36 research outputs found

    Learning-based classification of informative laryngoscopic frames

    Get PDF
    Background and Objective: Early-stage diagnosis of laryngeal cancer is of primary importance to reduce patient morbidity. Narrow-band imaging (NBI) endoscopy is commonly used for screening purposes, reducing the risks linked to a biopsy but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to present a strategy to perform automatic selection of informative endoscopic video frames, which can reduce the amount of data to process and potentially increase diagnosis performance. Methods: A new method to classify NBI endoscopic frames based on intensity, keypoint and image spatial content features is proposed. Support vector machines with the radial basis function and the one-versus-one scheme are used to classify frames as informative, blurred, with saliva or specular reflections, or underexposed. Results: When tested on a balanced set of 720 images from 18 different laryngoscopic videos, a classification recall of 91% was achieved for informative frames, significantly overcoming three state of the art methods (Wilcoxon rank-signed test, significance level = 0.05). Conclusions: Due to the high performance in identifying informative frames, the approach is a valuable tool to perform informative frame selection, which can be potentially applied in different fields, such us computer-assisted diagnosis and endoscopic view expansion

    Real-time video mosaicing with a high-resolution microendoscope

    Get PDF
    Microendoscopes allow clinicians to view subcellular features in vivo and in real-time, but their field-of-view is inherently limited by the small size of the probe's distal end. Video mosaicing has emerged as an effective technique to increase the acquired image size. Current implementations are performed post-procedure, which removes the benefits of live imaging. In this manuscript we present an algorithm for real-time video mosaicing using a low-cost high-resolution microendoscope. We present algorithm execution times and show image results obtained from in vivo tissue

    Optical Molecular Imaging in the Gastrointestinal Tract

    Get PDF
    Recent developments in optical molecular imaging allow for real-time identification of morphological and biochemical changes in tissue associated with gastrointestinal neoplasia. This review summarizes widefield and high resolution imaging modalities currently in pre-clinical and clinical evaluation for the detection of colorectal cancer and esophageal cancer. Widefield techniques discussed include high definition white light endoscopy, narrow band imaging, autofluoresence imaging, and chromoendoscopy; high resolution techniques discussed include probe-based confocal laser endomicroscopy, high-resolution microendoscopy, and optical coherence tomography. Finally, new approaches to enhance image contrast using vital dyes and molecular-specific targeted contrast agents are evaluated

    Motion-Aware Mosaicing for Confocal Laser Endomicroscopy

    Get PDF
    International audienceProbe-based Confocal Laser Endomicroscopy (pCLE) provides physicians with real-time access to histological information during standard endoscopy procedures, through high-resolution cellular imaging of internal tissues. Earlier work on mosaicing has enhanced the potential of this imaging modality by meeting the need to get a complete representation of the imaged region. However, with approaches, the dynamic information, which may be of clinical interest, is lost. In this study, we propose a new mosaic construction algorithm for pCLE sequences based on a min-cut optimization and gradient-domain composition. Its main advantage is that the motion of some structures within the tissue such as blood cells in capillaries, is taken into account. This allows physicians to get both a sharper static representation and a dynamic representation of the imaged tissue. Results on 16 sequences acquired in vivo on six different organs demonstrate the clinical relevance of our approach

    Online Super-Resolution For Fibre-Bundle-Based Confocal Laser Endomicroscopy

    Get PDF
    Probe-based Confocal Laser Endomicroscopy (pCLE) produces microscopic images enabling real-time in vivo optical biopsy. However, the miniaturisation of the optical hardware, specifically the reliance on an optical fibre bundle as an imaging guide, fundamentally limits image quality by producing artefacts, noise, and relatively low contrast and resolution. The reconstruction approaches in clinical pCLE products do not fully alleviate these problems. Consequently, image quality remains a barrier that curbs the full potential of pCLE. Enhancing the image quality of pCLE in real-time remains a challenge. The research in this thesis is a response to this need. I have developed dedicated online super-resolution methods that account for the physics of the image acquisition process. These methods have the potential to replace existing reconstruction algorithms without interfering with the fibre design or the hardware of the device. In this thesis, novel processing pipelines are proposed for enhancing the image quality of pCLE. First, I explored a learning-based super-resolution method that relies on mapping from the low to the high-resolution space. Due to the lack of high-resolution pCLE, I proposed to simulate high-resolution data and use it as a ground truth model that is based on the pCLE acquisition physics. However, pCLE images are reconstructed from irregularly distributed fibre signals, and grid-based Convolutional Neural Networks are not designed to take irregular data as input. To alleviate this problem, I designed a new trainable layer that embeds Nadaraya- Watson regression. Finally, I proposed a novel blind super-resolution approach by deploying unsupervised zero-shot learning accompanied by a down-sampling kernel crafted for pCLE. I evaluated these new methods in two ways: a robust image quality assessment and a perceptual quality test assessed by clinical experts. The results demonstrate that the proposed super-resolution pipelines are superior to the current reconstruction algorithm in terms of image quality and clinician preference

    An in Depth Review Paper on Numerous Image Mosaicing Approaches and Techniques

    Get PDF
    Image mosaicing is one of the most important subjects of research in computer vision at current. Image mocaicing requires the integration of direct techniques and feature based techniques. Direct techniques are found to be very useful for mosaicing large overlapping regions, small translations and rotations while feature based techniques are useful for small overlapping regions. Feature based image mosaicing is a combination of corner detection, corner matching, motion parameters estimation and image stitching.Furthermore, image mosaicing is considered the process of obtaining a wider field-of-view of a scene from a sequence of partial views, which has been an attractive research area because of its wide range of applications, including motion detection, resolution enhancement, monitoring global land usage, and medical imaging. Numerous algorithms for image mosaicing have been proposed over the last two decades.In this paper the authors present a review on different approaches for image mosaicing and the literature over the past few years in the field of image masaicing methodologies. The authors take an overview on the various methods for image mosaicing.This review paper also provides an in depth survey of the existing image mosaicing algorithms by classifying them into several groups. For each group, the fundamental concepts are first clearly explained. Finally this paper also reviews and discusses the strength and weaknesses of all the mosaicing groups

    A New Representation for Spectral Data Applied to Raman Spectroscopy of Brain Cancer

    Get PDF
    Par sa nature infiltrative et son confinement derrière la barrière hémo-encéphalique, le cancer primaire du cerveau est l’une des néoplasies les plus difficiles à diagnostiquer et traiter. Son traitement repose sur la résection chirurgicale maximale. La spectroscopie Raman, capable d’identifier en temps réel des régions cancéreuses qui apparaîtraient normales à l’œil nu, promet d’améliorer considérablement le guidage neurochirurgical et maximiser la résection de la masse tumorale. Cependant, le signal Raman est très complexe à interpréter : les systèmes Raman peuvent maintenant capter des signaux de grande qualité que les méthodes analytiques actuelles ne parviennent pas à interpréter de manière reproductible. Ceci constitue une barrière importante à l’acceptation de la spectroscopie Raman par les médecins et les chercheurs œuvrant sur le cancer du cerveau. L’objectif de ce travail est de développer une méthode robuste d’ingénierie des variables (« Feature engineering ») qui permettrait d’identifier les processus moléculaires exploités par les systèmes Raman pour différentier les régions cancéreuses des régions saines lors de chirurgies cérébrales. Tout d’abord, nous avons identifié les régions Raman ayant une haute spécificité à notre problématique clinique par une revue systématique de la littérature. Un algorithme d’ajustement de courbe a été développé afin d’extraire la forme des pics Raman dans les régions sélectionnées. Puis, nous avons élaboré un modèle mathématique qui tient compte de l’interactivité entre les molécules de l’échantillon interrogé, ainsi qu’entre le signal Raman et l’âge du patient opéré. Pour valider le modèle, nous avons comparé sa capacité à compresser le signal avec celle de l’analyse en composante principale (ACP), le standard en spectroscopie Raman. Finalement, nous avons appliqué la méthode d’ingénierie des variables à des spectres Raman acquis en salle d’opération afin d’identifier quels processus moléculaires indiquaient la présence de cancer. Notre méthode a démontré une meilleure rétention d’information que l’ACP. En l’appliquant aux spectres Raman in vivo, les zones denses en cellules malignes démontrent une expression augmentée d’acides nucléiques ainsi que de certaines protéines, notamment le collagène, le tryptophan et la phénylalanine. De plus, l’âge des patients semble affecter l’impact qu’ont certaines protéines, lipides et acides nucléiques sur le spectre Raman. Nos travaux révèlent l’importance d’une modélisation statistique appropriée pour l’implémentation clinique de systèmes Raman chirurgicaux.----------ABSTRACT Because of its infiltrative nature and concealment behind the blood-brain barrier, primary brain cancer remains one of the most challenging oncological condition to diagnose and treat. The mainstay of treatment is maximal surgical resection. Raman spectroscopy has shown great promise to guide surgeons intraoperatively by identifying, in real-time, dense cancer regions that appear normal to the naked eye. The Raman signal of living tissue is, however, very challenging to interpret, and while most advances in Raman systems targeted the hardware, appropriate statistical modeling techniques are lacking. As a result, there is conflicting evidence as to which molecular processes are captured by Raman probes. This limitation hinders clinical translation and usage of the technology by the cancer-research community. This work focuses on the analytical aspect of Raman-based surgical systems. Its objective is to develop a robust data processing pipeline to confidently identify which molecular phenomena allow Raman systems to differentiate healthy brain and cancer during neurosurgeries. We first selected high-yield Raman regions based on previous literature on the subject, resulting in a list of reproducible Raman bands with high likelihood of brain-specific Raman signal. We then developed a peak-fitting algorithm to extract the shape (height and width) of the Raman signal at those specific bands. We described a mathematical model that accounted for all possible interactions between the selected Raman peaks, and the interaction between the peaks’ shape and the patient’s age. To validate the model, we compared its capacity to compress the signal while maintaining high information content against a Principal Component Analysis (PCA) of the Raman spectra, the fields’ standard. As a final step, we applied the feature engineering model to a dataset of intraoperative human Raman spectra to identify which molecular processes were indicative of brain cancer. Our method showed better information retention than PCA. Our analysis of in vivo Raman measurement showed that areas with high-density of malignant cells had increased expression of nucleic acids and protein compounds, notably collagen, tryptophan and phenylalanine. Patient age seemed to affect the impact of nucleic acids, proteins and lipids on the Raman spectra. Our work demonstrates the importance of appropriate statistical modeling in the implementation of Raman-based surgical devices

    Cancer Biomarkers and Targets in Digestive Organs

    Get PDF
    Identification and development of cancer biomarkers and targets have greatly accelerated progress towards precision medicine in oncology. Studies of tumor biology have not only provided insights into the mechanisms underlying carcinogenesis, but also led to discovery of molecules that have been developed into cancer biomarkers and targets. Multi-platforms for molecular characterization of tumors using next-generation genomic sequencing, immunohistochemistry, in situ hybridization, and blood-based biopsies have greatly expanded the portfolio of potential biomarkers and targets. These cancer biomarkers have been developed for diagnosis, early detection, prognosis, and prediction of treatment response. The molecular targets have been exploited for anti-cancer therapy and delivery of therapeutic agents. This Special Issue of Biomedicines focuses on recent advances in the discovery, characterization, translation, and clinical application of cancer biomarkers and targets in malignant diseases of the digestive system. The goal is to stimulate basic and translational research and clinical collaboration in this exciting field with the hope of developing strategies for prevention and early detection/diagnosis of cancer in digestive organs, and improving therapeutic and psychosocial outcomes in patients with these malignant diseases
    corecore