97 research outputs found

    Real-Time Vehicle Detection from Short-range Aerial Image with Compressed MobileNet

    Get PDF
    Vehicle detection from short-range aerial image faces challenges including vehicle blocking, irrelevant object interference, motion blurring, color variation etc., leading to the difficulty to achieve high detection accuracy and real-time detection speed. In this paper, benefiting from the recent development in MobileNet family network engineering, we propose a compressed MobileNet which is not only internally resistant to the above listed challenges but also gains the best detection accuracy/speed tradeoff when comparing with the original MobileNet. In a nutshell, we reduce the bottleneck architecture number during the feature map downsampling stage but add more bottlenecks during the feature map plateau stage, neither extra FLOPs nor parameters are thus involved but reduced inference time and better accuracy are expected. We conduct experiment on our collected 5-k short-range aerial images, containing six vehicle categories: truck, car, bus, bicycle, motorcycle, crowded bicycles and crowded motorcycles. Our proposed compressed MobileNet achieves 110 FPS (GPU), 31 FPS (CPU) and 15 FPS (mobile phone), 1.2 times faster and 2% more accurate (mAP) than the original MobileNet

    MOBILE WEB APPLICATION PURWOKERTO TRADITIONAL FOOD GAME CLASIFICATION USING MOBILENET V2

    Get PDF
    Indonesia is a large country where there are thousands of aspects of culture, language and tourism. All of these aspects are an identity for the Indonesian state and each region within it. Culinary is one aspect that is included in the field of tourism. In Indonesia, each region has a special food that is an icon of the area. With so many foods from foreign countries entering Indonesia, this is feared will make the younger generation lose their identity about the regional heritage in special foods. Current technological developments have become excellent in various fields to solve the challenges that exist in the surrounding environment, it does not rule out the possibility that technology can be used to preserve the special foods that exist in each region. Based on the problems outlined above, this research will build a mobile web-based application for the introduction of local specialties through imagery and implement computer vision to mobile devices with CNN MobileNet V2 architecture. In this study a mobile web application was produced that was able to recognize Purwokerto's special foods that could be run well on various devices and operating systems

    LO-Det: Lightweight Oriented Object Detection in Remote Sensing Images

    Full text link
    A few lightweight convolutional neural network (CNN) models have been recently designed for remote sensing object detection (RSOD). However, most of them simply replace vanilla convolutions with stacked separable convolutions, which may not be efficient due to a lot of precision losses and may not be able to detect oriented bounding boxes (OBB). Also, the existing OBB detection methods are difficult to constrain the shape of objects predicted by CNNs accurately. In this paper, we propose an effective lightweight oriented object detector (LO-Det). Specifically, a channel separation-aggregation (CSA) structure is designed to simplify the complexity of stacked separable convolutions, and a dynamic receptive field (DRF) mechanism is developed to maintain high accuracy by customizing the convolution kernel and its perception range dynamically when reducing the network complexity. The CSA-DRF component optimizes efficiency while maintaining high accuracy. Then, a diagonal support constraint head (DSC-Head) component is designed to detect OBBs and constrain their shapes more accurately and stably. Extensive experiments on public datasets demonstrate that the proposed LO-Det can run very fast even on embedded devices with the competitive accuracy of detecting oriented objects.Comment: 15 page

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    A2^2-UAV: Application-Aware Content and Network Optimization of Edge-Assisted UAV Systems

    Full text link
    To perform advanced surveillance, Unmanned Aerial Vehicles (UAVs) require the execution of edge-assisted computer vision (CV) tasks. In multi-hop UAV networks, the successful transmission of these tasks to the edge is severely challenged due to severe bandwidth constraints. For this reason, we propose a novel A2^2-UAV framework to optimize the number of correctly executed tasks at the edge. In stark contrast with existing art, we take an application-aware approach and formulate a novel pplication-Aware Task Planning Problem (A2^2-TPP) that takes into account (i) the relationship between deep neural network (DNN) accuracy and image compression for the classes of interest based on the available dataset, (ii) the target positions, (iii) the current energy/position of the UAVs to optimize routing, data pre-processing and target assignment for each UAV. We demonstrate A2^2-TPP is NP-Hard and propose a polynomial-time algorithm to solve it efficiently. We extensively evaluate A2^2-UAV through real-world experiments with a testbed composed by four DJI Mavic Air 2 UAVs. We consider state-of-the-art image classification tasks with four different DNN models (i.e., DenseNet, ResNet152, ResNet50 and MobileNet-V2) and object detection tasks using YoloV4 trained on the ImageNet dataset. Results show that A2^2-UAV attains on average around 38% more accomplished tasks than the state-of-the-art, with 400% more accomplished tasks when the number of targets increases significantly. To allow full reproducibility, we pledge to share datasets and code with the research community.Comment: Accepted to INFOCOM 202

    Banana Seedlings Health Monitoring For Micro Air Vehicles Using Deep Convolutional Neural Network

    Get PDF
    Banana is one of the most produced but also highly demanded fruits in Malaysia. Many farmers invested in tissue-cultured techniques in greenhouses to increase production, but the tissue-cultured banana seedlings are not invincible to numerous diseases and pest attacks. To monitor the health conditions of the tissue-cultured banana seedlings, they need to hire many laborers or install cameras or sensors throughout the greenhouse. To this end, we proposed an affordable, hand-palm-sized, and automatic Micro Air Vehicle (MAV) to help farmers. MAVs have the mobility to access every corner of confined spaces and acquire an excellent bird’s-eye view, which provides great convenience in monitoring tasks, and is capable to fly according to the desired flight path and capture each plant precisely. This research compares the performances of five YOLO and Single Shot MultiBox Detector (SSD) deep learning model architectures in predicting the health status of banana seedlings. The Tiny-YOLOv4 model architecture, which has the best compromise between detection accuracy and detection speed, was then trained with different network resolutions and weightage of negative samples. Tiny-YOLOv4 with the 416×416 network resolution and 18% of negative samples has the highest mAP of 99.08% and was chosen to categorise the plants into normal and unhealthy classes based on the images captured by an onboard camera. Several flight tests were performed successfully in an indoor hall, and the plants were classified accurately. The locations of unhealthy plants are sent to notify farmers of further actions. The proposed solution in this project is expected to highly reduce labor-intensive activities and possible human error

    Computational Imaging and Artificial Intelligence: The Next Revolution of Mobile Vision

    Full text link
    Signal capture stands in the forefront to perceive and understand the environment and thus imaging plays the pivotal role in mobile vision. Recent explosive progresses in Artificial Intelligence (AI) have shown great potential to develop advanced mobile platforms with new imaging devices. Traditional imaging systems based on the "capturing images first and processing afterwards" mechanism cannot meet this unprecedented demand. Differently, Computational Imaging (CI) systems are designed to capture high-dimensional data in an encoded manner to provide more information for mobile vision systems.Thanks to AI, CI can now be used in real systems by integrating deep learning algorithms into the mobile vision platform to achieve the closed loop of intelligent acquisition, processing and decision making, thus leading to the next revolution of mobile vision.Starting from the history of mobile vision using digital cameras, this work first introduces the advances of CI in diverse applications and then conducts a comprehensive review of current research topics combining CI and AI. Motivated by the fact that most existing studies only loosely connect CI and AI (usually using AI to improve the performance of CI and only limited works have deeply connected them), in this work, we propose a framework to deeply integrate CI and AI by using the example of self-driving vehicles with high-speed communication, edge computing and traffic planning. Finally, we outlook the future of CI plus AI by investigating new materials, brain science and new computing techniques to shed light on new directions of mobile vision systems

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment
    corecore