32,642 research outputs found

    Dusty gas with one fluid

    Get PDF
    In this paper, we show how the two-fluid equations describing the evolution of a dust and gas mixture can be reformulated to describe a single fluid moving with the barycentric velocity of the mixture. This leads to evolution equations for the total density, momentum, the differential velocity between the dust and the gas phases and either the dust-to-gas ratio or the dust fraction. The equations are similar to the usual equations of gas dynamics, providing a convenient way to extend existing codes to simulate two-fluid mixtures without modifying the code architecture. Our approach avoids the inherent difficulties related to the standard approach where the two phases are separate and coupled via a drag term. In particular, the requirements of infinite spatial and temporal resolution as the stopping time tends to zero are no longer necessary. This means that both small and large grains can be straightforwardly treated with the same method, with no need for complicated implicit schemes. Since there is only one resolution scale the method also avoids the problem of unphysical trapping of one fluid (e.g. dust) below the resolution of the other. We also derive a simplified set of equations applicable to the case of strong drag/small grains, consisting of the standard fluid equations with a modified sound speed, plus an advection-diffusion equation for the dust-to-gas ratio. This provides a simple and fast way to evolve the mixture when the stopping time is smaller than the Courant timestep. We present a Smoothed Particle Hydrodynamics implementation in a companion paper.Comment: Accepted for publication in MNRAS (very minor revisions included

    Nonequilibrium fluid-dynamics in the early stage of ultrarelativistic heavy-ion collisions

    Get PDF
    To describe ultrarelativistic heavy-ion collisions we construct a three-fluid hydrodynamical model. In contrast to one-fluid hydrodynamics, it accounts for the finite stopping power of nuclear matter, i.e. for nonequilibrium effects in the early stage of the reaction. Within this model, we study baryon dynamics in the BNL-AGS energy range. For the system Au+Au we find that kinetic equilibrium between projectile and target nucleons is established only after a time tCMeq5 fm/c2RAu/γCMt_{CM}^{eq}\approx 5~fm/c\simeq 2R_{Au}/\gamma_{CM}. Observables which are sensitive to the early stage of the collision (like e.g. nucleon flow) therefore differ considerably from those calculated in the one-fluid model.Comment: 36 pages, Late

    Motion by Stopping: Rectifying Brownian Motion of Non-spherical Particles

    Full text link
    We show that Brownian motion is spatially not symmetric for mesoscopic particles embedded in a fluid if the particle is not in thermal equilibrium and its shape is not spherical. In view of applications on molecular motors in biological cells, we sustain non-equilibrium by stopping a non-spherical particle at periodic sites along a filament. Molecular dynamics simulations in a Lennard-Jones fluid demonstrate that directed motion is possible without a ratchet potential or temperature gradients if the asymmetric non-equilibrium relaxation process is hindered by external stopping. Analytic calculations in the ideal gas limit show that motion even against a fluid drift is possible and that the direction of motion can be controlled by the shape of the particle, which is completely characterized by tensorial Minkowski functionals.Comment: 11 pages, 5 figure

    Accelerator Based Fusion Reactor

    Get PDF
    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+tn+α,d+3Hep+α d + t \rightarrow n + \alpha, d + {}^3H_e \rightarrow p + \alpha, and p+11B3αp + {}^{11}B \rightarrow 3 \alpha in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of 10221024/cm2/s10^{22} - 10^{24}/\rm{cm^2/s} for the plasma density ρt=1015/cm3\rho_t = 10^{15}/{\rm cm^3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.Comment: To be published in Nuclear Fusion as a letter, 7 pages, 2 figure
    corecore