3,358 research outputs found

    Robust Decentralized Abstractions for Multiple Mobile Manipulators

    Full text link
    This paper addresses the problem of decentralized abstractions for multiple mobile manipulators with 2nd order dynamics. In particular, we propose decentralized controllers for the navigation of each agent among predefined regions of interest in the workspace, while guaranteeing at the same time inter-agent collision avoidance and connectivity maintenance for a subset of initially connected agents. In that way, the motion of the coupled multi-agent system is abstracted into multiple finite transition systems for each agent, which are then suitable for the application of temporal logic-based high level plans. The proposed methodology is decentralized, since each agent uses local information based on limited sensing capabilities. Finally, simulation studies verify the validity of the approach.Comment: Accepted for publication in the IEEE Conference on Decision and Control, Melbourne, Australia, 201

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm

    Reflexive obstacle avoidance for kinematically-redundant manipulators

    Get PDF
    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration

    An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator

    Get PDF
    A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Reconfigurable cable driven parallel mechanism

    Get PDF
    Due to the fast growth in industry and in order to reduce manufacturing budget, increase the quality of products and increase the accuracy of manufactured products in addition to assure the safety of workers, people relied on mechanisms for such purposes. Recently, cable driven parallel mechanisms (CDPMs) have attracted much attention due to their many advantages over conventional parallel mechanisms, such as the significantly large workspace and the dynamics capacity. In addition, it has lower mass compared to other parallel mechanisms because of its negligible mass cables compared to the rigid links. In many applications it is required that human interact with machines and robots to achieve tasks precisely and accurately. Therefore, a new domain of scientific research has been introduced, that is human robot interaction, where operators can share the same workspace with robots and machines such as cable driven mechanisms. One of the main requirements due to this interaction that robots should respond to human actions in accurate, harmless way. In addition, the trajectory of the end effector is coming now from the operator and it is very essential that the initial trajectory is kept unchanged to perform tasks such assembly, operating or pick and place while avoiding the cables to interfere with each other or collide with the operator. Accordingly, many issues have been raised such as control, vibrations and stability due the contact between human and robot. Also, one of the most important issues is to guarantee collision free space (to avoid collision between cables and operator and to avoid collisions between cables itself). The aim of this research project is to model, design, analysis and implement reconfigurable six degrees of freedom parallel mechanism driven by eight cables. The main contribution of this work will be as follow. First, develop a nonlinear model and solve the forward and inverse kinematics issue of a fully constrained CDPM given that the attachment points on the rails are moving vertically (conventional cable driven mechanisms have fixed attachment points on the rails) while controlling the cable lengths. Second, the new idea of reconfiguration is then used to avoid interference between cables and between cables and operator limbs in real time by moving one cable’s attachment point on the frame to increase the shortest distance between them while keeping the trajectory of the end effector unchanged. Third, the new proposed approach was tested by creating a simulated intended cable-cable and cable-human interference trajectory, hence detecting and avoiding cable-cable and cable-human collision using the proposed real time reconfiguration while maintaining the initial end effector trajectory. Fourth, study the effect of relocating the attachment points on the constant-orientation wrench feasible workspace of the CDPM. En raison de la croissance de la demande de produits personnalisés et de la nécessité de réduire les coûts de fabrication tout en augmentant la qualité des produits et en augmentant la personnalisation des produits fabriqués en plus d'assurer la sécurité des travailleurs, les concepteurs se sont appuyés sur des mécanismes robotiques afin d’atteindre ces objectifs. Récemment, les mécanismes parallèles entraînés par câble (MPEC) ont attiré beaucoup d'attention en raison de leurs nombreux avantages par rapport aux mécanismes parallèles conventionnels, tels que l'espace de travail considérablement grand et la capacité dynamique. De plus, ce mécanisme a une masse plus faible par rapport à d'autres mécanismes parallèles en raison de ses câbles de masse négligeable comparativement aux liens rigides. Dans de nombreuses applications, il est nécessaire que l’humain interagisse avec les machines et les robots pour réaliser des tâches avec précision et rapidité. Par conséquent, un nouveau domaine de recherche scientifique a été introduit, à savoir l'interaction humain-robot, où les opérateurs peuvent partager le même espace de travail avec des robots et des machines telles que les mécanismes entraînés par des câbles. L'une des principales exigences en raison de cette interaction que les robots doivent répondre aux actions humaines d'une manière sécuritaire et collaboratif. En conséquence, de nombreux problèmes ont été soulevés tels que la commande et la stabilité dues au contact physique entre l’humain et le robot. Aussi, l'un des enjeux les plus importants est de garantir un espace sans collision (pour éviter les collisions entre des câbles et un opérateur et éviter les collisions entre les câbles entre eux). Le but de ce projet de recherche est de modéliser, concevoir, analyser et mettre en œuvre un mécanisme parallèle reconfigurable à six degrés de liberté entraîné par huit câbles. La principale contribution de ces travaux de recherche est de développer un modèle non linéaire et résolvez le problème de cinématique direct et inverse d'un CDPM entièrement contraint étant donné que les points d'attache sur les rails se déplacent verticalement (les mécanismes entraînés par des câbles conventionnels ont des points d'attache fixes sur les rails) tout en contrôlant les longueurs des câbles. Dans une deuxième étape, l’idée de la reconfiguration est ensuite utilisée pour éviter les interférences entre les câbles et entre les câbles et les membres d’un opérateur en temps réel en déplaçant un point de fixation du câble sur le cadre pour augmenter la distance la plus courte entre eux tout en gardant la trajectoire de l'effecteur terminal inchangée. Troisièmement, la nouvelle approche proposée a été évaluée et testée en créant une trajectoire d'interférence câble-câble et câble-humain simulée, détectant et évitant ainsi les collisions câble-câble et câble-humain en utilisant la reconfiguration en temps réel proposée tout en conservant la trajectoire effectrice finale. Enfin la dernière étape des travaux de recherche consiste à étudiez l'effet du déplacement des points d'attache sur l'espace de travail réalisable du CDPM
    • …
    corecore