the 

torso region (roll = 0.03°, pitch = 0.06°, yaw= 0.23°) and the lower back region (roll = 3.1°, pitch 

= 0.33°, yaw = 1.35). Goodvin and Park (2006) conclude that the inertial measurement system 

could accurately measure spinal orientations in daily living consistently.  

In Schall et al. (2016), the accuracy and repeatability of an inertial measurement system 

(I2 M Motion Tracking, Series SXT, NexGen Ergonomics, Inc., CAN) was tested against an 

optoelectronic system (Vicon T10S, Vicon Systems, USA) in laboratory and field–based settings 

over 8-hour periods. The study focused on tasks specific to dairy parlor work and evaluated the 

trunk and upper arm postures by looking at trunk angular displacement (i.e. flexion/extension, 

lateral bending) and upper arm elevation, respectively. Methods to estimate trunk angular 
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displacement and upper arm elevation included the use of multiple IMUs placed on different 

landmarks (e.g. sternum, pelvis, upper arm) and multiple estimate configurations 

(accelerometer-only vs all IMU components) and complementary weighting algorithms. Results 

of the study indicated small sample-to-sample root mean square differences (RMSD) for the 

trunk (RMSD = 4.1°- 6.6°) and upper arm (RMSD = 7.2°-12.1°) between two systems in both the 

lab and field-based parts of the study. The mean angular displacement and angular 

displacement variation (10th-90th percentile difference) for the trunk and upper arm did not 

change for more than 4.5° in the laboratory portion and no more than 1.5° in the field portion. 

Schall et al. (2016) suggested that the inertial measurement system could serve as an accurate 

and stable tool for measuring trunk and upper arm postures for 8-hour data collection sessions.  

In a related study, Schall et al. (2015a) investigated different methods for estimating 

trunk angular displacement using an inertial measurement system (I2M Motion Tracking 

System, SXT IMUs, Nexgen Ergonomics, Inc., CA) against the Lumbar Motion Monitor (Biomec 

Inc., OH), a previously validated field-based electrogoniometer for measuring spinal motion. The 

placement of IMUs and configurations for trunk angular displacement estimates followed similar 

methods and variables used in Schall et al., (2016), with the addition of axial rotation of the 

trunk. Participants in the study wore the systems simultaneously and engaged in controlled 

repetitive MMH tasks. Schall et al. (2015a) concluded that the trunk angular displacement 

estimates from an IMU on the sternum relative to the IMU on the pelvis had the smallest root-

mean square differences estimates (6°-10°). The study also suggested that future investigators 

should consider the use of a two IMU (on sternum and sacrum), complementary weighting 

algorithm-based method to estimate trunk postures than just relying on individual inertial 

sensors.  

In a study by Kim et al. (2012), an inertial measurement system (Xsens Awinda, Xsens 

Technologies, NL) and its built-in biomechanical model were evaluated for quantifying human 

movement during MMH tasks over prolonged duration. Participants in the study carried out 
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simulated MMH tasks that included symmetrical lifting, lowering, pushing and carrying and 

asymmetrical lifting in a lab setting. Joint angles and velocities of the shoulder, hip, knee and 

the lumbosacral joint (L5S1) were measured by the inertial measurement system and compared 

to the measurements of a validated optoelectronic system (Vicon MX, Vicon Motion Systems 

Inc., USA). For joint angles, the study concluded that the measurements between the two 

systems were significantly different in performance. However, these differences did not increase 

over time suggesting that the inertial measurement system could yield stable estimates over 

long periods of time (mean error difference <3.7°). Additionally, the study suggested that the 

particular inertial measuring system estimated joint angles more accurately in dynamic tasks 

where movements were predominantly taking place in one plane of motion (e.g. symmetrical 

lifting) (mean difference error < 4.56°). The use of inertial measurement systems to accurately 

measure trunk postures in a laboratory setting has been supported, but more research is 

needed to test how these tools can be used in industrial settings.  

Application 

Inertial measurement systems have been used in a limited number of field-based 

studies. In Schall et al. (2015b), IMUs were used to assess physical activity, fatigue, and 

postures of the trunk and upper extremities of nurses. Trunk flexion and extension, trunk lateral 

bending, and arm elevation were measured using three IMUs. Exposure was described using 

selected percentiles from amplitude probability distribution functions and percent time in >45° of 

trunk flexion and >60° of elevated arms. The results revealed that nurses spent ~90% of their 

time in postures less than 45° of trunk flexion and left and right arms were elevated under 60° 

for ~95% of the work shifts. Although no high exposure to awkward postures was determined, 

the study successfully used IMUs to assess the physical exposure of the nurses. Inertial 

measurement systems are relatively new and their use as exposure assessment tools is 

minimal in the literature as of this point.  
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Advantages and Disadvantages  

Inertial measurement systems have become more popular since these systems can 

overcome the challenges individual MEMS historically have had for quantifying complex 

movement for long durations (Roetenberg et al., 2009). Aside from their small size, wireless 

capabilities, and data logging capacity, inertial measurement systems can measure inclination 

and position of body segments relative to each other and to a global coordinate system, which 

can provide vital information when looking at worker-environment interaction. Inertial 

measurement systems have certain application limitations. With inertial measurement systems 

relying on magnetometers to produce measures, data is subject to be corrupted by prolonged 

interaction with environments that produce high levels of magnetic interference. The instability in 

highly magnetic environments limits the types of industries and durations inertial measurement 

system can operate in before ferromagnetic materials affect inertial data. Further field-based 

application of inertial measurement system continues to be necessary to better understand the 

conditions in which these systems can operate accurately and reliably. Due to the complex 

nature of certain inertial measurement systems, they are more commonly used in medical, 

exercise, and ergonomic research by trained professionals, making industrial application rare.  
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METHODS 

 
 
 

Participants 

A convenience sample of 30 healthy participants was recruited from Colorado State 

University. Participants were excluded if they were under 18 years of old age or reported 

experiencing musculoskeletal pain or injury during the time of data collection. No previous 

experience in MMH was required from participants. Participants filled out and signed forms of 

consent and photograph release prior to starting the study after having requirements expanded 

to them. All procedures in the study were reviewed and approved by the Colorado State 

University Institutional Review Board.  

Simulated MMH tasks 

Participants completed a MMH task in a laboratory setting. The MMH task required 

participants to continuously handle a 1.0 lb. (0.45 kg) cardboard box (length x width x depth = 

15 in x 11 in x 2 in) on a table. A lightweight cardboard box was chosen to reduce the impact 

fatigue or physical strain could have on the well-being of participants. Data collection began with 

participants standing upright in a neutral position with arms to the side and feet parallel to one 

another. The cardboard box was placed within arm’s each. The MMH task was designed to 

include the most common types of MMH motions (Ciriello et al. 1999). Participants were 

required to 1) reach with both hands and bring the box close to the body (A in Figure 3), 2) 

lower the box to ground level at participants’ discretion without releasing the box (B in Figure 3), 

3) lift the box back to the table (C in Figure 3), and 4) push the box across table with both hands 

(D in Figure 3) all in one continuous motion. Participants then returned to neutral position, 

indicating the completion of one MMH task cycle. Participants were given five to six seconds of 

active recovery in the form of walking between MMH task cycles. Participants were required to 

complete MMH task cycles for a total of ten minutes. The frequency of the task was self-paced 

with participants completing five to eight MMH task cycles per minute.  
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Figure 3: Sequence of motions in simulated MMH task. 

Instrumentation 

Bioharness 3 

Each participant was fitted with a ZephyrTM Bioharness 3 (Zephyr Technology 

Corporation, USA), a physiological monitoring system designed to measure heart rate, 

breathing rate, activity, core temperature, and trunk postures (Zephyr Technology, 2012). The 

Bioharness 3 consists of a Velcro strap (18 g) and a detachable module (diameter x width = 1.1 

in x 0,28 in, 71 g) shown in Figure 4 (Zephyr Technology, 2012). The module has an internal 

battery life for up to 26 hours for data logging per charge and a memory capacity of 

approximately 55 hours (Zephyr Technology, 2012). Two sizes of Velcro straps (small = 27-33 

in, large = 33-41 in) were used to accommodate different participant trunk dimensions. An 

additional diagonal strap provided by the manufacturer was used to secure the Bioharness 3 in 

place to prevent movement due to rapid motions or sweat. The Bioharness 3 module was 

secured on each participant below the pectoral midline and aligned along the axillary midline 

and the xiphoid process of the sternum (1 in Figure 5). Placement of the Bioharness 3 was in 

accordance with manufacturer’s recommendations and previous studies (Lee et al., 2017; 

Stenerson et al., 2014; Muaremi, et al., 2013; Jovanov et al., 2013; Milosevic et al., 2012). 
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Figure 4: Bioharness 3 module. 

The Bioharness 3 has a piezoelectric accelerometer (triaxial, g’s= ±16) that was used to 

estimate trunk posture in terms of trunk flexion and extension in the sagittal plane (Zephyr 

Technology, 2012). Raw acceleration output for the Bioharness 3 was reported in units of bits (1 

g=83 bits). Acceleration data was recorded and downloaded through the manufacturer-supplied 

software (Omnisense™ Analysis, Zephyr Technology, USA). Acceleration was measured at a 

sampling rate of 100 Hz, low-pass filtered (zero-phase, 2nd Order Butterworth, 3 Hz cut-off 

frequency) and resampled to 10 Hz using Matlab (R2016b, The MathWorks Inc., Natick, MA). 

Degrees of trunk flexion and extension in the sagittal plane were calculated as 

arctan(AccZ/AccX) X 180/p where AccZ was the acceleration in the sagittal plane and AccX was 

the acceleration in the vertical plane corresponding to the gravitational acceleration (Fisher, 

2010). The Bioharness 3 does not have an initial calibration procedure so the present study 

developed a method to normalize the trunk flexion and extension estimates. Participants were 

asked to stand against a vertical surface in neutral position prior to calibration. Neutral position 

required participants to firmly press heels and trunk against a vertical surface. After turning on 

the Bioharness 3, participants were asked to stand still for 30 seconds. Average trunk 

flexion/extension was calculated from those initial 30 seconds and used to normalize 

participants’ starting neutral position to zero degrees. The present study evaluated trunk 

flexion/extension estimates from the Bioharness 3 using two configurations: 1) non-normalized 

estimates (BH1) and 2) normalized estimates (BH2). Estimates from BH1 were included as it is 

how the manufacturer provides raw and summary data of trunk flexion/extension and they are 
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likely the estimates professionals would commonly use. Despite showing high levels of reliability 

and accuracy in the lab and field settings, the lack of consistent research prevented Bioharness 

3 from being considered a ‘gold-standard’ for trunk flexion/extension estimation (Gatti, 

Miglaccio, and Schneider, 2011; Johnstone et al., 2012a; Johnstone et al., 2012b; Johnstone et 

al., 2012c). 

 

        Bioharness 3           Xsens  

 

Figure 5: Sensor/module placement for 1) Bioharness 3 under left armpit, 2) Xsens sensor on 

sternum, 3) Xsens sensor on right shoulder, and 4) Xsens sensor on sacrum. Grey triangles 

mark Xsens sensors necessary for system operation but not used to calculate trunk posture 

estimates. 

Xsens  

Each participant was also fitted with XsensTM (Xsens Technologies, NL), an inertial 

measurement system designed for full body and segment motion estimation. The system model 

used was the Xsens MVN BIOMECH Awinda which consisted of 17 inertial measurement units 

(IMUs) attached to body segments simultaneously using Velcro straps, a unisex spandex shirt, 
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a headband, and two pairs of gloves (Xsens Technologies B.V., 2015). Each IMU (height x 

length x width= 55 mm x 40 mm x 10 mm, 16 g) contained a piezoelectric accelerometer 

(triaxial, ± 16 g), gyroscope (triaxial, ± 2000 deg/sec), magnetometer, and barometer and it is 

shown in Figure 6 (Xsens Technologies B.V., 2015). The Xsens system estimates velocity, 

acceleration, and position at a sampling rate of 60 Hz.  

Each of the 17 IMUs were secured on the body following anatomical landmarks 

suggested by the manufacturer: the midfoot of left and right foot (feet), the medial surface of the 

right and left tibia (lower legs), lateral side above the right and left femur (upper legs), flat on the 

sacrum, flat on the sternum, left and right scapula (shoulders), lateral side of right and left 

humerus (upper arms), lateral side of right and left forearm (forearms), backside of the right and 

left hand (hands), and any side on the head (head) (Figure 5). The Velcro straps were used to 

secure the IMUs on the feet, lower legs, upper legs, sacrum, upper arms, and forearms. The 

spandex shirt was used to secure the IMUs on the shoulders and sternum. The headband was 

used to secure the sensor on the head. The gloves were used to secure the IMUs on the hands. 

The present study only focused on IMUs on the sternum (2 in Figure 5), right shoulder (3 in 

Figure 5), and sacrum (4 in Figure 5) but use of additional IMUs was mandatory to execute 

calibration, data collection, and data processing. 

 

Figure 6: Inertial measurement unit (IMU). 

The Xsens system provided trunk flexion and extension estimates in the sagittal plane 

based on IMU motion data, Kalman filtering (Xsens Kalman Filter for Human Movement, Xsens 

Technologies, NL), body dimensions for each participant, and a built-in biomechanical model. 
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Required body dimensions included body height (top of head to ground), wing span (right to left 

fingertip), foot length (heel to longest toe), ankle height (lateral malleolus to ground), shoulder 

width (right to left acromion process), hip height (grater trochanter to ground), knee height 

(lateral epicondyle to ground), and shoe sole height. Body dimensions were recorded and 

inputted into supplier-provided software (Xsens MVN Studio 4.0, Xsens Technologies, NL). The 

biomechanical model was based upon the segment axes definitions and origins recommended 

by the International Society of Biomechanics (Wu et al., 2005; Wu et al., 2002). The 

biomechanical model was built on a total of 23 body segments including the sacrum (pelvis), the 

fifth lumbar vertebra (L5), the third lumbar vertebra (L3), the twelfth thoracic vertebra (T12), 

eight thoracic vertebra (T8), and the right and left shoulders, upper arms, forearms, hands, 

upper legs, lower legs, feet and toes (Roetenberg, 2009). Although the T8 segment was labeled 

as such, its trunk motion estimates were derived from the IMU located on the sternum and not 

directly from the eighth thoracic vertebra (Xsens Technologies B.V., 2015). The T8 segment 

was referred to as sternum in the present study for simplification purposes. Trunk motion data 

was recorded in relation to a global reference system which the manufacturer defined as a right 

handed Cartesian co-ordinate system (Xsens Technologies B.V., 2015). Estimates of absolute 

trunk flexion and extension for the sternum, sacrum, and right shoulder segments were 

recorded in Euler angle form and were downloaded in quaternion form using Xsens MVN Studio 

4.0 (Xsens Technologies, NL). Quaternion values were then resampled at 10 Hz and converted 

to rotation angles using Matlab (r2016b, The MathWorks Inc., Natick, MA).  

Three configurations of trunk flexion and extension in the sagittal plane were used: 1) 

the sternum segment values relative to sacrum segment values (X-SST), 2) sternum segment 

values only (X-ST), and 3) right shoulder segment values only (X-SH). Using trunk flexion and 

extension estimates derived from IMUs on the right shoulder and sternum was in accordance 

with manufacture’s requirements of sensor placement and with previous studies in the literature 

(Plamondon et al., 2007; Foerster, Smeja, and Fahrenberg, 1999; Manson et al., 2000; Lee et 
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al., 2017; Fethke et al., 2011; Driel et al. 2012; Graham et al., 2009; Schall et al., 2015a; Yan et 

al., 2017). Using estimates from the sternum IMU relative to the sacrum IMU was used as the 

reference method in the present study because 1) it was a method recommended by the 

manufacturer and 2) it was similar to comparative studies that have shown this method to be 

comparable to gold-standard motion systems (i.e. optoelectronicsystems) for full body and trunk 

motions (Roetenberg, 2009; Salas, et al., 2016; Schepers et al., 2009; Schall et al., 2015a; 

Schall et al., 2015b; Schall et al., 2016; Plamondon et al., 2007; Robert-Lachaine et al., 2016; 

Wong and Wong, 2008; Van Driel et al., 2009; Bauer et a., 2015; Kim and Nussbaum, 2013; 

Godwin, Agnew, and Stevenson, 2009).  

Calibration of the Xsens system involved participants assuming an “N-pose” where they 

stood in an upright position, feet parallel and 30.5 cm apart, arms extended alongside body 

(vertically), thumbs facing forward, and eyes facing forward. Calibration process was initiated 

using Xsens MVN Studio (Xsens Technologies, NL) and lasted approximately ten seconds. The 

software reported the quality of calibration as “good”, “acceptable”, “fair” and “poor”. Calibration 

quality of “acceptable” or “good” were considered adequate before proceeding with data 

collection as recommended by the manufacturer. 

Statistical analysis 

The first step was to create ensemble averages of trunk flexion/extension estimates for 

each participant using a custom signal processing tool developed in Matlab (r2016b, The 

MathWorks Inc., Natick, MA). The maximum peaks of trunk flexion in each MMH task cycle and 

the average time between peaks were detected. To capture all the motions in each MMH task 

cycle (i.e. reach, lower, lift, push), half of average time between peaks was used to extract the 

trunk motion estimates before and after the maximum peaks for each MMH cycle.  All extracted 

MMH task cycles were aligned using the maximum peaks as the reference point to form 

ensemble averages for each measurement method (BH1, BH2, X-SST, X-ST, and X-SH) per 

participant. Trunk flexion was presented as positive values, and trunk extension as negative 
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values. The arithmetic mean, peak flexion, peak extension were calculated for the ensemble 

averages of each measurement method. Additionally, the 10th percentile, 50th percentile, 90th 

percentile, 99th percentile, and variation of trunk flexion and extension (difference between 90th 

and 10th percentiles) of the amplitude probability distribution function were calculated (Jonsson, 

1982). The 10th, 50th, and 90th percentiles, and variation of trunk flexion/extension are common 

metrics in exposure assessment studies (Schall et al., 2016; Schall et al.,2015a; Hansson et al., 

2010; Lee et al., 2017; Kazmierczak et al. 2005; Hansson et al. 2010; Schall et al., 2015b; 

Salas, et al., 2016; Howarth et al., 2016). The 10th, 50th and 90th percentiles have been used to 

represent “static”, “dynamic” (median), and “peak” trunk flexion and extension, respectively 

(Salas et al., 2016).  

Sample-to-sample root mean square difference (RMDS) were also calculated for the 

ensemble average of each participant. The RMDS was calculated by using Equation (1) where 

!’i  was the estimate from X-SST, !i  was the estimate from an alternative method, n was the 

number of samples in the ensemble average, and i was the sample of interest.  

"#$% = (!( − !’()
,

-

(./

/1	 

  To evaluate agreement among measuremet methods, a Bland Altman analysis was 

used to calculate the mean difference (mean bias), upper limit of agreement (LOAupper), and 

lower limit of agreement (LOAlower) for the trunk flexion/extension of ensemble averages. The X-

SST method was used as the reference method as previously discussed (Bland and Altman, 

1986). Limits of agreement (LOA) were calculated using Equation (2), where d was the mean 

difference and $% was the standard deviation of the trunk flexion/extension differences: 

LOA = d	± 1.96($%) 

The range of acceptable limits of agreement continues to depend on interpretation by safety and 

health researchers and not on statistical evaluation (Bland and Altman, 1986). For the present 

(1) 

(2) 
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study, the bigger absolute limit of agreement (upper or lower) was interpreted as followed: 

LOA<5° as optimal, LOA<10° as acceptable, and LOA>10° as not acceptable agreement (El-

Zayat et al., 2013; Schiefer et al., 2014). Normality of the difference between methods was 

evaluated with a Shapiro–Wilk test and graphical evaluation (observed vs. predicted values).   

Pearson correlation coefficients for the mean, 10th, 50th, and 90th percentiles, and 

variation of trunk flexion/extension were calculated. Criteria used to evaluate the strength of 

linear relationship between metrics was the following: no linear relationship = 0, weak = 0.10 to 

0.30, moderate = 0.30 to 0.50, and strong = 0.50 and higher (Taylor, 1990). Significance level 

was set at 0.05. Potential agreement for the mean, 10th, 50th, and 90th percentiles, and variation 

of trunk flexion/extension estimates was evaluated using intraclass correlation coefficients 

(ICC). Estimates of ICC and their 95% confident intervals were based on a mean-rating (k = 5), 

absolute-agreement, two-way mixed-effects model. Agreement level was concluded using 

criteria by Lee et al. (1989) for the 95% confidence intervals of the ICC: ICC<0.50 as poor 

agreement, 0.50<ICC<0.75 as moderate agreement, and ICC>0.75 as strong agreement. 

The second step was to measure participant’s time spent in specific trunk posture 

categories. Percent time was calculated for the whole ten minutes of the simulated MMH task 

for each participant. The trunk categories were divided into four specific ranges based 

suggestions and use in previous research (Marklin and Cherney, 2005; Hoogendorn et al, 2000; 

Korshøj, et al., 2014; NIOSH, 2015; Villumsen et al., 2015; Coenen et al., 2014). The four 

categories were defined as trunk flexion and extension in the sagittal plane at <0° (Category 1), 

0°-30° (Category 2), 31°-60° (Category 3), and >61° (Category 4) (Figure 7). Posture transition 

count were also calculated and were defined as the times of total instances participants 

exceeded thresholds of 30° (Transitions 1) and 60° (Transition 2) of trunk flexion in the sagittal 

plane (Figure 7). The use of transition count as a common metric in posture assessments is 

limited in the literature, but it can be beneficial when understanding the frequency of exposure to 

occupational awkward trunk postures (Ribeiro et al. 2011). Pearson correlation coefficients and 
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intraclass correlation coefficients for the percent time in Category 1 to 4 and transition count for 

Transition 1 and 2 per measurement method were executed using the same specifications 

previously discussed. Data analysis procedures were conducted using SPSS (Version 21.0, 

IBM Corp., USA) and graphic procedures were conducted in Excel 2017 (Version 15.36, 

Microsoft, USA). 

 

Figure 7: Posture categories and transitions of trunk flexion and extension in sagittal plane. 
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RESULTS 

 
 
 

All participants were recruited from the Colorado State University in Fort Collins, 

Colorado, USA. Thirty-two healthy people initiated the simulated tasks but only thirty 

participated to completion due to lack of interest in the study. The participants (n=30) were 53% 

male and 47% female (mean age = 25 years, SD = 4.0; mean height = 452 cm, SD = 27.4 cm). 

Estimates of trunk flexion and extension from the reference method, X-SST, and 

alternative measurement methods, BH1, BH2, X-ST, and X-SH were used to produce ensemble 

averages of trunk flexion and extension (Figure 8).  The majority of ensemble averages of the 

participants had three primary peaks characterized by the reaching, pushing, and lowering/lifting 

motions, respectively, of the simulated MMH task. Ensemble averages typically ranged from 

approximately three to ten seconds in duration. The largest peak of trunk flexion consistently 

occurred though the lowering/lifting steps of the MMH task. Figures of ensemble averages for 

each participant are provided in the Index.  

Trunk flexion and extension 

Mean and standard deviation for the summary measures of the ensemble averages are 

provided on Table 1. Mean summary measures from BH1 and BH2 estimates had the largest 

differences when compared to reference method, X-SST. On average, BH1 summary measures 

were lower than summary measures from X-SST, with the exception of the 90th percentile which 

was comparable. Mean trunk flexion and extension, 10th percentile, 50th percentile, and peak 

extension estimates from BH2 were comparable to the estimates from X-SST, but peak flexion 

and the 90th percentile were notably higher for BH2.  
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Figure 8: Example of ensemble average of trunk flexion and extension waveform in sagittal plane by measurement method for one 

participant.
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Summary measures including the mean, peak flexion and extension, 10th percentile, 50th 

percentile, 90th percentile, and variation (90th-10th percentile) of trunk flexion estimates from X-

SH were similar to summary measured from the reference system. Similarly, summary 

measures of X-ST were mostly comparable, but values for peak flexion and extension, and 90th 

percentile were higher than estimates from X-SST.  

Pearson correlation coefficients, sample-to-sample root-mean square differences 

(RMSD), and Bland Altman analysis per measurement method are provided on Table 2. High 

correlation coefficients between the four alternative methods and the reference method (X-STT) 

were observed (r>0.90, p<0.05). Average RMSD estimates were observed to be the relatively 

large for the four measurement methods. Average RMSD estimates were largest for the BH1 

and the lowest for X-ST. For measurements of ensemble average flexion and extension, Bland 

Altman analysis indicated a mean difference of 9.3° between BH1 and the reference method 

which was the highest among the measurement methods. The mean difference between BH2 

and the reference method was 1.5° of flexion and extension. The 95% limits of agreement 

between BH1/BH2 and the reference methods ranged from 12° to 30° of flexion and extension. 

Bland Altman analysis also indicated small mean differences of about 1° and 95% limits of 

agreement ranging from approximately 13° to 15° of flexion and extension between X-ST/X-SH 

and the reference system.  
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Table 1: Mean (SD) of summary measures for trunk flexion/extension ensemble averages by 

measurement method* 

Summary Measure  BH1 BH2 X-SST X-ST X-SH 

Mean (°) 22.6 (12.5) 33.5 (11.9) 32.0 (9.3) 33.1 (9.9) 30.9 (9.6) 

Peak flexion (°) 70.1 (13.6) 81.0 (14.6) 60.3 (7.8) 69.3 (7.7) 64.2 (9.3) 

Peak extension (°) -4.1 (9.5) 6.7 (8.5) 15.5 (9.0) 11.0 (9.0) 9.8 (9.1) 
10th percentile (°) -0.3 (10.0) 16.7 (8.9) 18.8 (8.6) 14.3 (9.0) 14.3 (9.3) 

50th percentile (°) 
15.7 (14.5) 26.4 (13.6) 27.7 (10.3) 

27.6 

(12.1) 
26.0 (11.5) 

90th percentile (°) 61.2 (16.2) 72.3 (16.6) 54.4 (9.8) 62.8 (9.2) 57.7 (9.6) 
99th percentile (°) 69.9 (14.1) 80.8 (14.7) 60.2 (7.8) 69.2 (7.7) 64.1 (9.3) 

Variation (90th-10th %) 
61.6 (15.8) 61.7 (15.5) 35.6 (8.3) 

48.6 

(10.6) 
43.4 (11.6) 

*BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from 

Bioharness3, X-SST= IMU on sternum relative to IMU on sacrum, X-ST=estimates from Xsens 

IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 

 
 

Table 2: Mean (SD) of Pearson correlation coefficient (r), sample-to-sample RMSD, and Bland 

Altman mean difference and 95% limits of agreement for trunk flexion/extension ensemble 

averages by measurement method*** 

Summary Measure  BH1 BH2 X-SST X-ST X-SH 

Sample-to-sample 
RMSD** (°) 

15.5 (4.6) 12.5 (4.9) REF 8.6 (3.4) 9.9 (4.2) 

Pearson correlation 

coefficient (r)* 
0.94 (0.08) 0.95 (0.05) REF 

0.94 

(0.06) 

0.91 

(0.08) 

Mean Difference (°)  -9.3 (6.3) 1.5 (6.6) REF 1.1 (5.1)  -1 .0 (7.6) 
Upper Limit of Agreement 

(°) 
12.0 (12.1) 22. 6 (13.1) REF 15.2 (8.7) 13.0 (8.3) 

Lower Limit of Agreement 
(°) 

 -30.7 (9.7)  -19.6 (9.0) REF 
  -12.9 
(7.0) 

 -15.1 
(10.5) 

Upper-Lower (°) 
42.6 (18.0) 42.3 (18.2) REF 

28.0 

(12.1) 

28.1 

(11.1) 

REF= reference method 
*Pearson correlation coefficients were statistically significant (p<0.05) unless noted otherwise 

**RMSD=root-mean square difference  

***BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from 
Bioharness3, X-SST= IMU on sternum relative to IMU on sacrum, X-ST=estimates from Xsens 

IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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Table 3: Pearson correlation coefficients (r)* for the mean, 10th percentile, 50th percentile, 90th 

percentile, and variation of trunk flexion/extension by measurement method** 

Summary Measure BH1 BH2 X-SST X-ST X-SH 

Mean (r) 0.87 0.83 REF 0.86 0.68 

10th percentile (r) 0.78 0.80 REF 0.86 0.57 

50th percentile (r) 0.88 0.84 REF 0.88 0.65 
90th percentile (r) 0.67 0.63 REF 0.54 0.55 

Variation (90th-10th %) (r) 0.48 0.49 REF 0.56 0.50 

REF= reference method 
*Pearson correlation coefficients were statistically significant (p<0.05) unless noted otherwise 

(two-tailed) 

**BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from 

Bioharness3, X-SST= IMU on sternum relative to IMU on sacrum, X-ST=estimates from Xsens 
IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 

 

 
Pearson correlation coefficients for summary measures including the mean, 10th 

percentile, 50th percentile, 90th percentile, and variation of trunk flexion and extension per 

measurement method are provided on Table 3. Summary measures from BH1 and BH2 were 

observed to have moderate to strong correlation coefficients, ranging from 0.48 to 0.88.  

Similarly, X-ST and X-SH summary measures were observed to have strong correlation 

coefficients, ranging from 0.50 to 0.88.  

The results of the intraclass correlation coefficients for X-SST and the alternate 

measurement methods are provided in Table 4. Intraclass correlation coefficients and 95% 

confidence intervals suggested that there was moderate to strong agreement between BH1 and 

BH2 against the reference method for estimating the 10th percentile, 50th percentile, 90th 

percentile, and variation of trunk flexion and extension. For X-SH and X-SH, moderate to strong 

agreement was only observed for the 10th and 50th percentile estimates.  
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Table 4: Intraclass correlation coefficients (ICC) and 95% confidence intervals for 10th, 50th, and 

90th percentiles and variation of trunk flexion/extension estimates between reference* and 

alternative methods** 

  
95% Confidence Interval 

  
Intraclass Correlation Coefficient 
(ICC)b 

Lower 
Bound 

Upper 
Bound 

10th percentile     

BH1 0.87 0.72 0.93 

BH2 0.88 0.76 0.94 

X-ST 0.92 0.84 0.96 
X-SH 0.93 0.85 0.96 

50th percentile     

BH1 0.90 0.80 0.95 
BH2 0.89 0.77 0.94 

X-ST 0.92 0.84 0.96 

X-SH 0.78 0.55 0.89 

90th percentile    
BH1 0.74 0.53 0.87 

BH2 0.71 0.51 0.86 

X-ST 0.70 0.37 0.85 
X-SH 0.71 0.39 0.86 

Variation (90th-10th %)     

BH1 0.57 0.49 0.79 

BH2 0.57 0.41 0.77 
X-ST 0.70 0.37 0.85 

X-SH 0.63 0.24 0.82 

*Reference method =X-SST, alternative methods = BH1, BH2, X-ST, X-SH 
b=ICC for average measures using a consistency definition, two way mixed models effect 

**BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from 

Bioharness3, X-SST= IMU on sternum relative to IMU on sacrum, X-ST=estimates from Xsens 

IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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Percent time 

Mean percent time spent in four trunk posture categories per measurement method for 

the total duration of the ten minute MMH task is presented in Figure 9. The participants on 

average spent approximately 60% of the time in Category 2 (0°-30°), about ~20% in Category 3 

(30°-60°), and the rest of their time dispersed among Category 1 (<0°) and Category 4 (>60°). 

Summary measures and Pearson correlation coefficients of percent time in each category by 

measurement method are presented in Table 5. Mean percent time in for BH1 and BH2 was 

noticeably higher for Category 1 and Category 4 than the reference method, respectively. While 

BH1 percent time estimates in Category 2 were lower than the reference method, BH2 percent 

time estimates in that posture category were more comparable to the reference method. 

Percent time estimates for X-ST and X-SH were the most similar to estimates from the 

reference system. Moderate to strong correlation coefficients were observed between BH2 and 

the reference system for percent time in Category 2, Category 3 and Category 4. Strong 

correlation coefficients were also observed between X-ST and the reference method across all 

four posture categories.  

Intraclass correlation coefficients and 95% confidence intervals of the percent time spent 

in each posture category are provided on Table 6. Percent time estimates in Category 1 to 3 

from BH2 were observed to be moderately consistent with estimates from the reference method. 

Estimates from BH2 were also reported to be higher than estimates from BH1. High intraclass 

correlation coefficients of X-ST also indicated moderate agreement with the reference method 

through all four posture categories. Percent time estimates from X-SH were a relatively more 

inconsistent with only moderate agreement shown in Category 2 and 4.  
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Figure 9: Mean percent time (±SD) in Category 1 to 4 for each measurement method
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Table 5: Summary measures of percent time in Category 1 to 4* per measurement method*** 

 Summary measure BH1 BH2 X-SST X-ST X-SH 

Category 1      

Minimum (%) 4.0 0.1 0.0 0.0 0.0 

Maximum (%) 66.0 32.1 19.6 21.1 4.6 
Mean (%) 37.0 7.0 1.9 3.0 0.3 

Standard Deviation (%) 16.9 6.9 4.8 5.5 0.9 

Pearson correlation coefficient 
(r)** 0.21 0.14 REF 0.57 -0.11 

Category 2      

Minimum (%) 16.0 45.3 30.7 44.4 43.8 

Maximum (%) 74.0 77.0 83.8 79.1 78.6 
Mean (%) 40.1 63.6 65.3 66.1 63.4 

Standard Deviation (%) 14.9 8.3 13.2 8.1 8.4 

Pearson correlation coefficient 
(r)** 0.00 0.37 REF 0.60 0.60 

Category 3      

Minimum (%) 6.0 8.5 11.4 7.0 9.2 

Maximum (%) 22.0 24.1 56.0 42.0 43.9 
Mean (%) 14.5 16.5 26.0 21.0 28.2 

Standard Deviation (%) 5.1 4.3 11.1 7.3 8.6 

Pearson correlation coefficient 
(r)** 0.57 0.50 REF 0.58 0.47 

Category 4      

Minimum (%) 0.0 1.2 0.0 0.2 0.0 
Maximum (%) 31.0 35.2 16.8 18.4 21.8 

Mean (%) 8.4 12.9 6.8 9.9 8.2 

Standard Deviation (%) 6.2 6.4 4.9 4.0 6.5 

Pearson correlation coefficient 
(r)** 0.46 0.60 REF 0.50 0.51 

* Percent time in Category 1 (>0°), Category 2 (0°-30°), Category 3 (30°-60°), and Category 4 (≥60°) trunk flexion/extension in 

sagittal plane  
**Pearson correlation coefficients were statistically significant (p<0.05) unless noted otherwise 

***BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from Bioharness3, X-SST= IMU on sternum 

relative to IMU on sacrum, X-ST=estimates from Xsens IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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Table 6:  Intraclass correlation coefficients (ICC) and 95% confidence intervals for percent time estimates in Category 1 to 4 between 

reference* and alternative methods** 

    95% Confidence Interval 

  

Intraclass Correlation 

Coefficient (ICC)b Lower Bound Upper Bound 

Category 1    

BH1 0.20 -0.69 0.62 

BH2 0.23 -0.62 0.63 

X-ST 0.72 0.51 0.87 

X-SH 0.38 -1.27 0.49 

Category 2    

BH1 0.00 -1.10 0.52 

BH2 0.59 0.52 0.68 

X-ST 0.70 0.52 0.86 

X-SH 0.71 0.59 0.86 

Category 3    

BH1 0.60 0.47 0.81 

BH2 0.61 0.48 0.76 

X-ST 0.69 0.46 0.86 

X-SH 0.63 0.52 0.82 

Category 4    

BH1 0.72 0.59 0.82 

BH2 0.73 0.62 0.87 

X-ST 0.66 0.58 0.74 

X-SH 0.65 0.57 0.74 

b=ICC for average measures using a consistency definition, two way mixed models effect 

*Reference method =X-SST, alternative methods = BH1, BH2, X-ST, X-SH 

**BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from Bioharness3, X-SST= IMU on sternum 

relative to IMU on sacrum, X-ST=estimates from Xsens IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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Transitions 

The mean number or count of posture transitions estimated per measurement method for 

Transition 1 (exceed 30° of flexion) and Transition 2 (exceeded 60° of flexion) are shown in 

Figure 10. On average, subjects exceeded 30° of flexion at least 100 times, and in some cases 

some measurement methods estimated up to 200 times. Although measurement methods 

reported highly variable values, participants were observed to exceed 60° of flexion 

approximately 50 times. Summary measures and Pearson correlation coefficients for the posture 

transition times for Transition 1 and Transition 2 per measurement method are provided in Table 

6. On average, BH1, BH2, X-ST, and X-SH estimated less posture transitions than the reference 

method for Transition 1 but more posture transitions for Transition 2. The BH2 method estimated 

posture transitions almost twice as much as the reference method for Transition 2.  The BH2 and 

X-ST methods showed to have moderate to strong linear relationships when compared to the 

reference method for both Transition 1 and 2 (Table 7). There were moderate correlations 

coefficients between the reference method and BH1 and X-SH for Transition 1 only.   

Intraclass correlation coefficients for the transition count estimates in Transition 1 and 

Transition 2 per measurement method are provided on Table 8.  Low intraclass correlation 

coefficients for Transition 1 and 2 suggested poor agreement among all four measurement 

methods. Estimates from X-ST showed the highest intraclass correlation coefficients and 

narrowest confidence intervals. 
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Figure 10: Average transition times (±SD) by measurement method.
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Table 7: Summary measures of Transition 1 and 2* by measurement method*** 

 Summary measure  BH1 BH2 X-SST X-ST X-SH 

Transition 1      

Minimum 58 63 52 59 55 
Maximum 185 185 364 163 209 

Mean 113.1 126.9 129.0 108.0 120.2 

Std. Deviation 32.0 32.8 72.7 29.6 34.4 

Pearson correlation coefficient (r)** 0.40 0.51 REF 0.37 0.39 

 

Transition 2      

Minimum 5 21 0 6 3 
Maximum 143 152 73 151 166 

Mean 59.4 81.2 42.0 68.1 70.9 

Std. Deviation 29.7 31.8 20.3 31.1 47.2 

Pearson correlation coefficient (r)** 0.01 0.42 REF 0.54 0.19 

*Transition 1 = exceeds 30°, Transition 2 = exceeds 60° 

**Pearson correlation coefficients were statistically significant (p<0.05) unless noted otherwise 

***BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from Bioharness3, X-SST= IMU on sternum 
relative to IMU on sacrum, X-ST=estimates from Xsens IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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Table 8: Intraclass correlation coefficients (ICC) and 95% confidence intervals for transition count estimates in Transition 1 and 2 

between reference* and alternative methods** 

    95% Confidence Interval 

  Intraclass Correlation Coefficient (ICC)b Lower Bound Upper Bound 

Transition 1    

BH1 0.46 -0.14 0.74 
BH2 0.45 -0.15 0.74 

X-ST 0.52 0.00 0.77 

X-SH 0.44 -0.17 0.74 

Transition 2    
BH1 0.02 -1.07 0.53 

BH2 0.30 -0.47 0.67 

X-ST 0.56 0.07 0.79 
X-SH 0.56 0.08 0.79 

b=ICC for average measures using a consistency definition, two way mixed models effect 

Reference method =X-SST, alternative methods = BH1, BH2, X-ST, X-SH 

**BH1= non-normalized estimates from Bioharness 3, BH2= normalized estimates from Bioharness3, X-SST= IMU on sternum 
relative to IMU on sacrum, X-ST=estimates from Xsens IMU on sternum, X-SH=estimates from Xsens IMU on right shoulder. 
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DISCUSSION 

 
 
 

Simple vs Complex Measurement Systems 

 The present study compared the trunk posture estimates of the Bioharness 3 as 

represented by non-normalized (BH1) and normalized (BH2) values with the Xsens system as 

represented by values from an IMU on sternum relative to IMU on the sacrum (X-SST). The 

study specifically focused on trunk flexion/extension in the sagittal plane, percent time in four 

trunk posture categories, and number of times specific flexion thresholds were exceeded. The 

study aimed to determine of the Bioharness 3 could serve as an alternative to the Xsens system 

for estimating exposure to awkward trunk postures. 

Trunk flexion and extension 

Summary measures of trunk flexion and extension between normalized Bioharness 3 

data and the Xsens data derived from sacrum and sternum sensors were comparable primarily 

when participants remained in postures of approximately 30° of flexion or less. The estimates of 

mean trunk flexion and extension, 10th percentile, and 50th percentile were relatively similar for 

these two systems, with differences of less than ~2° (Table 1). During greater trunk flexion as 

indicated by the 90th percentile, the Bioharness overestimated trunk flexion as much as 5° to 18° 

compared to the Xsens system. Due to the novelty of the present study to compare 

commercially-available wearable measurement systems, there is a lack of research work that 

can be directly compared to the results presented in the study. Although not directly 

comparable, the results from the present study are similar to the findings from previous work 

comparing IMUs to an electrogoinometry system by Schall et al. (2015a). Schall et al. (2015a) 

compared IMUs with different placement configurations to a validated field-based 

electrogoinometry system, the Lumbar Motion Monitor, for measuring trunk flexion and 

extension in simulated MMH tasks. Two of these configurations included accelerometry-based 

estimates from an IMU on the chest, and complementary weighting algorithm-based estimates 
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from an IMU (accelerometer + gyroscope) on the chest relative to an IMU (accelerometer + 

gyroscope) on the sacrum, which were similar to the methods used in the present study. Schall 

et al. (2015a) reported comparable mean trunk flexion and extension and 10th percentile 

estimates between the two IMU configurations. In a similar study, Schall et al., (2016) used the 

same IMU configurations from Schall et al., (2015a) to compare the IMUs with a highly validated 

optoelectronic system for field and laboratory-based tasks. Schall et al. (2016) indicated that 

summary measures, including the mean, 10th percentile, and 50th percentile of trunk angular 

displacement, were comparable between the two IMU configurations. Reported differences 

between summary measures from the two IMU configurations were less than ~3° in both Schall 

et al. (2016) and Schall et al. (2015a). Both Schall et al. (2015a) and Schall et al. (2016) also 

reported discrepancies between the 90th percentiles from the accelerometry-based IMU on the 

chest and the complementary weighting algorithm-based IMU on the chest relative to the IMU 

on the sacrum. These differences ranged between 7° and 14° of trunk flexion.   

The differences between the Bioharness 3 and Xsens for quantifying higher ranges of 

trunk flexion (>30° of flexion) are consistent with results from Lee et al. (2017) who compared 

the Bioharness 3 to other motion sensors. Lee et al. (2017) compared trunk flexion and 

extension estimates between Bioharness 3 and a chest-mounted accelerometer lifting tasks at 

selected speeds. The results from Lee et al., (2017) indicated that, when participants were 

asked to bend to a fixed flexion point of 90°, the differences between the two systems for the 

90th percentile estimates were ~10° of trunk flexion for slow speeds (30 bends per minute) and 

~13° for faster speeds (60 bends per minute). The results from Lee et al. (2017) should be 

interpreted in the context of certain differences to the present study. In addition to having a 

small sample size (n=1), the motion sensors used were not IMUs and they have not been 

previously validated in posture analysis studies.  
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Practical measures in exposure assessments  

The Bioharness 3 showed to estimate key summary measures commonly used in 

physical measurement assessments consistently to the Xsens system. Moderate to strong 

correlation coefficients between the Bioharness and Xsens systems for estimating the 10th, 50th, 

90th percentile, and variation of trunk flexion and extension (90th-10th percentiles) were observed 

(Table 3). Additionally, acceptable agreement based on the intraclass correlation coefficients 

and 95% confidence internals was established between the Xsens and Bioharness 3 systems 

for quantifying the 10th, 50th, and 90th percentile of trunk flexion and extension (Table 4). First 

introduced in Jonsson (1978) for exposure assessments using electromyography, percentiles of 

exposure from amplitude probability distribution functions have been used extensively as 

descriptive metrics in occupational studies of biomechanical exposures. Previous literature has 

shown the use of these descriptive metrics for characterizing jobs and tasks, evaluating 

effectiveness of interventions, assessing associations between body movements and 

injury/pain, and comparing exposure assessment tools (Wahlström et al., 2010: Hansson et al., 

2010; Kazmierczak et al. 2005; Schall et al., 2015b; Salas, et al., 2016; Howarth et al., 2016; 

Vasseljen and Westgaard, 1997; Bao, Mathiassen, and Winkel, 1996; Balogh et al., 2006; Unge 

et al., 2007; Forsman et al., 2002; Jonker, Rolander, and Balogh, 2009; Åkesson et al., 1997).  

Another key metric commonly used in exposure assessments is time in specific posture 

categories. In the present study, estimates of percent time showed acceptable agreement 

between the Bioharness and Xsens. Moderate to strong correlations between the two methods 

for estimating percent time in Category 2 (0°-30°), Category 3 (30°-60°), and Category 4 (>60°) 

were observed (Table 5). Moderate to strong agreement for Category 2, 3, and 4 was also 

reported based upon the intraclass correlation coefficients (Table 6). Assessing time in posture 

categories has been shown to be practical in a number of industries including manufacturing, 

nursing, retail, forestry work, military, construction, among others (Wai et al., 2010). In Lee et al. 

(2017), percent time in posture categories of 30°-60°, 60°-90°, and >90° of trunk flexion was 
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measured by the Bioharness 3 and a chest-mounted accelerometer. Both methods estimated 

comparable time spent in each category, but not statistical method was used to assess if there 

were significantly different or correlated between the measurements. Percent time estimates 

from both systems were compared to video recording, however, which indicated that the 

estimates from the Bioharness and reference accelerometer were comparable to what 

assessors observed in video.    

RMSD and Bland Altman  

Unexpected results were observed in the present study. Large differences between 

Xsens and Bioharness 3 for the ensemble averages of trunk flexion and extension values were 

observed. On average, relatively high sample-to-sample RMSD (root-mean square differences) 

between the Bioharness 3 and Xsens for estimating trunk postures ranged between ~12° and 

15° of flexion. There are no specific guidelines on the ideal RMSD estimates between systems 

for trunk posture analysis, but previous studies have considered RMSD estimates greater than 

10° of flexion to be insufficient to establish comparability (Schall et al., 2016, Schall et al., 

2015b; Lee et al., 2017). Schall et al. (2016) and Schall et al (2015b) reported RMSD values 

from an accelerometry-based IMU on the chest and a complementary weighting algorithm-

based sternum IMU relative to a sacrum IMU. The two IMU methods were compared to 

previously validated reference motion capture systems, but inferences can be made upon the 

differences between the RMDS values reported for the two IMU methods. Both Schall et al. 

(2016) and Schall et al (2015b) reported RMSD differences between the accelerometry-based 

IMU on the chest and a complementary weighting algorithm-based sternum IMU relative to a 

sacrum IMU that did not exceed ~2° of flexion. In Lee et al (2017), RMSD differences between 

the Bioharness and a chest-mounted sternum were as high as 13° of trunk flexion.  

Bland Altman analysis in the present study also indicated poor agreement between the 

Bioharness 3 and the Xsens for estimating trunk flexion and extension (Table 2). Based on 

suggestions from El-Zayat et al. (2013) and Schiefer et al. (2014) on agreement using Bland 
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Altman, the biggest absolute 95% limit of agreement (~ 20° of flexion) between the Bioharness 

3 and Xsens was considered to be too large to establish acceptable agreement (Lee et a., 2016; 

El-Zayat et al., 2013; Schiefer et al., 2014). Schall et al. (2015a) reported 95% limits of 

agreements that were a lot lower than those reported in the present study. When comparing 

mean trunk flexion and extension estimates of IMUs to estimates from an electrogoinometry 

system, Schall et al. (2015a) reported the bigger absolute 95% limit of agreement to be ~11° of 

flexion for an accelerometry-based IMU on the chest and ~7° for a complementary weighting 

algorithm-based sternum IMU relative to a sacrum IMU. The differences between the two IMU 

methods for the absolute 95% limits of agreement were relatively small at about 4° of flexion. In 

Lee et al. (2017), the biggest absolute 95% limit of agreement between the Bioharness 3 and a 

chest-mounted accelerometer was more comparable to the present study at about ~25° of 

flexion. It should also be noted that despite the large 95% limits of agreement, Lee et al. (2017) 

concluded that the Bioharness 3 and the chest-mounted accelerometer had acceptable 

agreement solely based on the small mean differences (~1°) from the Bland Altman analysis. 

This method has not been suggested to be a proper way of interpreting Bland Altman results, 

however. 

Normalized vs. non-normalized 

Certain expected trends were also observed between the non-normalized and 

normalized values for the Bioharness 3. First, summary measures indicated that the estimates 

from the two measurement methods used for the Bioharness 3 differed upon the severity of 

trunk flexion and extension. Estimates measured using the non-normalized method (BH1) were 

similar to the estimates from Xsens only when participants entered relatively high trunk flexion 

(30° or greater) (Table 1 and 5). In contrast, the estimates from the normalized method (BH2) 

were similar to those of Xsens only when participants entered relatively low trunk flexion (30° or 

less) (Table 1 and 5). Based upon the findings of the present study, the manufacturer of the 

Bioharness 3 should consider establishing a wireless calibration procedure to estimate subjects’ 
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neutral trunk position prior to collecting data. Currently, the Bioharness 3 has a calibration 

procedure but it can only be initiated by connecting it to a computer via a USB cord and running 

the manufacturer-supplied software. Without calibrating the system while the user is wearing the 

system, neutral positions of participants can often be characterized by overestimated trunk 

extension (5°-15°). Previous research has supported the effects of individuals’ anthropometrics 

on the quality of exposure data (Feito et al., 2011). With a calibration procedure integrated as 

part of the Bioharness 3, health and safety professionals can access trunk posture estimates 

that are more representative of the exposure of workers to awkward trunk exposures. 

Implications 

The findings of the present study have a number of implications for health and safety 

professionals. The results indicated that the Bioharness 3 was capable of measuring low trunk 

flexion and extension values similarly to the Xsens system which can be useful in specific MMH 

jobs. The ranges of trunk flexion and extension observed in the present study are similar to 

postures seen in different industries, including nursing and manufacturing (Punnett et al., 1991; 

Keyserling et al., 1992; Schall et al. (2015b). For example, the Bioharness 3 can provide useful 

posture information on tasks where workers are primarily handling materials on a single level 

such as handling parts and tools on an assembly line or handling products where workers rely 

on overhead reaching to complete a task.  Other industries where posture information from the 

Bioharness could be useful include office work, commercial driving, and retail where prolonged 

trunk postures (i.e. standing, sitting) are common. The results of the present study also 

suggested that the Bioharness had acceptable agreement for estimating practical measures of 

trunk postures, including percentiles and percent time in posture categories, and can be 

interchangeable to the Xsens system if those metrics are the focus of the exposure assessment.  

The Bioharness 3 has the ability to simultaneously quantify multiple physical and 

physiological parameters to evaluate exposure to working conditions. For example, evaluating 

heart rate, activity levels through acceleration, and trunk posture data using a single device has 
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been suggested to be key in providing health and safety professionals with a more complete 

representation of work-environment interaction (Cheng et al., 2013; Migliaccio et al., 2012; Gatti 

et al., 2014). The application of fused multi-parameter data can aid in identifying tasks that not 

only may expose workers to awkward trunk postures, but also possible physiological stress 

including cardiovascular strain and high metabolic demands. The small size and user-friendly 

interface of the Bioharness 3 may make it a more acceptable tool to be used by health and 

safety professionals over a more complex wearable measurement system.  

The human factors of modern wearable measurement systems have been recognized to 

be just as important as their ability to accurately and reliably measure work postures. Human 

factors, the study of interactions between people and the environment/products, is a key aspect 

that needs to be addressed when designing wearable technology (Moti and Caine, 2014).  If 

wearable measurement systems are not designed to be simple and be centered around the 

needs of the user or wearer (e.g. occupational professionals, workers), they can become a 

source of stress. Ferraro et al. (2017) claims that the stress that results from poor interfaces, 

uncomfortable fitting, and overwhelming amounts of data can often leave wearers disorganized 

and confused. A straightforward and intuitive design can enhance the usability levels of 

wearable measurement systems and help increase and maintain the levels of engagement of 

users (Siewiorek, Smailagic, and Starner, 2008). A wearable measurement system should be 

designed to have options to facilitate interaction, consider human cognitive capabilities for data 

processing, and provide convenient sensor locations that aid user comfort (Cho, 2010; 

Siewiorek, Smailagic, and Starner, 2008). The Bioharness 3, with its simple and instinctual 

design, possess a lot of these traits, making it more welcoming to use than complex systems 

like Xsens. With a better grasp on human factors, the Bioharness can be more accepted by 

safety and health professionals and encourage continues engagement from users and wearers 

alike.  
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Sensor Placement  

 The study investigated the effect of sensor placement to estimate trunk postures by 

comparing an IMU on the sternum (X-ST) and an IMU on the right shoulder (X-SH) to reference 

method represented by an IMU on the sternum relative to an IMU on the sacrum (X-SST).  

Sternum and Shoulder IMUs 

The findings of the study indicated that trunk posture estimates of the IMU on the 

sternum were the most comparable to the estimates derived from the IMU on the sternum 

relative to an IMU on the sacrum.  Similar summary measures and strong associations between 

summary measures were observed between the two measurement methods (Table 1 and 2). 

Acceptable agreement for measuring percent time across a range of trunk postures between the 

sternum IMU and the sternum IMU relative to sacrum IMU was also observed (Table 6). Despite 

being too large to establish comparability or agreement, the sternum IMU had the smallest 

mean RMSD values (~9.0°), mean differences (~1.0°), and absolute 95% limit of agreement 

(~15°) when compared to the reference method. Although not directly comparable, previous 

studies have reported comparable results for IMU methods similar to the ones used in the 

present study. Schall et al. (2016) compared a complementary weighting algorithm-based IMU 

secured to the sternum and complementary weighting algorithm-based IMUs secured to the 

sternum and sacrum. The RMSDs reported in Schall et al. (2016) differed by ~1° of flexion 

between the IMU on the sternum and the two on IMUs on the sternum and sacrum. In Schall et 

al. (2015a), where the same IMU methods were compared to a electrogoinometry system, 

summary measures reported were higher for the IMU on the sternum than the IMUs on the 

sacrum and sternum. RMDS values were similar between the two IMU methods when 

compared to the electrogoinometry system and had a small difference of ~2° of flexion. The 

level of agreement via Bland Altman analysis was also reported in the study. Schall et al.  

(2015a) reported mean differences and biggest absolute 95% limits of agreement for the 

sternum IMU (mean differences = ~4° of flexion, 95% limits of agreement ~11° of flexion) and 
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IMUs on the sternum and sacrum (mean differences = ~1° of flexion, 95% limits of agreement 

~7° of flexion). The difference between the 95% limits of agreement from the two IMU methods 

was relatively small at ~5° of flexion.  

The findings of the study revealed that the shoulder IMU was not as comparable to the 

sternum IMU relative to sacrum IMU. Differences between the methods were largest when 

participants experienced extreme trunk flexion and extension (Table 1). These discrepancies 

could be due to possible movement artifact from the Xsens shirt, scapular movement, and 

shoulder posture. Although considerably large, mean RMSD estimates (~10° of flexion) and 

Bland Altman 95% limits of agreement (approximately ±15° of flexion) were closer to those of 

the sternum IMU than any of the other methods (Table 2). The shoulder as a landmark to place 

motion sensors is new in the research and has not been tested enough to provide comparable 

results to the present study. Although it may not be directly comparable, these results appeared 

to be lower than reported values in a previous study. Lee et al. (2017) tested an accelerometer 

on the shoulder against an accelerometry mounted on the chest during MMH tasks. Results 

from Lee et al. (2017) indicated that the RMSD values for the sensor on the shoulder ranged 

between approximately 12° to 23° of trunk flexion. Bland Altman analysis revealed that the 

biggest absolute 95% limits of agreement ranged was ~46° of trunk flexion. Differences suggest 

that although an IMU on the shoulder may not consistently measure trunk flexion and extension, 

it is more accurate method than using an accelerometer secured to the shoulder alone. Similar 

to sternum IMU, estimates for the key percentiles and percent time metrics from the shoulder 

IMU showed to have acceptable agreement with estimates from the IMU on the sternum relative 

to an IMU on the sacrum. Agreement mostly occurred in low flexion variables (10th percentile, 

50th percentile) and time spent in Category 2 (0°-30°), Category 3 (31°-60°), Category 4 (>61°), 

suggesting that this method could be a consistent alternative for sensor placement in exposure 

assessments (Table 4 and 5).  
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Implications 

Since commercial wearable measurement systems are often designed only to be worn 

on specific parts of the body prescribed by the manufacturer, it is critical that the placement of 

these systems is evaluated. If the system is designed only to function under specific placement 

of sensors on the body, it is also important to explore how to safety professionals can make 

wearable devices more adaptable to situations where recommended placement may not be 

possible. The information from an IMU on the sternum can be primarily helpful when needing 

wearable measurement systems to secure sensors on workers. For instance, in industries such 

as construction, workers use bulky tool belts, oxygen tanks, concrete vibrators, fall protection 

harnesses, and back belts in a daily basis which often cover certain parts of the trunk. Placing 

an inertial sensor under equipment or harnesses may be unconformable for workers, create 

artifact error from unnecessary movement, and incorrectly quantify exposure to awkward trunk 

postures. Being able to put an inertial sensor on the shoulder or sternum alone can serve as an 

alternative to estimate trunk posture when placing sensors on the sacrum and sternum is not 

feasible. In situations where worker anthropometrics (e.g. weight, size) makes it difficult to 

locate certain landmarks or are more prone to movement artifact from skin, muscles, or other 

tissues, having the option to place an inertial sensor on other landmarks can also help assure 

quality data in exposure assessments. Issues regarding wearable devices not being able to be 

used by individuals with various anthropometrics have been acknowledged in previous studies 

(Sazonov et al., 2011; Gemperle et al., 1998; Feito et al., 2011). Improving the adaptability of 

wearable measurement systems may also help address parts of the privacy issues regarding 

wearable technology. In certain scenarios, placing inertial sensors on the chest or sacrum may 

be intrusive for workers and be perceived as a violation of their personal space. Placing an 

inertial sensor on a less intrusive area such as the shoulder may help workers feel more 

comfortable and willing to wear the sensors.  
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Strengths and Limitations 

The present study is one of the first efforts to the knowledge of the researchers to 

compare two commercially-available wearable measurement systems for measuring trunk 

postures in a simulated MMH tasks in a laboratory setting. The study was intended to improve 

the knowledge of how these types of systems can be used by occupational health and safety 

professionals looking to assess exposure to work postures. The results of the study contribute 

to the growing literature on wearable measurement systems used to assess exposure to 

occupational trunk postures.  

A number of strengths in the present study need to be recognized. The study had a 

relatively larger sample size (n =30) compared to previous studies which helps improve its 

statistical stability and generalizability (Schall et al., 2015a; Schall et al., 2016; Lee et al., 2017). 

The sample size also had an almost even split of females and males partaking in the study 

(53% male, 47% females), which is similar to gender distribution of the workface in the U.S. 

(BLS, 2016c). The simulated MMH tasks in the study were performed at a pace and with a lifting 

technique that felt natural and comfortable to the participants so it could be representative of 

how people are likely to handle materials in the job. The study followed data processing and 

statistical procedures presented in previous studies which allows more direct comparisons of 

the methods and results (Schall et al., 2015a; Schall et al., 2016; Lee et al., 2017). 

The findings of the study also need to be interpreted under a number of limitations. 

Although the Xsens system has been tested against ‘gold-standard’ systems for posture 

analysis, there is not enough consensus in the literature to consider it a ‘gold standard’ system. 

The Xsens system was used as the reference system to determine if a more user-friendly 

Bioharness 3 could serve as an alternative to a complex system. Therefore, RMSD estimates 

and other comparative measures are expected to be higher if the Bioharness 3 was to be tested 

against a more validated tool such as an optoelectronic system. Systematic error for the Xsens 

might have been introduced via variability of the sensor placement techniques by researchers, 
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shifting of sensors during the simulated MMH task, and the presence of ferromagnetic 

interference from the surrounding structures in the laboratory.  

Other factors such as fatigue or participants changing lifting techniques through the 

MMH task might have affected the trunk posture estimates. Participants were asked to execute 

the tasks at a self-selected pace which might have induced inconsistent movements for the 

Bioharness 3 to recognize correctly. The lack of a controlled speed for the simulated MMH tasks 

may have affected the trunk posture estimates from the Bioharness 3. Inconsistent speeds of 

body movements have been proposed to increase the angle error in accelerometer estimates 

(Lee et al., Korshøj et al., 2014; Hansson et al., 2001). Hansson et al. (2001) indicated that high 

angle errors from accelerometers commonly occur because accelerometers are sensitive to 

radial and tangential accelerations. This issue does not apply to IMU-based systems, however, 

as the accelerometer imbedded inside an IMU relies on additional aiding sensors (e.g. 

magnetometers, gyroscopes) to correct the orientation of the device and helps reduce error.  

The lightweight loads being handled in the study and the short duration of the study also 

may prevent the results to be generalized to tasks that involve heavier loads and longer 

handling time, which is common in many industries. Weights handled in other studies that 

focused on using motion sensors for quantifying exposure during MMH tasks have ranged 

between 500 grams to 18 kilograms (Kim and Nussbaum, 2013; Faber et al., 2009; Lee et al., 

2017; Schall et al., 2015a; Robert-Lachaine et al., 2016). Since MMH tasks were designed to 

focus on specific movements, results from this study may not be generalizable for other MMH 

tasks that are more asymmetrical and more static in nature. Previous studies have also focused 

on trunk postures that involved lateral bending in the frontal/coronal and axial rotation in the 

transverse plane (Wong and Wong, 2008; Robert-Lachaine et al., 2016; Kim and Nussbaum, 

2013; Schall et al., 2015a; Schall et al., 2017; Schepers et al., 2009). 
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 Future work 

More extensive research on the use of wearable measurement systems to assess the 

exposure to awkward trunk postures in MMH tasks continue to be needed.  Research on how 

wearable measurement system perform under different conditions is very important in particular. 

Testing these wearable devices in a number of simulated and field-based tasks, on workers 

across different industries, and against properly validated systems should be considered for 

future work. Wearable measurements systems are entering the market quickly, offering to 

identify and measure exposure to physical hazards but lacking sufficient research studies to 

support their use in daily health and safety practices. Most importantly, as wearable technology 

continues to improve, a significant switch to IMUs and inertial measurement systems is 

predicted to grow. It is important that these systems not only become more accurate and 

reliable for measuring work postures, but also make it easier for professionals to apply them in 

the field. If accurate and reliable systems continue to become more user-friendly, wearable 

measurement systems in exposure assessments can experience a high demand and 

engagement from professionals in the field.  
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Figure 11: Ensemble average of trunk flexion and extension for participants 1 to 12 (top left to bottom right). 
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Figure 12: Ensemble average of trunk flexion and extension for participants 13 to 23 (top left to bottom right). 
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Figure 13: Ensemble average of trunk flexion and extension for participants 23 to 30 (top left to bottom right). 
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