60 research outputs found

    Neurofeedback-Based Moral Enhancement and the Notion of Morality

    Get PDF
    Some skeptics question the very possibility of moral bioenhancement by arguing that if we lack a widely acceptable notion of morality, we will not be able to accept the use of a biotechnological technique as a tool for moral bioenhancement. I will examine this skepticism and argue that the assessment of moral bioenhancement does not require such a notion of morality. In particular, I will demonstrate that this skepticism can be neutralized in the case of recent neurofeedback techniques. This goal will be accomplished in four steps. First, I will draw an outline of the skepticism against the possibility of moral bioenhancement and point out that a long-lasting dispute among moral philosophers nourishes this skepticism. Second, I will survey recent neurofeedback techniques and outline their three features: the variety of the target human faculties, such as emotion, cognition, and behavior; the flexibility or personalizability of the target brain state; and the nonclinical application of neurofeedback techniques. Third, I will argue that, by virtue of these three unique features, neurofeedback techniques can be a tool for moral bioenhancement without adopting any specific notion of morality. Fourth, I will examine the advantages and threats that neurofeedback-based moral enhancement may have. Finally, I will conclude that neurofeedback-based moral enhancement can become a new and promising tool for moral bioenhancement and requires further ethical investigations on its unique features

    Inducing a mental context for associative memory formation with real-time fMRI neurofeedback

    Get PDF
    Memory, one of the hallmarks of human cognition, can be modified when humans voluntarily modulate neural population activity using neurofeedback. However, it is currently unknown whether neurofeedback can influence the integration of memories, and whether memory is facilitated or impaired after such neural perturbation. In this study, participants memorized objects while we provided them with abstract neurofeedback based on their brain activity patterns in the ventral visual stream. This neurofeedback created an implicit face or house context in the brain while memorizing the objects. The results revealed that participants created associations between each memorized object and its implicit context solely due to the neurofeedback manipulation. Our findings shed light onto how memory formation can be influenced by synthetic memory tags with neurofeedback and advance our understanding of mnemonic processing

    Feedback of real-time fMRI signals: From concepts and principles to therapeutic interventions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkThe feedback of real-time functional magnetic resonance imaging (rtfMRI) signals, dubbed “neurofeedback”, has found applications in the treatment of clinical disorders and enhancement of brain performance. However, knowledge of the basic underlying mechanism on which neurofeedback is based is rather limited. This article introduces the concepts, principles and characteristics of feedback control systems and its applications to electroencephalography (EEG) and rtfMRI signals. Insight into the underlying mechanisms of feedback systems may lead to the development of novel feedback protocols and subsystems for rtfMRI and enhance therapeutic solutions for clinical interventions

    Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    Get PDF
    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using Blind Source Separation may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes targeting individual brain sources by source-based EEG neurofeedback

    Neurofeedback en psychiatrie : une technique du présent ? [Neurofeedback: one of today's techniques in psychiatry?]

    Get PDF
    International audienceObjectivesNeurofeedback is a technique that aims to teach a subject to regulate a brain parameter measured by a technical interface to modulate his/her related brain and cognitive activities. However, the use of neurofeedback as a therapeutic tool for psychiatric disorders remains controversial. The aim of this review is to summarize and to comment the level of evidence of electroencephalogram (EEG) neurofeedback and real-time functional magnetic resonance imaging (fMRI) neurofeedback for therapeutic application in psychiatry.MethodLiterature on neurofeedback and mental disorders but also on Brain Computer Interfaces (BCI) used in the field of neurocognitive science has been considered by the group of expert of the NExT (Neurofeedback Evaluation & Training) section of the French Association of Biological Psychiatry and Neuropsychopharmacology (AFPBN).ResultsResults show a potential efficacy of EEG-neurofeedback in the treatment of attentional-deficit/hyperactivity disorder (ADHD) in children, even if this is still debated. For other mental disorders, there is too limited research to warrant the use of EEG-neurofeedback in clinical practice. Regarding fMRI-neurofeedback, the level of evidence remains too weak, for now, to justify clinical use. The literature review highlights various unclear points, such as indications (psychiatric disorders, pathophysiologic rationale), protocols (brain signals targeted, learning characteristics), and techniques (EEG, fMRI, signal processing). ConclusionThe field of neurofeedback involves psychiatrists, neurophysiologists and researchers in the field of brain-computer-interfaces. Future studies should determine the criteria for optimizing neurofeedback sessions. A better understanding of the learning processes underpinning neurofeedback could be a key element to develop the use of this technique in clinical practice

    Functional magnetic resonance imaging neurofeedback-guided motor imagery training and motor training for Parkinson's Disease: randomized trial

    Get PDF
    Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson’s Disease (PD) in a 10-week small Phase I randomized controlled trial. Methods: Thirty patients with Parkinson’s disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society—Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention “off-medication”. The secondary outcome measures were the “on-medication” MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the “off-medication” state (95% confidence interval: −2.5 to −6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to −6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions

    Flexible Adaptive Paradigms for fMRI Using a Novel Software Package ‘Brain Analysis in Real-Time’ (BART)

    Get PDF
    In this work we present a new open source software package offering a unified framework for the real-time adaptation of fMRI stimulation procedures. The software provides a straightforward setup and highly flexible approach to adapt fMRI paradigms while the experiment is running. The general framework comprises the inclusion of parameters from subject’s compliance, such as directing gaze to visually presented stimuli and physiological fluctuations, like blood pressure or pulse. Additionally, this approach yields possibilities to investigate complex scientific questions, for example the influence of EEG rhythms or fMRI signals results themselves. To prove the concept of this approach, we used our software in a usability example for an fMRI experiment where the presentation of emotional pictures was dependent on the subject’s gaze position. This can have a significant impact on the results. So far, if this is taken into account during fMRI data analysis, it is commonly done by the post-hoc removal of erroneous trials. Here, we propose an a priori adaptation of the paradigm during the experiment’s runtime. Our fMRI findings clearly show the benefits of an adapted paradigm in terms of statistical power and higher effect sizes in emotion-related brain regions. This can be of special interest for all experiments with low statistical power due to a limited number of subjects, a limited amount of time, costs or available data to analyze, as is the case with real-time fMRI

    Self-regulation of visual word form area activation with real-time fMRI neurofeedback

    Get PDF
    The Visual Word Form Area (VWFA) is a key region of the brain’s reading network and its activation has been shown to be strongly associated with reading skills. Here, for the first time, we investigated whether voluntary regulation of VWFA activation is feasible using real-time fMRI neurofeedback. 40 adults with typical reading skills were instructed to either upregulate (UP group, N = 20) or downregulate (DOWN group, N = 20) their own VWFA activation during six neurofeedback training runs. The VWFA target region was individually defined based on a functional localizer task. Before and after training, also regulation runs without feedback (“no-feedback runs”) were performed. When comparing the two groups, we found stronger activation across the reading network for the UP than the DOWN group. Further, activation in the VWFA was significantly stronger in the UP group than the DOWN group. Crucially, we observed a significant interaction of group and time (pre, post) for the no-feedback runs: The two groups did not differ significantly in their VWFA activation before neurofeedback training, but the UP group showed significantly stronger activation than the DOWN group after neurofeedback training. Our results indicate that upregulation of VWFA activation is feasible and that, once learned, successful upregulation can even be performed in the absence of feedback. These results are a crucial first step toward the development of a potential therapeutic support to improve reading skills in individuals with reading impairments
    corecore