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ABSTRACT
In this paper, we show how the two-fluid equations describing the evolution of a dust and gas
mixture can be re-formulated to describe a single fluid moving with the barycentric velocity of
the mixture. This leads to evolution equations for the total density, momentum, the differential
velocity between the dust and the gas phases and either the dust-to-gas ratio or the dust fraction.
The equations are similar to the usual equations of gas dynamics, providing a convenient way to
extend existing codes to simulate two-fluid mixtures without modifying the code architecture.
Our approach avoids the inherent difficulties related to the standard approach where the two
phases are separate and coupled via a drag term. In particular, the requirements of infinite
spatial and temporal resolution as the stopping time tends to zero are no longer necessary.
This means that both small and large grains can be straightforwardly treated with the same
method, with no need for complicated implicit schemes. Since there is only one resolution
scale the method also avoids the problem of unphysical trapping of one fluid (e.g. dust) below
the resolution of the other. We also derive a simplified set of equations applicable to the
case of strong drag/small grains, consisting of the standard fluid equations with a modified
sound speed, plus an advection–diffusion equation for the dust-to-gas ratio. This provides a
simple and fast way to evolve the mixture when the stopping time is smaller than the Courant
time step. We present a smoothed particle hydrodynamics implementation in a companion
paper.
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1 IN T RO D U C T I O N

Dust. It pervades the interstellar medium, molecular clouds, young
stellar systems and protoplanetary discs, and is the material from
which planets are formed. Grain properties are inferred via a range
observational techniques at multiple wavelengths, including spec-
tral emission distributions, scattered light images, thermal emission
maps, mid-infrared spectroscopy, polarimetry and molecular emis-
sions (see Pinte et al. 2008 for a detailed analysis). We can thus
determine the spatial distribution, composition, crystallinity and
even more importantly, grain sizes s. The largest fraction of the dust
mass lies in the small grains since the dust size distribution is found
to vary as n(s) � s−3.5 (Mathis, Rumpl & Nordsieck 1977).

Simulating grain evolution in astrophysical objects is of primary
importance since they play a crucial role in transferring energy, be-
ing the main source of thermal infrared emission. They thus affect
the thermodynamics of the gas and – in turn – its dynamics. This is
key to astrophysical processes that are controlled by the ability of the
system to dissipate its gravitational energy, such as star and planet
formation. However, computing the local opacities self-consistently
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taking into account the local evolution of the dust population and
in general, simulating dust and gas mixtures evolution is quite chal-
lenging. Dust grains mainly interact with the surrounding gas by
microscopic collisions between gas molecules and the dust grains.
This results in a macroscopic drag force which damps the differ-
ential velocity between the two phases. The typical time-scale for
the damping is called the stopping time ts, which usually increases
when the grain size decreases. Numerical methods thus need to be
efficient over a wide range of dust sizes encountered in astrophys-
ical systems. This is particularly the case in protoplanetary discs,
where grains with different sizes become spatially differentiated
by dynamical processes (Weidenschilling 1977; Nakagawa, Sekiya
& Hayashi 1986; Garaud & Lin 2004; Youdin & Goodman 2005;
Carballido, Fromang & Papaloizou 2006).

In two previous papers (Laibe & Price 2012a,b, hereafter LP12a,
LP12b), we have detailed and benchmarked a Lagrangian smoothed
particle hydrodynamics (SPH) formalism to treat astrophysical
dust–gas mixtures. This scheme used a variable SPH smoothing
length, SPH terms for the conservative part of the equations derived
from a Lagrangian, and a ‘double-hump’ shaped kernel that was
found to improve the accuracy of the drag terms in both linear and
non-linear drag regimes. However, alongside the numerous tests
we performed, we faced two rather fundamental difficulties which
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were not related to SPH but inherent to the two-fluid formalism.
First, if dust particles concentrate below the resolution length of the
gas phase, they tend to become trapped there, since they no longer
feel any differential forces from the gas (see Ayliffe et al. 2012 for
a discussion of this issue in SPH simulations; and Price & Fed-
errath 2010 for the same issue in a grid-based context). Secondly,
when handling the specific problem of strong drag regimes (cor-
responding to small grains), we found two limitations which lead
to a prohibitive computational cost: (1) the drastically small time
steps required for the numerical stability of explicit schemes or the
complexity of the implicit schemes involved, and less trivially (2) a
high spatial resolution required to resolve the differential velocity
between the gas and the dust in order to simulate the correct physi-
cal dissipation rate. The latter occurs because even if the differential
velocity between the fluids is damped after a few stopping times ts,
the gas pressure causes a small spatial dephasing between the gas
and dust. When the resolution is too low (�x � tscs, see LP12a),
the dephasing from numerical simulations is artificially too large
and the energy is overdissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two-fluid approach with standard fluids
codes, since both infinitely small time steps and an infinitely large
spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid,
albeit with a sound speed modified by the dust to gas ratio. For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm-sized grains accurately with any existing
dust–gas code where dust is simulated using particles, and certainly
not possible to simulate both small and large (metre-to-planetesimal
sized) grains with the same technique.

In this paper, we show how the equations describing gas–dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with the
large drag/small grain regime in mind, turns out to be both general
and elegant, since the important physical quantities of the mixture
are computed directly, avoiding all of the artificial complications
which arise in the two-fluid treatment.

The equations for the evolution of the single fluid are derived in
Section 2 in primitive and conservative forms for the formalism to
be relevant for both Lagrangian and Eulerian methods. This set of
equations is completely general and can be used to simulate both
large and small grains. In Section 3, we show how they can be further
simplified in the specific limit of small grains and subsonic differen-
tial motion, leading to the standard equations of gas dynamics (with
a modified sound speed), coupled with an advection–diffusion equa-
tion for the dust-to-gas ratio. In Section 4, we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SI N G L E - F L U I D M O D E L

2.1 Two-fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (Saffman
1962; see e.g. LP12a for a particular implementation). The dust fluid

is treated as a pressureless fluid. The equations for the conservation
of density and momentum are therefore given by

∂ρg

∂t
+ ∇ · (

ρgvg

) = 0, (1)

∂ρd

∂t
+ ∇ · (ρdvd) = 0, (2)

ρg

(
∂vg

∂t
+ vg · ∇vg

)
= ρg f + K(vd − vg) − ∇Pg, (3)

ρd

(
∂vd

∂t
+ vd · ∇vd

)
= ρd f − K(vd − vg), (4)

where the subscripts ‘g’ and ‘d’ refer to the gas and dust, respec-
tively, and K is the drag coefficient which is a function of the local
gas and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2

s δρg, and ts the typical drag stopping time given by

ts ≡ ρdρg

K
(
ρg + ρd

) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by equation (5) since it is more physically relevant
as we will see hereafter. Qualitatively, two limiting behaviours occur
for the mixture’s evolution, depending on the value of ts compared
to the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipates the differential kinetic
energy between the phases slowly and is essentially perturbative.
From a numerical point of view, such drag terms can be integrated
by a straightforward explicit integration. If ts is small (strong drag,
i.e. small grains in astrophysics), the drag controls the evolution
of the mixture since momentum between the two phases is almost
instantaneously exchanged. The behaviour of the mixture becomes
less intuitive. In LP12a, we have illustrated the behaviour of a gas
and dust mixture at strong drag regimes with the DUSTYWAVE prob-
lem. After a typical time ts, the initial differential velocity between
the fluids is damped and the barycentre of the fluid propagates with a
modified sound speed c̃s (see below, equation 101). However, since
ts remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the gas
is given by

∂u

∂t
+ (vg · ∇)u = −Pg

ρg

(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, equations (1)–(4) and (6) can be refor-
mulated as a single fluid, moving with the barycentric velocity,

v ≡ ρgvg + ρdvd

ρg + ρd
, (7)
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2138 G. Laibe and D. J. Price

and evolving the differential velocity between the two phases, �v,
defined according to

�v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
of the mixture. Using the identities

vg = v − ρd

ρ
�v, (9)

vd = v + ρg

ρ
�v, (10)

equations (1)–(4) become

∂ρ

∂t
+ ∇ · (ρv) = 0, (11)

∂v

∂t
+ (v · ∇)v = f − ∇Pg

ρ
− 1

ρ
∇ ·

(
ρgρd

ρ
�v�v

)
, (12)

∂

∂t

(
ρd

ρg

)
+ v · ∇

(
ρd

ρg

)
= − ρ

ρ2
g

∇ ·
(

ρgρd

ρ
�v

)
, (13)

∂�v

∂t
+ (v · ∇)�v = −�v

ts
+ ∇Pg

ρg

−(�v · ∇)v + 1

2
∇

(
ρd − ρg

ρd + ρg
�v2

)
. (14)

The evolution of the gas internal energy becomes

∂u

∂t
+ (v · ∇)u = −Pg

ρg
(∇ · vg) + ρd

ρ
(�v · ∇) u + ρd

ρ

�v2

ts
, (15)

or equivalently, the entropy evolves according to

T
∂s

∂t
+ (v · ∇)s = ρd

ρ
(�v · ∇) s + ρd

ρ

�v2

ts
, (16)

where T is the local gas temperature. As expected, the differential
velocity between the gas and the dust is a dissipative and irreversible
source of entropy.

In the Lagrangian frame comoving with the fluid barycentre, the
equations can be simplified further using the total time derivative

d

dt
= ∂

∂t
+ v · ∇, (17)

such that the evolution of the position, X , of a fluid particle of
this single fluid is given by dX/dt = v. Thus equations (11)–(14)
simplify to

dρ

dt
= −ρ(∇ · v), (18)

dv

dt
= f − ∇Pg

ρ
− 1

ρ
∇ ·

(
ρgρd

ρ
�v�v

)
, (19)

d

dt

(
ρd

ρg

)
= − ρ

ρ2
g

∇ ·
(

ρgρd

ρ
�v

)
, (20)

d�v

dt
= −�v

ts
+ ∇Pg

ρg
− (�v · ∇)v + 1

2
∇

(
ρd − ρg

ρd + ρg
�v2

)
, (21)

while the internal energy equation is given by

du

dt
= −Pg

ρg
(∇ · vg) + ρd

ρ
(�v · ∇) u + ρd

ρ

�v2

ts
. (22)

The specific entropy of the gas evolves according to

ds

dt
= ρd

T ρ

�v2

ts
, (23)

showing that the drag is the only source of entropy in the mixture.
Throughout this section, we have assumed that the volume occu-

pied by the dust grains is negligible. For astrophysical applications
– with micron to kilometre-sized grains in simulations on au or par-
sec scales – this is an extremely good approximation, but it can be
important in non-astrophysical problems (see Fan & Zhu 1998 for
various examples). For completeness we give the one-fluid equa-
tions generalized to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-
gas ratio introduces an artificial singularity in the equations when
the mixture is only made of dust (ρg = 0). A convenient way to
overcome this difficulty is to use the dust fraction ε = ρd/ρ instead
of the dust-to-gas ratio. The gas and the dust densities are calculated
according to ρg = (1 − ε)ρ and ρd = ερ, respectively. Equations
(18)–(22) become

dρ

dt
= −ρ(∇ · v), (24)

dε

dt
= − 1

ρ
∇ · [ε (1 − ε) ρ�v] , (25)

dv

dt
= −∇Pg

ρ
− 1

ρ
∇ · [ε (1 − ε) ρ�v�v] + f , (26)

d�v

dt
= −�v

ts
+ ∇Pg

(1 − ε) ρ
− (�v · ∇)v + 1

2
∇ [

(2ε − 1) �v2
]
,

(27)

du

dt
= − Pg

(1 − ε) ρ
∇ · (v − ε�v) + ε (�v · ∇) u + ε

�v2

ts
, (28)

where the stopping time ts reads

ts = ε (1 − ε) ρ

K
. (29)

2.3 Advantages of the one-fluid approach

While mathematically equivalent to equations (1)–(6), the barycen-
tric formulation of the dusty gas equations has a number of key
advantages for the numerical solution of dust–gas mixtures. In par-
ticular they are the following.

(i) The equations can be solved on a single fluid that moves with
the barycentric velocity v, rather than requiring two fluids. In turn,
this implies only one resolution scale in numerical models, avoid-
ing the problems associated with mismatched spatial resolutions
discussed above (cf. Price & Federrath 2010; Ayliffe et al. 2012;
LP12a).

(ii) The form of the continuity and acceleration equations (equa-
tions 18 and 19) are similar or identical to the usual equations of
hydrodynamics, with a minor modification to the pressure gradient
and one additional term in the acceleration equation.
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Dusty gas with one fluid 2139

(iii) The dust-to-gas ratio, the critical parameter in most astro-
physical problems, is explicitly evolved. Furthermore, both the
physics producing a change in the dust-to-gas ratio, and the limit in
which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explicitly
evaluated, meaning treatment of complicated or non-linear drag
regimes is straightforward.

(v) The evolution equation for �v (equation 21) is analogous
to the induction equation for magnetohydrodynamics or the evo-
lution of vorticity in incompressible flows, with additional source
(∇Pg/ρg) and decay (−�v/ts) terms.

(vi) Implicit treatment of the decay term in equation (21) in the
limit of ts → 0 can be trivially achieved using operator splitting,
since the exact solution is known.

(vii) The equations can be simplified further in the limit of strong
drag/short stopping times, as we discuss below.

Equations (18), (19) and (21) have been used in a reduced form
(assuming an incompressible fluid) for analytic studies of insta-
bilities in protoplanetary discs (Youdin & Goodman 2005; Chiang
2008; Barranco 2009; Lee et al. 2010; Jacquet, Balbus & Latter
2011). However, equation (20) (or equivalently equation 25) – the
most important equation in the barycentric formulation – has to our
knowledge not been derived elsewhere.

2.4 Physical interpretation

Equation (18) is a standard equation of mass conservation for the to-
tal mass of the system. Equation (19) is also similar to a single-fluid
momentum conservation equation, except that (1) the gas pressure
gradient is divided by the total density of the fluid, thus taking into
account the inertia of the dust and (2) the dissipated energy from
the differential velocity between the fluid acts like a kinetic pres-
sure for the fluid. Indeed, in equation (61) the term 1

2 ρv2 is the
dynamical kinetic energy of the mixture, while the second term is
the density of energy internal to the mixture (which is equivalent to
a pressure). The effect of these terms on the evolution of the fluid
vorticity ω = ∇ × v is given by the relation

∂ω

∂t
+ (v · ∇)ω = (ω · ∇) v − ω(∇ · v) + ∇ × f

+ 1

ρ2
∇ρ × ∇

(
Pg + ρgρd

ρ
�v2

)
· (30)

The first terms of equation (30) are similar to the vorticity equation
for a single gaseous fluid. However, vorticity can also be created
from the last term of equation (30) which is specific to the mixture.
First, even if the gas is a barotropic fluid, the mixture is usually not
barotropic since ∇Pg is in general not collinear with ∇ρd. Secondly,
the kinematic pressure is an additional source of vorticity for the
fluid. It should finally be noted that the total helicity of the fluid
(Moffat & Tsinober 1992) is conserved but the local helicity flux
has to be modified by adding the dynamical pressure as well.

Equation (20) shows that in absence of any differential velocity
between the fluids, the dust-to-gas ratio is advected with the mixture.
This equation can alternatively be rewritten as

∂

∂t

(
ρd

ρg

)
+ (v · ∇)

(
ρd

ρg

)
= −ρd

ρg
(∇ · �v) − ρd

ρg

1

ρ
(�v · ∇) ρ

−1 − ρd/ρg

1 + ρd/ρg
(�v · ∇)

(
ρd

ρg

)
. (31)

Interestingly, it becomes transparent that even if �v and ρ are
constant, the dust-to-gas ratio can change if ρd and ρg are different
(this occurs in the case of the streaming instability).

Equation (21) shows that the source of differential velocity be-
tween the fluids is the pressure gradient (i.e. if ∇Pg = 0 and �v = 0
initially, no differential velocity is generated). This differential ve-
locity is also damped by the drag term. Equation (21) is the only
equation where ts is involved.

It should be noted that the total energy of the mixture Em is

Em = m

(
1

2
v2 + um

)
, (32)

where

um = (1 − ε) u(s, (1 − ε)ρ) + 1

2
ε (1 − ε) �v2, (33)

u and s denoting the internal energy and entropy of the gas (and not
of the mixture), respectively. Thus, the kinetic energy of the mixture
is not the sum of the kinetic energies of its components since a term
arising from the differential velocities goes into the internal energy.

2.5 Generalized formulation with arbitrary gas/dust forces

In general there may be additional forces that act separately on either
the gas phase or the dust phase beyond those given in equations (1)–
(4). Examples include viscous and magnetohydrodynamic forces.
In the most general case, the one-fluid equations are given by

dρ

dt
= −ρ(∇ · v), (34)

dv

dt
= ρg

ρ
f g + ρd

ρ
f d − 1

ρ
∇ ·

(
ρgρd

ρ
�v�v

)
+ f , (35)

d

dt

(
ρd

ρg

)
= − ρ

ρ2
g

∇ ·
(

ρgρd

ρ
�v

)
, (36)

d�v

dt
= −�v

ts
+ ( f d − f g) − (�v · ∇)v + 1

2
∇

(
ρd − ρg

ρd + ρg
�v2

)
,

(37)

where f g refers to the forces acting only on the gas phase (e.g.
pressure and viscous forces), f d is any force acting only on the
dust phase and f is the force acting on both phases (e.g. gravity).
As previously, equation (25) can equivalently be used in place of
equation (36).

2.6 Conservative formulation

An important constraint on any numerical implementation is that
all of the conservation laws should be satisfied. In Laibe & Price
(2014, hereafter Paper II) we show that our SPH implementation
of equations (24)–(29) conserves all of these quantities exactly,
demonstrating that there is no disadvantage with respect to the two-
fluid formulation in terms of conservation properties. For Eulerian
codes this may be demonstrated by showing that the equations can
be written as a hyperbolic system in conservative form.

The conservative part of the local equations of evolution of the
mixture can be derived directly from the conservation of physical
quantities over a volume of fluid V. This volume moves with a
velocity U , which can be the fluid velocity v (for the mixture,
the barycentric velocity) or a different velocity. Denoting dSn the
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elementary surface vector of the volume, the transport theorem
provides the evolution of an integral quantity over V:

δ

δt

(∫
V

b dV

)
=

∫
V

∂b

∂t
dV +

∫
S

b (U · n) dS, (38)

where b is a tensorial field of any order. Additional discontinuities
in the quantity b over the volume V would add additional terms in
the right-hand side of equation (38), which we have neglected. If
U = v, then δ

δt
= d

dt
.

2.6.1 Conservation of mass

The mass of gas and dust contained in the volume V are given by

Mg ≡
∫

V

ρgdV =
∫

V

(1 − ε) ρ dV , (39)

Md ≡
∫

V

ρddV =
∫

V

ερ dV . (40)

From equation (38) we obtain

dgMg

dt
= 0, (41)

ddMd

dt
= 0, (42)

where dg

dt
= ∂

∂t
+ vg · ∇ and dd

dt
= ∂

∂t
+ vd · ∇ are the comoving

derivatives for the gas and the dust, respectively. Using the transport
theorem with U = vg and U = vd, respectively, and the divergence
theorem, equations (41) and (42) result in two integral equations
whose integrands are zero, implying two local conservation equa-
tions:

∂ρ (1 − ε)

∂t
+ ∇ · [ρ (1 − ε) v − ρε (1 − ε) �v] = 0, (43)

∂ρε

∂t
+ ∇ · [ρεv + ρε (1 − ε) �v] = 0. (44)

Interestingly, using the theorem of transport with the velocity v

instead of the gas and the dust velocities gives

dMg

dt
=

∫
S

ρε (1 − ε) �v · n dS, (45)

dMd

dt
= −

∫
S

ρε (1 − ε) �v · n dS. (46)

In the case where the volume V is the entire space, the surface
integrals of equations (45) and (46) go to zero and dMg

dt
= dMd

dt
= 0.

However, the gas and the dust masses are in general not conserved
for any given volume V. Physically, this comes from the fact that the
advection velocity of V differs from the specific advection velocities
of each phase taken individually. The specific flux of gas density
going outside the volume V and the specific flux of dust density
going inside V are given by ±ρε (1 − ε) �v, respectively, and hence
counterbalance each other. The advection of the mixture at the
barycentric velocity v preserves the total mass M of the volume
given by

M ≡
∫

ρ dV =
∫ (

ρg + ρd

)
dV , (47)

since summing equations (45) and (46) gives

dM

dt
= 0. (48)

Equivalently, this gives the local equation of conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0, (49)

which can also be directly derived from the sum of equations (43)
and (44).

2.6.2 Conservation of momentum

The specific momentum of the gas and dust phases may be defined
according to

Pg ≡
∫

V

ρgvgdV =
∫

V

(1 − ε) ρ (v − ε�v) dV , (50)

Pd ≡
∫

V

ρdvddV =
∫

V

ερ (v + (1 − ε) �v) dV , (51)

where the forces should balance over the volume V. Neglecting
external forces acting on the mixture and assuming the only surface
forces are the gas and dust pressure gradients, we have

dg Pg

dt
≡ −

∫
S

Pgn dS, (52)

dd Pd

dt
≡ 0, (53)

where Pg is the gas pressure. These in turn result in the local con-
servation equations:

∂ρ (1 − ε) (v − ε�v)

∂t

+ ∇ · [
ρ (1 − ε) (v − ε�v) (v − ε�v) + Pg I

] = 0, (54)

∂ρε (v + (1 − ε) �v)

∂t

+ ∇ · [ρε (v + (1 − ε) �v) (v + (1 − ε) �v)] = 0. (55)

If the volume is advected with the velocity v, equations (52) and
(53) can be rewritten as

dPg

dt
= −

∫
S

Pgn dS +
∫

S

ρε (1 − ε) (v − ε�v) �v · n dS, (56)

dPd

dt
= −

∫
S

ρε (1 − ε) (v + (1 − ε) �v) �v · n dS. (57)

The new terms in the right-hand sides of equations (56) and (57) con-
sist of momentum fluxes associated with the density fluxes related
to the differential advection of each phase (equations 45 and 46).
It is important to note that even if the conservation of the total mass
in a local volume is ensured, the total momentum P = Pg + Pd

is not conserved for the local volume. Indeed, summing equations
(56) and (56), we obtain

dP
dt

= −
∫

S

Pgn dS −
∫

S

ρε (1 − ε) �v�v · n dS. (58)

Thus, even if mass fluxes of gas and dust counterbalance each other,
they bring a net flux of total momentum in V which is similar to the
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contribution of an anisotropic pressure. Using the gradient and the
divergence theorems, equation (58) results in a local conservation
equation given by

∂ρv

∂t
+ ∇ · [

ρvv + Pg I + ρε (1 − ε) �v�v
] = 0, (59)

which can also be obtained by summing equations (56) and (57).
Note that this anisotropic pressure term brings additional terms in
the energy equation as well (see below). In the case where V is the
entire space, the surface terms go to zero and dP

dt
= 0.

2.6.3 Conservation of energy

The total energy of the mixture in a given volume V is given by

E ≡
∫

V

(
1

2
ρgv

2
g + 1

2
ρdv

2
d + ρgu

)
dV (60)

=
∫

V

(
1

2
ρv2 + 1

2

ρgρd

ρ
�v2 + (1 − ε) ρu

)
dV . (61)

Writing down the energy conservation for both the gas and the dust
gives

dgEg

dt
= −

∫
S

Pg (v − ε�v) n dS, (62)

ddEd

dt
= 0, (63)

and thus two local conservation equations of the form

∂
(
ρ (1 − ε)

(
u + 1

2 (v − ε�v)2
))

∂t
(64)

+ ∇ ·
(

ρ (1 − ε)

(
u + 1

2
(v − ε�v)2 + Pg

)
(v − ε�v)

)
= 0,

∂
(

ρε
2 (v + (1 − ε) �v)2

)
∂t

(65)

+ ∇ ·
(ρε

2
(v + (1 − ε) �v)2 (v + (1 − ε) �v)

)
= 0. (66)

Combining equations (65) and (66) gives the total energy equation
in conservative form:

∂e

∂t
+ ∇ ·

{ (
1

2
ρv2 + 1

2
ρε (1 − ε) �v2

)
v

+ ρ

2

(
2ε (1 − ε) v�v + ε (1 − ε) (1 − 2ε) �v2

)
�v

+ ρ (1 − ε)
(
u + Pg

)
(v − ε�v)

}
= 0, (67)

where

e ≡ 1

2
ρv2 + 1

2
ρε (1 − ε) �v2 + (1 − ε) ρu. (68)

As was the case for the momentum, dE
dt

= 0 if V is the entire space,
since the surface terms tend to zero.

2.6.4 One-fluid equations in conservative form

Summarizing, conservation laws of physical quantities result in
local equations of evolution that can be written in a conservative

form where only partial time derivatives of physical quantities and
divergences of their fluxes are involved. Adding the remaining drag
contribution as a source term, the equations of evolution of the
mixture in conservative form are

∂ρ

∂t
+ ∇ · (ρv) = 0, (69)

∂ρε

∂t
+ ∇ · [ρεv + ρε (1 − ε) �v] = 0, (70)

∂ρv

∂t
+ ∇ · [

ρvv + Pg I + ρε (1 − ε) �v�v
] = 0, (71)

∂ρε (v + (1 − ε) �v)

∂t

+ ∇ · [ρε (v + (1 − ε) �v) (v + (1 − ε) �v)] = −K�v, (72)

∂e

∂t
+ ∇ ·

{ (
1

2
ρv2 + 1

2
ρε (1 − ε) �v2

)
v

+ ρ

2

(
2ε (1 − ε) v�v + ε (1 − ε) (1 − 2ε) �v2

)
�v

+ ρ (1 − ε)
(
u + Pg

)
(v − ε�v)

}
= 0. (73)

No drag term is involved in equation (73) since the total energy of the
mixture is rigorously conserved. Compared to the single-fluid case,
additional fluxes appear related to the differential advection between
the total mass of the mixture and the masses. It is a simple matter
of algebra to show that those equations are strictly equivalent to
the equations where the quantities are advected with the velocity v.
However, the conservative formulation is more relevant for Eulerian
methods.

2.7 Hyperbolicity

Hyperbolic systems partial differential equation (PDE) are a par-
ticular category of PDE often encountered in hydrodynamics for
which specific powerful methods of resolution have been devel-
oped (Riemann solvers; e.g. Toro 1999). Writing a PDE system
over the variables W in the primitive form:

∂t W + A∂x W = 0, (74)

the system is hyperbolic if all the eigenvalues of the matrix A are
real. The hyperbolicity of a system of PDEs is related to the conser-
vative nature of the equations. A seminal hyperbolic PDE system is
formed by the mass and the momentum equation for an isothermal
gas. Physically, a linear perturbation of this system provides a sound
wave advected by the background flow. In a two-fluid model, the
PDE systems describing the evolution of a gas and dust mixture are
trivially hyperbolic, since they consists of two independent systems
of 2 × 2 hyperbolic equations. The mathematical transformation to
go from this two-fluid system to the one-fluid description involves
(i) a change of coordinate which does not involves the derivatives of
the physical quantities, performed by applying the related Jacobian
matrix, and (ii) a linear change in the advection velocities. Those
are both linear transformations. Thus, the eigenvalues of the matrix
A are all real as the eigenvalues of a similar matrix are real and the
hyperbolicity of the system is preserved. In a one-dimensional case
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with a two fluids description, W = (
ρg, vg, ρd, vd

)
and the matrix

A is given by

A =

⎛
⎜⎜⎜⎜⎝

vg ρg 0 0

c2
s

ρg
vg 0 0

0 0 vd ρd

0 0 0 vd

⎞
⎟⎟⎟⎟⎠, (75)

whose four eigenvalues are vg ± cs, vd, vd. If W̃ = (ρ, ε, v, �v)
(one-fluid description), the matrix Ã is

Ã =⎛
⎜⎜⎜⎜⎜⎝

v 0 ρ 0
ε(1−ε)�v

ρ
v + �v (1 − 2ε) 0 ε (1 − ε)

ε(1−ε)�v2

ρ
+ (1−ε)c2

s
ρ

(1 − 2ε) �v2 − c2
s v 2�vε (1 − ε)

− c2
s
ρ

−�v2 + c2
s

1−ε
�v v − (2ε − 1) �v

⎞
⎟⎟⎟⎟⎟⎠

(76)

Its four real eigenvalues are v − ε�v ± cs, v + (1 − ε)�v, v +
(1 − ε)�v, which are nothing else than the eigenvalues of the matrix
A in the new system of coordinates, as expected. This corroborates
the fact that the equations of the mixture can also be written in a
conservative form (equations 69–72). To solve the Riemann prob-
lem, the eigenvectors of A are the ones of the two fluids problem in
the new system of coordinate. With a Riemann solver, the drag is
integrated as a simple source term of the system.

3 SIMPLIFIED EQUATIONS FOR STRONG
D R AG / S M A L L G R A I N S

3.1 Comparison of terms

To analyse the respective order of magnitude of the different terms,
we define two dimensionless quantities: the traditional Mach num-
ber M,

M ≡ v2

c2
s

, (77)

and the differential Mach number,

M� ≡ �v2

c2
s

. (78)

Using T to denote the time it takes for the fluid to propagate a
distance L at a sound speed cs, equation (21) provides the ratio
between M and M� as a function of ts/T:

M�

M
= O (1) if ts � T , (79)

M�

M
= O

(
t2
s

T 2

)
if ts � T . (80)

Equations (79) and (80) define the weak and strong drag regimes,
respectively.

3.2 Terminal velocity approximation

As discussed in LP12a, strong drag regimes are tremendously dif-
ficult to handle with two fluids. They can however be very easily
treated by the one-fluid model since in this limit the differential

velocity adds only a small correction to the barycentric velocity of
the mixture. From equation (80):∥∥∥∥ ∂t�v

�v/ts

∥∥∥∥ =
∥∥∥∥ v · ∇�v

�v/ts

∥∥∥∥ =
∥∥∥∥�v · ∇v

�v/ts

∥∥∥∥ = O
(

ts

T

)
. (81)

Thus, for small grains, equation (21) simply reduces to

�v = ∇Pg

ρg
ts, (82)

which is known as the terminal velocity approximation (Youdin
& Goodman 2005; Chiang 2008; Barranco 2009; Lee et al. 2010;
Jacquet et al. 2011). Indeed, �v/v is of order ts/T and terms con-
taining �v2 can safely be neglected since they are second order in
ts/T. In the general case of forces acting on each phase separately
(Section 2.5), the terminal velocity approximation corresponds to

�v = ( f d − f g)ts. (83)

3.3 First-order approximation

To first order in ts/T, equations (18)–(21) become

dρ

dt
= −ρ(∇ · v), (84)

dv

dt
= f − ∇Pg

ρ
, (85)

d

dt

(
ρd

ρg

)
= − ρ

ρ2
g

∇ ·
(

ρgρd

ρ

[∇Pg

ρg
ts

])
. (86)

Equivalently, the dust fraction ε can be used, giving

dε

dt
= − 1

ρ
∇ ·

(
ρgρd

ρ

[∇Pg

ρg
ts

])
, (87)

in place of equation (86). Thus, in strong drag regimes, gas–dust
mixtures can be described by the usual equations of fluid dynamics
(with a modified sound speed, see below) coupled with one addi-
tional advection–diffusion equation for the dust-to-gas ratio. The
relative drift from the dust with respect to the gas is taken into
account by the term on the right-hand side of equation (86). This
source term results from the fact that dust tends to accumulate in
the pressure maxima and, by conservation of momentum, pushes
the gas outside. The term contains a spatial second derivative and
thus acts to diffuse the dust-to-gas ratio, with the effective diffusion
νs being of order

νs � c2
s ts. (88)

This diffusion-like process is therefore slow compared to the prop-
agation of the mixture and can be easily be integrated explicitly in
a numerical scheme. It should be noted that if additional forces act
on the gas phase only (e.g. viscous terms, magnetic forces), they
have to be added in the terminal velocity approximation and thus,
inside the diffusion term in equation (86) as well.

The internal energy equation simplifies to

du

dt
= −Pg

ρg
(∇ · v) − Pg

ρg
∇ ·

(
ρd

ρ

[∇Pg

ρg
ts

])

− ρd

ρg

1

ρ

(∇Pg

ρg
ts · ∇

)
ρ + ρd

ρ

[∇Pg

ρg

]2

ts. (89)

We show in Sections 4.2 and 4.4 that the reduced set of equations
(84)–(86) are sufficient to describe some of the most important
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physical effects of dust in astrophysics, including waves in a two-
fluid mixture and the streaming instability in protoplanetary discs.

In conservative form, equations (84)–(87) are equivalent to

∂ρ

∂t
+ ∇ · (ρv) = 0, (90)

∂ρε

∂t
+ ∇ ·

(
ρεv + ρε (1 − ε)

[∇Pg

ρg
ts

])
= 0, (91)

∂ρv

∂t
+ ∇ · (

ρvv + Pg I
) = 0, (92)

∂ẽ

∂t
+ ∇ ·

{[
ρv2

2
+ ρ (1 − ε)

(
u + Pg

)]
v

}

+ ∇ ·
(

ρ

(
v2

2
− ε (1 − ε)

(
u + Pg

)) [∇Pg

ρg
ts

])
= 0, (93)

where

ẽ ≡ 1

2
ρv2 + (1 − ε) ρu. (94)

3.4 Zeroth-order approximation

To zeroth order in ts/T, ts = 0 (i.e. the limit of infinite drag/perfect
coupling), equations (18)–(21) simply reduce to

dρ

dt
= −ρ(∇ · v), (95)

dv

dt
= f − ∇Pg

ρ
, (96)

d

dt

(
ρd

ρg

)
= 0, (97)

with �v = 0. Equation (22) reduces to

du

dt
= −Pg

ρg
(∇ · v). (98)

Using the dust fraction in place of the dust-to-gas ratio, we find

dε

dt
= 0, (99)

as an alternative to equation (97).
From equation (85), we see that the sources of momentum are

the same as those for the perfect gas, except that the gas pressure
gradient pushes the whole mixture (and not the gas only). Since

∇Pg

ρ
= 1(

1 + ρd/ρg

) ∇Pg

ρg
, (100)

a dust and gas mixture can be treated to zeroth order as a single
fluid whose sound speed c̃s is the gas sound speed corrected by a
factor depending on the dust-to-gas ratio:

c̃s = cs

(
1 + ρd

ρg

)− 1
2

. (101)

This zeroth-order effect is the main piece of physics required to cor-
rectly simulate the propagation of shocks in compressible dust–gas

mixtures, for example in the interstellar medium (see Section 4.3).
In conservative form, equations (95)–(97) are equivalent to

∂ρ

∂t
+ ∇ · (ρv) = 0, (102)

∂ρε

∂t
+ ∇ · (ρεv) = 0, (103)

∂ρv

∂t
+ ∇ · (

ρvv + Pg I
) = 0, (104)

∂ẽ

∂t
+ ∇ ·

([
ρv2

2
+ ρ (1 − ε)

(
u + Pg

)]
v

)
= 0. (105)

4 A PPLI CATI ONS

Since the one-fluid model given by equations (18)–(21) is com-
pletely general, all of the analytic solutions described in Laibe &
Price (2011) and LP12a can be equally well captured with the
barycentric formulation. Here we show that not only are the solu-
tions much simpler in the framework of our one-fluid formulation,
but also that most of the important physics can be captured with
the reduced sets of equations presented in Sections 3.3 and 3.4.
Thus, for many problems we expect that the zeroth- or first-order
approximations will be sufficient.

4.1 DUSTYBOX

The DUSTYBOX problem (Monaghan & Kocharyan 1995;
Paardekooper & Mellema 2006; Miniati 2010; Laibe & Price 2011)
consists of the drag-induced decay of the differential motion two
fluids coupled by a drag term, assuming uniform densities ρg and
ρd. In the barycentric framework, assuming constant ρg, ρd and v,
the problem simply reduces to

d�v

dt
= −�v

ts
, (106)

where in general ts can itself be a function of �v. Since �v is
specifically evolved in the one-fluid model – in contrast to the two-
fluid approach where it depends on both the gas and the dust – the
DUSTYBOX problem is straightforward.

4.2 DUSTYWAVE for strong drag

The DUSTYWAVE problem consists of linear sound waves propagating
in one dimension in a dust and gas mixture of uniform density
with a linear drag term. DUSTYWAVE is solved in detail in Laibe
& Price (2011), with the limit of strong drag regimes given in
LP12a. We assume that the equilibrium velocities and densities of
the single fluid is given by v = 0, ρ = ρ0 and ρd/ρg = ρd, 0/ρg, 0.
We then consider small perturbations and perform an acoustic linear
expansion of equations (84)–(86), i.e.

∂δρg

∂t
+ ∂δρd

∂t
+ ρ0

∂δv

∂x
= 0, (107)

ρ0
∂δv

∂t
= −c2

s

∂δρg

∂x
, (108)

− ρd,0

ρ2
g,0

∂δρg

∂t
+ 1

ρg,0

∂δρd

∂t
= −c2

s ts
ρd,0

ρ2
g,0

∂2δρg

∂x2
. (109)
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2144 G. Laibe and D. J. Price

As this system is linear, we search for solutions that have the form
of monochromatic plane waves. The total solution is a linear com-
bination of those monochromatic plane waves whose coefficients
are fixed by the initial conditions. The perturbations are assumed to
be of the general form

v = V ei(kx−ωt), (110)

δρg = Dg ei(kx−ωt), (111)

δρd = Dd ei(kx−ωt). (112)

Using equations (110)–(112) in equations (107)–(109), and solving
for non-trivial solutions gives the following dispersion relation:

w2

(
1 + ρd,0

ρg,0

)
+ iω

ρd,0

ρg,0
k2c2

s ts − k2c2
s = 0, (113)

which is, to first order in ωts,

ω = ±kc̃s − i

2
tsk

2c2
s

ρd,0

ρ0
. (114)

This is precisely the solution found in LP12a for the DUSTYWAVE

problem with two fluids in the strong drag regime. This illustrates
that the diffusion-like term of equation (86) contains the most im-
portant effect from the drift of the gas with respect to the dust.

To test the validity of the terminal velocity approximation, we
compute the relative overdissipation of the energy that occurs when
using the diffusion-like term. Fig. 1 shows a contour plot of the rel-
ative error committed on the typical dissipation time of the terminal
velocity approximation and the full DUSTYWAVE problem as a func-
tion of the ratio between the pressure time-scale tp = (kcs)−1 (i.e. the
typical time for a sound wave to propagate across one wavelength)
and the stopping time (x-axis) and the dust-to-gas ratio ρd/ρg

(y-axis). Those have been calculated as the inverse of the mini-
mum of the imaginary part of the roots of the respective dispersion
relations.

Figure 1. Contour plot of the relative error in the dissipation time-scale
when using the terminal velocity approximation compared to the full DUSTY-
WAVE problem, as a function of the ratio between the pressure time and the
stopping time tp/ts (x-axis) and the dust to gas ratio ρd/ρg (y-axis). The
terminal velocity approximation is valid in the purple region (error less than
10 per cent), especially if tp/ts is �5–10 (error less than 1 per cent). The
approximation breaks down for small values of tp/ts.

Fig. 1 shows that the terminal velocity approximation remains
accurate so long as the stopping time (ts) is smaller than the pressure
time-scale (tp) by more than one order of magnitude. More precisely,
for a dust-to-gas ratio of 10−2 typical of the interstellar medium,
the overdissipation is 0.01, 1, 4, 20 and 70 per cent for tp/ts =
100, 10, 5, 2 and 1, respectively (at the transition of intermediate
drag regimes, the approximation breaks quite abruptly). The best
approximation is obtained when the dust-to-gas ratio is unity. The
overdissipation is 0.04 per cent for tp/ts = 5 and ρd/ρg = 1, and
15 per cent for tp/ts = 5 and ρd/ρg = 100. Thus, we recommend
keeping some safety margin by using the diffusion-like term only
if the stopping time is smaller than the pressure time by an order of
magnitude (or control it by a criterion similar to the one adopted in
Fig. 1).

In a numerical simulation, around 8 resolution lengths �x per
wavelength is around the minimum resolution required to resolve a
sound wave properly. Under this condition and using �t = �x/cs to
denote the usual Courant time step, the condition for the diffusion
approximation to remain valid becomes

ts � �t

2π
. (115)

Thus, use of the terminal velocity approximation is appropriate
roughly when the stopping time is comfortably shorter than the
minimum time step.

4.3 DUSTYSHOCK

Shocks in dust–gas mixtures propagate in two distinct phases: a
transient phase that occurs over a few stopping times during which
the differential velocity between the gas and the dust is damped,
and a stationary phase where the shock propagation is similar to
that in a single fluid but with the modified sound speed c̃s defined by
equation (101) (Miura & Glass 1982; LP12a). Thus, while capturing
the transient phase requires solving the general one-fluid equations
(i.e. equations 18–22), the essential physics during the stationary
phase is captured by the zeroth-order approximation discussed in
Section 3.4.

Fig. 2 shows the exact solution to the Sod (1978) shock tube
problem in a gas (dotted lines), compared to the stationary solution
for a dust–gas mixture (solid lines), employing the zeroth-order ap-
proximation presented in Section 3.4 (here, the DUSTYSHOCK solution
was computed by simply modifying the sound speed in the shock
tube exact solution distributed with SPLASH; Price 2007).

Almost all astrophysical dusty shocks involve small grains (i.e.
strong drag regimes), meaning that they are effectively in the station-
ary regime. Computing accurate solutions in this regime requires
prohibitively high spatial resolution with two-fluid codes (�x �
csts), as demonstrated by LP12a. By contrast, the modifications
required to solve equations (95)–(97) with standard gas dynamics
codes are essentially trivial, and the resolution requirements are
identical to those in single-fluid codes, allowing an accurate treat-
ment of the most important effects in shocks in regions where small
dust grains are highly concentrated.

4.4 Streaming instability for strong drag

The streaming instability develops in dust and gas mixtures in differ-
ential rotation when the gas is submitted to an external background
pressure gradient. In equilibrium, this background pressure gradient
generates a differential velocity between the gas and the dust, lead-
ing the dust to migrate inwards and the gas outwards. The analytic
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Figure 2. Asymptotic solution of the DUSTYSHOCK problem (LP12a) for a
dust–gas mixture with a dust-to-gas ratio of unity (solid lines), compared
to the solution for a gas-only fluid (dotted lines), showing solutions for
(clockwise) velocity, density, pressure and internal energy. The speed of
the shock is strongly affected by the presence of dust (top left-hand panel),
showing that standard gas-only shock solutions are incorrect when the dust-
to-gas ratio is high. In contrast to two-fluid codes that require prohibitively
high spatial resolution to capture the stationary phase of the DUSTYSHOCK

solution accurately, the solution can be captured trivially using our one-fluid
approach in the zeroth-order approximation (Section 3.4).

expression for the radial and azimuthal velocities in both phases at
stationary equilibrium have been derived by Nakagawa et al. (1986,
hereafter NSH86). Perturbing this equilibrium can eventually lead
to instabilities. In this case, energy is pumped from the background
differential rotation due to the global pressure gradient and to force
a perturbation in dust density to grow. This instability is particu-
larly relevant for planet formation, since it provides a mechanism
to accumulate enough solid material to form planetesimals locally.
For an exhaustive survey of the streaming instability, we refer to
Youdin & Goodman (2005), Youdin & Johansen (2007), Johansen
et al. (2007) and Jacquet et al. (2011).

We will now prove that the set of equations (84)–(86) is sufficient
to recover the growth of the streaming instability in strong drag
regimes. For transparency, we adopt the notations of Jacquet et al.
(2011) for this section. We therefore introduce tstop defined by

∇Pg

ρg
ts ≡ ∇Pg

ρ
tstop, (116)

and consider for this problem that tstop is constant (though in general
it depends on ρg and ρd). For simplicity, we also assume that the gas
is incompressible (such that δρd = δρ) since the effect of compress-
ibility on the streaming instability growth rate is negligible (Youdin
& Goodman 2005). Given the fact that in the streaming instabil-
ity problem, f = −	2(r)R, equations (84)–(86) straightforwardly
provide the NSH86 solutions in the strong drag regime, i.e.

ρg = ρg,0, (117)

ρd = ρd,0, (118)

v0 =
√

(r	)2 + rge eθ , (119)

where

ge ≡ − ∇Pg

ρ

∣∣∣∣
0

(120)

is a constant to be consistent with Jacquet et al. (2011). Both gas and
dust velocities are therefore entirely determined by adding equation
(82), the terminal velocity approximation. Expanding equations (85)
and (86) to first order in a Cartesian shearing box (i.e. neglecting
the second-order curvature terms), we obtain

∂δρ

∂t
+ ∂δvr

∂r
+ ∂δvz

∂z
= 0, (121)

∂δvr

∂t
+ 2	δvθ = − 1

ρ0

∂δPg

∂r
− ge

δρ

ρ
, (122)

∂δvθ

∂t
+ δvr

(
	 + ∂r	

∂r

)
= 0, (123)

∂δvz

∂t
= − 1

ρ0

∂δPg

∂z
, (124)

1

ρg,0

∂δρ

∂t
= −ρ0

ρg
tstop

{
ρd,0

ρ2
0

∇ · ∇ (
δPg

)

− geex

ρ2
0∇ (δρ) − ρd∇

(
δρ2

)
ρ3

0

}
. (125)

Searching for non-trivial solutions of the form ei(kxx+kzz−ωt), with κ

the epicyclic frequency and k2 = k2
x + k2

z , we obtain the following
dispersion relation:

−i
ρd,0

ρ0
tstopω

4 + ω3 +
(

i
ρd,0

ρ0
κ2 + kxge

ρg,0

ρ0

)
tstopω

2

−
(

κ
kz

k

)2

ω + kx

(
κ

kz

k

)2

getstop
ρd,0 − ρg,0

ρ0
= 0, (126)

which is identical to the one given by Jacquet et al. (2011). This
result is not surprising since the terminal velocity approximation
is a good approximation for the streaming instability (Youdin &
Goodman 2005). Importantly, this shows that that the physical pro-
cesses relevant in protoplanetary discs are accounted for by the
diffusion-like term in equation (86).

5 C O N C L U S I O N

We have shown how the two-fluid equations describing the evolution
of a mixture of dust and gas can be reformulated in terms of a
single fluid moving with the barycentric velocity of the mixture.
The formulation consists of differential equations for the total mass
ρ, the barycentric velocity v, the differential velocity �v and the
dust-to-gas ratio ρd/ρg (or equivalently, the dust fraction ρd/ρ)
that can be written in a form appropriate for both Lagrangian and
Eulerian codes. The first two of these are identical (for ρ) or only
slight modifications (for v) of the usual equations of gas dynamics.
Evolving �v greatly simplifies the drag between the fluids, reducing
it to a simple exponential decay, meaning that it is easy to solve
this equation for both weak and strong drag regimes, and thus
capture the dynamics of both small and large grains within the
same formulation. Finally, explicit evolution of the dust-to-gas ratio
means that it is straightforward to follow the concentration of solid
material, which plays a crucial role in planet formation.
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The one-fluid approach solves with physics the two most fun-
damental issues related to numerical simulations of two-fluid dust
and gas mixtures. First, the presence of only one resolution scale
in the simulation means that the problem of overconcentration of
one fluid below the resolution of the other cannot occur. Secondly,
the equations reduce identically to single-fluid gas dynamics in the
limit of infinite drag, avoiding the need for both infinite spatial res-
olution and infinitesimally small time steps that would be necessary
with the two-fluid approach.

We have also shown that strong drag regimes can be handled
in an even simpler manner by adding a diffusion-like term in the
equation governing the dust-to-gas ratio evolution. This approach
was shown to capture most of the interesting physical processes
in the mixtures, including the propagation of sound waves and
shocks, and the linear growth of the streaming instability. This
simplified formulation – which can be implemented with only minor
modifications to existing single-fluid codes – was shown to remain
sufficiently accurate for use in numerical simulations provided the
stopping time ts is smaller than the minimum (Courant) time step.

The nature of the evolution equations mean that this formalism
lends itself readily to implementation in existing numerical codes.
In a companion paper (Paper II), we describe an implementation of
the one-fluid formulation with the SPH method, though we stress
that the approach is equally useful for both SPH and grid-based
codes.
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APPENDI X A : FI NI TE VOLUME O F DUST
PA RTI CLES

If dust grains occupy a finite volume, the volume fraction θ defined
by

θ = 1 − ρ̂d

ρd
(A1)

is no longer equal to unity. In this case, the volume densities of gas
and dust ρ̂g and ρ̂d are distinguished from the intrinsic densities
denoted ρg and ρd according to

ρ̂d = (1 − θ )ρd, (A2)

ρ̂g = θρg. (A3)

Equations (18)–(21) should be modified accordingly, i.e.

∂ρ̂

∂t
+ ∇ (ρ̂v) = 0, (A4)

∂v

∂t
+ (v∇)v = f − ∇ (

Pg + Pd

)
ρ̂

− 1

ρ̂
∇ ·

(
ρ̂gρ̂d

ρ̂
�v�v

)
, (A5)

∂

∂t

(
ρ̂d

ρ̂g

)
+ v∇

(
ρ̂d

ρ̂g

)
= − ρ̂

ρ̂2
g

∇ ·
(

ρ̂gρ̂d

ρ̂
�v

)
, (A6)

∂�v

∂t
+ (v · ∇)�v = −�v

ts
+ ∇Pg

ρ̂g

[
θ − 1 − θ

ρ̂d/ρ̂g

]
− ∇Pd

ρ̂d

− (�v · ∇)v + 1

2
∇

(
ρ̂d − ρ̂g

ρ̂d + ρ̂g
�v2

)
, (A7)

where ρ̂ = ρ̂g + ρ̂d and v = ρ̂gvg+ρ̂dvd
ρg+ρd

. We have also included a dust
pressure Pd for complete generality.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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