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Resumo

O reconhecimento biométrico tem sido alvo de diversas investigações ao longo dos anos, sendo a impressão
digital, a face e a iris, os traços biométricos mais explorados. Apesar do seu elevado potencial no que diz respeito
a possı́veis aplicações tecnológicas, alguns estudos apresentam limitações a estes traços biométricos, nomeada-
mente a falta de fiabilidade e praticidade num sistema biométrico. Recentemente, vários estudos exploraram o
potencial do uso do electrocardiograma (ECG) como traço biométrico, por ser único e singular para cada in-
divı́duo, e dificilmente roubado por outrem, por ser um sinal fisiológico.

Nesta dissertação, foi investigada a possibilidade de usar sinais ECG como traço biométrico para sistemas de
identificação e autenticação biométrica. Para tal, recorreu-se a uma base de dados pública chamada Check Your
Biosignals Here initiative (CYBHi), criada com o intuito de propiciar investigações biométricas. As sessões de
aquisição contaram com 63 participantes e ocorreram em dois momentos distintos separados por três meses, numa
modalidade “off-the-person”, com recurso a um elétrodo na palma da mão e eletrolicras nos dedos. Os sinais da
primeira aquisição correspondem, num sistema biométrico, aos dados armazenados na base de dados, enquanto
que os sinais da segunda aquisição correspondem aos dados que serão identificados ou autenticados pelo sistema.

Os sistemas de identificação e autenticação biométrica propostos nesta dissertação incluem diferentes fases:
o pré-processamento, o processamento e a classificação. O pré-processamento consistiu na aplicação de um filtro
passa-banda IIR de 4ª ordem, para eliminar ruı́dos e artefactos provenientes de atividade muscular e da impedância
elétrica dos aparelhos de aquisição. A fase de processamento consistiu em extrair e gerar os templates biométricos,
que serão os inputs dos algoritmos de classificação. Primeiramente, extraı́ram-se os ciclos cardı́acos através
do Neurokit2 disponı́vel no Python. Para tal, foram localizados os picos R dos sinais ECG e, posteriormente,
estes foram segmentados em ciclos cardı́acos, com 200 amostras antes e 400 amostras depois dos picos. Com
o objetivo de remover os segmentos mais ruidosos, os ciclos cardı́acos foram submetidos a um algoritmo de
eliminação de segmentos que consistiu em encontrar, para cada sujeito, os 20 e 60 ciclos mais próximos entre
si, designados de Set 1 e Set 2, respetivamente. A partir desses dois conjuntos de ciclos, criaram-se dois tipos de
templates: 1) os ciclos cardı́acos, e 2) escalogramas gerados a partir dos ciclos, através da transformada de wavelet
contı́nua, com dois tamanhos distintos: 56x56 e 224x224, denominados por Size 56 e Size 224, respetivamente.
Devido ao elevado tamanho dos escalogramas, foi utilizada a análise de componentes independentes para reduzir
a dimensionalidade.

Assim, os sistemas biométricos propostos na presente investigação, foram testados com os conjuntos de 20
e 60 templates, quer para ciclos quer para escalogramas, de forma a avaliar o desempenho do sistema quando
usados mais ou menos templates para os processos de identificação e autenticação. Os templates foram também
testados com e sem normalização, para que pudessem ser analisados os benefı́cios deste processo. A classificação
foi feita através de diferentes métodos, testados numa modalidade “entre-sessões”, isto é, os dados da 2ª aquisição,
considerados os dados de teste, foram comparados com os dados da 1ª aquisição, denominados dados de treino, de
forma a serem classificados. Quanto ao sistema de identificação com ciclos cardı́acos, foram testados diferentes
classificadores, nomeadamente LDA, kNN, DT e SVM. Para o kNN e SVM, foi feita uma otimização para encon-
trar o valor de “k” e os valores de γ e C, respetivamente, que permitem o sistema alcançar o melhor desempenho
possı́vel. A melhor performance foi obtida através do LDA, alcançando uma taxa de identificação de 79,37% para
a melhor configuração, isto é, usando 60 ciclos normalizados. Os templates com base em escalogramas foram
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testados como inputs para dois métodos distintos: 1) redes neuronais e 2) algoritmo baseado em distâncias. A
melhor performance foi uma taxa de identificação de 69,84%, obtida quando usados 60 escalogramas de tamanho
224, não normalizados. Deste modo, os resultados relativos à identificação provaram que utilizar mais templates
(60) para identificar um indivı́duo otimiza a performance do sistema biométrico, independentemente do tipo de
template utilizado. Para além disto, a normalização mostrou-se um processo essencial para a identificação com
ciclos cardı́acos, contudo, tal não se verificou para escalogramas. Neste estudo, demonstrou-se que a utilização
de ciclos tem mais potencial para tornar um sistema de identificação biométrica eficiente, do que a utilização de
escalogramas.

No que diz respeito ao sistema de autenticação biométrica, foi utilizado um algoritmo baseado em distâncias,
testado com os dois tipos de templates numa configuração concatenada, isto é, uma configuração na qual cada su-
jeito é representado por um sinal que contém uma sequência de todos os seus templates, seguidos uns dos outros.
A avaliação da performance do sistema foi feita com base nos valores de taxa de autenticação e taxa de impostores,
que indicam o número de indivı́duos corretamente autenticados face ao número total de indivı́duos, e o número
de impostores autenticados face ao número total de indivı́duos, respetivamente. Os ciclos cardı́acos foram testa-
dos com e sem redução de dimensionalidade, sendo que a melhor performance foi obtida usando 60 ciclos não
normalizados sem redução de dimensionalidade. Para esta configuração, obteve-se uma taxa de autenticação de
90,48% e uma taxa de impostores de 13,06%. Desta forma, concluiu-se que reduzir a dimensionalidade dos ciclos
cardı́acos prejudica o desempenho do sistema, uma vez que se perdem algumas caracterı́sticas indispensáveis para
a distinção entre sujeitos. Para os escalogramas, a melhor configuração, que corresponde ao uso de 60 escalo-
gramas normalizados de tamanho 56, atingiu uma taxa de autenticação de 98,42% e uma taxa de impostores de
14,34%. Sendo que a dimensionalidade dos escalogramas foi reduzida com recurso a ICA, foi ainda avaliada a
performance do sistema quando reduzido o número de componentes independentes. Os resultados mostraram que
um número de componentes igual ao número de sujeitos otimiza o desempenho do sistema, uma vez que se verifi-
cou um decréscimo da taxa de autenticação quando reduzido o número de componentes. Assim, concluiu-se que
são necessárias 63 componentes independentes para distinguir corretamente os 63 sujeitos. Para a autenticação
através de ciclos cardı́acos, a normalização e a redução de dimensionalidade são dois processos que degradam a
performance do sistema, enquanto que, quando utilizados escalogramas, a normalização é vantajosa. Os resulta-
dos obtidos provaram ainda que, contrariamente ao que acontece para processos de identificação, a utilização de
escalogramas é uma abordagem mais eficiente e eficaz para a autenticação de indivı́duos, do que a utilização de
ciclos.

Esta investigação comprovou o potencial do ECG enquanto traço biométrico para identificação e autenticação
de indivı́duos, fazendo uma análise comparativa entre diferentes templates extraı́dos dos sinais ECG e diferentes
metodologias na fase de classificação, e avaliando o desempenho do sistema em cada uma das configurações tes-
tadas. Estudos anteriores apresentaram algumas limitações, nomeadamente, o uso de aquisições “on-the-person”,
que apresentam pouco potencial para serem integradas em sistemas biométricos devido à baixa praticidade,
e a classificação numa modalidade “intra-sessão”, na qual os dados classificados e os dados armazenados
foram adquiridos numa só sessão. Este estudo preenche essas lacunas, visto que utilizou dados adquiridos
“off-the-person”, dados esses que foram testados numa modalidade “entre-sessões”. Apesar das aquisições
“off-the-person” estarem sujeitas a mais ruı́dos e, consequentemente, dificultarem processos de identificação ou
autenticação, estas abordagens são as mais adequadas para sistemas biométricos, dada a sua possı́vel integração
nas mais diversas aplicações tecnológicas. A modalidade “entre-sessões” resulta também numa pior performance
relativamente à utilização de sinais de uma só sessão. No entanto, permite comprovar a estabilidade do ECG
ao longo do tempo, o que é um fator indispensável para o funcionamento adequado de um sistema biométrico,
uma vez que o mesmo terá que comparar diversas vezes o ECG apresentado no momento de identificação ou
autenticação, com o ECG armazenado uma única vez na base de dados. Apesar dos bons resultados apresentados
nesta dissertação, no futuro devem ser exploradas bases de dados que contenham mais participantes, com uma
faixa etária mais alargada, incluindo participantes com diversas condições de saúde, com aquisições separadas
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por um perı́odo de tempo mais longo, de forma a simular o melhor possı́vel a realidade de um sistema biométrico.

Palavras-chave: Biometria, Eletrocardiograma, Extração de caracterı́sticas, Algoritmos de classificação, Análise
comparativa.
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Abstract

Biometrics is a rapidly growing field with applications in personal identification and authentication. Over
the recent years, several studies have demonstrated the potential of Electrocardiogram (ECG) to be used as a
physiological signature for biometric systems. In this dissertation, the possibility of using the ECG signal as an
unequivocal biometric trait for identification and authentication purposes has been presented. The ECG data used
was from a publicly available database, the Check Your Biosignals Here initiative (CHBYi) database, developed
for biometric purposes, containing records of 63 participants. Data was collected through an off-the-person ap-
proach, in two different moments, separated by three months, resulting in two acquisitions per subject. Signals
from the first acquisition represent, in a biometric system, the data stored in the database, whereas signals from
the second acquisition represent the data to be authenticated or identified.

The proposed identification and authentication systems included several steps: signal pre-processing, signal
processing, and classification. In the pre-processing phase, signals were filtered in order to remove noises, while
the signal processing consisted of extracting and generating the biometric templates. For that, firstly, the cardiac
cycles were extracted from the ECG signals, and segment elimination was performed to find the segments more
similar to one another, resulting in two sets of templates, with 20 and 60 templates per participant, respectively.
After that, two types of templates were generated: 1) templates based on cardiac cycles, and 2) templates based on
scalograms generated from the cardiac cycles, with two different sizes, 56x56 and 224x224. Due to the large size
of the scalograms, ICA was applied to reduce their dimensionality. Thus, the biometric systems were evaluated
with two sets of each type of template in order to analyze the advantages of using more or fewer templates per
subject, and the templates were also tested with and without normalization. For the identification system using
cardiac cycles, LDA, kNN, DT, and SVM were tested as classifiers in an “across-session” modality, reaching an
accuracy of 79.37% for the best model (LDA) in the best configuration (60 normalized cardiac cycles). When
using scalograms, two different methodologies were tested: 1) neural network, and 2) a distance-based algorithm.
The best accuracy was 69.84% for 60 not-normalized scalograms of Size 224, using NN. Thus, results suggested
that the templates based on cardiac cycles are a more promising approach for identification tasks. For the authen-
tication, a distance-based algorithm was used for both templates. Cardiac cycles were tested with and without
dimensionality reduction, and the best configuration (60 not-normalized cardiac cycles without dimensionality
reduction) reached an accuracy of 90.48% and an impostor score of 13.06%. For the scalograms, the best config-
uration (60 normalized scalograms of Size 56) reached an accuracy of 98.42% and an impostor score of 14.34%.
Therefore, using scalograms for the authentication task proved to be a more efficient and accurate approach.

The results from this work support the claim that ECG-based biometrics can be successfully used for personal
identification and authentication. This study brings novelty by exploring different templates and methodologies
in order to perform a comparative analysis and find the approaches that optimize the performance of the biometric
system. Moreover, this represents a step forward towards a real-world application of an ECG-based biometric
system, mainly due to the use of data from off-the-person acquisitions in an across-session modality.

Keywords: Biometrics, Electrocardiogram, feature extraction, classification algorithms, comparative analysis.
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Chapter 1

Introduction

In today’s world, electrocardiogram (ECG) is increasingly used in the most varied areas and applications.
Websites, smartphones, safes, cars, houses, buildings, banks, and airports are just a few of our society’s facilities
that rely on recognition systems to protect and guard ourselves, our information, or our belongings. Several still
depend on traditional systems based on extrinsic entities or knowledge, like cards, keys, or passwords. Traditional
passwords are the most common mechanism for the authentication of users, despite numerous usability and se-
curity problems. Passwords create a burden for users, as they must be memorized and, ideally, should be long
and unique. Therefore, it should not come as surprise, that many users opt to use easy-to-guess passwords that
are reused across different services, leading to account takeovers and personal data compromise. Research has
shown, for instance, that over 50% of users have the same passwords for different services 1 and 81% of data
breaches occur due to poor password handling 2. Hence, surrogate representations of identity, such as passwords,
no longer suffice.

There has been a recent shift of interest towards the field of biometric recognition, which refers to the auto-
matic identification of people based on their distinctive physiological (e.g., face, fingerprint, iris, hand geometry)
and behavioral (e.g., voice, gait) characteristics. The most common biometric trait involves using a fingerprint
scanner, as seen in modern smartphones and laptops. While this is a big step forward, there are still problems
related to fingerprint usability and reliability.

As the ECG is a signal originated internally and unique to each person, it has the potential to turn into a reliable
source for biometrics [1]. Nevertheless, current challenges include extracting relevant and reliable features from
ECG signals and designing accurate models for template matching, protecting against identity attacks. In this
project, the potential of using ECG as a biometric trait for identification and authentication of individuals was
investigated.

1.1 Objectives and Contributions

This work aims to address some of the limitations of existing research regarding the use of ECG signals for
biometric identification and authentication. The first step was to perform an extensive literature review on this
area. The first limitation found in literature is that most of the studies rely on existing datasets, and only a few
investigate the stability and usability of ECG as a biometric.

The world has been facing a severe pandemic for the last two years, and so, COVID-19 is withholding scientific
research, especially those that involve data collection from many people. For this reason, this research had to rely
on public datasets. However, the ECG data used for this experiment was taken from Check Your Biosignals Here
initiative (CYBHi) database [2], which allowed overcoming some of the limitations of the data collection process.
Firstly, an off-the-person approach was used to collect ECG signals, which is less intrusive than the medical

1https://www.pandasecurity.com/en/mediacenter/security/password-reuse/ (Accessed on 28/11/2021)
2https://bnd.nd.gov/81-of-company-data-breaches-due-to-poor-passwords/ (Accessed on 28/11/2021)
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1.2 Document Organization

acquisition configuration, allowing many potential applications since this configuration can be easily integrated
into real-world scenarios. Secondly, data was collected from the same participants over two sessions, separated
in time by three months, which allowed to examine the usability and uniqueness, and also the stability of human
ECG.

Another challenge of using ECG data for biometric authentication and identification is to extract distinct
features from the signal that can be used to match users with their records. Most existing work focuses on
locating reference points within the ECG trace used to create the input features. However, correctly identifying
the reference points is a non-trivial task in itself and may constitute a single point of failure if performed incorrectly
[3]. The approach used in this project relies on locating the R-wave peaks, which is the most prominent feature
of the trace. These peaks were used to segment the signal into smaller heartbeat waveforms, forming the base for
the biometric templates. The present work used two biometric templates: one corresponding to the exact cardiac
cycles and the other corresponding to the scalograms of the cardiac cycles.

In order to perform authentication and identification, the algorithm has to match the biometrics recorded
during the authentication or identification moment with the stored templates of the user. For this research, in what
concerns the identification process, two different approaches were developed to perform template matching: the
first one concerns the use of several classifiers, including Linear Discriminant Analysis, k-Nearest Neighbors,
Decision Trees, Support Vector Machines, and Convolutional Neural Networks; the second approach corresponds
to a distance-based algorithm. For authentication, a distance-based algorithm along with cross-validation was
used.

Although researchers have proposed various types of features for ECG analysis, and different feature selection
and classification methods, stating the best methods directly is not possible at all. Unlike what happens for the vast
majority of the existing studies, this project brings novelty by comparing different ECG-based biometric templates
and classification algorithms, to find the optimal solution for biometrics identification and authentication. Since
there must be a trade-off between the optimality of the result and the entire processing time of the employed
method, one should choose the method that best fits the expectations for the processing time and accuracy of the
analysis.

1.2 Document Organization

In Chapter 2, a brief overview of biometrics, their characteristics, and applications are presented. Some theo-
retical concepts related to the methodology used in the present study are also presented in this chapter, namely, a
review on Wavelet Transforms, a delineation of the Independent Component Analysis process, and the description
of some classifiers. Chapter 3 consists of a review of the most relevant work in ECG biometrics. In Chapter 4,
a description of the proposed biometric authentication and identification systems based on ECG signals is pre-
sented. Chapters 5 and 6 show the results obtained for the identification and authentication systems, along with
the respective discussion. The dissertation concludes with a summary and future work directions in Chapter 7,
followed by Appendix A and Appendix B.
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Chapter 2

Background

2.1 Biometrics

Biometrics is an increasingly growing multibillion-dollar market expected to grow between $36.6 billion in
2020 to around $68.6 billion by 2025 3.

Biometrics is defined by the International Organization for Standardization (ISO) as “the automated recogni-
tion of individuals based on their behavioral and biological characteristics” 4. They are present in our daily life
either for personal identification or authentication. In biometric authentication, the system validates the claimed
identity of a particular person, whereas, in biometric identification, the system finds out who the person is without
any previously claimed identity.

Distinctive features evaluated by biometrics, which are referred to as biometric traits, must have the following
characteristics [3]:

• Universality: Every person should possess the characteristic.

• Uniqueness: Two persons should not have the same characteristic, or the probability of this event should
be negligible. The differences between characteristics of different individuals should also be sufficient to
discriminate their identities.

• Stability: The characteristic should be sufficiently invariant over the person’s lifetime.

• Collectability: The characteristic should be quantitatively measurable.

• Performance: The biometric trait must be robust, reliable, and easily analyzed when used for personal
identification.

• Acceptability: Biometric collection and usage should be socially accepted.

• Circumvention: The biometric trait should not be easily imitated nor “spoofed” by a substitute.

Biometric traits are often divided into two categories: physiological and behavioral. Physiological biometrics
relate to human physiology, whereas behavioral biometrics are based on human behavior. Examples of these traits
include:

• Physiological: fingerprint, face, iris, hand geometry, voice, vein pattern, ear shape, or ECG;

• Behavioral: signature, keystroke, or gait.

Each biometric trait has different characteristics from one another, and so, deciding which one to use depends
on the specific problem at hand. Table 2.1 presents a comparison of the most commonly used biometrics.

3https://www.marketsandmarkets.com/PressReleases/biometric-technologies.asp (Accessed on 30/12/2020)
4https://www.iso.org/standard/55194.html (Accessed on 29/12/2020)
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2.1 Biometrics

Table 2.1: A comparison of several biometric traits (adapted from [4]).

Trait Benefits Drawbacks

Face
Easily measurable

Affordable equipment
Easy circumvention

Depends on face visibility and lighting

Fingerprint
High performance

Permanent over time
Requires contact

Iris High performance Expensive equipment

Palmprint
High measurability

Permanent over time
Requires contact

Voice Affordable equipment Low performance

Gait
Easy to measure

Affordable equipment
Low performance

Variability over time

Electroencephalogram (EEG)
Universality

Hidden nature

Extensive equipment
Vulnerability to noise
Variability over time

Electrocardiogram (ECG)
Universality

Hidden Nature
Simple Acquisition

Requires contact
Variability over time

Biometrics provides many advantages over traditional means of access control, such as cards, passwords, and
pins (among others). However, there are still serious concerns over the security and privacy of stored biometrics.
For instance, facial features can be easily collected from photos available on social media websites, and voice can
be obtained by recording phone calls or voice messages. Thereby, the goal of a biometric recognition system is to
implement an efficient anti-attacks algorithm, which would mitigate the consequences of compromised biometrics.

2.1.1 Biometric Applications

Biometric applications can be generalized into four categories. The first application category controls access
to data, such as logging into a device, PC, or network. The second category is controlling access to tangible
materials or areas, such as physical access control. The third is to validate a claimed identity against an existing
credential, such as in a border control environment. The fourth application registers or identifies individuals whose
identities need to be established biometrically, most often using centralized or distributed databases.

Beyond this decomposition in categories, some specific biometric applications can be:

• Law Enforcement: Biometric technologies have long been utilized as a secure means to identify alleged
criminals. The FBI currently possesses one of the largest biometric databases, comprised of tens of millions
of civil and criminal fingerprint records.

• Border Control: The ever-increasing volume of international travel needs the implementation of technolo-
gies that can automate, streamline, and expedite border crossing. Driven by international standards for
biometric-enabled passports, countries use fingerprints, iris, and face recognition technologies in border
control applications.

• Physical Access Control: Physical access control uses biometrics to identify or verify the identity of
individuals before permitting access to an area. Companies and government agencies deploy technologies,
such as fingerprint, hand geometry, and iris recognition to control key entry and exit points.

• Time and Attendance: Biometrics can serve as a commercial application to assist in employee manage-
ment. In this particular application, devices are used to track employee attendance. Hundreds of commercial
deployments use hand geometry and fingerprint recognition to ensure the integrity of work hours and pay-
roll.
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2. BACKGROUND

• Consumer Recognition: This application refers to the confirmation of one’s identity to execute a com-
mercial transaction. Conventional authentication methods have utilized keycards, PINs, and signatures to
ensure the validity of a given transaction.

• Logical Access Control: Biometrics are used to control access to systems and/or devices based on physical
characteristics. It is commonly used to control access to centralized databases, healthcare information, or
financial records. Many deployments have used fingerprint recognition due to its proven reliability, ease-
of-use, and accuracy.

As seen by the application descriptions mentioned above, biometric technology is typically used in applica-
tions to improve security, increase efficiency, or enhance convenience. Additionally, biometrics allows users to
forego the responsibility of creating passwords and carrying keycards while maintaining a level of security that
meets, and in some cases surpasses, that of conventional authentication methods.

2.1.2 Biometric Systems

A biometric system (BS) is a system that has the objective of performing a biometric task based on three main
stages: data acquisition, data processing, and pattern matching.

Regarding data acquisition, BSs require two types of templates: 1) enrollment template and 2) presentation
template. The enrollment template is generated when a user registers for the first time. The presentation template
is generated every time a user tries to gain access [5].

Once the biometric signals are captured, they are transformed, using signal processing techniques as refer-
ence templates used to distinguish the individual. This may involve several steps, such as signal filtering, signal
segmentation, amplitude and time normalization, outlier detection, and features extraction. The filtering process
consists of eliminating noises and artifacts. Signal segmentation is the most commonly used signal processing
technique among the surveyed approaches. It is used to limit the signal span for feature extraction or to set a
fixed size to ease template matching when the feature is the signal itself. Normalization is usually performed to
minimize differences caused by external factors, allowing the comparison between signals to be more accurate.
Outlier detection is generally applied to discard deflected signals. To avoid harming the recognition process, this
process should be applied equally for both enrollment and presentation templates.

Regarding features extraction, BSs can be fiducial, non-fiducial, or partially-fiducial, depending on the nature
of the used features. Fiducial approaches exclusively use the measurements of fiducial landmarks of the signal
in the time domain as features. Non-fiducial approaches are those that use the entire signal (or segments of it)
holistically to extract features related to the waveform morphology. The partially-fiducial or hybrid approaches
are those that use features from both fiducial and non-fiducial origins.

Concerning pattern matching, a biometric algorithm takes the features from the stored reference template,
along with the features extracted from the presentation sample, and compares them to generate a score that indi-
cates the likelihood that both are from the same person. The algorithm can support one or two crucial functions:
authentication and identification. Authentication involves confirming or denying a person’s claimed identity. The
system performs a one-to-one comparison of the acquired biometric data with the stored information associated
with the claimed identity. In identification, the biometric system must establish a person’s identity by perform-
ing a one-to-many comparison of the acquired biometric data with the information of a set of individuals. The
identification mode does not require the user to claim an identity.

2.2 Electrical Activity of the Heart

Before discussing the potential of an ECG as a biometric, this dissertation presents an overview of the physi-
ology of the heart, its electrical conduction system, and how it relates to electrocardiograms.
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2.2 Electrical Activity of the Heart

The heart is a muscular organ whose primary function is to pump oxygen-rich blood through the blood vessels
to the body tissues. Its anatomy is divided into four chambers: the upper two are the left and right atria, while the
lower two chambers are the left and right ventricles.

The wall of the heart is called the myocardium, being primarily composed of muscle cells that produce me-
chanical force during the contraction of the heart. The contractions are initiated by an impulse generated in the
sinus node, located in the right atrium. The myocardium also contains specialized muscle cells, which are con-
nected to a network that allows that electrical impulse to spread throughout the heart rapidly. A cardiac cycle is
created when such impulse propagates through the conduction system [6].

The sequence of mechanical events that defines a cardiac cycle can be assumed to start in the right atrium,
where oxygen-poor blood collected from all the veins in the body, except those of the lungs, enters the heart
through two large veins, the inferior and superior vena cava. When the right atrium is triggered to contract, it
forces blood into the right ventricle. When the right ventricle has been filled, it contracts and forces blood into
the lungs. Inside the lungs, a process called “gas exchange” occurs, and the blood replenishes the oxygen supply.
The pulmonary veins return the oxygenated blood to the left atrium, which, in turn, empties into the left ventricle.
Finally, it is the left ventricle that forces blood to all of the body organs and tissues, except the lungs, through the
arterial vessels, which evolve into capillaries and, then, return into the heart through the venous system [7].

Each cardiac cycle comprises two phases, depolarization and repolarization, referred to in mechanical terms
as contraction and relaxation. Depolarization is manifested by a rapid change in the membrane potential of the cell
and constitutes the initial phase of the cardiac action potential. The rapid change in voltage causes neighboring
cells to depolarize, and, as a result, an electrical impulse spreads from cell to cell throughout the myocardium.
Depolarization is immediately followed by repolarization, during which the potential of the membrane gradually
returns to its resting state [6].

2.2.1 ECG Waves and Time Intervals

A typical ECG wave of a normal heartbeat, like the one presented in Fig.2.1, consists of a P wave, a QRS
complex, and a T wave.

The P wave is generated when the right and left atria are depolarized. Its amplitude usually is less than 300
µV, and its duration is less than 120 ms. The spectral characteristic of a normal P wave is usually considered to be
low-frequency, below 10-15 Hz.

The QRS complex reflects the depolarization of the right and left ventricles. The first negative deflection of
the QRS complex is denoted the Q wave, the first positive is denoted the R wave, while the subsequent negative
deflection is denoted the S wave. Its duration may extend up to 250 ms, and its frequency content is considerably
higher than that of the other ECG waves and is mainly concentrated in the interval 10-50Hz. Since the QRS
complex has the largest amplitude of the entire ECG waveform, sometimes reaching 2-3 mV, it is the first to be
identified in any computer-based analysis [6].

Finally, the T wave occurs during ventricular repolarization and extends about 300 ms after the QRS complex.
Atrial repolarization cannot usually be discerned from the ECG since it coincides with the much larger QRS
complex.

Some other important characteristics of the ECG waveform are the intervals between waves:
The ST segment represents the interval during which the ventricles remain in an active, depolarized state.
The RR interval represents the length of a ventricular cardiac cycle, measured between two successive R

waves, and serves as an indicator of ventricular rate.
The PQ interval is the time interval from the onset of atrial depolarization to the onset of ventricular depolar-

ization.
The QT interval represents the time from the onset of ventricular depolarization to the completion of ventric-

ular repolarization.
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2. BACKGROUND

Figure 2.1: The sequence of depolarization and repolarization events in the heart, and their relationship with the different heartbeat
waveforms in an ECG signal (extracted from [4]).

2.2.2 Noise and Artifacts

An important reason behind the success of computer-based ECG analysis is the capability to improve poor
signal quality using signal processing algorithms. These results have been achieved thanks to good knowledge of
signal properties and noise properties. Therefore, it is important to become familiarized with the most common
types of noise and artifacts in the ECG before addressing methods in the following chapter, which compensate for
their presence. A list of common non-cardiac noise sources follows:

• Powerline interference is caused by improper grounding of the ECG equipment and interference from
nearby equipment. It affects the acquired signal as a high-frequency noise: 60 Hz in the United States and
other American countries, and 50 Hz in Europe, Asia, and most other countries [4, 6].

• Baseline wander is a low-frequency activity in the ECG, which may interfere with signal analysis, render-
ing the clinical interpretation inaccurate and misleading. It may be caused by respiration, body movement,
or poor electrode contact. Its frequency is usually below 1 Hz.

• Electromyographic interference, caused by the electrical activity of skeletal muscles during periods of
contraction, can interfere with the signal while capturing ECG, resulting in high-frequency, high-amplitude,
short-term bursts.

• Electrode motion artifacts are mainly caused by skin stretching, which alters the impedance of the skin
around the electrodes. They occur mainly in the range of 1 to 10 Hz. In the ECG, these artifacts are
manifested as large-amplitude waveforms, which are sometimes mistaken for QRS complexes [6].

2.3 Electrocardiogram for Biometric Recognition

Having discussed the heart’s electrical activity and its relation with the ECG waves and time intervals, we can
now consider whether ECG could be used as a viable biometric.

The ECG, compared to other biometric traits in Table 2.1, has proven to be the most promising of them,
excelling in most of the characteristics that define the quality of a biometric trait. Its hidden nature and inherent
liveness information make it not easily hacked without the consent of the user. Moreover, the ECG is believed to be
unique and different from one person to another, making the ECG an accurate tool to distinguish between different
individuals. Most existing literature focuses on proving the viability of an electrocardiogram as a biometric.
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2.3 Electrocardiogram for Biometric Recognition

2.3.1 Uniqueness

Biometric recognition based on ECG was firstly investigated by Biel et al. [8], Irvine et al. [9], and Kyoso
et al. [10]. The main hypothesis shared by these pioneer studies is that ECG contains sufficiently detailed in-
formation regarding the electrical operation of the heart and that its nature is sufficiently personal to be used in
high-performance identity recognition systems. Most of the studies investigating this property of ECG do not
evaluate the performance of their biometric system on huge datasets, as was done for other biometric traits. An
exception is a study by Carreiras et al. [11], who assessed the performance of their biometric system on a database
with ECG recordings collected from 618 subjects using a 12-lead ECG and obtained high recognition rates. The
results from this work provided a positive perspective on the issue of ECG uniqueness. However, these promising
results can fall apart when using an ECG with fewer details (for example, ECG acquired with one lead or even
ECG collected at the hand palms or fingers).

2.3.2 Stability

While proving uniqueness can be achieved using data from a single point of time, proving stability requires
data to be collected from the same individual over a sufficiently long period of time. Thereby, fewer studies
investigated the stability of ECG signals. A study by Silva et al. [12] collected ECG data from 63 subjects, with
two data acquisition sessions separated by a 3-month interval. Their results indicate that biometric authentication
performs worse for longitudinal ECG data but is still viable for real-world applications.

2.3.3 Collectability

Traditional and clinical 12-lead ECG machines require ten self-adhesive electrodes to be placed on the sub-
jects’ chest and limbs. This makes the traditional ECG recording procedure not compatible with a biometric
system since a biometric trait must be recorded easily and relatively fast. Moreover, the used machines are of-
ten non-portable, expensive, and take time to set up. However, nowadays, several minimally invasive devices
can record ECG requiring electrodes to be placed only on the chest. These devices are portable and can also be
used to record a single-lead ECG trace using electrodes when in contact with wrists or fingers. Although these
consumer-grade ECG devices provide less information than the 12-lead clinical ECG machines, they can be used
to record ECG in a non-invasive manner, which makes them appropriate and applicable for biometric systems [3].

2.3.4 Performance

The performance of a biometric system depends on several aspects, such as the signal acquisition process, the
quality of the signal, the pre-processing procedures, the selected features, the template used, and the matching
algorithm [3]. Some biometrics have established methods for transforming the raw signal into features used to
recognize individuals. Fingerprint scanners, for instance, detect very specific fingerprint features called minutiae.
Concerning ECG as a biometric, currently, there is no consensus over which features should be used. Thus, the
performance of ECG biometric systems varies significantly across studies.

2.3.5 Acceptability

With the introduction of reliable consumer-grade ECG devices, there have been more opportunities to cre-
ate ECG-based biometric systems that are minimally invasive and, consequently, more socially accepted. The
“off-the-person” approaches for signal acquisition are particularly appealing for biometric applications, once the
biometric sensors are usually embedded into existing systems, such as keyboards and vehicle steering wheels [11].
Nevertheless, to the best of our knowledge, there have been no studies investigating users’ opinion of using ECG
as a biometric.
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2.3.6 Circumvention

All biometric systems are subject to attacks, which try to corrupt the system with an artifact or contraption.
In order to compromise an ECG recording, the intruder has to steal the records from a medical institution or
perform a social attack to manipulate the victim into giving his/her ECG. Once that is achieved, the intruder has
to digitize the recording, in case it is on paper, and forge the voltage levels at the electrodes of an ECG sensor
using a device that outputs electrical waveforms. Even though it was expected to be a very complex procedure,
a study by Eberz et al. shows that technological barriers for the attacker are extremely low [13]. Thereby, more
work in this area is required to establish a viable defense against ECG data compromise.

To summarize, ECG is proven to be a strong candidate to be used as a biometric trait for personal recognition.
Several studies have demonstrated the uniqueness and stability of ECG over the last few years. The introduction
of those low-cost consumer-grade ECG devices, which record ECG in a non-invasive manner, also provides the
opportunity for systems to include these sensors into existing access control systems. However, there is still
insufficient research on which features to extract from ECG signals to achieve the optimal performance of the
system and prevent intruder attacks and guarantee that ECG-based biometric systems are socially accepted.

2.4 Wavelet Transform

A fundamental goal of signal processing is to extract specific information from a given signal. For that, signals
are often transformed to different domains, expecting that the desired information can be highlighted easier.

The time-domain signals are noisy and complex, causing ECG signals not to be easily distinguishable due
to the lack of discriminatory features. In order to overcome this limitation, studies have been conducted by
converting signals into the frequency domains since frequency-time analysis enables hidden characteristics to be
displayed and measured.

The wavelet transform (WT) is a powerful method for time-frequency transforms. Its tools can be categorized
into continuous wavelet tools and discrete wavelet tools, used for signal analysis and signal processing, such as
noise reduction, data compression, peak detection, among others. Since wavelets are localized in both time and
frequency domains, wavelet signal processing is suitable for nonstationary signals, whose spectral content changes
over time [14].

Morlet introduced a wavelet as a family of translations and dilatations from a single function called the mother
wavelet. This new signal processing has been improved more efficiently by Mallat, Meyer, Daubechies, and
Grossman, and has become a popular technique in biosignal analysis [15].

2.4.1 Continuous Wavelet Transform

Based on the recent works, ECG features are extracted using a continuous wavelet transform (CWT), since
the discrete wavelet transform (DWT) has many defects, such as the indelicacy of the transform characterization
and instability [16].

The CWT for the signal f (t) is defined as the integration of the f (t) with the shifted or scaled shapes from a
mother wavelet Ψa,b(t) :

CWT (a,b) =
1√
a

∫
∞

−∞

f (t)∗Ψ(
t−b

a
)dt (2.1)

a ∈ R+ \{0},b ∈ R

In other words, the CWT is the sum of the signal multiplied by the shifted and scaled shapes from a mother
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wavelet Ψ :

CWT (scale, position) =
∫

∞

−∞

f (t)∗Ψ(scale, position, t)dt (2.2)

2.4.2 Mother Wavelet

The original basic wavelet Ψ (t) is called the mother wavelet, and its variations Ψa,b (t) are called daughter
wavelets. The daughter wavelets are the shifted or scaled shapes from a mother wavelet. The a is a scale factor
for scaling the function Ψ (t), while the b is a shift factor for translating the function Ψ (t). The result of the CWT
is a matrix filled with wavelet coefficients located by scale and position. Determining the scale parameters and
mother wavelet in CWT is very important for analyzing ECG since When the wavelet most similar with the signal
to be decomposed is used, better noise cancellation without distortion can be performed [15].

One of the most commonly used mother wavelets is the Morse wavelet, which is useful for analyzing signals
with varying amplitude and frequency over time and localized discontinuities. There have been many studies on
Morse wavelet theory and its application to signal analysis, resulting in an efficient algorithm for calculating the
Morse wavelet. The Fourier transform of the generalized Morse wavelet is:

ΨP,γ(ω) =U(ω)aP,γω
P2
γ e−ωγ

(2.3)

where U(ω) is the function of unit step, P2 is the time-bandwidth product, aP,γ is a constant for normalization,
and γ is a parameter for determining the symmetry of the Morse wavelet. In many applications of the Morse
wavelet, β is used as a decay or compactness parameter, rather than the time-bandwidth product, P2 = βγ . The
equation for the Morse wavelet using β and γ as parameters is:

Ψβ ,γ =U(ω)aβ ,γω
β e−ωγ

(2.4)

Various analytic wavelets could be obtained by varying the time-bandwidth product and symmetry parameters
of a Morse wavelet. The wavelet duration in time is proportional to the square root of P, which is the time-
bandwidth product. The duration affects the number of oscillations of the center window at its peak frequency,
(P2

γ
)

1
γ . The skewness of the Morse wavelet by demodulation is 0 when γ is 3 as the minimum Heisenberg area

[14, 15].

2.5 Independent Component Analysis

Independent component analysis (ICA) is a generative model, which aims to decompose a data matrix into
two more informative matrices, one with the individuals (rows) and the other with the variables (columns), by
calculating linear combinations of the original variables. In ICA, a data matrix X is regarded as a set of observed
signals, which are linear mixtures of source signals. The objective of this model is to extract the source signals,
the independent components (IC), and the proportions in which they are mixed together in the observed signals
(also called signal mixtures).

In the context of ICA, a signal can be represented by the row vector x, written as the weighted sum of q pure
source signals s j, (j = 1 to q) by the weights, a j:

x =
q

∑
j=1

a js j (2.5)

So, for a set of n signals, each observed signal xi (i=1 to n) can be given by:

xi =
q

∑
j=1

ai js j (2.6)
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Eq. 2.6 implies that, although the source signals, s j, are independent, the mixture signals, which are linear
combinations of the same source signals, are not.

If the n signals are in the rows of an X matrix, Eq. 2.6 can be written in matrix form:

X = A ·S (2.7)

where X is the original data matrix of mixed sources, A is the mixing matrix, whose element ai j describes the
weight of source signal j in the mixed signal xi; and S is the matrix of pure source signals.

The objective of ICA is to determine A and S, knowing only X. In order to find A, a demixing matrix W is
calculated such that:

S = W ·X (2.8)

which implies that W is the inverse of A. After calculating W, Eq. 2.8 enables the calculation of the independent
source signals, S, i.e., the ICs. A is then obtained from Eq. 2.9 :

A = X ·ST · (S ·ST)−1 (2.9)

Different algorithms exist to compute an ICA model. In the present work, ICA was computed based on the
FastICA algorithm 5.

2.5.1 FastICA Algorithm

This fixed-point algorithm was developed by Hyvarinen et al., and has been presented in several books and
articles [8, 28]. This algorithm aims at maximizing an approximation of negentropy. Since Eq. 2.10 represents the
approximation of negentropy, in order to find an IC, one should maximize the negentropy of the searched source
signals s (which according to Eq. 2.8 would be equal to WTx), defined as:

J(wTx) = [E
{

G(wTX)
}
−E {G(v)}]2 (2.10)

where w is such that E{(wTx)2}= 1.

The different steps of FastICA can be then summarized as follows:

• Choose an initial random “demixing” vector w.

• Maximize the non-Gaussianity of wTx.

1. Define w+ = E{xg(wTx)}−E{g′(wTx}w.

2. Set w = w+/||w+||.
3. Check the convergence of w. If it has not converged, go back to 1.

• After convergence, the data are deflated by wTx (i.e., decorrelation with respect to the previously estimated
ICs) and the whole procedure is repeated to find the next demixing vector w.

• When all the w’s have been computed, Eqs. 2.8 and 2.9 give S and A, respectively.

The first step of this algorithm is a random initiation of the w vector. This has consequences on the results
obtained at each iteration of the algorithm, as in two successive runs of FastICA applied to the same data, different
first estimates of w may lead to a different final solution. Another risk of random initialization is the possibility
for the algorithm to converge to a local optimum rather than the global optimum. The approximation of the
negentropy and the chosen G function are also critical parameters that can influence the output of FastICA.

5https://github.com/aludnam/MATLAB (Accessed on 15/11/2021)
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2.6 Classifiers

2.6.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) may be used to reduce the dimensionality of data and for classification
purposes. LDA assumes that all classes are linearly separable and tries to find the hyperplanes that allow to
distinguish the classes.

If there are two classes, the LDA draws one hyperplane and projects the data onto this hyperplane in such
a way that the within-class distance is minimized and, contrary, the between-class distance is maximized. This
results in a maximum class separability [17]. This can be achieved in three steps [18]:

1. Firstly, the algorithm calculates the separability between classes which is the distance between the mean of
different classes. This is called the between-class variance:

Sb =
g

∑
i=1

Ni(xi− x)(xi− x)T (2.11)

2. The second step is to compute the distance among the mean and sample of each class, that is known as the
within class variance.

Sw =
g

∑
i=1

(Ni−1)Si =
g

∑
i=1

Ni

∑
j=1

(xi, j− xi)(xi, j− xi)
T (2.12)

3. The last step is to create the dimensional space that minimizes the within-class variance and maximizes
the between-class variance. Assuming P as the dimensional space projection, that is known as Fisher’s
criterion:

PLDA = argmax
PT SbP
PT SwP

(2.13)

The algorithm makes predictions based upon the probability of a new input dataset belonging to a certain
class. The class which has the highest probability is considered the output class, and, then, the prediction is made.
Fig. 2.2 shows a representation of the functioning of an LDA classifier.

Figure 2.2: Representation of the functioning of an LDA classifier (adapted from 6).
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2.6.2 K-Nearest Neighbours

The k-Nearest Neighbours (kNN) is a classification method used to solve both classification and regression
problems. The algorithm is based on a simple principle: the distances between each training point and the new
observation are computed during the prediction phase. The algorithm then assigns a label to the new observation
by choosing the class shared by the majority of the k nearest data points from the training set. In this model, there
is no explicit “training” phase, which simplifies the design of the algorithm. Conversely, to predict a new label,
kNN has to loop over the entire training set, which makes it impractical for large datasets.

In kNN, k is a parameter that refers to the number of nearest neighbors of a particular data point that will be
included in the decision-making process. This is a crucial decisive factor as the classifier output depends on the
class to which the majority of these neighboring points belongs. Smaller values of k make the model prone to
overfitting, as the prediction is made based only on a few neighbors, which is sensitive to distortions (e.g., noise
and outliers) specific to the chosen training set. Conversely, higher values of k put less emphasis on the location
of the new observation and more on the general frequency of the samples. In binary problems, the value of k is
generally taken as an odd number to avoid ties during decision making [17].

Another factor that affects predictions is the metric used to compute the distance between pairs of points.
Euclidean distance is the most common choice, which calculates the ordinary straight line distance between two
points in the Euclidean space. Another option can be the Manhattan distance, often referred to as the city block
metric, in which the distance between two points is the absolute difference of their Cartesian coordinates, which
are common in the case of high dimensionality [3]. Fig. 2.3 shows a representation of a kNN classifier.

Figure 2.3: Representation of the kNN classifier applied to a two-class problem, considering three neighbors (k = 3) (extracted from 7).

2.6.3 Decision Trees

Decision Trees (DT) are predictive models used in machine learning, which aim to map observations and
predict their target class label or their target value. Depending on their aim, DT structures can be used for classi-
fication or regression trees. While the leaves of classification trees represent class labels, the leaves of regression
trees represent continuous values [19].

Even though DTs are inexpensive to construct and extremely fast at classifying, they may not provide the same
level of accuracy as other classification and regression algorithms since they are prone to overfitting. One way
to avoid overfitting is to use Random Forests, a type of ensemble classifier that uses many decision trees. In this

6https://nirpyresearch.com/classification-nir-spectra-linear-discriminant-analysis-python/ (Accessed on 16/11/2021)
7https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn (Accessed on 16/11/2021)
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approach, multiple decision trees are trained with subsets of training data. This approach uses a type of majority
voting in which the output class label is assigned according to the number of votes from all the individual trees.
Fig. 2.4 shows an example of how the classification of objects is performed using a DT.

Figure 2.4: Classification of various objects using a Decision Tree Classifier (extracted from 8).

2.6.4 Support Vector Machines

Support Vector Machines (SVM) are a classification algorithm highly preferred by many as it produces signifi-
cant accuracy with less computation power. The objective of the SVM is to find a hyperplane in an N-dimensional
space (N = dimension of the feature space) that distinctly classifies the data points.

During the training of SVM, the distance from data points to the class separating hyper-plane is maximized.
Generally, the data are not linearly separable. Therefore non-linear kernel transformation is performed. The
application of a kernel will transform our data to a higher feature space, where data are linearly separable. There
are various kernels that can be used during SVM training. These include Gaussian (Radial Basis) function,
Polynomial, and linear kernels. The SVMs also have two other training parameters: the cost parameter (C),
which controls the trade-off between smooth decision boundaries and classifying the training points correctly, and
the gamma parameter (γ), which controls the degree of non-linearity of the model.

There are potentially many hyperplanes that could be chosen. Thereby, the parameters of the hyperplanes
must be optimized to find a plane that has the maximum margin, i.e., the maximum distance between data points
and the decision hyperplane. The resulting hyperplane is then used to perform classification of new data points
[3]. Fig. 2.5 presents a representation of the SVM classifier.

Figure 2.5: Representation of the SVM classifier (extracted from 9).

8https://www.slideshare.net/marinasantini1/lecture02-machine-learning (Accessed on 26/08/2021).
9https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm (Accessed on 27/08/2021).
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2.6.5 Neural Networks

Neural networks (NN), also known as artificial neural networks (ANN), are a subset of machine learning and
are at the heart of deep learning algorithms. The concept of the artificial neural network was inspired by human
biology and how neurons of the human brain function together to understand inputs from human senses.

NNs comprise node layers, containing one input layer followed by one or more hidden layers and one last
layer called output layer. NNs produce a result by propagating the inputs through the layers, while each neuron
performs a weighted sum of its inputs [1]. Fig. 2.6 shows a representation of a NN with multiple layers.

The layers are made of nodes. Computation happens at each node, loosely patterned on a neuron in the human
brain, which fires when it encounters sufficient stimuli. A node combines input from data with a set of coefficients,
or weights that either amplify or dampen that input, thereby assigning significance to inputs with regard to the
data the algorithm is trying to learn. These input-weight products are summed, and then the sum is passed through
a node’s so-called activation function to determine whether and to what extent that signal should progress further
through the network to affect the classification [20]. If the signal passes through, the neuron is “activated”. A
node layer is a row of those neuron-like switches that turn on or off as the input is fed through the net. Each layer’s
output is simultaneously the subsequent layer’s input, starting from an initial input layer receiving the data [1].

Earlier versions of neural networks such as perceptrons were shallow, composed of one input and one output
layer and one hidden layer in between. More than three layers (including input and output) qualify as “deep”
learning. In deep-learning networks, each layer of nodes trains on a distinct set of features based on the previous
layer’s output. The larger the neural net, the more complex are the features that the nodes can recognize since they
aggregate and recombine features from the previous layer. This is known as feature hierarchy, and it is a hierarchy
of increasing complexity, and abstraction 10.

Figure 2.6: Representation of a Neural Network classifier with one input layer, two hidden layers and one output layer (extracted from 10).

2.6.5.1 Convolutional Neural Network

A convolutional neural network (CNN) is a class of deep neural networks most commonly applied to analyze
images. The input for a CNN is an n-dimensional vector carrying the input information. It may be, for example,
a 2D matrix representation of an image or a 3D sequence of images (video).

CNNs are composed of multiple layers of artificial neurons, which are mathematical functions that calculate
the weighted sum of multiple inputs and output an activation value. Any layer in a network with this ability is

10https://wiki.pathmind.com/neural-network (Accessed on 27/08/2021).
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called a convolutional layer, because it is based on the convolution operation. When an image is inputted in a
CNN, each layer generates several activation functions that are passed on to the next layer. The first layer usually
extracts basic features such as shapes, edges, and other patterns that may appear in an image. The output of
these layers is passed on to the next layer, which detects more complex features such as corners or combinational
edges. After a convolution, a pooling layer may be used to reduce the dimensions of the feature maps. As we
move deeper into the network, it can identify even more complex features such as objects and faces. Based on the
activation map of the final convolution layer, the classification layer outputs a set of confidence scores that specify
how likely the image is to belong to a class [1]. Fig. 2.7 shows an example of a CNN.

Figure 2.7: Representation of a Convolutional Neural Network, extracted from 11, with one input layer corresponding to an image, followed
by a few hidden layers, namely a convolutional layer and a pooling layer, and finally some classification layers, such as a fully connected
layer or a softmax layer.

11https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939 (Accessed on 27/08/2021).
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Chapter 3

Literature Review

This chapter includes a review of the most relevant works in ECG biometrics, presenting the data used, the
methodology and approaches applied, and the results obtained. Previous studies on ECG-based biometric systems
can be differentiated according to the design choices made with respect to data acquisition, feature selection, and
template matching techniques.

3.1 Data Acquisition

3.1.1 ECG Recording Techniques

The configurations used for ECG acquisition in biometrics research have significantly evolved over the years,
mainly intending to overcome the major disadvantages of ECG as a biometric trait: acquisition acceptability.
There is a description below of the different stages of this evolution and examples of investigations that use them.

3.1.1.1 Medical Acquisitions

For medical purposes, there are a few standardized configurations of electrodes for measuring electrocardio-
gram signals that ease the diagnostic of cardiac conditions. The standard 12-Lead configuration is the most widely
used in clinical routine, allowing the acquisition of an ECG signal in 12 leads (or channels): three bipolar limb
leads - Lead I, II and III -, three augmented unipolar limb leads - aVF, aVL and aVR -, and six precordial leads
- V1-V6 -, as represented in Fig. 3.1. The orthogonal configuration (Frank leads) reflects the electrical activ-
ity in the three perpendicular directions X, Y, and Z, requiring only seven electrodes. Although the information
contained in this configuration has been found useful in specific applications, the 12-lead ECG continues to be
the most used in medical acquisitions because of the existence of well-established criteria for its interpretation.
In early ECG biometric research, recordings from standard 12-lead or Frank leads were commonly used for the
development of biometric algorithms [21, 22, 23]. Over time, researchers started investigating the selective use of
certain leads of these configurations, especially Lead I [24, 25, 26], because of its higher acceptability due to the
possibility of placing the electrodes on the wrists, but also Lead II [10, 27, 28], or two chest leads [29, 30].

Nevertheless, there are several limitations associated with medical configurations, namely, the large number
of electrodes and their uncomfortable placement, the limited movement, and the duration of the recording that
hinder the development of robust biometric systems.
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Figure 3.1: Medical acquisition configurations: electrode placements and leads on the standard 12-lead configuration and orthogonal
configuration (extracted from [4]).

3.1.1.2 Movement Freedom and Holter Systems

In order to smooth the limitations associated with medical acquisitions, some researchers opted for acquisi-
tions without movement restrictions, with fewer electrodes, and with longer duration. One of the most notable
examples was the use of Holter systems, presented in Fig. 3.2, which are prepared to acquire ECG signals during
several hours while the subjects are performing their daily basis activities. Labati et al. [31] used 24-hour-long
Holter acquisitions to investigate the effect of ECG variability over time on identification performance. Similarly,
Zhou et al. [32] used a mini-Holter system to record ECG signals continuously. Even though Holter systems allow
longer acquisitions with movement and activity, they still require the placement of electrodes on the torso. This
significantly reduces acquisition acceptability and comfort and damages the ECG strength as a biometric trait.

Figure 3.2: Acquisition settings with movement, fewer electrodes, and longer duration: example of a five-electrode Holter System (ex-
tracted from [4]).

3.1.1.3 Off-the-person Settings

Researchers took a number of actions regarding the acquisition of ECG signals to improve acceptability and
acquisition comfort and be easily integrated into real-world scenarios. Dry metallic electrodes replaced wet elec-
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trodes, their number was reduced to two or three, and their placement was confined to the upper limbs, especially
on the wrists, hands, or fingers. These configurations are called off-the-person settings, unlike the on-the-person
settings described in the two topics above. The first research work in ECG biometrics to use off-the-person sig-
nals were, to the best of our knowledge, Molina et al. [24] and Chan et al. [33], who used commercial metallic
electrodes strapped to the wrists of the subjects and dry button electrodes held by the subjects in contact with their
thumbs, respectively. Shen et al. [34] recorded signals from both palms from the subjects while they held two
small metallic rod electrodes and, more recently, Matos et al. [35] used only two Ag-AgCl electrodes (with the
virtual ground) to acquire ECG at the index fingers. Silva et al. proposed a setup for ECG data acquisition at the
hand palms with dry Ag/AgCl electrodes and at the fingers with Electrolycras and created a database, publicly
available for the biometric research purpose [2]. Fig. 3.3 shows some of the examples introduced above.

Nevertheless, off-the-person systems do not remove entirely, the disadvantage of ECG over other biometric
traits that can be used for unconstrained recognition since they still require the user to hold the electrodes or place
the finger or palms over them.

Figure 3.3: Examples of off-the-person ECG aquisition settings, using thumb electrodes [33], index finger electrodes [35], metallic rods
grabbed by the subjects [34, 36, 37], or electrodes mounted on a table [35] (extracted from [4]).

3.1.1.4 Wearables and Seamlessly Integrated Acquisition

Recently, some researchers have been improving off-the-person configurations to convert them into uncon-
strained settings in ECG biometrics and, consequently, close the gap to real applications by developing wearable
technologies for ECG acquisition or embedding the sensors into ordinary objects. In research, the first example
of this type of configuration was proposed by Coutinho et al. [38, 39], who developed a sensor pad to be used
alongside a computer keyboard. While the users use the keyboard, their palms rest on the sensor pad, which
continuously acquires their ECG signal to be used for authentication. Silva et al [12] also used this configura-
tion. More recently, Zhang et al. [40] have shown it is possible to acquire ECG signals from a single arm and
successfully use them for biometric recognition. An example of a commercial application is the Nymi Band [13],
a wearable wristband that acquires the ECG using two metallic electrodes on its inner and outer surface. For the
authentication to be performed, the user needs to place a finger of the opposite hand on the outer electrode of
the band. The CardioWheel [41] is an example of the incorporation of acquisition electrodes and hardware into
common objects. It is a steering wheel cover using conductive leather. Besides seamless and continuous biometric
recognition, it also performs health monitoring of drivers, aiming towards automatic personalization of driving
settings and remote fleet supervision. Both the Nymi Band and the CardioWheel are represented in Fig.3.4.

These efforts have brought ECG biometrics closer to viable, unconstrained applications. However, there are
still a few limitations regarding wearables and seamless acquisitions, such as the fact that the user needs to wear the
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product for long periods of time or even touch the electrode to start the acquisition session. Concerning integrated
acquisition settings like the CardioWheel, acquisitions are expected to present undesirable noise and frequent
signal loss, as the user moves or takes their hands off the electrodes. Hence, these issues must be addressed and
adequately solved to obtain viable commercial ECG biometric systems.

Figure 3.4: Wearable and seamless acquisitions: examples of investigated configurations (extracted from [4]).

3.1.2 Acquisition Conditions

The vast majority of the existing studies use data collected over a single acquisition, as observed in [8, 9, 10,
38, 42, 43, 44]. Although single-session datasets are easier to create, authors cannot use them to draw conclusions
about the stability of the ECG as a biometric trait. While several authors used longitudinal ECG data in their
studies, to the best of our knowledge, only one study explicitly provided a side-by-side comparison of results
achieved using both single-session and multiple-sessions data collected over a period of four months [12]. Silva
et al. concluded that ECG-based biometric exhibit promising recognition rates using short-term data collected at
a single session and long-term data collected over multiple-sessions [2].

In terms of scale, most studies do not assess the performance of their ECG recognition systems on very large
datasets, as it is seen with other biometric modalities. An exception is a research conducted by Carreiras et al.,
which evaluated the performance of a biometric system using a database of ECG recording collected from 618
subjects, collected over a single acquisition, and obtained high recognition rates [11].

Even though ECG signals obtained during normal resting conditions have been investigated in most studies,
some researchers test the feasibility of ECG biometrics under different conditions. Israel et al. explored biometric
recognition based on ECG during changes in emotional and mental states, concluding that it is invariable to the
individual’s state of anxiety [9]. Kim et al. evaluated the performance of their biometric system with ECG data
recorded at rest and during physical exercise, proving that with a faster heart rate, the accuracy of human iden-
tification decreases [45]. Odinaka et al. tested their system with ECG data from individuals with cardiovascular
disorders and also from individuals that used drugs or other substances that may affect ECG signals. Results
showed that, even though the cases of misclassification appeared mostly among non-healthy subjects, ECG-based
human identification in heartbeat disorder scenarios is quite feasible [46, 47].

3.2 Feature Selection

With respect to feature selection, existing approaches can be broadly classified as fiducial, partially-fiducial,
and non-fiducial [3, 12].

1. Approaches based on Fiducial Features: Algorithms based on fiducial features extract temporal, ampli-
tude, area, angle, or dynamics (across heartbeats) measurements derived from the reference points within
the signal (e.g., waves or QRS complexes), to create the feature vectors that form the biometric templates.
Most of the research in the field of ECG based biometrics is carried out by obtaining fiducial based features

21



3. LITERATURE REVIEW

to develop identification and authentication systems [8, 9, 10, 25, 26, 28, 45, 48, 49, 50, 51, 52, 53, 54].
Therefore, fiducial features completely depend on the precise detection of points of interest, which is a
challenging process due to the high variability of the signal [55].

2. Approaches based on Non-Fiducial Features: The most important advantage of approaches based on
non-fiducial features, over the fiducial-based approaches, relies on computational costs, as they do not have
to determine wave boundaries nor detect fiducial points. Indeed, non-fiducial-based techniques extract
discriminative information within the ECG waveform without having any particular reference points in the
heartbeat cycles as features. Different types of non-fiducial methodologies have been presented, such as
methods based on Wavelet Transform, Discrete Cosine Transform (DCT), and Autocorrelation Coefficients
(AC). Chan et al. used Wavelet Distance (WDIST) to measure a distance between wavelet coefficients [33],
whereas Plataniotis et al. have suggested a new and robust approach that relies on a combination of AC and
DCT of the overall morphology of ECG waveform [22, 56].

3. Approaches based on Partially-Fiducial Features: Partially-Fiducial approaches rely on fiducial infor-
mation only for ECG segmentation. Following the state-of-the-art analysis, these proved to be significantly
more uncommon than the other two types of approaches. Palaniappan et al. combined the common fiducial
features with a non-fiducial QRS complex form factor, computed using the segment and its first and second
derivatives [25]. Ergin et al. proposed the fusion of QRS fiducials, with several time domains, WT, and
Power Spectral Density (PSD) features [57]. Dar et al. opted for the extraction of a total of 46 features from
Haar transform, and heart-rate-variable RR intervals [58].

3.3 Template Matching

Based on the representation of the ECG acquisition, obtained through feature extraction and dimensionality
reduction, the template matching aims to accurately attribute one of the enrolled identities to the user, in the case
of identification tasks, or accept or reject an identity claim, for authentication tasks. In the case of identification,
the template matching usually consists of a classification process, while, for authentication, the acceptance or
rejection of the identity claim is generally based on a reference threshold T that is applied to the prediction score.
Adequately assessing performance in both tasks is extremely important, and thus a few metrics have become
common for the evaluation of biometric algorithms [58].

3.3.1 Classifiers

The template matching of the ECG biometric algorithms can consist of a classifier, trained with the stored
templates from the subjects enrolled with the biometric system, which will discriminate between the subjects, to
output an accurate decision when needed. Classifiers are more usual in identification tasks, and the most common
are SVM, Nearest Neighbors classifiers, or neural networks.

SVM are classifiers that, based on a given set of training data, compute an optimal hyperplane that divides two
classes, ensuring maximum margin between the boundary and the nearest samples [59]. Kernel functions allow
mapping non-linearly separable datasets into alternative feature spaces, where an optimal hyperplane boundary
can be found. SVM have been extensively used in ECG-based recognition [12, 30, 56, 59, 60, 61, 62]. In what
concerns the kernel functions, Gaussian Radial Basis Function (RBF) and non-linear polynomial kernels have
been the most used.

Nearest Neighbor Classifiers, commonly kNN, take the feature vector to be tested and those in the training
group and, in the feature space, compute the distance between the test observation and each of the training obser-
vations. To the feature vector under test is, then, attributed the class corresponding to the majority vote among
the k nearest vectors. Nearest Neighbor classifiers have been extensively used in ECG biometrics [11, 21, 23, 62,
63, 64] mainly because they offer the advantage of being easily updated when new samples become available by
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just storing them on the database, while most of the other techniques would require the repetition of the training
process [58].

As for neural networks, they mimic the function of their biological homonyms, which consist of webs of
interconnected neurons that receive inputs, analyze and modify them, and pass them along until they reach a
target organ or tissue [58]. These classifiers are composed of nodes (or neurons), arranged in various layers, and
connected between them. The first layer receives the inputs (feature vectors), the nodes have activation functions,
and their connections are weighted to guide the final classification, outputted by the last node layer [65]. Various
types of these classifiers were used in the surveyed approaches, especially the Multilayer Perceptron (MLP) [21],
but also Decision-based Neural Network (DBNN) [34], the Radial Basis Function Neural Network (RBFNN) [66],
and the Probabilistic Neural Network (PNN) [21].

3.3.2 Metric-based Matching

Other methods are based on the comparison between the template of the currently acquired trait and the
templates stored in the system database.

A substantial fraction of the research work that applies metric-based matching methods has opted to use
distance metrics. The most popular distance metric was, by far, the Euclidean distance [12, 22, 27, 49, 67, 68, 69].
However, Euclidean distance is regarded by some researchers as unreliable in high dimensional spaces, leading
to the use of other metrics, such as the cosine distance [12], the Mahalanobis distance [10, 48, 70], Root Mean
Square Error (RMSE) or Wavelet Distance (WDIST) [58].

Besides proximity measures, other techniques can be found in the state-of-the-art. Examples include Gaussian
log-likelihood [35, 71, 72] or Ziv-Merhav cross parsing algorithm [38, 39, 73]. In general, metric-based methods
offer less accuracy than methods based on classifiers, but they have advantages since they do not have to be trained.

3.3.3 Sytem Evaluation

Proper evaluation is an integral part of designing a viable biometric system. In general, a biometric system
is evaluated by assessing the Identification rate (IDR) - the proportion between the correctly identified users
and the total number of users in the stored database and can perform two types of errors: a false acceptance,
which happens whenever a system incorrectly accepts an intruder, and a false rejection, which happens whenever
a system incorrectly rejects a genuine user. The probability of occurrence of these errors is presented by two
metrics: false acceptance rate (FAR) and false rejection rate (FRR).

In order to improve the overall biometric system performance, the system has to be designed to minimize both
FAR and FRR. Eberz et al. define additional metrics that incorporate both FAR, and FRR [13]:

1. Equal Error Rate (EER): An error rate that is achieved by tuning the detection threshold of the system so
that FAR and FRR are equal.

2. Receiver Operating Characteristics (ROC) curve: A graph showing the performance of a classification
model at all classification thresholds. The ROC curve allows deriving a set of pairs (FAR, FRR) at which
the system can be run by changing the threshold [3].

3. Area Under the ROC Curve (AUROC): A measure of the ability of a classifier to distinguish between
classes and is used to quantify the ROC curve. The higher the AUROC, the better the performance of the
model at distinguishing between the classes.

4. Confusion Matrix (CM), also known as an error matrix, is a specific table that allows the visualization of
the performance of an algorithm. Each row of the matrix represents the instances in a predicted class, while
each column represents the instances in an actual class (or vice versa).
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Figure 3.5: Confusion Matrix Schematic.

A confusion matrix, such as the one represented in Fig. 3.5, is composed of four measures - True Positive, True
Negative, False Negative, and False Positive -, from which it is possible to calculate some metrics for evaluating
the performance of the algorithm. The measures can be defined as:

• True Positives (TP): the number of correct predictions for positive samples.

• True Negatives (TN): the number of correct predictions for negative samples.

• False Negative (FN): the number of incorrect predictions for positive samples.

• False Positive (FP): the number of incorrect predictions for negative samples.

These measures are used to calculate some evaluation metrics such as accuracy, precision, recall, F1-Score
and so forth:

1. Accuracy: can be defined as the ratio of correct classifications to the number of total samples. The accuracy
can be formulated as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(3.1)

2. Precision: identifies how accurately the model predicts the positive classes. It is the proportion of the cor-
rectly predicted as positive samples inside the total number of positively predicted samples. The precision
can be formulated as follows:

Precision =
T P

T P+FP
(3.2)

3. Recall (or Sensitivity): measures how many of the actual positive samples are predicted as positive. The
recall can be formulated as follows:

Recall =
T P

T P+FN
(3.3)

4. F1-Score: considers both precision and recall. It is the harmonic mean (average) of the precision and recall.
F1-Score is better if there is a balance between precision and recall in the system. Conversely, F1-Score is
not so high if one measure is improved at the expense of the other.

F1−Score =
2 · (Recall ·Precision)
(Recall +Precision)

(3.4)
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3.4 Related Works

Biel et al. [8] used features directly outputted by an ECG medical acquisition device, Lead I, and per-
formed decisions using Principal Component Analysis (PCA) and Soft Independent Modelling of Class Analogy
(SIMCA), obtaining an IDR of 100% with 20 subjects. Kyoso and Uchiyama [10] extracted 34 fiducial latency
features, and attained 99.5% and 94.2% IDR (with three and nine subjects, respectively), using LDA for dimen-
sionality reduction and Mahalanobis distance for classification. Palaniappan et al. [25], Chan et al. [33] and
Singh et al. [49] have also used features from the time-domain, and achieved an accuracy of 97.6%, 90.8%, and
99% for identification, respectively. Several approaches to non-fiducial point based systems have been attempted,
such as Fourier Transform [45, 74], discrete wavelet transform [75, 76], autocorrelation [22, 77] and Legendre
polynomials [78] with a recognition from 77% to 100% for as many as 35 subjects.

Chan et al. were the first researchers to explore the off-the-person approach for biometrics, with metallic
electrodes on the thumbs, obtaining 89% of IDR [33]. Coutinho et al. acquired signals from hand palms, using
a conductive mat next to a computer keyboard, and reaching 99.5% IDR [38]. More recently, an off-the-person
approach was developed by a group of researchers from the University of Toronto [79] and used by Louis [80] for
authentication, rendering an EER of 7.89% with 1012 subjects.

ECG, being a continuously available physiological signal, opens possibilities for the development of con-
tinuous or real-time recognition systems, which is especially advantageous for security or surveillance purposes.
Guennoun et al. were the first to explore such systems, for authentication, using fiducial features and Mahalabonis
Distance, and made decisions according to the individual matching of 35 consecutive heartbeats, obtaining 0.01%
FRR and 0% FAR [48], for 16 subjects. Matta et al. pioneered continuous identification of 10 subjects, assessing
identity every five seconds with 75% IDR, using AC and LDA for feature extraction and Euclidean distances for
classification[69].

Fang et al. [29] and Zhang et al. [75] have concluded, respectively, that using one lead renders significantly
worse results than three leads, and using limb leads such as I or II decreases the performance compared to the
use of chest leads V1 or V2. This proves the additional difficulty placed upon off-the-person signals. Agrafioti
and Hatzinakos also showed that, despite what happens when using one-lead for ECG identification tasks, it is
possible to achieve 100% subject recognition rate with a database of 249 subjects in a 12-lead ECG system [81].

Pinto et al. investigated the influence of the training data on the performance of the system [82]. This approach
was tested for identification and authentication tasks in two settings: using 70% of each subject’s data for training
and 30% for testing; and the second, using solely the first 30 seconds of data of each subject for training. The
results were worse with scarce train data for both tasks (IDR decreased from 94.6% to 70.9% and authentication
EER increased from 2.66% to 11.8%, when using the second setting).

Other aspects that have been explored in ECG biometrics address the effects of heart rate variability, different
leads used, and long-term acquisitions. Pathoumvanh et al. verified that the IDR of their system, based on CWT
features and Euclidean distance, decreased from 97% to 80% when using signals acquired after exercise [27]. Ye
et al. observed that the performance, using DWT and ICA features with SVM (with RBF), on long-term signals
is consistently worse than short-term [30].

Tables A.1, A.2, A.3, and A.4 presented in Appendix A, show the reviewed methodologies proposed for ECG
recognition, and the corresponding results, in chronological order of publication.
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Chapter 4

Biometric Data and Systems

This chapter describes the design of the proposed biometric identification and authentication systems based on
ECG signals. It starts with the data description followed by the delineation of the pre-processing. Then, the pro-
cess of the templates generation is explained and a detailed description of the methods used for the identification
and authentication tasks is presented.

The suggested systems use a database based on “off-the-person” approaches for signal acquisition. Two
different templates were used, cardiac cycles and scalograms. For that, features were extracted from the ECG
trace using a partially-fiducial approach, since the present work proposes the fusion of QRS fiducials, with a time-
frequency domain feature, the wavelet transform. Finally, several classifiers and a distance-based approach were
tested for template matching. Fig. 4.1 illustrates the overall system design. The experiments were performed in
Python (using the Neurokit2 package 12) and Matlab (MATLAB R2020b & Simulink R2020b).

4.1 Data Collection

Electrocardiogram data is one of the novel biometric traits, in which a growing interest is evident within the
reference literature. A particularly important aspect, that is transversal to all the work done to date, is the access
to large datasets to evaluate the robustness of the devised methods across research teams.

Recognizing the need and usefulness of centralized datasets that can be used as a common reference for
researchers worldwide, several initiatives have been contributing with resources to mitigate this. Physionet 13 is
currently one of the main forums of dissemination and exchange of biomedical signals in general. Most publicly
available datasets are currently centralized on the PhysioBank repository, and contain multiple parameters from
healthy and pathological conditions (cardiorespiratory, neural, and others). However, in what concerns ECG
datasets, most of the public resources found to date only contain signals collected at the chest with clinical grade
equipment.

A recent initiative by Silva et al [2] aimed to create a standardized database to promote research in ECG
biometrics. As a result of the work by the CYBHi, two public datasets were released, for short-term and for
long-term assessment, with ECG data collected at palms and fingers.

12https://github.com/neuropsychology/NeuroKit (Accessed on 16/11/2021).
13https://physionet.org/content/ecgiddb/1.0.0/ (Accessed on 29/12/2020).
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4.1 Data Collection

Figure 4.1: Flow diagram of the proposed systems.
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4.1.1 Experimental Setup

In the present research, a publicly available database, created for biometric purposes, was used: the CYBHi
long-term dataset, which presents an adequate benchmark for evaluating ECG-based biometric systems. Using an
off-the-person approach, Silva et al. [2] proposed a setup for ECG data acquisition at the hand palms with dry
Ag/AgCl electrodes and at the fingers with Electrolycras, to assess the biometric potential of signals collected at
these anatomic regions and compare the performance of both materials. ECG data acquisition was performed with
a custom, two lead differential sensor design with virtual ground, proposed in [83]. Two ECG sensors were used in
their experimental setup, one for signal acquisition at the hand palms with dry Ag/AgCl electrodes, and another for
signal acquisition with Electrolycras at the index and middle fingers. For improved comfort and greater efficiency,
the ECG sensors were fitted to a leather base, with the intended hand placement signaled in an unequivocal way.
Fig. 4.2 depicts the devised sensor and electrodes arrangement. One of the ECG sensors was connected to the
dry Ag/AgCl electrodes that were placed at the base of the hand palms, near the thenar eminence; the other ECG
sensor was connected to the Electrolycra strips placed along the index and middle fingers. Fig. 4.3 presents the
full experimental setup.

Raw biosignals were acquired with a bioPLUX research 14, a bluetooth wireless biosignal acquisition unit;
this device was used in a 12-bit resolution with 1 kHz sampling frequency configuration. To guarantee electrical
isolation between both ECG sensors used in the experiments, two independent biosignal acquisition units were
used.

Figure 4.2: Electrocardiography sensors and electrodes arrangement. At the top: the electrolycra strips; At the bottom: the dry Ag/AgCl
electrodes [2].

Figure 4.3: Full experimental setup comprising the hardware configuration used in Silva et al. experiments for biosignal acquisition [2].

14http://www.biosignalsplux.com/ (Accessed on 16/11/2021).
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4.1.2 Participants

The experimental setup was prepared at the cardiopneumology laboratory located at the Escola Superior de
Saúde da Cruz Vermelha Portuguesa, which was prepared to collect the participants.

The recruitment of volunteers was performed by advertising the days in which data acquisition sessions were
held, and by providing an overview of the action during classes. A total of 63 subjects (nursing and health
technologies students) were enrolled in the experiment and participated in the two acquisition sessions. The
demographics showed 12 males and 49 females, with an average age of 20.68 ± 2.83 years old. None of the
participants reported any health problems, reason for which the collected data is considered to be representative
of normal population.

4.1.3 Experimental Procedure

Two data acquisition moments separated by a 3-month time-frame took place, and enabled data recollection
from the set of volunteers enrolled in the experiment, with the purpose of studying the changes in the ECG
morphology over time. Firstly, the coordinator of the experiment presented the informed consent to prospective
participants, explaining the procedure in detail, goals of the study, and related background work. Once participants
willingly showed interest in participating in the experiments, they were required to sign the document and were
enrolled in the data collection program.

In both moments only ECG signals at the fingers were recorded, and in each of the sessions the subjects
were asked to sit for 2 minutes in a resting position, with two fingers - one from the left and another from the
right hand - placed in each of the dry Ag/AgCl electrodes. The recordings were stored in individual files for
more efficient post-processing, and labeled with the date, identification of the system, and a code assigned to the
subject. The fact that two sessions took place separated by several months apart makes this dataset particularly
useful for benchmarking the performance of identity recognition systems taking into account potential variations
in the heartbeat waveform over time.

4.2 Data Pre-processing

The pre-processing task performed in the present study, for both the identification and authentication algo-
rithm, consists of the following stages:

1. Signal Filtering;

2. Templates Generation;

3. Templates Concatenation;

4. Dimensionality Reduction.

4.2.1 Signal Filtering

In general, every raw signal has a noise component, whose magnitude varies depending on the quality of the
sensor and the measurement procedure. Often, a raw signal can suffer from a baseline wander, a low frequency
noise caused by respiration, electrodes impedance, and movement. It is required to remove the baseline wander
in order to minimize changes in beat morphology, which do not have cardiac origin. Another common source of
noise is due to powerline interference, which has a frequency between 50 and 60 Hz [84]. Moreover, ECG signals
collected at the hands and fingers, especially using dry electrodes, can also suffer from additional noise due to
electrodermal and muscular activity. The removal of this type of noise represents an important filtering problem
difficult to handle, because of the substantial spectral overlap between the ECG and muscle noise.
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In this work, a 4th-order Butterworth bandpass IIR filter, with cutoff frequencies of 0.5 Hz and 30 Hz was
applied to the raw ECG data, using MATLAB, with the purpose of removing undesired frequencies and smoothing
the signal. This type of filter is popular in signal processing due to having almost no ripple, i.e., oscillations in its
pass band. It has been used for ECG denoising and, when compared to other filters, has a reported accuracy close
to wavelet-based filters at a fraction of the computational cost [84].

The results of applying this filter on a raw ECG signal from a randomly selected subject is presented in Fig.4.4.

Figure 4.4: Representation of the raw ECG, in blue, and the filtered ECG, in red, for a randomly selected subject, using a 4th-order
bandpass Butterworth IIR filter, with cutoff frequencies of 0.5 Hz to 30Hz.

4.2.2 Templates Generation

As previously reported, each subject was subjected to two ECG acquisition sessions. The signals from the first
acquisition represent the training template and a label is associated with the corresponding user’s identity. The
second acquisition represents the testing template and will be compared to the training templates to authenticate
or identify a subject. This section presents the feature extraction methods applied for both the training and testing
templates. After filtering the ECG, two different types of featured-templates were generated to be tested by
different template matching methods: 1) Template based on cardiac cycles, and 2) Template based on Scalograms
of the cardiac cycles.

4.2.2.1 Template based on Cardiac Cycles

The template based on cardiac cycles is obtained through a three-step process: 1) Segmentation of the ECG
signal using the Neurokit2 Package from Python [85]; 2) Normalization of the cardiac cycles to diminish dif-
ferences in the same subjects in between acquisitions and to avoid potential differences between subjects due to
acquisition equipment and external interactions; and 3) Segment elimination to drop corrupt cardiac cycles. After
this process, two sets of templates, for both training and testing data, are assigned to each subject: one with 20
and other with 60 cardiac cycles.

1. Segmentation

After denoising the signal, the ECG trace can be used to extract features that comprise a biometric template
of the subject. For this project, a partially-fiducial approach was used, involving extracting features from
individual heartbeat waveforms. For this reason, an appropriate segmentation algorithm was required, which
would locate the R peaks within the ECG trace and perform appropriate partitioning of the signal, based
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on these peaks. For this segmentation, Neurokit2, which is an open-source Python package dedicated to
neurophysiological signal processing, was used [85].

The delineate function of the Neurokit2 package [85] uses the location of the detected R-wave peaks to
perform the signal partitioning into individual heartbeats with 600 samples, 200 before and 400 after the
R-peak, in order to mitigate the fact that subjects have a variable heart rate during ECG data collection.

2. Normalization

As previously discussed, the electrocardiogram varies over time with several factors, such as differences
in acquisition equipment or the interaction of the subject with it, which may cause differences in signal
amplitude. Moreover, heart rate variability causes significant changes in the duration of the heartbeats and
their waveforms. In order to ensure high performance regardless of this, some researchers include amplitude
normalization techniques in the ECG biometric algorithms [4].

In the present work, each segment is scaled to lie between 0 and 1, according to the min-max normalization
method proposed by Irvine et al. [86], i.e, by subtracting its minimum and dividing the result by the
difference between its maximum and its minimum:

x′ =
x−min(x)

max(x)−min(x)
(4.1)

where x denotes the cardiac cycle. The cardiac cycles were also tested without normalization to check
whether normalization reduces the differentiability between acquisitions for the same subject, impairing,
consequently, the capacity of the system to distinguish subjects.

Fig. 4.5 illustrates the normalized individual heartbeat waveforms obtained by the signal segmentation for
a single subject.

Figure 4.5: Individual heartbeat waveforms for a single subject (138 waveforms).

3. Segment Elimination

As the data were obtained through ECG measurements in suboptimal settings, namely hand palms and
fingers, some segments may contain substantial amounts of noise and motion artifacts when compared to
others. These unwanted events generally harm the performance of the model. Thus, in order to mitigate the
effect of such interference, a simple outlier removal procedure was used to drop the corrupt segments.
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All the heartbeat waveforms for a particular subject were presented in the form of a matrix, where each
row is a 600-dimensional vector representing a single heartbeat. As a first step, the algorithm computes the
Euclidean distance between all the heartbeat waveforms. Then, it finds, for each subject, the 20 and the 60
cardiac cycles more similar to each other, corresponding to Set 1 and Set 2, respectively. These two sets of
segments correspond to the cardiac cycles-based templates.

In practice, this outlier removal procedure performed well even with the ECG signals severely corrupted by
noise. Fig. 4.6 shows the Set 2 of the training template of the subject presented in the previous figure, in
which the more corrupted segments from Fig. 4.5 were eliminated.

Figure 4.6: ECG variation within a single subject, after performing the segment elimination (60 waveforms).

4.2.2.2 Template based on Scalograms

As mentioned above, besides the templates based on cardiac cycles, the other type of template used in the
present investigation were based on scalograms. A scalogram is the absolute value of the CWT coefficients of
a signal. By transforming the signal from the time domain to the frequency and time domains, the 1-D signal
becomes a 2-D matrix, and it could be analyzed on multiresolution.

In the present work, CWT based on the Morse wavelet with γ = 3 and P2 = 60 were used to transform the car-
diac cycles to a series of corresponding 2D time-frequency scalogram representations. The wavelet-transformed
scalograms were resized to squared-scalogram with 56x56 and 224x224 - called, from now on, Size 56 and Size
224 -, corresponding to 9408 and 150528 pixels, respectively. Fig. 4.7 illustrates the time-frequency scalogram
representation of a cardiac cycle from a randomly selected subject. As for the cardiac cycles, two sets of templates
based on scalograms were generated for each subject - Set 1 and Set 2 -, with 20 and 60 scalograms each, respec-
tively. Furthermore, for distance-based classification purposes, each scalogram, represented by a 56x56x3 or
224x224x3 matrices, was transformed to produce the columns into a vector, originating templates of scalograms
vectors of sizes 9.408 and 150.528 (respectively).

4.2.3 Templates Concatenation

From the segment elimination process resulted the Set 1 with 20 templates and the Set 2 with 60 templates,
for the training and testing sets of each participant, either for the cardiac cycles and for the scalograms vectors.
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Figure 4.7: Scalogram representations of a randomly selected electrocardiogram. The scalogram on the left was resized to 56x56, whereas
the one on the right was resized to 224x224. The colormap is composed of cold and hot colors, varying from blue at the weakest intensity
to red at the strongest intensity.

For some matching approaches presented in the following two sections, the number of templates per subject
needed to be reduced, thus, concatenation of templates was performed. For the Set 1, for training and testing,
concatenation resulted in one new template per subjects, formed by the respective 20 initial templates, cardiac
cycles or scalograms vectors, followed by one another. For Set 2, and only for testing purposes, concatenation
resulted in three new templates per subject, each of them formed by 20 initial templates, followed by one another
in similarity order.

Thereby, the template concatenation process resulted in 63 (1 x 63 subjects) and 189 (3 x 63 subjects) new
templates, for the Set 1 and Set 2, respectively.

4.2.4 Dimensionality Reduction

To ease the interpretability of this process it is worthwhile to mention that the size of the templates represents
the number of features to deal with. Moreover, it is also important to refer that, the training and testing sets,
with all the subjects, can be represented as a matrix in which the rows represent subject templates and columns
represent features (the values of the templates).

Thus, considering the 63 subjects and the different number of features (or sizes of the templates), it is straight-
forward that the training and testing sets have dimension 63 x 188,160 and 63 x 3,010,560 for scalograms of sizes
56 and 224, respectively, and dimension 63 x 12,000 for cardiac cycles. Therefore, since the dimension of each
template, i.e., the number of attributes, is considerably high, performing template matching would be computa-
tionally expensive regardless the approach used. In order to alleviate this problem, the independent component
analysis (ICA) was applied, using the FastICA algorithm implemented in MATLAB, to reduce the dimension of
the templates (which is equivalent to reduce the number of features, as each value in the template represents a
different feature) [3].

The methodology used to determine the ICA representations consists of the following steps:

• Definition of the training and the testing sets, Xtrain and Xtest, respectively. In the present work, the training
set corresponds to the templates obtained from the ECG signals of the first acquisition session, whereas the
templates obtained from the second acquisition represent the testing set.

• Estimation of the ICs based on the training set and consequent definition of the matrix of the ICA coeffi-
cients, Atrain, which, according to Eq. 2.7, allows to obtain Xtrain depending on the estimated ICs, ŝ.
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• Definition of the ICA coefficients matrix, Atest, referring to the testing set Xtest, which corresponds to the
projection of each templates of the Xtest in the ICA space generated by the estimated ICs, ŝ. Atest can be
obtained through the following relation:

Xtest = Atest · ŝ⇒ Atest = Xtest · ŝT · (̂s · ŝT)−1 (4.2)

As mentioned above, the application of the ICA aims to reduce the number of features. Considering the
dimensions of the training and testing sets mentioned above, which are extremely high, by applying the ICA, the
dimensionality is reduced to 632, which will significantly minimize the computational cost.

The dimensionality reduction (DR) was only applied for some of the template matching approaches in the fol-
lowing two sections, for cardiac cycles and scalograms templates, in order to draw conclusions on the advantages
of reducing the dimensionality of the templates in each scenario.

4.3 Identification Algorithm

The identification system was tested using cardiac cycles and scalograms as inputs. For the cardiac cycles,
several classifiers were implemented in MATLAB to predict the identity of the subjects according to their ECG
data, in two different configurations: Configuration 20/20 and Configuration 60/60. In the former configuration,
classifiers were trained with the Set 1 from the training templates and tested with Set 1 from the testing templates.
In the Configuration 60/60, Set 2 of the training and testing templates were used to train and test the classifiers,
respectively. For these classifiers, templates concatenation and DR were not applied. For the scalograms, two dis-
tinct methodologies were executed: 1) a neural network assessed in Configuration 20/20 and Configuration 60/60,
in which templates concatenation and DR were not applied, and 2) a distance-based algorithm with concatenated
and dimensionally reduced scalograms as input, assessed in Configuration 1/1 and Configuration 1/3, in which,
for each subject, one concatenated training template is compared with one testing template or compared with three
testing templates, respectively.

4.3.1 Identification based on Cardiac Cycles

In the present work, several classifiers were tested in order to compare the performances of the identification
of subjects based on their cardiac cycles. LDA, kNN, DT, and SVM were tested as classifiers, and the models were
trained with the cardiac cycles obtained from the first acquisition, whereas the ECG from the second acquisition
were used to test them. All the models were fed with normalized and not normalized templates. Classifiers
were compared based on the following weighted evaluation metrics: accuracy, weighted precision and recall, and
F1-Score.

4.3.1.1 LDA

The classification rule for LDA is very intuitive. The major computational effort is the training phase, i.e.,
the computation of the discriminant functions and their parameters. Once the training phase is completed, new
data can be classified simply by solving the appropriate discriminant function for each class, and applying the
classification rule. The classifier was trained with the training templates and then, it predicted the subjects’
identity from the testing templates. Intrinsically, LDA has no parameters to be optimized.

4.3.1.2 kNN

The performance of KNN is optimized by two hyperparameters. First, it is crucial to find an appropriate k,
which is not a trivial problem. There are many ways of choosing the number of neighbors to use (the k value),
but a simple one is to test different k’s and choose the one with the best performance. For the Configuration
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20/20, k was set from 1 to 20, whereas for Configuration 60/60, the algorithm was tested with k between 1 and
60. The second hyperparameter that influences the performance is the type of distance metric. In the present
study, the Manhattan distance was the distance implemented, since it is the one recommended to be used in
high-dimensionality problems.

The Manhattan distance, also called city-block or taxicab distance, between two vectors p and q in an n-
dimensional real vector space with fixed Cartesian coordinate system is the sum of the lengths of the projections
of the line segment between the points onto the coordinate axes [87]. It can be calculated according to the
following equation:

d(p,q) = ‖p-q‖=
n

∑
i=1
|pi−qi| , (4.3)

where (p,q) are vectors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn).
Fig. 5.1 on Chapter 5 shows the values of k that optimize the performance of the kNN model for normalized

and not-normalized cardiac cycles in both configurations.

4.3.1.3 DT

Decision Trees can efficiently deal with large, complicated datasets without imposing a complicated structure.
The training dataset was used to build a decision tree model and the testing dataset was classified. The DT
complexity has crucial effect on its accuracy and it is explicitly controlled by the stopping criteria used and the
pruning method employed. Usually, the tree complexity is measured by one of the following measures: the total
number of nodes, total number of leaves, tree depth, and number of features used.

In the present work, the classifier was tested with the default parameters from Matlab, for both the normalized
and not normalized cardiac cycles. The MaxNumSplits parameter, which is the maximal number of decision splits
(or branch nodes) was set to N-1, being N the training sample size, the MinLeafSize, which is the minimum
number of observation in the leaf nodes, was set to 1, whereas the MinParentSize, representing the minimum
number of branch node observations, was set to 10.

4.3.1.4 SVM

The main hyperparameter of the SVM is the kernel. It maps the observations into some feature space. There
are multiple standard kernels for these transformations, e.g., the linear kernel, the polynomial kernel, and the
radial basis function kernel. The latter is the most used and most successful kernel, due to the flexibility of
separating observations with this method. Besides the kernel, the cost parameter (C) and the gamma (γ) are also
hyperparameters that should be tuned. According to Wainer et al. [88], for the RBF, the C and γ should be tuned
in the ranges [2−5;215] and [2−15;23], respectively.

In the present work, three kernels were tested, namely linear, RBF and polynomial, and both C and γ were
set between [2−15;215]. The combinations that optimize the performance of the system are presented in section
5.1.1.2.

4.3.2 Identification based on Scalograms

The scalograms were given as input for convolution neural networks and for a distance-based algorithm,
differing in the configuration of the signals. The CNN was performed in Configuration 20/20 and Configuration
60/60, being trained with the signals from the first acquisition session and tested with the signals from the second
session. For the distance-based algorithm, the inputs were concatenated and dimensionally-reduced scalograms
in Configuration 1/1 and Configuration 1/3.
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4.3.2.1 Neural Networks

A simple 15-layer CNN was implemented in MATLAB to automatically learn the hidden patterns from the
scalogram matrices, without feature engineering. It is composed of an input later, three convolutional layers, three
Batch normalization layers, three ReLU layers, two max-pooling layers, one fully connected layer, one softmax
layer, and one classification layer. The first layer takes a 56 x 56 x 3 or 224 x 224 x 3 images as input. The
second layer is a convolutional layer with 3, 8, and 3 as the filter size, number of filters, and number of padding
size extracted features, respectively. In the third layer, a Batch normalization layer is used to speed up networking
training and reduce the sensitivity to network initialization. This type of layers is used between convolutional
and ReLU layers. As so, the fourth is a ReLU layer, which is a non-linear activation function. The fifth layer is
a max-pooling layer with a pool size of [2,2]. This makes it possible to increase the number of filters in deeper
convolutional layers without increasing the required amount of computation per layer. In this sixth layer, a 3-
16-3 convolutional layer is applied. The seventh, eighth and ninth layers are Batch normalization, ReLU and
max-pooling ([2,2]) layers, respectively. The tenth was a 3-32-3 convolutional layer. The eleventh is a Batch
normalization layer followed by a ReLU layer again. The thirteenth is a fully connected layer, which combines all
the features learned by the previous layers across the image to identify the larger patterns. This last fully connected
layer, in this case, combines the features to classify the images. The fourteenth is a sofmax layer, which consists
of an activation function that normalizes the output of the fully connected layer. The output of this consists of
positive numbers whose sum is one, which are used as classification probabilities by the fifteenth and last layer,
i.e., the classification layer. This uses the probabilities returned by the softmax activation functions for each input
to assign the input to one of the mutually exclusive classes and compute the loss.

4.3.2.2 Distance-based Identification Algorithm

The first step of the proposed template matching algorithm was to evaluate the differences between the training
and testing templates, through a distance metric. The distance metric used was the Manhattan distance, which can
be mathematically calculated according to Eq. 4.3. In this case, the distance between the training and testing
templates were calculated using the following formula:

dij = |Xtrain(i)−Xtest( j)|, (4.4)

where Xtrain(i) and Xtest( j) represent the raw vectors i and j of the matrices Xtrain and Xtest, respectively. By
computing the distances between all the training and testing templates, a distance matrix with size 632 is generated.

In the present distance-based algorithm for identification, the templates used as inputs were the scalograms
vectors concatenated and with their dimensionality reduced. The identification was performed in two different
ways: 1) Comparing one template from the training with one template from the testing - Configuration 1/1; and
2) Comparing one template from the training with three templates from the testing - Configuration 1/3. For
Configuration 1/1, a subject is correctly identified if, from all the distances between all the training templates and
the testing template of the subject to be identified, the smallest distance is the one corresponding to the training
template of that subject. For Configuration 1/3, the subject is correctly identified if the distances between at
least two of his/her three testing templates and his/her training template are the lowest when compared to all the
distances obtained from the other subjects’ training templates.

The system is evaluated based on the accuracy, which represents the quotient between the number of subjects
correctly identified (NSub correct) and the number of subjects present on the database (NSub total), and it is calculated
according to the following equation:

Aidenti f ication =
NSub correct

NSub total
·100% (4.5)
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4.4 Authentication Algorithm

The authentication system was tested using templates from cardiac cycles and scalograms as inputs. For
both types of inputs, the authentication was performed through a distance-based template matching algorithm,
implemented in MATLAB, similar to the one presented for the identification task. Then, a leave-one-out cross-
validation method was performed for imposters testing. The performance of the system was assessed according
to two evaluation metrics: accuracy and impostor score.

Authentication was performed in two configurations - Configuration 1/1 and Configuration 1/3 - for both
inputs, meaning that the cardiac cycles and scalograms templates were concatenated. The former were tested with
and without dimensionality reduced, whereas the latter was only tested when the DR was applied due to their high
dimension.

4.4.1 Distance-based Authentication Algorithm

The first step of the proposed template matching algorithm was to evaluate the differences between the training
and testing templates, through a distance metric. The distance metric used was the Manhattan distance, calculated
according to Eq. 4.4. For the Configuration 1/1, a subject is correctly authenticated if the distance between
his/her training and testing templates given by Eq. 4.4 do not exceed a threshold defined for that subject. For
Configuration 1/3, the subject is authenticated if the distances between his/her training template and at least two
of the three testing templates are lower than the threshold of that subject.

The threshold was defined individually for each subject, using the distance between the testing template(s)
of the subject and the training templates of all the subjects. The threshold for each subject can be calculated
according to the following equation:

Ti = µi−σi, (4.6)

where

µi =
∑

Nsignals
k=1 ∑

Nsub
j=1 dk(i, j)

Nsignals ·Nsub
,σi =

√√√√∑
Nsignals
k=1 ∑

Nsub
j=1[dk(i, j)−µi)]

(Nsignals ·Nsub−1)
, (4.7)

with Nsignals = 1 for Configuration 1/1, Nsignals = 3 for Configuration 1/3 and Nsub = 63.
To evaluate the performance of the authentication algorithm, the accuracy, which represents the quotient

between the number of subjects correctly authenticated (NSub correct) and the number of subjects present in the
database (NSub total), was calculated according to the following equation:

Aauthentication =
NSub correct

NSub total
·100% (4.8)

4.4.2 Leave-one-out Cross-Validation

Besides evaluating the performance of the system by calculating the accuracy, it is also important to validate
the capacity of the system to reject potential imposters. Thus, a leave-one-out cross-validation (LOOCV) was
performed, which is a cross-validation approach that uses each subject as a “test” set, as it is the most used
method to validate biometric authentication models [11, 37, 38, 46, 89, 90].

The first step to perform a LOOCV would be to build a training set with n-1 subjects, with n being the number
of subjects present in the database (in this case, n = 63). Then, the Manhattan distances between the testing
template of the subjects that was left out from the training set and all the training templates of the remainder
subjects are computed. These distances are used to calculate the threshold for that subject, according to the
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following equation:

Ti = µi−σi, (4.9)

with µi and σi calculated through Eq. 4.7 and with Nsignals = 1 or Nsignals = 3 (for the Configuration 1/1 and
Configuration 1/3, respectively) and Nsub = 62.

The process is repeated n times, changing the testing subject in each iteration, as represented in the scheme of
Fig. 4.8.

Figure 4.8: Representation of the training and testing templates in each iteration for the leave-one-out cross-validation method.

For Configuration 1/1, in each iteration, imposters are authenticated if the distances between the testing tem-
plate of the subject left out and any of the training templates are below the threshold calculated for that tested
subject. For Configuration 1/3, a subject is authenticated as an impostor if the distances between at least two of
the testing templates of the subject considered “test” in that iteration and the training templates from any of the
remainder subjects are below the threshold calculated for that tested subject.

The impostor rate is calculated through the mean of the number of imposters per subject, as present in the
Eq.4.10:

I =
∑

63
j=1 NImp( j)

63
·100%, (4.10)

with NImp( j) being the number of imposters when subject j is left out from the training set.
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Chapter 5

Identification Results

This section presents the results obtained for the proposed identification systems. In the present study, for
the identification and authentication systems, the biometrics of the electrocardiogram correspond to 1) the cardiac
cycles, 2) the scalograms generated from cardiac cycles.

For the templates based on cardiac cycles, various classifiers were tested - kNNs, LDA, DTs, and SVMs - in
Configuration 20/20 and Configuration 60/60. In the former, the classifiers were trained with 20 templates per
subject from the training set (from ECGs from the first data collection session) and tested with 20 templates from
the test set (from ECGs from the second data collection session), whereas in the latter, 60 training templates were
used to train the classifiers and 60 testing templates were used to test them. Concatenation was not applied to
the signals for the identification process based on cardiac cycles. KNN and SVM were optimized and then, the
performance of the four classifiers was compared with five evaluation metrics: accuracy, precision, recall, and
F1-Score.

When using the biometric templates based on scalograms, two methods were proposed. The first method
was to use a deep learning classifier - a 15-layer Neural Network - to conduct the identification in Configuration
20/20 and Configuration 60/60. The second method used a distance-based algorithm, i.e., a 1-Nearest Neighbors
(1-NN). In this, scalograms obtained from the templates of the first acquisition session were compared to the
scalograms obtained from the signals of the second acquisition session in Configuration 1/1 and Configuration
1/3, meaning that the templates were previously concatenated.

The different methodologies proposed are intended to draw conclusions on:

1. whether it is relevant or not to face an extra computational effort to generate the scalograms;

2. if normalization is a process that optimizes the performance of the system;

3. the differences between using more or fewer templates as inputs for the system;

4. which method is the most accurate and the most viable to be implemented in an identification system.

5.1 Identification based on Cardiac Cycles

For the cardiac cycles templates, different classifiers, namely kNN, LDA, DT, and SVM, were analyzed to
identify the subjects on the database. The evaluation was held through two stages. The first stage is to optimize
the classifiers, and the second is to compare the performance of each classifier when using not normalized or
normalized templates.

5.1.1 Optimization of the Classifiers

The classifiers that were optimized were the kNN and SVM. LDA has no parameters to be optimized, whereas
DT was tested using the default parameters from Matlab, mentioned in section 4.3.
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5.1.1.1 kNN Optimization

For kNN, there are two parameters that can be optimized - the distance metric and the k value. The distance
metric used was not optimized and the chosen one was the Manhattan distance, since it is the most recommended
to be used when there is high dimensionality in data [87]. The k was optimized by testing the system with different
values. For Configuration 20/20, k was set between 1 and 20, and for Configuration 60/60, k was set between 1
and 60.

Fig. 5.1 shows the accuracy of the classifier according to the different values of k for Configuration 20/20 on
the left and Configuration 60/60 on the right.

For Configuration 20/20, when using normalized cardiac cycles as input, the highest accuracy, 57.14%, was
achieved when k was equal to 1. For the not normalized cardiac cycles, the accuracy of the kNN reached the
maximum of 60.32%, with 3 and 11 neighbours. For Configuration 60/60, predicting the identification of subjects
with the k parameter set to 1 allowed an IDR of 68.25% for normalized cycles. If normalization is not performed,
the model identifies subjects more accurately with 13 neighbours, reaching an accuracy of 63.49%.

Thereby, the results of kNN in Table 5.1 correspond to a k value of 3 and 13 for Configuration 20/20 and
Configuration 60/60, respectively. In Table 5.2, k was set to 1 for both configurations.

Figure 5.1: Optimization of the kNN Classifier for Configuration 20/20 on the left and Configuration 60/60 on the right, with not normal-
ized and normalized cardiac cycles.

5.1.1.2 SVM Optimization

SVMs were also optimized by experimenting various kernel functions, values of C and γ . The kernel functions
tested in the present study were the radial basis, linear and polynomial. The values of C and γ were set in
the range [2−15;215]. To investigate the combinations of parameters that optimize the model, one heatmap was
computed for each one of the kernels. Fig. 5.2, 5.3, 5.4 represent the optimizations for normalized cardiac cycles
in Configuration 20/20, for the RBF, linear and polynomial kernels, respectively. The optimization process for the
remainder configurations - normalized cardiac cycles in Configuration 60/60 and not normalized cardiac cycles in
both configurations - are presented in Appendix B).

Regarding the optimization of parameters C and γ for the RBF kernel, Fig. 5.2 shows that the highest accuracy
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Figure 5.2: Optimization of the parameters for RBF kernel for normalized cardiac cycles in Configuration 20/20. The colors represent the
accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

Figure 5.3: Optimization of the parameters for Linear Kernel for normalized cardiac cycles in Configuration 20/20. The colors represent
the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

achieved was 52.38%, when γ is set to 21 and C set to {2−4, [22,215]}. Concerning the optimization of the
parameters for the linear Kernel represented in Fig. 5.3, the maximum accuracy achieved was 47.62% for many
different parameter combinations. Fig. 5.4 shows that the optimization of the parameters for the polynomial
kernel displayed a maximum accuracy of 47.62% in the following configurations: 1) γ = 23 and C = [25,215]; 2)
γ = 25 and C = 29; 3) γ = 26 and C = 211; 4) γ = 27 and C = 212; 5) γ = 28 and C = 214.

Thereby, for normalized cardiac cycles in Configuration 20/20, the parameters that optimize the performance
of the SVM classifier at identifying subjects based on their ECG signals were: 1) RBF Kernel; 2) γ = 21 and
3) C = {2−4, [22,215]}, so the results on Table 5.1 concern the application of SVM with these parameters. For
Configuration 60/60, the maximum accuracy, 58.73%, was achieved for many configurations with polynomial
kernel and for the RBF kernel, with γ = 22 and C = [23,215]. What concerns the not normalized cardiac cycles
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Figure 5.4: Optimization of the parameters for Polynomial Kernel for normalized cardiac cycles in Configuration 20/20. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

in Configuration 20/20, the best accuracy was 60.32% and it was achieved with a RBF kernel and the parameters
γ and C set to 210 and 2−4, respectively. For the not normalized cardiac cycles in Configuration 60/60, the best
accuracy (61.90%) was reached when using a RBF kernel function, with parameter γ set to 211 and parameter C
set in the interval [24, 215].

5.1.1.3 Discussion

Concerning the optimization of the kNN classifier, results showed that when the cardiac cycles are normalized,
the algorithm performance is optimal for a shorter number of neighbors (k = 1), whereas for not normalized cardiac
cycles, the optimal performance is achieved for a greater number of neighbors (k=11 and k=13 for Configuration
20/20 and Configuration 60/60, respectively).

By performing the normalization, signals become scaled in the same range - between 0 and 1 - and so, not
only signals from the same subject become more similar to each other, but also the signals from different subjects.
Since the optimal performance for normalized signals is achieved when k = 1, this may indicate that normalization
increases the similarities between the training and testing data of each subject.

When the normalization is not performed, signals overall are more distinct. Since the optimal performance is
achieved for larger values of k, this may indicate that when using not normalized signals, the boundaries between
classes are less clear, and consequently, the model needs to have a greater capacity of generalization (greater value
of k) to accurately distinguish between subjects.

Regarding the optimization of the SVM classifier, the kernel function that optimizes the performance of the
system is the RBF, since for all the configurations - whether normalization is performed or not, whether Config-
uration 20/20 is used or Configuration 60/60 - the highest accuracies are achieved when using RBF kernel. The
polynomial function also achieved optimal performance for the normalized cardiac cycles in Configuration 60/60.
Literature supports these results since most studies that resorted to the use of SVM for the classification process
used the RBF kernel [30, 56, 82, 91], with the exception of [60, 44], where the linear kernel was used. Further-
more, Lin [37] investigated the best combination and the most appropriate kernel function, and results show that
successful recognition rates are achieved when using a non-linear kernel - polynomial or RBF - whereas the linear
kernel leads to worse accuracies.

The other two parameters - γ and C - in the optimal configuration of the SVM assume different values across
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configurations and even along a single configuration, meaning that these two factors are less decisive to achieve a
good accuracy.

5.1.2 Not Normalized vs Normalized Cardiac Cycles

The classifiers were evaluated according to several metrics - accuracy, precision, recall, and F1-Score. Table
5.1 and Table 5.2 present the results of the evaluation metrics for each of the classifiers, for not normalized and
normalized cardiac cycles, respectively.

Table 5.1: Comparison of the performance of the identification task based on classifiers for not normalized cardiac cycles.

Not Normalized Cardiac Cycles
Configuration Classifier Accuracy Weighted Average

Precision Recall F1-Score
Configuration 20/20 LDA 74.60% 68.34% 67.70% 64.48%

kNN 60.32% 53.08% 52.30% 49.56%
DT 52.38% 42.04% 41.90% 38.18%

SVM 60.32% 52.84% 54.84% 50.67%
Configuration 60/60 LDA 77.78% 71.88% 71.40% 68.23%

kNN 63.49% 54.52% 51.72% 49.34%
DT 52.38% 42.40% 40.21% 37.68%

SVM 61.90% 57.81% 52.96% 50.08%

For not normalized cardiac cycles, results in Table 5.1 show that, except for DT, all the classifiers slightly
increased their accuracy when tested in Configuration 60/60, that is, using 60 templates for each subject. The DT
reached the same accuracy for both configurations.

For Configuration 60/60 the classifier that performed best in terms of accuracy was the LDA, reaching 77.78%,
followed by kNN with 63.49%, SVM with 61.90% and finally DT with 52.38%. For Configuration 20/20, the
accuracies achieved were lower, as mentioned above, but LDA was also the one that predicted the identification
of the subjects more accurately (74.60%), whereas DT was the less accurate (52.38%).

Despite accuracy being the most intuitive performance measure, since it is simply the ratio of correctly pre-
dicted subjects to the total subjects, the other metrics should also be considered to the evaluation of the classifica-
tion system. The remaining metrics followed the accuracy pattern, being higher for the LDA classifier and lower
for DT.

Thus, when using not normalized cardiac cycles as a biometric template, the classifier that performs best in
identifying subjects is LDA in Configuration 60/60.

Table 5.2: Comparison of the performance of the identification task based on classifiers for normalized cardiac cycles.

Normalized Cardiac Cycles
Configuration Classifier Accuracy Weighted Average

Precision Recall F1-Score
Configuration 20/20 LDA 69.84% 64.19% 62.86% 58.49%

kNN 57.14% 51.37% 50.63% 47.09%
DT 34.92% 32.52% 29.68% 28.89%

SVM 52.38% 49.70% 46.27% 44.27%
Configuration 60/60 LDA 79.37% 67.99% 69.13% 65.21%

kNN 68.25% 52.55% 53.07% 49.54%
DT 58.73% 40.12% 38.60% 36.27%

SVM 58.73% 50.52% 49.76% 46.05%

In general, the comparison between the classifiers for normalized cardiac cycles is pretty similar to the com-
parison performed for the not normalized cycles. The four classifiers performed better in Configuration 60/60,
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since the accuracy and the other metrics were higher when using 60 signals for predicting the identification of
the participants. Contrary to what happened for the not normalized cardiac cycles, DT were significantly more
accurate when using more signals as inputs: 34.92% against 58.73%. The best classifier was also the LDA, with
an accuracy of 79.37%, followed by the kNN with 68.25%, and both the SVM and DT with 58.73%. Although
achieving the same accuracy, SVM outperformed DT, as it presents higher values in the remain metrics.

5.1.2.1 Discussion

For all the approaches experimented in the present study, the influence of the number of templates per subject
on the accuracy of the classification task was evaluated. Results from Table 5.1 and Table 5.2 show that, whether
normalization is performed or not, Configuration 60/60 leads to higher accuracies than Configuration 20/20.
More template segments capture better the variability of the subject’s heartbeat, mainly due to the incorporation
of noisier cardiac cycles in the training process. If the classifier is only trained with the most similar cardiac
cycles, which happens in Configuration 20/20, it will probably fail more often at classifying noisier testing cycles.

In all configurations, the classifiers that achieved higher and lower accuracies were LDA and DT, respectively.
LDA may have outperformed the machine learning classifiers due to the data used being linearly separable, i.e.,
the signals of a subject are very close to each other, and quite distinct from the signals of another subject. Thus,
it was expected that the LDA would present a good performance, since the functioning of the LDA consists of
finding the linear combination of features in which the within-class distance is minimized, and the between-class
is maximized.

LDA is typically used in some real-life applications such as face recognition [92], medical diagnosis [93,
94, 93] and customer identification [95], which are topics related to the present study. However, to the best of
our knowledge, most studies on ECG biometrics performing LDA, use it for dimensionality reduction or feature
extraction rather than for classification. An exception is [34], in which the template matching was performed
with an LDA distance classifier. The identification rates achieved were 96% and 95.3% for 100 subjects and 168
subjects, respectively. Our proposed algorithm underperform the algorithm from [34], due to the ECG data from
the latter being achieved in a on-the-person approach with 12-leads, whereas our data was from a off-the-person
acquisition set-up, making signals more susceptible to noise and interferences. Thereby, LDA has demonstrated
the potential to be incorporated in ECG-based biometric systems.

On the contrary, DT achieved the lowest accuracies from all the classifiers tested. From current state-of-the-
art, very few studies investigated the application of a DT for a biometric identification purpose. Dar et al. [96]
proposed an algorithm in which feature extraction involved the fusion of DWT of the cardiac cycle and heart rate
variability-based features and the classification is performed by using Random Forests. The system was tested
with a publicly available database like ECG-ID from Physionet 15, previously created for biometric purposes,
and an accuracy of 83.88% was achieved. The discrepancy between this result and the accuracy obtained by
our system may be due to two main reasons. Firstly, the ECG-ID database from Physionet 15 consists of data
collected using an on-the-person acquisition approach. This configuration makes the ECG less vulnerable to
interference and consequently, signals will have better quality leading to a more accurate identification of the
subjects. Secondly, even though there is more than one ECG recording per subject, most of them correspond
to acquisitions that took place on the same day and even the same acquisition session. It is expected that ECG
recordings from the same acquisition session will be very similar for each subject and, therefore, their considered
training and testing recordings will be easily identified as belonging to the same subject, leading to high accuracies
of the system. Besides this, the low accuracies obtained when using DT for classification in the present work may
also be due to the fact that DT are prone to overfitting, meaning that they can be over-complex and, consequently,
not being able to generalize well from the training data. This is problematic, specially if the test and training data
are very different, which may happen when acquired in two different acquisitions separated by 3 months. These
drawbacks may be the reason why almost none of the previous studies presented in Chapter 3 used DT to perform
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the biometric identification of subjects.
This study also intends to investigate whether the normalization is advantageous or not, for the performance

of the system. To the best of our knowledge, most of the studies, due to the inherent heartbeat waveform vari-
ability, performed normalization in order to obtain amplitude and time invariant characteristics applicable for
biometric purposes [68]. Considering the best configuration, which is the one that uses more templates per subject
(Configuration 60/60), our results proved that by normalizing templates, the accuracy increases for all classifiers,
except for SVM. However, most studies using this classifier performed normalization of the signals. From current
state-of-the-art, only one study performed a comparison between normalizing and not normalizing cardiac cycles
for identification purposes with CYBHi. Bento et al. [1] proposed a temporal convolutional neural network as
a classifier, and reached an accuracy of 54.98% when using normalized cardiac cycles, and 11.60% when the
normalization was not performed. Therefore, normalization proved to be an essential step for the pre-processing
of a biometric identification system.

5.2 Identification based on Scalograms

The scalogram-based templates were tested as inputs for an identification algorithm following two method-
ologies. Identification based on Neural Networks was tested in Configuration 20/20 and Configuration 60/60,
whereas the distance-based algorithm used concatenated scalograms in Configuration 1/1 and Configuration 1/3.

5.2.1 Identification based on Neural Networks

The performance of the proposed 15-layer neural network was evaluated based on the accuracy, and the results
are presented on Table 5.3.

Table 5.3: Comparison of the performance of the identification algorithm based on 15-layers NN between not normalized and normalized
scalograms of Size 56 and Size 224.

Not Normalized Scalograms Normalized Scalograms
Size of Scalograms Accuracy Configuration

Size 56 65.08% 63.49% Configuration 20/20
68.25% 68.25% Configuration 60/60

Size 224 61.90% 63.49% Configuration 20/20
69.84% 68.25% Configuration 60/60

According to the results in Table 5.3, the NN classifier is more accurate at identifying subjects if the number
of inputs per subject is greater.

For Size 56, in Configuration 20/20, the accuracy achieved is higher for not normalized scalograms with
65.08%, when compared to normalized scalograms, with 63.49%. In Configuration 60/60, the accuracy was
68.25% whether the normalization was performed or not.

For Size 224, in Configuration 20/20, the system showed to be more accurate with normalized scalograms:
63.49% against 61.90%, obtained for not normalized. For Configuration 60/60 the results were the opposite, with
not normalized resulting in greater accuracy than normalized scalograms: 69.84% and 68.25%, respectively.

Finally, the highest accuracy was achieved using not normalized scalograms Size 224 in Configuration 60/60,
whereas the lowest was reached also for not normalized scalograms in Size 224, but for Configuration 20/20
instead.

15https://physionet.org/content/ecgiddb/1.0.0/ (Accessed on 29/12/2020).
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5.2.1.1 Discussion

Results from the Neural Networks when using scalograms are in agreement with the previously reported
results obtained for the cardiac cycles in what concerns the number of templates per user, since Configuration
60/60 allows the system to identify the subjects more accurately due to the inclusion of noisier signals when
training the classifier.

According to our literature review, Byeon et al. [15] also proposed an intelligent deep model based on scalo-
grams of electrocardiogram signals for biometrics. The database used was CU-ECG, directly built for the biomet-
rics at Chosun University (CU) in Korea, in which only the lead-I was measured, in an on-the-person approach.
Even though, each subject has sixty different recordings, all of them were acquired in the same acquisition ses-
sion, meaning that this study did not evaluate the stability of ECG over time. The authors used scalograms sized
224x224, like in our proposed approach, and by applying a simple CNN classifier, reached an accuracy of 87.5%
at the identification task. Our method reached a much lower accuracy, 69.84% for not normalized scalograms
sized 224x224, but this result may be justified by the conditions in which our data was acquired. Firstly, it was an
off-the-person approach, much more susceptible to noises as mentioned above, and secondly, the data considered
as training and testing templates were acquired in two different day sessions, separated by 3 months. Under these
conditions, current state-of-the-art do not present any study using NN for identification purposes with scalograms.

The accuracies achieved with and without normalization are very similar and, therefore, results demonstrated
that normalization is not an essential procedure when using a CNN based on scalograms of ECG signals for
biometric identification. Concerning the size of the scalograms, it did not prove to be a decisive factor with
influence on the accuracy of the system for most of the configurations, meaning that despite the number of pixels
of the scalogram, the classifier can distinguish subjects almost equally. Moreover, since size 224x224 is four times
greater than size 56x56, the computational time of the former is also four times greater. Thereby, considering the
accuracy and computational time of the system, using scalograms Size 56 is the best approach.

5.2.2 Identification based on Distance Metrics

Identification was also tested through a distance-based method, in which the scalograms were concatenated
and their dimensionality was reduced by the ICA. The algorithm was tested in Configuration 1/1 and Configuration
1/3, for not normalized and normalized scalograms, in both sizes.

5.2.2.1 Not Normalized vs Normalized Scalograms

The evaluation of the algorithm lies in drawing conclusions on: 1) the size of the scalograms; 2) the config-
uration of the inputs and 3) the normalization of the scalograms. Table 5.4 presents the results obtained through
the considered distance-based algorithm.

Table 5.4: Comparison of the performance of the identification algorithm based on distance metrics between not normalized and normalized
scalograms Size 56 and Size 224.

Not Normalized Scalograms Normalized Scalograms
Size of Scalograms Accuracy Configuration

Size 56 50.79% 47.62% Configuration 1/1
58.73% 52.38% Configuration 1/3

Size 224 47.62% 53.97% Configuration 1/1
44.44% 46.03% Configuration 1/3

Results in Table 5.4 show that for Size 56, not normalized scalograms lead to higher accuracies when compared
to normalized, for both configurations. For not normalized scalograms, the Configuration 1/3 reached a higher
accuracy, 58.73%, when compared to the other configuration, 50.79%. For Size 224, the exact opposite happens.

46



5.2 Identification based on Scalograms

Normalized scalograms Size 224 and Configuration 1/1 optimize the performance of the system, with an accuracy
of 53.97%.

The best performance of the system is 58.73% when using not normalized scalograms Size 56 in a Configu-
ration 1/3, whereas the worse performance is 44.44%, reached when the inputs are not normalized scalograms in
Size 224 and for Configuration 1/3.

5.2.2.2 ICA Dimensionality for Not Normalized Scalograms

As mentioned above, for the distance-based identification algorithm, the dimensionality of the scalograms
was reduced using ICA. Thereby, the DR was tested in order to find the number of ICs that optimize the per-
formance of the model. Since the best results concerned the use of not normalized scalograms for Size 56 and
normalized scalograms for Size 224, this evaluation was held for these configurations, respectively. Fig.5.5 shows
the accuracies as a function of the number of IC, for Size 56 on the left and Size 224 on the right.

Figure 5.5: Representation of the accuracy obtained by the biometric identification algorithm based on distance metrics, when using
different number of IC for not normalized scalograms in Size 56 (on the left) and normalized scalograms in Size 224 (on the right).

According to Fig. 5.5, for both sizes and both configurations the highest accuracies are achieved when the
number of ICs is equal to the number of subjects on the database, i.e. 63. Despite the overall decrease in accuracy,
when decreasing the ICs from 63 until reaching 10 ICs, the behaviour is slightly irregular, with some increases
and decreases in the accuracy. However, with less than 10 features, the accuracy decreases exponentially.

5.2.2.3 Discussion

Concerning the evolution of the accuracy of the system when decreasing the number of ICs, Fig. 5.5 showed
that it results in a decrease in the identification accuracy of the system. When applying the ICA, each IC is
one feature that will be used to compare the templates of the subjects. When the number of ICs is equal to the
number of subjects, there will be 63 features to be compared and used to discriminate between the 63 subjects
on the database. In case of accuracy had not dropped immediately when the number of independent components
was reduced, we could conclude that some of the features are redundant and unnecessary for class distinction.
However, as this did not happen, the 63 features are, in fact, indispensable for distinguishing between subjects.

When the number of pixels is reduced, some information is lost. When performing normalization, information
on the ECG voltage is also lost, making the scalograms more similar to each other. Thus, results proved that, if
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some information is lost by reducing the number of pixels of the scalograms (Size 56), the system needs the
templates to be as different as possible from each other in order to accurately distinguish them. Hence, it was
verified that normalization is advantageous when more pixels are considered.

Since the system has difficulties at matching scalograms Size 224, it was expected that the system will strug-
gle when trying to classify noisier segments, which happened in Configuration 1/3. For Size 56, the opposite
happened, since there are fewer pixels and, consequently, noisier signals will help to distinguish subjects.

The best performance, 58.73%, was achieved when using not normalized scalograms in Size 56. However,
this result is lower than the one obtained for the corresponding configuration in the identification based on neural
networks (not normalized scalograms in Size 56 and Configuration 60/60), which was 68.25%. Thus, for scalo-
grams, even though neural networks are computationally more time consuming, it is a more promising approach
than the distance-based algorithm with concatenated signals.
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Chapter 6

Authentication Results

This section presents the results obtained for the proposed authentication system. The biometrics of the ECG
used were 1) the cardiac cycles and 2) the scalograms. Both were tested in two configurations: Configuration 1/1
and Configuration 1/3.

Authentication was performed using a distance-based template matching algorithm, which compares the data
from the testing sets - resulted from the second data collection session - and the training sets - resulted from the
first data collection session. Then, a Leave-one-out cross validation was performed for impostor testing.

From the different configurations tested, conclusions are intended to be drawn on several aspects:

1. The advantage and disadvantage of applying ICA to the templates.

2. The benefits of normalizing the templates.

3. The differences between using more or less templates as inputs for the system.

4. The dissimilarities of using cardiac cycles or scalograms as biometric templates.

6.1 Authentication based on Cardiac Cycles

When using cardiac cycles as inputs, not normalized and normalized signals were tested with and without
reducing their dimensionality in order to draw conclusions on the advantages of that procedure.

The distance-based template matching algorithm consists of comparing the testing templates (templates gen-
erated from the signals of the second acquisition session) with the training templates (templates generated from
the signals of the first acquisition session) through a distance metric. The first step was to compute the Manhattan
distance between the two templates. Fig. 6.1 shows the distance matrix between training and testing templates
based on not normalized cardiac cycles with DR in Configuration 1/1.

In the distance matrix representation, cold colors (blue) correspond to lower distances whereas warm colors
(red) correspond to higher distances. Fig. 6.1 shows a diagonal line, from the left to the right, in which the colors
from all the entrances are blue. This means that the distances between the testing and training templates of each
subject are, in general, small. This pattern can be an indicator that this algorithm would be a promising approach
to authenticate subjects, since low distances (blue colors) are expected to be below the threshold set for each
subject, which is what happens in the case of authentication.

Moreover, even though all the diagonal entrances are blue, there are several subjects whose diagonal entrances
correspond to a lighter shade of blue, namely subjects number 9, 17, 21, 40, 53, and 56. From all the subjects,
these are the ones most likely not be authenticated. The distance matrix also shows some subjects, namely 33, 36,
and 60, that present higher distances (warm colors - various shades of red) in the entrances that correspond to the
distances between their training templates and most of the testing templates from the remaining subjects. These
shades of red indicate that the training templates of these subjects are the most different templates from all the
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testing templates on the database. Regarding the testing templates of these three participants, the colors associated
to the distance of their testing and all the training templates are also warm colors, but in shades of yellow instead,
meaning that their testing templates are also some of the most distinct signals. Since the two templates were
acquired in two sessions separated by three months, this analysis can be an indicator that these subjects have a
peculiar heartbeat.

To determine the accuracy of the system, the threshold of each subject is calculated by the mean and standard
deviation of each column, according to Eq. 4.6. If the distance on the diagonal entrance is below the threshold
for the correspondent column, the subject is authenticated. The number of authenticated subjects over the total
number of subjects corresponds to the accuracy.

Figure 6.1: Distance Matrix between training and testing templates based on not normalized cardiac cycles with DR in Configuration 1/1.

Besides the accuracy, this template matching is also evaluated by performing a LOOCV, to assess the ca-
pacity of the system to reject potential imposters. Fig. 6.2 shows the authenticated imposters of each subject in
Configuration 1/1, on the left, and Configuration 1/3, on the right, for the not normalized cardiac cycles with DR.

The diagonal lines are black because each entry corresponds to a single subject’s training and testing templates,
and a subject cannot be an imposter of him/herself. For Configuration 1/1, the heatmap is represented in two colors
- dark blue corresponding to a non-impostor and light blue to an impostor. Thus, the imposters of each subject are
represented in light blue in the vertical line corresponding to that specific subject. The figure on the left shows
that there are some participants that are imposters of the vast majority of the other subjects on the database, since
their corresponding horizontal lines have many light blue entrances. Participants 16, 17, 18, 24, 27, 43, and 45 are
examples of this. The vertical lines allow us to verify the number of authenticated imposters of each participant.
Subjects 5, 22, 27, 48, and 62 were the ones that presented more imposters. The impostor score for Configuration
1/1 is the mean of the number of imposters per subject, that is, the mean of the number of light blues per column.

The figure on the right, which concerns the Configuration 1/3, is represented in four colors, since each subject
has 3 testing templates to be authenticated: 1) dark blue corresponds to 0 templates authenticated as imposters;
2) light blue corresponds to 1; 3) yellow represents 2 and finally 4) red for 3 templates. In this configuration, a
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6.1 Authentication based on Cardiac Cycles

subject is an impostor of another subject he/she is authenticated as an impostor for at least two of the three testing
templates of the subject that is being considered, which means that only yellow and red entrances correspond
to imposters. Subjects 52 and 53 do not present any impostor, since only one of their three templates present
imposters, and at least two templates are needed to authenticate one subject as impostor. Subjects 15, 16, 18, 42,
and 58 are some of the subjects that have fewer imposters, more specifically, no more than 5. The subjects that
have more imposters authenticated (more than 10) are subjects 12, 21, 36, 45, and 60. Regarding the horizontal
lines on the heatmap, subjects 1, 10, 30, 33, 36, 48, 53, 56, and 60 are imposters of no more than 2 subjects,
and in particular, 36 and 48 are not registered as impostor of any of the subjects. There are also some subjects
that are imposters of more than 17 subjects, such as the participants 7, 17, 23, and 63. The impostor score for
Configuration 1/3 is the mean of the sum of yellow and red entrances per column.

Figure 6.2: Number of authenticated imposters when using scalograms from not normalized cardiac cycles (Configuration 1/1 and Con-
figuration 1/3, on the left and right, respectively). The colors represent the number of templates of each subject that are authenticated as
imposters. For Configuration 1/1, there is only one template per subject that can be authenticated as an impostor, while for Configuration
1/3 there is a maximum of 3 templates. Color Legend: � 0 � 1 � 2 � 3.

Table 6.1 and Table 6.2 present the accuracies and impostor scores obtained when using cardiac cycles with
and without DR, respectively.

Despite the DR, obtained results show that accuracy is higher, and quite similar, for the not normalized cardiac
cycles in both configurations (around 90%). Therefore, we can conclude, that normalization significantly degrades
the performance in terms of authentication accuracy. It can also be observed that, when dimensionality was
reduced, the accuracies of the system for the normalized cardiac cycles, in both configurations, were substantially
higher than when DR is not applied (an increase of 22%).

Table 6.1: Comparison of the accuracy of the authentication algorithm between not normalized and normalized segments with and without
DR.

Not Normalized
Cardiac Cycles

Normalized
Cardiac Cycles

Configuration Accuracy
Without DR With DR Without DR With DR

Configuration 1/1 90.48% 88.89% 57.14% 79.37%

Configuration 1/3 90.48% 87.30% 55.56% 77.78%
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Table 6.2: Comparison of the impostor score of the authentication algorithm between not normalized and normalized segments with and
without DR.

Not Normalized
Cardiac Cycles

Normalized
Cardiac Cycles

Configuration Impostor Score
Without DR With DR Without DR With DR

Configuration 1/1 13.21% 12.93% 7.71% 13.80%

Configuration 1/3 13.06% 12.95% 7.56% 13.57%

Regarding the results without ICA, not normalized inputs led to higher values of impostor score, with 13.21%
for Configuration 1/1 and 13.06% for Configuration 1/3, whereas for the normalized cycles, the system achieved
lower impostor scores: 7.71% and 7.56% for Configuration 1/1 and Configuration 1/3, respectively.

Thus, normalization led to lower values of accuracy and impostor scores, which are contradictory results,
since the system struggled to authenticate the right subject (low accuracy) but succeeded to reject potential

imposters (low impostor score).
On the other hand, with ICA, the capacity of the system to reject imposters slightly increases when using not

normalized cardiac cycles as inputs. Configuration 1/1 resulted in an impostor score of 12.93% and 13.80% for
not normalized and normalized cycles, whereas Configuration 1/3 resulted in 12.95% and 13.57%, respectively.

Therefore, we can conclude that, when applying ICA, the best performance in terms of both accuracy and
impostor score was achieved with not normalized cardiac cycles in Configuration 1/1

6.1.1 Discussion

For the authentication with cardiac cycles without DR, results showed that both accuracies and impostor
scores are very similar for Configuration 1/1 and Configuration 1/3, meaning that the number of cardiac cycles
used to authenticate a subject has almost no influence on the performance of the system. When the DR was
applied, results were relatively better (higher accuracy and lower impostor score) when the template matching is
performed with only 20 cycles - Configuration 1/1. Thus, by using fewer testing cardiac cycles, it would take less
time to acquire the ECG at the time of authentication, making the system easier to use, which, consequently, could
be an advantage for it to become socially accepted.

Without ICA, the accuracies and impostor scores obtained were both remarkably higher for not normalized
cardiac cycles. Thus, normalization proved to be an essential procedure to efficiently reject potential imposters,
but it prejudices the capacity of the system to correctly authenticate the right subjects. When DR was applied, not
normalized cardiac cycles led to higher accuracies but also to lower impostor scores, which was not verified with-
out ICA. In this case, the system is able to authenticate subjects with an accuracy of 88.89% and to reject imposters
with a rate of 87.07%. Results proved that the normalization approximates the templates, and consequently, the
template matching algorithm will struggle to distinguish subjects based on a distance measure. Comparing the
different configurations tested in the proposed study and taking into account the accuracies, impostor scores, and
computational time, the best approach is to authenticate subjects resorting to 20 not normalized cardiac cycles
without ICA. Despite leading to the highest identification rate (90.48%) and to an admissible impostor score
(13.21%), the computational time to compare testing templates increases due to the higher dimensionality of the
templates (although ICA takes a long time to be performed, the transformation of testing templates accordingly is
promptly computed).

To the best of our knowledge, any studies using CYBHi proposed a distance-based template matching algo-
rithm for authentication purposes. However, some studies, whose conditions of acquisition, feature selection, or
classification methods allow us to compare results, were considered.

Arteaga-Falconi et al. [5] did an off-the-person experimental acquisition using a lead-I ECG sensor with
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6.2 Authentication based on Scalograms

two electrodes fitted onto a mobile phone’s case. The ECG acquisition was conducted in two sessions, in two
different days and at different times of the day, for 2 minutes long, just like the database used in the present work
(CYBHi [2]). The authentication algorithm proposed was a hierarchical validation scheme that evaluates each
feature individually and if the differences between the training and testing features are below the accepted range
of tolerance, the authentication of that feature is validated. They reached an accuracy of 81.82% using fiducial
features based on cardiac cycles. Although the database used is not the same as the one used in this work, the
acquisition conditions were quite similar, as was the feature extraction process. The template matching algorithm
is quite different from ours, however, it has some similarities such as the use of a threshold to assess the possible
authentication. Although it is impossible to compare performance due to the use of difference databases, our
approach achieved higher accuracy than the accuracy reported by this study.

Samarin et al. [3], despite not using CYBHi, created a particular dataset, with an off-the-person sensor,
performing two data acquisition sessions with 4 months in between. The methodology proposed by Samarin was
quite similar to ours, including the signal segmentation and outlier removal procedures, and the features extracted
- the cardiac cycles - were also normalized and dimensionally reduced, but using PCA rather than ICA. The
template matching was performed using logistic regression, Manhattan distance-based kNN and SVM, resulting
in EER of 13.92%, 8.82%, and 5.74%, respectively. These results seem quite promising, since the lower the EER,
the higher the accuracy of the system.

As the databases used where different, we cannot do a direct comparison to any of these two studies ([3, 5]).
Therefore, future work should investigate this using the same database, so that conclusions on the performance of
different approaches can be drawn accurately.

Bento et al. [1] proposed an authentication algorithm based on cardiac cycles using temporal convolutional
neural networks, reaching an EER of 10.25% when normalization is performed, whereas for not normalized
cardiac cycles an EER of 23.56% was achieved. They conclude that normalizing each individual led to much
better generalization across sessions. In this case, the database was the same, but the classification process was
quite different. Moreover, the evaluation metrics used were not the same and so, conclusions cannot be drawn on
which one performed better. However, both seem promising approaches for the authentication purpose, since a
low equal error rate and a high accuracy were achieved by [1] and in the present work, respectively. With regard to
normalization, [1] presented opposite results from ours because, while in our case, the results were better without
normalization, although the difference is almost insignificant, for Bento’s approach, normalization is completely
indispensable for a viable system.

6.2 Authentication based on Scalograms

Opposite to what happened for the cardiac cycles, scalograms were only used with their dimensionality re-
duced by applying ICA, due to their enormous size. As for the identification system, scalograms were tested in
two sizes: Size 56 and Size 224.

Table 6.3 shows the accuracy of the system for the various configurations tested in this study, whereas Table
6.4 shows the corresponding impostor scores.

Table 6.3: Comparison of the accuracy of the authentication algorithm between not normalized and normalized scalograms Size 56 and
Size 224.

Not Normalized Scalograms Normalized Scalograms
Size of Scalograms Accuracy Configuration

Size 56 92.06% 92.06% Configuration 1/1
92.06% 98.42% Configuration 1/3

Size 224 93.65% 93.65% Configuration 1/1
93.65% 93.65% Configuration 1/3
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For scalograms computed from not normalized cardiac cycles, the results showed no differences in accuracy
between using Configuration 1/1 and Configuration 1/3, for both sizes. However, the accuracy was higher when
using scalograms with more pixels as inputs to the system: 92.06% for Size 56 and 93.65% for Size 224. When
using the normalized scalograms with Size 56, the system reached accuracies of 92.06% for Configuration 1/1 and
98.42% for Configuration 1/3. Size 224 did not cause differences among configurations, achieving an accuracy of
93.65%. The best performance was achieved when using Configuration 1/3 for normalized scalograms with Size
56.

Table 6.4: Comparison of the Impostor Score of the authentication algorithm between not normalized and normalized scalograms Size 56
and Size 224.

Not Normalized Scalograms Normalized Scalograms
Size of Scalograms Impostor Score Configuration

Size 56 16.21% 14.34% Configuration 1/1
16.21% 14.34% Configuration 1/3

Size 224 15.16% 14.59% Configuration 1/1
14.97% 14.52% Configuration 1/3

For Size 56, the impostor scores achieved using Configuration 1/1 and Configuration 1/3 were exactly the
same and were higher for not normalized scalograms than for normalized: 16.21% and 14.34%, respectively. For
Size 224, the impostor scores were higher for both configurations using not normalized scalograms. Specifically,
for Configuration 1/1, the impostor score was 15.16% for not normalized and 14.59% for normalized scalograms,
whereas for Configuration 1/3, the impostor score was 14.97% for not normalized and 14.52% for the normalized
templates.

Combining the accuracy and impostor score as evaluation metrics, the best performance of the distance-based
authentication system is achieved for normalized scalograms resized to 56x56 in Configuration 1/3.

6.2.1 ICA Dimensionality for Normalized Scalograms

Figure 6.3: Representation of the accuracy obtained by the biometric authentication system when using different number of ICs for
normalized scalograms.

The accuracy of the system was evaluated when decreasing the number of independent components. This
analysis was only performed for the normalized scalograms since it is the configuration that optimizes the perfor-
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mance of the algorithm.
Fig. 6.3 presents the accuracies achieved when using different numbers of independent components for nor-

malized scalograms with Size 56 on the left and Size 224 on the right. For both sizes, results show that the highest
accuracy is reached when the number of independent components is equal to the number of subjects on the
database, i.e., 63. However, even though the accuracy decreases when the number of ICs decreases, the decrease
is quite slow until the number of ICs reaches 10. When using 10 ICs, accuracies of around 80% and 85% were
reached for Size 56 and Size 224, respectively. From that point on, the performance of the algorithm decreases
significantly and it is no longer viable.

6.2.2 Discussion

This study evaluated the evolution of the accuracy when decreasing the number of components in order to
find how many ICs were significant and carried important information. For both sizes (Size 56 and Size 224), the
optimal performance corresponds to the use of the same number of ICs and subjects, in this case, 63. Bouveresse
et al. [97] proved that when too many ICs are extracted, they will tend to contain a significant contribution
related to noise. However, in this case, as for the identification algorithm, the 63 ICs considered contain useful
information and are clearly needed to separate the signals from the 63 subjects. Results also show that, if fewer
features are used, the performance will decrease, failing in distinguishing between all subjects. However, with 10
ICs, the system proved to still be viable since the accuracies reached were around 80%-85%.

According to El-Abed et al. [98], the evaluation metrics for a biometric system must include, besides the
accuracy, the average authentication/identification time since a biometric system must be sufficiently efficient in a
way that the user must be able to accomplish the task easily and in a timely manner. Considering the computational
time of applying the ICA to reduce dimensionality, and knowing that the fewer ICs, the less time it takes to
compute, the system should find a balance between accuracy and computational cost in order to build an efficient
biometric system.

Regarding the different configurations tested, the optimal configuration, concerning the accuracy and impos-
tor score, was to use 60 scalograms Size 56 computed from normalized cardiac cycles to perform the template
matching. With this configuration, the system is able to accurately authenticate genuine users with an authenti-
cation rate of 98.42% and to reject users with a rate of 85.66%. The computational time of this configuration is
also much smaller as the size of the scalograms is 4 times smaller than Size 224. To the best of our knowledge, no
studies used scalograms to perform the authentication, rather than identification. However, scalograms proved to
be quite a promising approach for the authentication task.
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Chapter 7

Conclusion

Research on ECG signals has advanced a long way from its clinical roots to novel application domains in
areas so diverse as biometric recognition. Unlike conventional biometrics, which are neither secrets nor robust
enough against falsification, ECG is inherited to an individual which is highly secure and impossible to be forged.
Most importantly, ECG has an inherent real-time feature of vitality signs which ensures that it cannot be acquired
unless the person to be authenticated is present at the authentication desk. Therefore, it is robust enough against
the falsified credentials to be enrolled in the system. This dissertation has evaluated the feasibility of ECG as a
biometric for individual identification and authentication tasks.

Several methodologies and apparatus are described for human biometric identification and authentication
based on ECG signals collected at the fingers and hand palms. The database used in this work was the CYBHi
database, created by Silva et al. [2] for biometrics purposes, in which the measurement apparatus only required
slight contact with the subject hand without the need of pregelled electrodes, providing a signal acquisition, setup
similar to the ones already used by other, largely accepted. The benefits from the use of such database are:

1. Its an off-the-person acquisition setup with consequent lower intrusiveness, allowing to reduce the acquisi-
tion time, as it ensures a high user acceptability and simple setup. Moreover, this solution can be embedded
into ordinary objects, and wearable technologies can be developed for ECG acquisition, opening doors for
the most varied real-world applications.

2. ECG data was acquired during two distinct moments, separated by three months apart, which makes this
dataset particularly useful for benchmarking the performance of identification and authentication systems,
taking into account potential variations in the heartbeat waveform over time.

Although the benefits of this database, it also brings some extra challenges. First of all, signals collected at
the hand and fingers, specially using dry electrodes, have a lower signal-to-noise ratio, which raises several chal-
lenges namely in terms of filtering, segmentation, and outlier detection. Besides this, the three-month separated
acquisitions lead to worse performances, when compared to within-session tasks, due to the variability of ECG
over time. However, the across-session modality used with this type of databases is the most relevant modality, as
biometric systems must function for an indefinite amount of time and throughout several years.

One of the great assets of this study is the fact that it tests several approaches and methodologies in the
different phases of the biometric system, in order to compare and evaluate them, concluding about the advantages
and disadvantages of each one and, consequently, find the optimal solution according to the results obtained.

Concerning the templates generation procedure, two types of templates were considered. The first was the
cardiac cycles, which is the most commonly used template for ECG-based biometric research. The other tem-
plate was the scalograms of the cardiac cycles, a time-frequency representation of the cardiac cycles. Since ECG
signals, especially when collected at the fingers, are sensitive to noise, studies have been conducted by transform-
ing signals into the frequency domain, which proved to be efficient for analyzing noisy signals. The scalograms
templates were tested with two sizes - 56x56 and 224x224 - in order to evaluate the amount of information that
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the system needs to successfully recognize individuals. Results for all the methodologies showed a better per-
formance for Size 56, meaning that signals sized 224x224 may contain so much detailed information from each
subject that it is difficult to find a signal that matches so many characteristics. Moreover, the scalograms genera-
tion is a computationally time-consuming process and the smaller the size of the scalograms, the less time it takes
for the process to compute. A limitation of this work is that it has only compared the methodologies based on the
performance obtained, rather than also investigating the computational time of each.

Another aspect that was tested concerned the outlier removal procedure, and consisted of verifying the influ-
ence of the number of templates, per subject, on the accuracy of the system. From the outlier removal procedure
resulted two sets of templates for each subject: 1) Set 1, with the 20 signals closer to each other, and 2) Set 2, with
the 60 signals closer to each other. The results showed that this is not a linear issue, as for some configurations the
performance is better when noisier signals are included, while for others it is better to just include cleaner signals.

For the identification process using the cardiac cycles of the individuals, the optimal performance was achieved
when using the LDA classifier, with normalized inputs, reaching an accuracy of 79.37%. For the identification
with scalograms sized 56x56, the optimal performance was achieved when using the neural network, reaching
an accuracy of 68.25%. Thus, using cardiac cycles optimizes the performance of the identification system, both
for accuracy and computational time, as generating the scalograms is a time-consuming process. Although the
achieved results with this database show good performance rates, there is a considerable margin for improvement,
since the identification rates achieved when using databases with one single multi-lead on-the-person acquisition
setups are much higher.

For the authentication process using cardiac cycles, the accuracy and impostor score achieved were 90.47%
and 13.21%, respectively, when normalization and DR are not computed. For the scalograms, sized 56x56, the
accuracy was 98.42%, whereas the impostor score was 14.34%. Although the scalograms present more promising
results, future work should investigate the computational time of each process to allow a better conclusion about
the most accurate method, taking into account all the important characteristics of a biometric system.

These off-the-person approaches to acquire ECG signals can be implemented in some wearable identifica-
tion/authentication devices, which are promising for future applications due to their convenience. Currently,
however, their signals are still weak and unstable. Therefore, the increase of the number of leads in this identifi-
cation devices can be a solution because other lead signals may contain useful information, as multi-lead systems
can display information about the status of the heart from different angles. Thus, identification and authentication
using multi-lead signals acquired off-the-person should be further researched.

Further experiments should also be carried out to evaluate the system with a large database, comprising users
of all age, abnornal ECG data, and long span of time interval between ECG recordings, in order to simulate the
reality of the functioning of a biometric system when installed in some technological application.
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[35] André Cigarro Matos, André Lourenço, and José Nascimento. “Embedded System for Individual Recogni-
tion Based on ECG Biometrics”. Procedia Technology 17 (2014), pp. 265–272. DOI: 10.1016/j.protcy
.2014.10.236.

[36] Noureddine Belgacem. “ECG Based Human Authentication using Wavelets and Random Forests”. Inter-
national Journal on Cryptography and Information Security 2.2 (2012), pp. 1–11. DOI: 10.5121/ijcis
.2012.2201.

[37] Shyan Lung Lin et al. “Individual identification based on chaotic electrocardiogram signals during mus-
cular exercise”. IET Biometrics 3.4 (2014), pp. 257–266. DOI: 10.1049/iet-bmt.2013.0014.

[38] David Pereira Coutinho, Ana L.N. Fred, and Mário A.T. Figueiredo. “ECG-based continuous authenti-
cation system using adaptive string matching”. BIOSIGNALS 2011 - Proceedings of the International
Conference on Bio-Inspired Systems and Signal Processing January (2011), pp. 354–359. DOI: 10.5220/
0003292003540359.

[39] David Pereira Coutinho, Ana L.N. Fred, and Mário A.T. Figueiredo. “One-lead ECG-based personal iden-
tification using Ziv-Merhav cross parsing”. Proceedings - International Conference on Pattern Recogni-
tion (2010), pp. 3858–3861. DOI: 10.1109/ICPR.2010.940.

[40] Qingxue Zhang, Dian Zhou, and Xuan Zeng. “PulsePrint: Single-arm-ECG biometric human identification
using deep learning”. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communi-
cation Conference, UEMCON 2017 2018-Janua (2017), pp. 452–456. DOI: 10 .1109/UEMCON .2017
.8249111.

[41] Ana Priscila Alves and Carlos Carreiras. “CardioWheel : ECG Biometrics on the Steering Wheel”. 2
(2015), pp. 267–270. DOI: 10.1007/978-3-319-23461-8.

[42] Juan S. Arteaga-Falconi, Hussein Al Osman, and Abdulmotaleb El Saddik. “ECG and fingerprint bimodal
authentication”. Sustainable Cities and Society 40.November (2018), pp. 274–283. DOI: 10.1016/j.scs
.2017.12.023.

[43] Afonso Eduardo, Helena Aidos, and Ana Fred. “ECG-based Biometrics using a Deep Autoencoder for
Feature Learning An Empirical Study on Transferability”. Proceedings of the 6th International Confer-
ence on Pattern Recognition Applications and Methods (2017). DOI: 10.5220/0006195404630470.

60

https://doi.org/10.1109/BTAS.2010.5634478
https://doi.org/10.1109/CIBIM.2014.7015440
https://doi.org/10.1109/EMBC.2014.6943663
https://doi.org/10.1109/TIM.2007.909996
https://doi.org/10.1109/TIM.2007.909996
http://www.academicjournals.org/JECI/PDF/2011pdf/Tsu%20wang%20et%20al%20pdf.pdf
http://www.academicjournals.org/JECI/PDF/2011pdf/Tsu%20wang%20et%20al%20pdf.pdf
https://doi.org/10.1016/j.protcy.2014.10.236
https://doi.org/10.1016/j.protcy.2014.10.236
https://doi.org/10.5121/ijcis.2012.2201
https://doi.org/10.5121/ijcis.2012.2201
https://doi.org/10.1049/iet-bmt.2013.0014
https://doi.org/10.5220/0003292003540359
https://doi.org/10.5220/0003292003540359
https://doi.org/10.1109/ICPR.2010.940
https://doi.org/10.1109/UEMCON.2017.8249111
https://doi.org/10.1109/UEMCON.2017.8249111
https://doi.org/10.1007/978-3-319-23461-8
https://doi.org/10.1016/j.scs.2017.12.023
https://doi.org/10.1016/j.scs.2017.12.023
https://doi.org/10.5220/0006195404630470


BIBLIOGRAPHY

[44] Majid Komeili et al. “On evaluating human recognition using electrocardiogram signals: From rest to
exercise”. Canadian Conference on Electrical and Computer Engineering 2016-Octob (2016), pp. 16–19.
DOI: 10.1109/CCECE.2016.7726726.

[45] Kyeong Seop Kim et al. “A robust human identification by normalized time-domain features of elec-
trocardiogram”. Annual International Conference of the IEEE Engineering in Medicine and Biology -
Proceedings 7 VOLS (2005), pp. 1114–1117. DOI: 10.1109/iembs.2005.1616615.

[46] Foteini Agrafioti and Dimitrios Hatzinakos. “ECG based recognition using second order statistics”. Pro-
ceedings of the 6th Annual Communication Networks and Services Research Conference, CNSR 2008
(2008), pp. 82–87. DOI: 10.1109/CNSR.2008.38.

[47] Ikenna C Odinaka. Identifying Humans by the Shape of Their Heartbeats and Materials by Their X-Ray
Scattering Profiles. Tech. rep. URL: https://openscholarship.wustl.edu/eng%7B%5C %7Detds/8.

[48] Mouhcine Guennoun et al. “Continuous authentication by electrocardiogram data”. TIC-STH’09: 2009
IEEE Toronto International Conference - Science and Technology for Humanity. (2009), pp. 40–42. ISBN:
9781424438785. DOI: 10.1109/TIC-STH.2009.5444466.

[49] Yogendra Narain Singh and Phalguni Gupta. “ECG to individual identification”. BTAS 2008 - IEEE
2nd International Conference on Biometrics: Theory, Applications and Systems. (2008), pp. 1–8. ISBN:
9781424427307. DOI: 10.1109/BTAS.2008.4699343.

[50] Yogendra Narain Singh and Phalguni Gupta. “Correlation-based classification of heartbeats for individual
identification”. Soft Computing 15.3 (Nov. 2011), pp. 449–460. DOI: 10.1007/s00500-009-0525-y.
URL: https://link.springer.com/article/10.1007/s00500-009-0525-y.

[51] Y. Gahi et al. “Biometric identification system based on electrocardiogram data”. Proceedings of New
Technologies, Mobility and Security Conference and Workshops, NTMS 2008 (2008), pp. 1–4. DOI: 10
.1109/NTMS.2008.ECP.29.

[52] S. Zahra Fatemian and Dimitrios Hatzinakos. “A new ECG feature extractor for biometric recognition”.
DSP 2009: 16th International Conference on Digital Signal Processing, Proceedings (2009), pp. 1–6.
DOI: 10.1109/ICDSP.2009.5201143.

[53] J. M. Irvine et al. “A new biometric: human identification from circulatory function”. Joint Statistical
Meetings of the American Statistical Association, San Francisco March 2017 (2003), pp. 1957–1963.
URL: https://www.tib.eu/en/search/id/BLCP%7B%5C%%7D3ACN065893460/A-New-Biometric
-Human-Identification-from-Circulatory/.

[54] Steven A. Israel and John M. Irvine. “A sequential procedure for individual identity verification using
ECG”. Eurasip Journal on Advances in Signal Processing 3 (2009), pp. 1–13. DOI: 10 .1155/2009/
243215.

[55] Ikenna Odinaka et al. “ECG biometric recognition: A comparative analysis”. IEEE Transactions on Infor-
mation Forensics and Security 7.6 (2012), pp. 1812–1824. DOI: 10.1109/TIFS.2012.2215324.

[56] Maryamsadat Hejazi et al. “ECG biometric authentication based on non-fiducial approach using kernel
methods”. Digital Signal Processing: A Review Journal 52 (2016), pp. 72–86. DOI: 10 .1016/j .dsp
.2016.02.008. URL: http://dx.doi.org/10.1016/j.dsp.2016.02.008.

[57] Semih Ergin et al. “ECG based biometric authentication using ensemble of features”. Iberian Confer-
ence on Information Systems and Technologies, CISTI. IEEE Computer Society, (2014), pp. 1–6. ISBN:
9789899843431. DOI: 10.1109/CISTI.2014.6877089.

[58] Muhammad Najam Dar et al. “ECG biometric identification for general population using multiresolution
analysis of DWT based features”. 2015 2nd International Conference on Information Security and Cyber
Forensics, InfoSec 2015 ((2015)), pp. 5–10. DOI: 10.1109/InfoSec.2015.7435498.

61

https://doi.org/10.1109/CCECE.2016.7726726
https://doi.org/10.1109/iembs.2005.1616615
https://doi.org/10.1109/CNSR.2008.38
https://openscholarship.wustl.edu/eng%7B%5C_%7Detds/8
https://doi.org/10.1109/TIC-STH.2009.5444466
https://doi.org/10.1109/BTAS.2008.4699343
https://doi.org/10.1007/s00500-009-0525-y
https://link.springer.com/article/10.1007/s00500-009-0525-y
https://doi.org/10.1109/NTMS.2008.ECP.29
https://doi.org/10.1109/NTMS.2008.ECP.29
https://doi.org/10.1109/ICDSP.2009.5201143
https://www.tib.eu/en/search/id/BLCP%7B%5C%%7D3ACN065893460/A-New-Biometric-Human-Identification-from-Circulatory/
https://www.tib.eu/en/search/id/BLCP%7B%5C%%7D3ACN065893460/A-New-Biometric-Human-Identification-from-Circulatory/
https://doi.org/10.1155/2009/243215
https://doi.org/10.1155/2009/243215
https://doi.org/10.1109/TIFS.2012.2215324
https://doi.org/10.1016/j.dsp.2016.02.008
https://doi.org/10.1016/j.dsp.2016.02.008
http://dx.doi.org/10.1016/j.dsp.2016.02.008
https://doi.org/10.1109/CISTI.2014.6877089
https://doi.org/10.1109/InfoSec.2015.7435498


BIBLIOGRAPHY

[59] Dhouha Rezgui and Zied Lachiri. “ECG biometric recognition using SVM-based approach”. IEEJ Trans-
actions on Electrical and Electronic Engineering 11 (2016), S94–S100. DOI: 10.1002/tee.22241.

[60] Ming Li and Shrikanth Narayanan. “Robust ECG biometrics by fusing temporal and cepstral information”.
Proceedings - International Conference on Pattern Recognition (2010), pp. 1326–1329. DOI: 10.1109/
ICPR.2010.330.

[61] Hugo Silva et al. “ECG biometrics: Principles and applications”. BIOSIGNALS 2013 - Proceedings of
the International Conference on Bio-Inspired Systems and Signal Processing (2013), pp. 215–220. DOI:
10.5220/0004243202150220.

[62] Andre Lourenço, Hugo Silva, and Ana Fred. “ECG-based biometrics: A real time classification approach”.
IEEE International Workshop on Machine Learning for Signal Processing, MLSP. (2012), pp. 1–6. ISBN:
9781467310260. DOI: 10.1109/MLSP.2012.6349735.

[63] Foteini Agrafioti, Francis M. Bui, and Dimitrios Hatzinakos. “Secure telemedicine: Biometrics for remote
and continuous patient verification”. Journal of Computer Networks and Communications (2012), pp. 1–
11. DOI: 10.1155/2012/924791.

[64] Yongjin Wang et al. “Analysis of Human Electrocardiogram for Biometric Recognition”. EURASIP Jour-
nal on Advances in Signal Processing 2008 (2008). DOI: 10.1155/2008/148658.

[65] Antonio Fratini et al. Individual identification via electrocardiogram analysis. (2015). DOI: 10 .1186/
s12938-015-0072-y.

[66] Ognian Boumbarov, Yuliyan Velchev, and Strahil Sokolov. “ECG personal identification in subspaces us-
ing radial basis neural networks”. Proceedings of the 5th IEEE International Workshop on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2009 September
(2009), pp. 446–451. DOI: 10.1109/IDAACS.2009.5342942.

[67] Sairul I. Safie, John J. Soraghan, and Lykourgos Petropoulakis. “Electrocardiogram (ECG) biometric au-
thentication using pulse active ratio (PAR)”. IEEE Transactions on Information Forensics and Security
6.4 (2011), pp. 1315–1322. DOI: 10.1109/TIFS.2011.2162408.
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Appendix A

Related work

Table A.1: Related Work on ECG-based biometrics - Part I (adapted from [4]). Legend: NS - Number of Subjects; OP - Off-the-Person;
DR - Dimensionality Reduction; MA - Multiple Acquisitions; SA - Single Acquisition.

Author Year Dataset NS Session OP Features/DR Decision Results

Biel et al. [8] 2001 Private 20 MA No
Fiducial Features/

PCA
SIMCA IDR 100%

Kyoso et al. [10] 2001 Private 9 SA No
QRS duration
and QT time

Mahalanobis
distance +

LDA
IDR 94.2%

Israel et al. [9] 2005 Private 49 MA No

RQ, RS, RP, RL, RP’,
RT, RS’, RT’, P and T
widths, ST, PQ, PT,

LQ, ST’ / LDA

Contingency
matrix

majority
voting

IDR: 97%

Saechia et al. [74] 2005 - - - No
Fourier Transform of

PQRST (whole),
P, QRS, and T

Neural
Networks

FRR:
Whole 17.1%
Apart 2.85%

Plataniotis et al. [22] 2006 PTB 14 SA No
Autocorrelation

coefficients / DCT

Norm.
Euclidean

dist. +
Gaussian

LLR

IDR 100%
FAR 0.02%

Zhang et al. [26] 2006
Private

(leads I, II,
V1, and V2)

502 SA No

Amplitudes,
durations,

intervals, levels
and areas / PCA

Bayes-
minimum-
error-rate

IDR
L.I 85.3%
L.II 92.0%

L.V1 95.2%
L.V2 97.4%

Molina et al. [24] 2007 Private 10 SA Yes R-R segments
DTW path +

kNN
EER 2%

Agrafioti et al. [81] 2008
PTB + MIT

NSR
27 SA No

Normalized
autocorrelation /

DCT or LDA

Correlation
+ kNN

IDR:
DCT 96.3%
LDA 100%
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Table A.2: Related Work on ECG-based biometrics - Part II (adapted from [4]). Legend: NS - Number of Subjects; OP - Off-the-Person;
DR - Dimensionality Reduction; MA - Multiple Acquisitions; SA - Single Acquisition.

Author Year Dataset NS Session OP Features/DR Decision Results

Chan et al. [33] 2008 Private 50 MA Yes
Signal-averaged

ECG

PRD, CC,
WDIST +

kNN

IDR:
PRD 70%
CC 80%
WD 89%

Irvine et al. [86] 2008 Private 39 MA No

Covariance
matrix

eigenvectors /
PCA

kNN IDR 100%

Fang et al. [29] 2009
Private (one

or three leads)
100 - No

Avg. beat phase
space portrait

Correlation;
Mutual

nearest pt.
dist. + kNN

IDR:
1 lead 93%
3 leads 99%

Guennoun et al. [48] 2009 Private 16 MA No

Fiducial
amplitude and

time feat. /
Physiological-
state-indepen.
feature select.

Mahalanobis
dist. +

Thresh. and
Voting

FRR 0.01%
FAR 0%

Coutinho et al. [39] 2010 Private 19 MA Yes
Uniformly quantized

avg. beats

Ziv-Merhav
relative

entropy +
kNN

IDR 99.5%

Li et al. [60] 2010 MIT NSR 18 SA No

Hermite poly.
expansion;

Cepstral features /
HLDA

SVM +
GMM-UBM

fusion

IDR 98.3%
EER 0.5%

Odinaka et al. [71] 2010 Private 269 MA No
Log-STFT

spectrogram /
Bin selection

Gaussian
models LLR

IDR 99%
EER 0.37%

Ye et al. [30] 2010

MIT Arrh.
MIT NSR1

MIT LT
MIT NSR2

47
18
65
18

SA

No
No
No
No

Daubechies
DWT / ICA

RBF SVM

IDR 99.6%
IDR 99.3%
IDR 98.1%
IDR 97.5%

Coutinho et al. [38] 2011 Private 19 SA No

User-tuned
Lloyd-Max

quantized avg.
beat

Ziv-Merhav
cross parsing
similarity +

kNN

EER 0.36%

Lourenço et al. [83] 2011 Private 16 SA Yes
Avg. normalized

beat
Euclidean

dist. + kNN
IDR 94.3%
EER 13%

Safie et al. [67] 2011
PTB (healthy
or w/ arrhyth-

mias)
112 MA No

Pulse Active
Ratio

Euclidean
dist. + kNN

EER:
Heal. 9.98%
Arrh. 19.2%

Shen et al. [34] 2011 Private 168 SA Yes

Amplitudes,
durations,

slopes, angles, and
QRS area / LDA

Correlation
+ kNN

IDR 98%

Sufi et al. [78] 2011 MIT Arrh. - SA No
Cardioid graph

centroid, extremas,
area and perimeter

Straight line and
percentage dist. + kNN

MIDR 1%
FAR 0.5%
FRR 0.5%

Agrafioti et al. [63] 2012 Private 42 SA No
Autocorrelation

coeff. / LDA
Euclidean dist. +

kNN
EER 3.96%

Lourenço et al. [99] 2012 Private 32 SA Yes
Segmented
heartbeats

kNN EER 9.39%
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A. RELATED WORK

Table A.3: Related Work on ECG-based biometrics - Part III (adapted from [4]). Legend: NS - Number of Subjects; OP - Off-the-Person;
DR - Dimensionality Reduction; MA - Multiple Acquisitions; SA - Single Acquisition.

Author Year Dataset NS Session OP Features/DR Decision Results

Singh et al. [100] 2012

MIT Arrh. +
ST-T + MIT

NSR + PTB +
Private

80 SA No
Interval, angle

and amplitude fid.
features

Euclidean
dist. + kNN

EER 10.8%

Coutinho et al. [73] 2013
PTB

Private

51

26
SA No

Fid. latency and
amplitude from
mean waveform

subsampling

Euclidean
dist. + kNN

IDR 99.9%
EER 0.01%
IDR 99.6%
EER 0.70%

Labati et al. [101] 2013 E-HOL. 24h 185 MA No
QRS Segment set

templates
Cross-corr. similarity

mat. + kNN
EER 5.36%

Silva et al. [102] 2013 Private 63 MA Yes
Mean and median

ensemble beats

Euclidean and
cosine dist. + kNN

and SVM

EER
kNN 0.99%
SVM 9.10%

Wang et al. [103] 2013 PTB 100 SA No
Max-pooling
representation

elements
kNN IDR 99.5%

Pathoumvanh
et al. [27]

2014
Private

(normal +
increased HRV)

10 MA No CWT / FLDA
Euclidean

dist. + kNN

IDR:
Norm 97%
HRV 80%

Labati et al. [31] 2014 E-HOL 24h 185 MA No QRS segments
Cross-corr.
simil. kNN

EER 5.36%

Lin et al. [37] 2014 Private 26 SA Yes
Corr. dimension
Lyapunov exp.

SVM IDR 81.7%

Matos et al. [35] 2014 Private 10 MS Yes
STFT window

features /
Kullback-Leibler

LLR + kNN
IDR 100%
EER 14%

Dar et al. [96] 2015
MIT Arrh.
MIT NSR
ECG-ID

47
18
90

SA
SA
MA

No
No
No

Haar Transform /
GBFS

kNN
IDR 93.1%
IDR 99.4%
IDR 83.2%

Dar et al. [104] 2015

MIT Arrh.

MIT NSR

ECG-ID

47

18

90

SA

SA

MA

No

No

No

Haar Transform
and HRV / GBFS

Random
Forest

IDR 95.9%
FAR 4.1%
IDR 100%
EER 0%

IDR 83.9%
FAR 16.1%

Carreiras et al. [11] 2016 Private 618 MA No
Segmented
heartbeats

kNN
EER 9.01%

MIDR 15.6%

Chun et al. [105] 2016 ECG-ID 89 MA No
Guided filtering
avg. beat / PCA

DTW or
Euclidean

dist. + kNN

EER:
DTW 5.2%
Eucl. 2.4%

Hejazi et al. [56] 2016 Private 52 SA Yes
Autocorrelation
coeff. / KPCA

SVM
IDR 76.3%
FAR 3.5%

FRR 4.83%

Pinto et al. [82] 2017 Private 6 SA Yes
DCT

coefficients
SVM

IDR 94.9%
EER 2.66%

Camara et al. [106] 2017 MIT NSR 10 MA No
Walsh-Hadamard
features, outliers

rejected
kNN IDR 94.8%

Komeili et al. [44] 2017

UofTDB
(different

sessions or
postures)

82 MA Yes

CWT, STFT, AC,
max., set., dev.,

kurtosis and
skewness / MSFS

SVM
EER

Sess. 6.9%
Post. 3.7%
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Table A.4: Related Work on ECG-based biometrics - Part IV (adapted from [4]. Legend: NS - Number of Subjects; OP - Off-the-Person;
DR - Dimensionality Reduction; MA - Multiple Acquisitions; SA - Single Acquisition.

Author Year Dataset NS Session OP Features/DR Decision Results

Paiva et al. [91] 2017 PTB 10 SA No
Fiducial distances

ST, RT and QT
SVM

IDR 97.5%
FAR 5.71%
FRR 3.44%

Lee at al. [14] 2018 Private 55 - No

R-R segments,
including two or
three heartbeats

(hb.)

Cosine,
euclidean,
manhattan

dists., and CC

IDR:
2 hb. 89.9%
3hb. 93.3%

Pal et al. [107] 2018 PTB 10 SA No

Interval, amplitude,
angle and area

fiducial features /
KPCA

Euclidean
distance

IDR 97.1%

Kim et al. [108] 2018 - 73 SA No
Haar Wavelet

Transform

Fuzzy
membership

ANN

FRR 1.68%
FAR 5.84%

Table A.5: Techniques and performances comparison for previous studies using CYBHi database. Legend: DR - Dimensionality Reduc-
tion.

Authors Year Features / DR Decision Identification
Performance

Authentication
Performance

Lourenço et al. [68] 2011
QRS Detection +

Time and Amplitude
normalization

kNN (Euclidean dist.) IDR 94.3% EER 13.0%

Lourenço et al. [99] 2012 R-peaks Detection
kNN (Euclidean dist.)

SVM

Eid 17.65% (1sec)
Eid 5.61% (5sec)
Eid 28.07% (1sec)
Eid 8.87% (5sec)

EER 9.39% (1sec)
EER 2.75% (5sec)

FRR 51.55% (1sec)
FRR 13.91% (5sec)

Carreiras et al. [109] 2013
Wavelet Transform +

Segmentation Algorithm +
Outlier Removal

kNN based on RDWT
(rbio5.5 and db3

wavelets)

EID
rbio5.5: 36.6%

db3: 38.8%

EER
rbio5.5: 13.9%

db3: 14.1%

Santos et al. [110] 2013
QRS Detection /

PCA
kNN (Euclidean dist.)

Error Probability
<5%

-

Silva et al. [102] 2013
QRS Detection +
Outlier Detection

kNN
(Euclidean dist.

Cosine dist.)
-

EER
Euc. dist.: 12.4%

Cosine dist.: 12.4%

Silva et al. [12] 2013
QRS Detection +

Segmentation Algorithm +
Outlier Removal

kNN based on:
Euc. dist.

Cosine dist.
SVM

-

EER
Euc. dist.: 5.2%

Cosine dist.: 4.5%
SVM 9.1%

Singh et al. [111] 2015

Time features: PQRS
fragment localized around

each R-peaks
Frequency features:
FFT coefficientes

SVM
(libSVM)

- EER 3.4%

Bento et al. [1] 2018
Segmentation +

Peak Detection +
Segment Elimination

Recurrent NN
Convolutional NN

55.58% (CYBHi)
58.91% (CYBHi)
99.79% (Fantasia)
96.88% (ECG-ID)

10.57% (CYBHi)
10.01% (CYBHi)
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Appendix B

Optimizations of SVM

B.0.1 SVM Optimization for Normalized Cardiac Cycles in Configuration 60/60

Figure B.1.1: Optimization of the parameters for RBF Kernel for normalized cardiac cycles in Configuration 60/60. The colors represent
the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.
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Figure B.1.2: Optimization of the parameters for Linear Kernel for normalized cardiac cycles in Configuration 60/60. The colors represent
the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

Figure B.1.3: Optimization of the parameters for Polynomial Kernel for normalized cardiac cycles in Configuration 60/60. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.
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B. OPTIMIZATIONS OF SVM

B.0.2 SVM Optimization for Not Normalized Cardiac Cycles in Configuration 20/20

Figure B.2.1: Optimization of the parameters for RBF Kernel for not normalized cardiac cycles in Configuration 20/20. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

Figure B.2.2: Optimization of the parameters for Linear Kernel for not normalized cardiac cycles in Configuration 20/20. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.
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Figure B.2.3: Optimization of the parameters for Polynomial Kernel for not normalized cardiac cycles in Configuration 20/20. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

B.0.3 SVM Optimization for Not Normalized Cardiac Cycles in Configuration 60/60

Figure B.3.1: Optimization of the parameters for RBF Kernel for not normalized cardiac cycles in Configuration 60/60. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.
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B. OPTIMIZATIONS OF SVM

Figure B.3.2: Optimization of the parameters for Linear Kernel for not normalized cardiac cycles in Configuration 60/60. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.

Figure B.3.3: Optimization of the parameters for Polynomial Kernel for not normalized cardiac cycles in Configuration 60/60. The colors
represent the accuracy of the system. Cold colors represent lower accuracies, whereas warm colors represent higher accuracies.
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