570 research outputs found

    Cybersecurity in implantable medical devices

    Get PDF
    Mención Internacional en el título de doctorImplantable Medical Devices (IMDs) are electronic devices implanted within the body to treat a medical condition, monitor the state or improve the functioning of some body part, or just to provide the patient with a capability that he did not possess before [86]. Current examples of IMDs include pacemakers and defibrillators to monitor and treat cardiac conditions; neurostimulators for deep brain stimulation in cases such as epilepsy or Parkinson; drug delivery systems in the form of infusion pumps; and a variety of biosensors to acquire and process different biosignals. Some of the newest IMDs have started to incorporate numerous communication and networking functions—usually known as “telemetry”—, as well as increasingly more sophisticated computing capabilities. This has provided implants with more intelligence and patients with more autonomy, as medical personnel can access data and reconfigure the implant remotely (i.e., without the patient being physically present in medical facilities). Apart from a significant cost reduction, telemetry and computing capabilities also allow healthcare providers to constantly monitor the patient’s condition and to develop new diagnostic techniques based on an Intra Body Network (IBN) of medical devices [25, 26, 201]. Evolving from a mere electromechanical IMD to one with more advanced computing and communication capabilities has many benefits but also entails numerous security and privacy risks for the patient. The majority of such risks are relatively well known in classical computing scenarios, though in many respects their repercussions are far more critical in the case of implants. Attacks against an IMD can put at risk the safety of the patient who carries it, with fatal consequences in certain cases. Causing an intentional malfunction of an implant can lead to death and, as recognized by the U.S. Food and Drug Administration (FDA), such deliberate attacks could be far more difficult to detect than accidental ones [61]. Furthermore, these devices store and transmit very sensitive medical information that requires protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S. (e.g., CFR 164.312) Directives [94, 204]. The wireless communication capabilities present in many modern IMDs are a major source of security risks, particularly while the patient is in open (i.e., non-medical) environments. To begin with, the implant becomes no longer “invisible”, as its presence could be remotely detected [48]. Furthermore, it facilitates the access to transmitted data by eavesdroppers who simply listen to the (insecure) channel [83]. This could result in a major privacy breach, as IMDs store sensitive information such as vital signals, diagnosed conditions, therapies, and a variety of personal data (e.g., birth date, name, and other medically relevant identifiers). A vulnerable communication channel also makes it easier to attack the implant in ways similar to those used against more common computing devices [118, 129, 156], i.e., by forging, altering, or replying previously captured messages [82]. This could potentially allow an adversary to monitor and modify the implant without necessarily being close to the victim [164]. In this regard, the concerns of former U.S. vice-president Dick Cheney constitute an excellent example: he had his Implantable Cardioverter Defibrillator (ICD) replaced by another without WiFi capability [219]. While there are still no known real-world incidents, several attacks on IMDs have been successfully demonstrated in the lab [83, 133, 143]. These attacks have shown how an adversary can disable or reprogram therapies on an ICD with wireless connectivity, and even inducing a shock state to the patient [65]. Other attacks deplete the battery and render the device inoperative [91], which often implies that the patient must undergo a surgical procedure to have the IMD replaced. Moreover, in the case of cardiac implants, they have a switch that can be turned off merely by applying a magnetic field [149]. The existence of this mechanism is motivated by the need to shield ICDs to electromagnetic fields, for instance when the patient undergoes cardiac surgery using electrocautery devices [47]. However, this could be easily exploited by an attacker, since activating such a primitive mechanism does not require any kind of authentication. In order to prevent attacks, it is imperative that the new generation of IMDs will be equipped with strong mechanisms guaranteeing basic security properties such as confidentiality, integrity, and availability. For example, mutual authentication between the IMD and medical personnel is essential, as both parties must be confident that the other end is who claims to be. In the case of the IMD, only commands coming from authenticated parties should be considered, while medical personnel should not trust any message claiming to come from the IMD unless sufficient guarantees are given. Preserving the confidentiality of the information stored in and transmitted by the IMD is another mandatory aspect. The device must implement appropriate security policies that restrict what entities can reconfigure the IMD or get access to the information stored in it, ensuring that only authorized operations are executed. Similarly, security mechanisms have to be implemented to protect the content of messages exchanged through an insecure wireless channel. Integrity protection is equally important to ensure that information has not been modified in transit. For example, if the information sent by the implant to the Programmer is altered, the doctor might make a wrong decision. Conversely, if a command sent to the implant is forged, modified, or simply contains errors, its execution could result in a compromise of the patient’s physical integrity. Technical security mechanisms should be incorporated in the design phase and complemented with appropriate legal and administrative measures. Current legislation is rather permissive in this regard, allowing the use of implants like ICDs that do not incorporate any security mechanisms. Regulatory authorities like the FDA in the U.S or the EMA (European Medicines Agency) in Europe should promote metrics and frameworks for assessing the security of IMDs. These assessments should be mandatory by law, requiring an adequate security level for an implant before approving its use. Moreover, both the security measures supported on each IMD and the security assessment results should be made public. Prudent engineering practices well known in the safety and security domains should be followed in the design of IMDs. If hardware errors are detected, it often entails a replacement of the implant, with the associated risks linked to a surgery. One of the main sources of failure when treating or monitoring a patient is precisely malfunctions of the device itself. These failures are known as “recalls” or “advisories”, and it is estimated that they affect around 2.6% of patients carrying an implant. Furthermore, the software running on the device should strictly support the functionalities required to perform the medical and operational tasks for what it was designed, and no more [66, 134, 213]. In Chapter 1, we present a survey of security and privacy issues in IMDs, discuss the most relevant mechanisms proposed to address these challenges, and analyze their suitability, advantages, and main drawbacks. In Chapter 2, we show how the use of highly compressed electrocardiogram (ECG) signals (only 24 coefficients of Hadamard Transform) is enough to unequivocally identify individuals with a high performance (classification accuracy of 97% and with identification system errors in the order of 10−2). In Chapter 3 we introduce a new Continuous Authentication scheme that, contrarily to previous works in this area, considers ECG signals as continuous data streams. The proposed ECG-based CA system is intended for real-time applications and is able to offer an accuracy up to 96%, with an almost perfect system performance (kappa statistic > 80%). In Chapter 4, we propose a distance bounding protocol to manage access control of IMDs: ACIMD. ACIMD combines two features namely identity verification (authentication) and proximity verification (distance checking). The authentication mechanism we developed conforms to the ISO/IEC 9798-2 standard and is performed using the whole ECG signal of a device holder, which is hardly replicable by a distant attacker. We evaluate the performance of ACIMD using ECG signals of 199 individuals over 24 hours, considering three adversary strategies. Results show that an accuracy of 87.07% in authentication can be achieved. Finally, in Chapter 5 we extract some conclusions and summarize the published works (i.e., scientific journals with high impact factor and prestigious international conferences).Los Dispositivos Médicos Implantables (DMIs) son dispositivos electrónicos implantados dentro del cuerpo para tratar una enfermedad, controlar el estado o mejorar el funcionamiento de alguna parte del cuerpo, o simplemente para proporcionar al paciente una capacidad que no poseía antes [86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores para monitorear y tratar afecciones cardíacas; neuroestimuladores para la estimulación cerebral profunda en casos como la epilepsia o el Parkinson; sistemas de administración de fármacos en forma de bombas de infusión; y una variedad de biosensores para adquirir y procesar diferentes bioseñales. Los DMIs más modernos han comenzado a incorporar numerosas funciones de comunicación y redes (generalmente conocidas como telemetría) así como capacidades de computación cada vez más sofisticadas. Esto ha propiciado implantes con mayor inteligencia y pacientes con más autonomía, ya que el personal médico puede acceder a los datos y reconfigurar el implante de forma remota (es decir, sin que el paciente esté físicamente presente en las instalaciones médicas). Aparte de una importante reducción de costos, las capacidades de telemetría y cómputo también permiten a los profesionales de la atención médica monitorear constantemente la condición del paciente y desarrollar nuevas técnicas de diagnóstico basadas en una Intra Body Network (IBN) de dispositivos médicos [25, 26, 201]. Evolucionar desde un DMI electromecánico a uno con capacidades de cómputo y de comunicación más avanzadas tiene muchos beneficios pero también conlleva numerosos riesgos de seguridad y privacidad para el paciente. La mayoría de estos riesgos son relativamente bien conocidos en los escenarios clásicos de comunicaciones entre dispositivos, aunque en muchos aspectos sus repercusiones son mucho más críticas en el caso de los implantes. Los ataques contra un DMI pueden poner en riesgo la seguridad del paciente que lo porta, con consecuencias fatales en ciertos casos. Causar un mal funcionamiento intencionado en un implante puede causar la muerte y, tal como lo reconoce la Food and Drug Administration (FDA) de EE.UU, tales ataques deliberados podrían ser mucho más difíciles de detectar que los ataques accidentales [61]. Además, estos dispositivos almacenan y transmiten información médica muy delicada que requiere se protegida, según lo dictado por las directivas europeas (por ejemplo, la Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR 164.312) [94, 204]. Si bien todavía no se conocen incidentes reales, se han demostrado con éxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Estos ataques han demostrado cómo un adversario puede desactivar o reprogramar terapias en un marcapasos con conectividad inalámbrica e incluso inducir un estado de shock al paciente [65]. Otros ataques agotan la batería y dejan al dispositivo inoperativo [91], lo que a menudo implica que el paciente deba someterse a un procedimiento quirúrgico para reemplazar la batería del DMI. Además, en el caso de los implantes cardíacos, tienen un interruptor cuya posición de desconexión se consigue simplemente aplicando un campo magnético intenso [149]. La existencia de este mecanismo está motivada por la necesidad de proteger a los DMIs frete a posibles campos electromagnéticos, por ejemplo, cuando el paciente se somete a una cirugía cardíaca usando dispositivos de electrocauterización [47]. Sin embargo, esto podría ser explotado fácilmente por un atacante, ya que la activación de dicho mecanismo primitivo no requiere ningún tipo de autenticación. Garantizar la confidencialidad de la información almacenada y transmitida por el DMI es otro aspecto obligatorio. El dispositivo debe implementar políticas de seguridad apropiadas que restrinjan qué entidades pueden reconfigurar el DMI o acceder a la información almacenada en él, asegurando que sólo se ejecuten las operaciones autorizadas. De la misma manera, mecanismos de seguridad deben ser implementados para proteger el contenido de los mensajes intercambiados a través de un canal inalámbrico no seguro. La protección de la integridad es igualmente importante para garantizar que la información no se haya modificado durante el tránsito. Por ejemplo, si la información enviada por el implante al programador se altera, el médico podría tomar una decisión equivocada. Por el contrario, si un comando enviado al implante se falsifica, modifica o simplemente contiene errores, su ejecución podría comprometer la integridad física del paciente. Los mecanismos de seguridad deberían incorporarse en la fase de diseño y complementarse con medidas legales y administrativas apropiadas. La legislación actual es bastante permisiva a este respecto, lo que permite el uso de implantes como marcapasos que no incorporen ningún mecanismo de seguridad. Las autoridades reguladoras como la FDA en los Estados Unidos o la EMA (Agencia Europea de Medicamentos) en Europa deberían promover métricas y marcos para evaluar la seguridad de los DMIs. Estas evaluaciones deberían ser obligatorias por ley, requiriendo un nivel de seguridad adecuado para un implante antes de aprobar su uso. Además, tanto las medidas de seguridad implementadas en cada DMI como los resultados de la evaluación de su seguridad deberían hacerse públicos. Buenas prácticas de ingeniería en los dominios de la protección y la seguridad deberían seguirse en el diseño de los DMIs. Si se detectan errores de hardware, a menudo esto implica un reemplazo del implante, con los riesgos asociados y vinculados a una cirugía. Una de las principales fuentes de fallo al tratar o monitorear a un paciente es precisamente el mal funcionamiento del dispositivo. Estos fallos se conocen como “retiradas”, y se estima que afectan a aproximadamente el 2,6 % de los pacientes que llevan un implante. Además, el software que se ejecuta en el dispositivo debe soportar estrictamente las funcionalidades requeridas para realizar las tareas médicas y operativas para las que fue diseñado, y no más [66, 134, 213]. En el Capítulo 1, presentamos un estado de la cuestión sobre cuestiones de seguridad y privacidad en DMIs, discutimos los mecanismos más relevantes propuestos para abordar estos desafíos y analizamos su idoneidad, ventajas y principales inconvenientes. En el Capítulo 2, mostramos cómo el uso de señales electrocardiográficas (ECGs) altamente comprimidas (sólo 24 coeficientes de la Transformada Hadamard) es suficiente para identificar inequívocamente individuos con un alto rendimiento (precisión de clasificación del 97% y errores del sistema de identificación del orden de 10−2). En el Capítulo 3 presentamos un nuevo esquema de Autenticación Continua (AC) que, contrariamente a los trabajos previos en esta área, considera las señales ECG como flujos de datos continuos. El sistema propuesto de AC basado en señales cardíacas está diseñado para aplicaciones en tiempo real y puede ofrecer una precisión de hasta el 96%, con un rendimiento del sistema casi perfecto (estadístico kappa > 80 %). En el Capítulo 4, proponemos un protocolo de verificación de la distancia para gestionar el control de acceso al DMI: ACIMD. ACIMD combina dos características, verificación de identidad (autenticación) y verificación de la proximidad (comprobación de la distancia). El mecanismo de autenticación es compatible con el estándar ISO/IEC 9798-2 y se realiza utilizando la señal ECG con todas sus ondas, lo cual es difícilmente replicable por un atacante que se encuentre distante. Hemos evaluado el rendimiento de ACIMD usando señales ECG de 199 individuos durante 24 horas, y hemos considerando tres estrategias posibles para el adversario. Los resultados muestran que se puede lograr una precisión del 87.07% en la au tenticación. Finalmente, en el Capítulo 5 extraemos algunas conclusiones y resumimos los trabajos publicados (es decir, revistas científicas con alto factor de impacto y conferencias internacionales prestigiosas).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: Jesús García López de Lacall

    Heart-Based Biometric Authentication

    Get PDF
    Heart-based biometric authentication is a cutting-edge technology that utilizes the unique characteristics of an individual's heart to verify their identity. This innovative approach to authentication has gained significant attention in recent years due to its high level of accuracy and security. In this analytical paper, we will explore the concept of heart-based biometric authentication, its advantages and limitations, and its potential applications in various industries

    Biometric authentication and identification through electrocardiogram signals

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), 2021, Universidade de Lisboa, Faculdade de CiênciasO reconhecimento biométrico tem sido alvo de diversas investigações ao longo dos anos, sendo a impressão digital, a face e a iris, os traços biométricos mais explorados. Apesar do seu elevado potencial no que diz respeito a possíveis aplicações tecnológicas, alguns estudos apresentam limitações a estes traços biométricos, nomeadamente a falta de fiabilidade e praticidade num sistema biométrico. Recentemente, vários estudos exploraram o potencial do uso do electrocardiograma (ECG) como traço biométrico, por ser único e singular para cada indivíduo, e dificilmente roubado por outrem, por ser um sinal fisiológico. Nesta dissertação, foi investigada a possibilidade de usar sinais ECG como traço biométrico para sistemas de identificação e autenticação biométrica. Para tal, recorreu-se a uma base de dados pública chamada Check Your Biosignals Here initiative (CYBHi), criada com o intuito de propiciar investigações biométricas. As sessões de aquisição contaram com 63 participantes e ocorreram em dois momentos distintos separados por três meses, numa modalidade “off-the-person”, com recurso a um elétrodo na palma da mão e eletrolicras nos dedos. Os sinais da primeira aquisição correspondem, num sistema biométrico, aos dados armazenados na base de dados, enquanto que os sinais da segunda aquisição correspondem aos dados que serão identificados ou autenticados pelo sistema. Os sistemas de identificação e autenticação biométrica propostos nesta dissertação incluem diferentes fases: o pré-processamento, o processamento e a classificação. O pré-processamento consistiu na aplicação de um filtro passa-banda IIR de 4ª ordem, para eliminar ruídos e artefactos provenientes de atividade muscular e da impedância elétrica dos aparelhos de aquisição. A fase de processamento consistiu em extrair e gerar os templates biométricos, que serão os inputs dos algoritmos de classificação. Primeiramente, extraíram-se os ciclos cardíacos através do Neurokit2 disponível no Python. Para tal, foram localizados os picos R dos sinais ECG e, posteriormente, estes foram segmentados em ciclos cardíacos, com 200 amostras antes e 400 amostras depois dos picos. Com o objetivo de remover os segmentos mais ruidosos, os ciclos cardíacos foram submetidos a um algoritmo de eliminação de segmentos que consistiu em encontrar, para cada sujeito, os 20 e 60 ciclos mais próximos entre si, designados de Set 1 e Set 2, respetivamente. A partir desses dois conjuntos de ciclos, criaram-se dois tipos de templates: 1) os ciclos cardíacos, e 2) escalogramas gerados a partir dos ciclos, através da transformada de wavelet contínua, com dois tamanhos distintos: 56x56 e 224x224, denominados por Size 56 e Size 224, respetivamente. Devido ao elevado tamanho dos escalogramas, foi utilizada a analise de componentes independentes para reduzir a dimensionalidade. Assim, os sistemas biométricos propostos na presente investigação, foram testados com os conjuntos de 20 e 60 templates, quer para ciclos quer para escalogramas, de forma a avaliar o desempenho do sistema quando usados mais ou menos templates para os processos de identificação e autenticação. Os templates foram também testados com e sem normalização, para que pudessem ser analisados os benefícios deste processo. A classificação foi feita através de diferentes métodos, testados numa modalidade “entre-sessões”, isto é, os dados da 2ª aquisição, considerados os dados de teste, foram comparados com os dados da 1ª aquisição, denominados dados de treino, de forma a serem classificados. Quanto ao sistema de identificação com ciclos cardíacos, foram testados diferentes classificadores, nomeadamente LDA, kNN, DT e SVM. Para o kNN e SVM, foi feita uma otimização para encontrar o valor de “k” e os valores de γ e C, respetivamente, que permitem o sistema alcançar o melhor desempenho possível. A melhor performance foi obtida através do LDA, alcançando uma taxa de identificação de 79,37% para a melhor configuração, isto é, usando 60 ciclos normalizados. Os templates com base em escalogramas foram testados como inputs para dois métodos distintos: 1) redes neuronais e 2) algoritmo baseado em distâncias. A melhor performance foi uma taxa de identificação de 69,84%, obtida quando usados 60 escalogramas de tamanho 224, não normalizados. Deste modo, os resultados relativos a identificação provaram que utilizar mais templates (60) para identificar um indivíduo otimiza a performance do sistema biométrico, independentemente do tipo de template utilizado. Para alem disto, a normalização mostrou-se um processo essencial para a identificação com ciclos cardíacos, contudo, tal não se verificou para escalogramas. Neste estudo, demonstrou-se que a utilização de ciclos tem mais potencial para tornar um sistema de identificação biométrica eficiente, do que a utilização de escalogramas. No que diz respeito ao sistema de autenticação biométrica, foi utilizado um algoritmo baseado em distâncias, testado com os dois tipos de templates numa configuração concatenada, isto é, uma configuração na qual cada sujeito e representado por um sinal que contém uma sequência de todos os seus templates, seguidos uns dos outros. A avaliação da performance do sistema foi feita com base nos valores de taxa de autenticação e taxa de impostores, que indicam o número de indivíduos corretamente autenticados face ao número total de indivíduos, e o número de impostores autenticados face ao número total de indivíduos, respetivamente. Os ciclos cardíacos foram testados com e sem redução de dimensionalidade, sendo que a melhor performance foi obtida usando 60 ciclos não normalizados sem redução de dimensionalidade. Para esta configuração, obteve-se uma taxa de autenticação de 90,48% e uma taxa de impostores de 13,06%. Desta forma, concluiu-se que reduzir a dimensionalidade dos ciclos cardíacos prejudica o desempenho do sistema, uma vez que se perdem algumas características indispensáveis para a distinção entre sujeitos. Para os escalogramas, a melhor configuração, que corresponde ao uso de 60 escalogramas normalizados de tamanho 56, atingiu uma taxa de autenticação de 98,42% e uma taxa de impostores de 14,34%. Sendo que a dimensionalidade dos escalogramas foi reduzida com recurso a ICA, foi ainda avaliada a performance do sistema quando reduzido o número de componentes independentes. Os resultados mostraram que um número de componentes igual ao número de sujeitos otimiza o desempenho do sistema, uma vez que se verificou um decréscimo da taxa de autenticação quando reduzido o número de componentes. Assim, concluiu-se que são necessárias 63 componentes independentes para distinguir corretamente os 63 sujeitos. Para a autenticação através de ciclos cardíacos, a normalização e a redução de dimensionalidade são dois processos que degradam a performance do sistema, enquanto que, quando utilizados escalogramas, a normalização e vantajosa. Os resultados obtidos provaram ainda que, contrariamente ao que acontece para processos de identificação, a utilização de escalogramas e uma abordagem mais eficiente e eficaz para a autenticação de indivíduos, do que a utilização de ciclos. Esta investigação comprovou o potencial do ECG enquanto traço biométrico para identificação e autenticação de indivíduos, fazendo uma análise comparativa entre diferentes templates extraídos dos sinais ECG e diferentes metodologias na fase de classificação, e avaliando o desempenho do sistema em cada uma das configurações testadas. Estudos anteriores apresentaram algumas limitações, nomeadamente, o uso de aquisições “on-the-person”, ˜ que apresentam pouco potencial para serem integradas em sistemas biométricos devido à baixa praticidade, e à classificação numa modalidade “intra-sessão”, na qual os dados classificados e os dados armazenados foram adquiridos numa só sessão. Este estudo preenche essas lacunas, visto que utilizou dados adquiridos “off-the-person”, dados esses que foram testados numa modalidade “entre-sessões”. Apesar das aquisições ˜ “off-the-person” estarem sujeitas a mais ruídos e, consequentemente, dificultarem processos de identificação ou autenticação, estas abordagens são as mais adequadas para sistemas biométricos, dada a sua possível integração nas mais diversas aplicações tecnológicas. A modalidade “entre-sessões” resulta também numa pior performance relativamente a utilização de sinais de uma só sessão. No entanto, permite comprovar a estabilidade do ECG ao longo do tempo, o que é um fator indispensável para o funcionamento adequado de um sistema biométrico, uma vez que o mesmo terá que comparar diversas vezes o ECG apresentado no momento de identificação ou autenticação, com o ECG armazenado uma única vez na base de dados. Apesar dos bons resultados apresentados nesta dissertação, no futuro devem ser exploradas bases de dados que contenham mais participantes, com uma faixa etária mais alargada, incluindo participantes com diversas condições de saúde, com aquisições separadas por um período de tempo mais longo, de forma a simular o melhor possível a realidade de um sistema biométrico.Biometrics is a rapidly growing field with applications in personal identification and authentication. Over the recent years, several studies have demonstrated the potential of Electrocardiogram (ECG) to be used as a physiological signature for biometric systems. In this dissertation, the possibility of using the ECG signal as an unequivocal biometric trait for identification and authentication purposes has been presented. The ECG data used was from a publicly available database, the Check Your Biosignals Here initiative (CHBYi) database, developed for biometric purposes, containing records of 63 participants. Data was collected through an off-the-person approach, in two different moments, separated by three months, resulting in two acquisitions per subject. Signals from the first acquisition represent, in a biometric system, the data stored in the database, whereas signals from the second acquisition represent the data to be authenticated or identified. The proposed identification and authentication systems included several steps: signal pre-processing, signal processing, and classification. In the pre-processing phase, signals were filtered in order to remove noises, while the signal processing consisted of extracting and generating the biometric templates. For that, firstly, the cardiac cycles were extracted from the ECG signals, and segment elimination was performed to find the segments more similar to one another, resulting in two sets of templates, with 20 and 60 templates per participant, respectively. After that, two types of templates were generated: 1) templates based on cardiac cycles, and 2) templates based on scalograms generated from the cardiac cycles, with two different sizes, 56x56 and 224x224. Due to the large size of the scalograms, ICA was applied to reduce their dimensionality. Thus, the biometric systems were evaluated with two sets of each type of template in order to analyze the advantages of using more or fewer templates per subject, and the templates were also tested with and without normalization. For the identification system using cardiac cycles, LDA, kNN, DT, and SVM were tested as classifiers in an “across-session” modality, reaching an accuracy of 79.37% for the best model (LDA) in the best configuration (60 normalized cardiac cycles). When using scalograms, two different methodologies were tested: 1) neural network, and 2) a distance-based algorithm. The best accuracy was 69.84% for 60 not-normalized scalograms of Size 224, using NN. Thus, results suggested that the templates based on cardiac cycles are a more promising approach for identification tasks. For the authentication, a distance-based algorithm was used for both templates. Cardiac cycles were tested with and without dimensionality reduction, and the best configuration (60 not-normalized cardiac cycles without dimensionality reduction) reached an accuracy of 90.48% and an impostor score of 13.06%. For the scalograms, the best configuration (60 normalized scalograms of Size 56) reached an accuracy of 98.42% and an impostor score of 14.34%. Therefore, using scalograms for the authentication task proved to be a more efficient and accurate approach. The results from this work support the claim that ECG-based biometrics can be successfully used for personal identification and authentication. This study brings novelty by exploring different templates and methodologies in order to perform a comparative analysis and find the approaches that optimize the performance of the biometric system. Moreover, this represents a step forward towards a real-world application of an ECG-based biometric system, mainly due to the use of data from off-the-person acquisitions in an across-session modality

    Comparative study of several operation modes of AES algorithm for encryption ECG biomedical signal

    Get PDF
    Biomedical signal processing provides a cross-disciplinary international forum through which research on signal and images measurement and analysis in clinical medicine as well as biological sciences is shared. Electrocardiography (ECG) signal is more frequently used for diagnosis of cardiovascular diseases. However, the ECG signals contain sensitive private health information as well as details that serve to individually distinguish patients. For this reason, the information must be encrypted prior to transmission across public media so as to prevent unauthorized access by adversaries. In this paper, the proposed the use of the Advanced Encryption Standard algorithm (AES), which is one of a symmetric key block cipher with lightweight properties for enhances confidentiality, integrity and authentication in ECG signal transmission. However, some of the challenges arising from the use of this algorithm are computational overhead and level of security, which occur when handling more complex.The AES algorithm has different operation modes using three different key sizes which can be utilized in encrypting the whole sample of ECG biomedical signal in electronic healthcare. The experiments in this research, exhibit comparative study of using five modes of operation in AES algorithm, which are coupled with three key sizes based on the execution time and security level for the encryption of ECG biomedical signals in electronic healthcare application. Thus, we reported that the CBC mode of the AES algorithm is suitable to be applied of security purpose

    Big data analytics in intensive care units: challenges and applicability in an Argentinian hospital

    Get PDF
    In a typical intensive care unit of a healthcare facilities, many sensors are connected to patients to measure high frequency physiological data. Currently, measurements are registered from time to time, possibly every hour. With this data lost, we are losing many opportunities to discover new patterns in vital signs that could lead to earlier detection of pathologies. The early detection of pathologies gives physicians the ability to plan and begin treatments sooner or potentially stop the progression of a condition, possibly reducing mortality and costs. The data generated by medical equipment are a Big Data problem with near real-time restrictions for processing medical algorithms designed to predict pathologies. This type of system is known as realtime big data analytics systems. This paper analyses if proposed system architectures can be applied in the Francisco Lopez Lima Hospital (FLLH), an Argentinian hospital with relatively high financial constraints. Taking into account this limitation, we describe a possible architectural approach for the FLLH, a mix of a local computing system at FLLH and a public cloud computing platform. We believe this work may be useful to promote the research and development of such systems in intensive care units of hospitals with similar characteristics to the FLLH.Facultad de Informátic

    Big data analytics in intensive care units: challenges and applicability in an Argentinian hospital

    Get PDF
    In a typical intensive care unit of a healthcare facilities, many sensors are connected to patients to measure high frequency physiological data. Currently, measurements are registered from time to time, possibly every hour. With this data lost, we are losing many opportunities to discover new patterns in vital signs that could lead to earlier detection of pathologies. The early detection of pathologies gives physicians the ability to plan and begin treatments sooner or potentially stop the progression of a condition, possibly reducing mortality and costs. The data generated by medical equipment are a Big Data problem with near real-time restrictions for processing medical algorithms designed to predict pathologies. This type of system is known as realtime big data analytics systems. This paper analyses if proposed system architectures can be applied in the Francisco Lopez Lima Hospital (FLLH), an Argentinian hospital with relatively high financial constraints. Taking into account this limitation, we describe a possible architectural approach for the FLLH, a mix of a local computing system at FLLH and a public cloud computing platform. We believe this work may be useful to promote the research and development of such systems in intensive care units of hospitals with similar characteristics to the FLLH.Facultad de Informátic

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted
    corecore