Online Super-Resolution For Fibre-Bundle-Based Confocal Laser Endomicroscopy

Abstract

Probe-based Confocal Laser Endomicroscopy (pCLE) produces microscopic images enabling real-time in vivo optical biopsy. However, the miniaturisation of the optical hardware, specifically the reliance on an optical fibre bundle as an imaging guide, fundamentally limits image quality by producing artefacts, noise, and relatively low contrast and resolution. The reconstruction approaches in clinical pCLE products do not fully alleviate these problems. Consequently, image quality remains a barrier that curbs the full potential of pCLE. Enhancing the image quality of pCLE in real-time remains a challenge. The research in this thesis is a response to this need. I have developed dedicated online super-resolution methods that account for the physics of the image acquisition process. These methods have the potential to replace existing reconstruction algorithms without interfering with the fibre design or the hardware of the device. In this thesis, novel processing pipelines are proposed for enhancing the image quality of pCLE. First, I explored a learning-based super-resolution method that relies on mapping from the low to the high-resolution space. Due to the lack of high-resolution pCLE, I proposed to simulate high-resolution data and use it as a ground truth model that is based on the pCLE acquisition physics. However, pCLE images are reconstructed from irregularly distributed fibre signals, and grid-based Convolutional Neural Networks are not designed to take irregular data as input. To alleviate this problem, I designed a new trainable layer that embeds Nadaraya- Watson regression. Finally, I proposed a novel blind super-resolution approach by deploying unsupervised zero-shot learning accompanied by a down-sampling kernel crafted for pCLE. I evaluated these new methods in two ways: a robust image quality assessment and a perceptual quality test assessed by clinical experts. The results demonstrate that the proposed super-resolution pipelines are superior to the current reconstruction algorithm in terms of image quality and clinician preference

    Similar works