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Abstract— Vehicle detection from short-range aerial image
faces challenges including vehicle blocking, irrelevant object
interference, motion blurring, color variationefc., leading to
the difficulty to achieve high detection accuracy and real-
time detection speed. In this paper, benefiting from the recent
development in MobileNet family network engineering, we
propose a compressed MobileNet which is not only internally
resistant to the above listed challenges but also gains the best
detection accuracy/speed tradeoff when comparing with the
original MobileNet. In a nutshell, we reduce the bottleneck
architecture number during the feature map downsampling \ :
stage but add more bottlenecks during the feature map plateau (c)interference (d)color variation
stage, neither extra FLOPs nor parameters are thus involved
but reduced inference time and better accuracy are expected.  Fig. 1. Sample challenges that commonly exist in vehicle detection from
We conduct experiment on our collected 5-k short-range aerial  short-range aerial images. Vehicles with different categories are surrounded
images, containing six vehicle categories: truck, car, bus, bicycle,  with bounding boxes with different colors for better visualization.
motorcycle, crowded bicycles and crowded motorcycles. Our
proposed compressed MobileNet achieves 110 FPS (GPU), 31
FPS (CPU) and 15 FPS (mobile phone), 1.2 times faster and 2%

[} —

more accurate (mAP) than the original MobileNet. neural networks have been designed [19][20][21] and the
one-stage detection methods also have been created [10][11].
I. INTRODUCTION As a special kind of object detection, vehicle detection

from short-range aerial images has strong application in

Object detection is a classic and fundamental problem in ) o . )
either autonomous driving or video surveillance. It pro-

robotics. It serves as prerequisite prior information for other - 3 o ) 3
advanced technologies, such as simultaneous locationlization ~ vides essential vehicle information for both internet of ve-
and mapping (SLAM) [1][2], point cloud semantic segmen- hicles (IOV)‘ and realtime trflnsportatlon cond1t19n .for city
tation [3][4] and object tracking [SI[6][7][8]. Object detec- Sf:ale surveglanc?. Unflelr this circumstance, achieving real-
tion targets at localizing object and identifying its category ~ time detection with minimal hardware cost and low latency
simultaneously. It has gained significant progress in recent 1 Preferable than emphasizing detection accuracy alone,
years, owing to the successful design of powerful detection ~cYen With some inevitable but acceptable accuracy loss.
neural network [9][10][11] and the availability of various Vehicle c'letectlon from short-range aerlgl images actually
large-scale object detection datasets [12][13]. On the one fa.lces various challenges. Fpr example, Fig. 1 presents fours
hand, accuracy oriented object detection algorithms [9][14] ~ Kinds Of, challenges, blocking usually happens around road
often consist of two stages, regional proposal network (RPN,  intersection when the red traffic light is on, wher§ a large
aka backbone) and the subsequent proposal regression and ~ £rOUP of vehl.cles are chaotlcally clogged. Blurring indicates
classification network (aka head). The exploitation of heavy ~Mmotion blurring and it often happens on freeway where
backbone, like ResNet[15] and NasNet [16], and the mining ~ Vehicles are driving with high speed. Interference means =
of useful image context information [17][18] often result in relevar}t I?ut quas1-veh1cle.ob]ect 1nterfere§ Wlth' veh}cles, (i.e.
two-stage detection algorithms staying in the front rows the building and fence lying close to vehicles in Fig. 1 (c)),
of various object detection challenges. The corresponding ~ Precipitously Increasing the difficulty to distinguish them
speed oriented object detection algorithm, however, aims to ac.:curately. C?lor varzatzqn means the color difference among
achieving real-time application in mobile devices with an  different vehicle categories. In Fig. 1 (d), the truck and the

affordable accuracy loss. To this end, various light weight nearby cars share completely different color layout, resulting
in the necessity for the detection algorithm to be able to
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hicles are homogeneous and less size-variant but they suffer
from challenges as is shown in Fig. 1. Thus it allows the
detection model to cover less scales but requires the model
to acquire powerful feature expressiveness. We benefit from
the current development of MobileNet family network engi-
neering and propose to re-engineer the original MobileNet
v2 network by reducing the bottleneck architectures during
the feature map downsampling stage but adding more bot-
tlenecks when the feature map’s spatial resolution stagnates.
Our proposed compressed MobileNet enjoys much fewer
FLOPs and negligible parameters increase, ensuring the fast
detection performance when comparing with the original
MobileNet v2. Moreover, we squash the compressed Mo-
bileNet into SSD [10] detection framework. Unlike original
MobileNet v2 that extract features at different scales (exactly
six scales), our compressed MobileNet extracts features at
fewer scales but multiple times for an individual scale.
This leads to full exploitation of the feature map results
in better detection accuracy when comparing with original
MobileNet v2, especially for the hard vehicle categories,
such as motorcycle, bicycle and motorcycle crowded.

In sum, we make two main contributions: 1) we exploit
the latest development in object detection to devise a light
weight neural network that achieves the best detection ac-
curacy/speed tradeoff for vehicle detection. 2) our proposed
neural network is scalable and hardware deployment friendly,
it can be easily extended to other relevant detection tasks and
further optimized for more efficient performance.

II. RELATED WORK

Object detection has gained significant progress in re-
cent years, benefiting from the rapid development of deep
convolutional neural networks (CNN). We briefly review re-
lated work from three perspectives: accuracy-oriented, speed-
oriented and light weight neural network engineering.

Accuracy-oriented objected detection often consists of
two stages: region proposal generation and proposal re-
gression and classification. The serial R-CNN [22], Fast-
RCNN[23] and Faster-RCNN [9] successively construct the
algorithmic pipeline for two stage based detection. For region
of interest (Rol) generation, R-CNN[22] depends on selective
search [24], Fast-RCNN [23] and Faster-RCNN [9] have de-
vised region proposal network (RPN) and Faster-RCNN [9]
steps further to combine RPN and other components together
so as to make the whole network end-to-end trainable. The
first stage trains a backbone network for proposal generation
while the second stage trains a head network to further adjust
proposals. Thus, various following work has been proposed
to either upgrade backbone network[17] or modify head
network [14] to further improve the overall performance.
Accuracy oriented detection algorithms are usually of low
detection speed because decoupling of backbone and head
network works much slower than coupling them together.

Speed-oriented detection has long attracted attention and
it targets at achieving fast detection speed without much
penalizing the accuracy. Alongside the two-stage detection
pipelines, various attempts have already been made to reduce

the computation complexity. For instance, He et al.[25]
have proposed spatial pyramid pooling network to share
computations among candidate proposals. Dai et al.[26]
exploit fully convolutional network to speed up the inference
time. Different from two-stage detection pipelines, one-stage
detection algorithms have also been devised [10][11], which
are comparably faster than two-stage algorithms because
they finish proposal general and proposal adjustment at one
time. The two most representative one-stage detectors are
YOLO[11] and SSD[10]. YOLO treats object detection as
a regression problem and it predicts the potential proposal
bounding box location and its associated class probability
within one computation. SSD [10] further improves the per-
formance by producing proposals at different scales from
different convolution layers. These one-stage detectors have
been harnessed for real-time detection applications.

Light-weight network engineering tries to design light
weight network architecture that maximally reduces required
computation but with non-obvious or acceptable accuracy
loss, by still obeying the general convolutional neural net-
work design philosophy. In a nutshell, this kind of engineer-
ing work focuses on cutting off unnecessary multiply and add
operation number within a sophisticated network architec-
ture. Existing work [20][19][27] overwhelmingly depend on
shallow and thin neural network and further simplify required
computation by reformulate the convolution operation. For
example, ShuffleNet[20] proposes group convolution and
channel shuffle to simplify the network. MobileNet [19][27]
uses depth-wise convolution and point wise convolution to
release computation burden. These successful design has
already achieved real-time detection even on mobile devices
like smart phone. Our work builds on these design too and
we will discuss them in detail in the next section. Note that
other relevant model compression technologies such model
pruning [28] and model binarization [29] can also be applied
to shorten the detection time, yet we do not talk about them
in this paper as they often lead to large accuracy loss.

vehicle detection is a classic problem is either au-
tonomous driving or robotics domain [30][31][32]. Existing
work on vehicle detection either exploit LiDAR point cloud
information [30][31] or focus on vehicle detection from
images captured by on-road camera[32]. No existing work
exploits deep neural network for vehicle detection from
short-range aerial images.

III. PRELIMINARY AND OUR APPROACH
A. Metrics for Detector Efficiency

How to qualitatively determine the efficiency of an
available detector? Currently existing work [20] [19][27][33]
adopt three widely-used metrics: float-point multiplication
or adds operation numbers (FLOPs), model parameter num-
ber (Params) and memory access cost (MAC). They describe
the detector’s efficiency from different perspectives.

To compute FLOPs for convolutional neural net-
works (CNNs), we assume the convolution operation is com-
puted by a sliding window sliding the feature maps with
fixed stride and the following nonlinearity is computed for
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Fig. 2. Visualization of different kinds convolution operations (left side) and linear bottleneck and inverted residual connection (right side).

free. For an input feature map with height 4 width w and
channel c;, the kernel size is of k x k and the output channel
is ¢,, the corresponding FLOPs ! is,

FLOPs = 2hw(k*ci)c, )

FLOPs is feature spatial map resolution dependent, Larger
feature map leads to higher FLOPs. Params merely depends
on network architecture,

Params = (k*c;)c, (2)

Memory access cost(MAC) indicates the memory/cache
switch number for the detector’s inference per time. It heavily
depends on the capability of hardware. For simplification,
we assume the output feature map is of the same spatial
resolution of input feature map, then the MAC value is,

MAC = hw(ci+c¢,)+ Kcic, 3)

In general, the lower of the FLOPs, Params or MAC value,
the potentially more efficient of the detector. However, none
of them alone guarantees the efficient performance in real se-
cenarios. For example, MobileNet v2 [27] shares comparable
FLOPs value with NASNet-A [16] but MobileNet v2 is much
faster than NASNet-A. Various peripheral factors should be
taken into consideration in real scenario applications, such
as neural network architecture, hardware bandwidth ezc..

Memory access coat (MAC) has a lower bound,

FLOP
MAC > V2-\/hw-FLOPs + =, i 4)
w

to get the lower bound, ¢; must be equal to ¢,, ¢; =
¢, (please see [20]). Thus, state of the art light weight neural
networks usually adopt this channel-equal guide to design
networks [20] [19][27].

B. Guidelines for Light Weight Neural Network Design

The ultimate goal of light weight neural network design
is to maximumly reduce model capacity (specifically, re-
duce FLOPs) while maximizing model expressiveness. For
model capacity reduction, since the most time-consuming
computation lies in convolution and standard convolution
operation produces each output channel by convolving all
input channels, various light weight convolutions have been

'Note that FLOPs here treats multiply and add operation separately.

devised to mitigate the computation burden, including depth
wise convolution, point wise convolution, efc..

Depth Wise Convolution The channel correspondence
between input feature map and output feature is many-to-
many in standard convolution. Depth wise convolution, on
the other hand, depends on one-to-one correspondence and
directly produces each output channel from its corresponding
single input channel. For the same convolution in Eqn. (1),
the FLOPs for depth wise convolution is hw(2k>c;), reducing
standard FLOPs by a factor of ¢;. Depth wise convolution
requires the input feature map channel and output feature
map channel to be the same.

Point Wise Convolution adopts 1 x 1 kernel and it enjoys
much flexibility to expand or shrink the output feature map
channels, regardless of the input feature channel number.
Moreover, 1 x 1 kernel is hardware friendly (both mobile
and embed hardware) and has been widely used in various
light weight neural network design [19][27][20]. Point wise
convolution often works in combination with depth wise con-
volution to construct “bottleneck” module (we will present it
in the following subsection).

The two widely adopted convolution genres as well as the
standard convolution are shown in Fig. 2 left side. In addition
to these two genres, ShuffleNet[20] has introduced group
convolution and channel shuffle to reduce the computation.
We do not introduce them here as they are unfriendly to
hardware deployment. Unilateral model capacity reduction,
however, accompanies model expressiveness decrease. In
defence of model expressiveness, MobileNet v2[27] has
introduced linear bottleneck and inverted residual connection.

Linear Bottleneck “Bottleneck” like network architecture
derives from ResNet[15], it enables information flow and
communication from different network depth, thus becomes
a widely-used guide for current neural network engineering.
Conventional convolution is usually followed by a batch
normalization [34] and ReLU activation (in light weight neu-
ral network, ReLU6 which clips values larger than 6 is
often used instead of ReLU). It works well for large neural
networks. But when it comes to light weight neural network,
ReLU easily leads to training collapse and information
loss (we refer [27] for more theoretical proof). M. Sandler
et al. propose to eliminate the ReLU activation before the
last convolution within all bottleneck connection. Experiment
result has already shown large improvement in COCO [13]
object detection and other relevant tasks.

Inverted Residual Connection aims at strengthening the



model’s expressiveness by expanding the channels within the
side path but return back to the original channel when it
merges with the main path by elementwise add operation.
The channel expansion is achieved by three specially de-
signed sequential convolutions: a point wise convolution for
channel expansion, then a depth wise convolution for further
information encoding and in the end a point wise convolution
for channel reduction. An intuitional illustration of linear
bottleneck and inverted residual connection is show in Fig. 2
right side.

Aforementioned network engineering guidelines have
been treated as basic components for modern light
weight network design, including ShuffleNet [20], MobileNet
V1/V2[19][27], Xception [33], etc.. Our network also builds
on these guidelines. In summary, we can get three main
conclusions from these guidelines,

1) Linear bottleneck and inverted residual connection
are the keys to increase model expressiveness. Depth
wise and point wise convolution guarantee low model
capacity while maintaining appropriate model expres-
siveness.

2) Model expressiveness stores in the feature map’s spa-
tial resolution as well as its channels, that means
smaller spatial resolution can be remedied by large
channels for equivalent model expressiveness.

3) Try to apply identity block because it costs minimal
memory access cost (MAC).

C. Our Approach

Neural network based detection pipeline can be roughly
divided into two main components: feature extraction and the
followed box prediction. Feature extraction module depends
on a light weight neural network that strikes the providential
balance between detection accuracy and detection speed. It
has occupied the largest part for the final detection per-
formance, thus most work focus on light weight network
engineering. For the box prediction, SSD pipeline [10] is the
mostly used counterpart for two main reasons: the first one
is that SSD belongs to one-stage detector, it is much faster
than two-stage detector like Faster-RCNN [9], conforming
to our real-time detection requirement. The second one is
that, unlike other one-stage detectors like YOLO[11], SSD
extracts features from different resolution scales, resulting
in more robust feature representation and better detection
performance for objects with various sizes. We thus embrace
SSD as our box predictor. For SSD introduction, we refer
to [10].

We build our feature extraction on MobileNet v2[27],
which has shown promising performance in vision tasks
such as classification on ImageNet dataset [35], detection on
COCO dataset [13] and semantic segmentation on PASCAL
VOC 2012 dataset [36]. Moreover, unlike ShuffleNet [20] that
is hardware implementation unfriendly because it requires
frequent memory/cache with operation, MobileNet v2 is
hardware-friendly and can be easily deployed on either
mobile or embedded devices. Instead of directly adopting
MobileNet v2, we propose a compressed version that is more

TABLE I
COMPRESSED MOBILENET ARCHITECTURE AND ORIGINAL
MOBILENETV2 ARCHITECTURE.

Input Operator t c Ny Ny S
2247 %3 conv2d - 32 1 1 2
1122 x 32 bottleneck 1 16 1 1 1
1122 x 16 bottleneck 6 24 2 1 2
562 x 24 bottleneck 6 32 301 2
282 % 32 bottleneck 6 64 4 2 2
142 x 64 bottleneck 6 9 3 1 1
142 x 96 bottleneck 6 160 3 1 2
7% % 160 bottleneck 6 320 1 301
7% % 320 conv2d Ix1 - 1280 1 2 1
7? %1280 | avgpool 7x7 - - - -1

I1x1x1280 | conv2d 1x1 - k 1 -1

suitable for vehicle detection from short-range aerial images
because it holds the following two main characteristics,

4) Vehicles in short-range aerial images are homogeneous
and share less size variation, requiring less spatial
resolution scales for SSD feature extraction.

5) The challenges shown in Fig. 1 require large model
expressiveness to handle interference, blurring and
blocking problems.

As a consequence, we propose a compressed MobileNet
based on the aforementioned five rules. First, we achieve
the feature map spatial x32 downsampling (224 x 224 to
7 x 7) via 8 bottlenecks, unlike the 16 bottlenecks used
by MobileNe V2. This is achieved by reducing the bottle-
necks for each spatial resolution. The fast downsampling
strategy reinforces the neural network to encode feature
expressiveness into feature map channels, relatively ignoring
the spatial resolution. Second, the saved memory can be
further used to further enhance the model expressiveness on
7 x 7 feature map (plateau stage) by stacking multiple identity
blocks (echoes rule 2) and 3) ). Third, unlike MobileNet
v2 that exploits feature map at different spatial resolution
scales (14 x 14, 7x 7, 4 x4, 2x2 and 1 x 1), compressed
MobileNet merely extracts features from 14 x 14 and 7 x 7
scales. The reason is twofold: since vehicles in short-range
aerial images are homogeneous and small in size, feature
map with smaller spatial resolution is not that needed because
smaller spatial resolution often corresponds to larger object
detection in SSD detection framework due to the anchor
point generation (echoes rule 4)); multiple feature extraction
from 7 spatial resolution fully leverages the powerful feature
expressiveness we have constructed with multiple identity
blocks (responsible for challenges in 5)).

The detailed compressed MobileNet as well as the orig-
inal MobileNet v2 architecture is shown in Table 1, in
which ¢ indicates depth multiplier, ¢ indicates output channel
number, n,, and n, indicate the bottleneck number of the
corresponding spatial resolution for the original MobileNet
v2 and our compressed MobileNet respectively. s is the
stride. We can observe that our compressed MobileNet has
less bottlenecks for each spatial resolution before it reaches
7 x 7 resolution. On the contrary, multiple bottlenecks are



added to each of 7 x 7 spatial resolution feature maps (3
bottlenecks for 72 x 160 and 2 for 7% x 320) to enhance
feature expressiveness.

204°<3 224°x3
N2 N
12532 1 12532 1|
12162 2x16 1|
56324 3 56%24_ 1 |
28532 4 28532 2 |
] 1464 3| | 1464 1]
PV | Tiax9s 3| copv [14%96
SSD 72><160 1 SSD \l,
T30 1| ssD7x160 3
71280 1| SSD|_7x320 2.
N SSD—{ 7%x1280 1
SSD—|_ 4512 1
SSD | 2°x256.___1..
SSD__1°x256.___1..
SSD e 1’x128 1

MobileNet V2 Compressed MobileNet

Fig. 3. SSDLite based object detection on MobileNet v2 and compressed
MobileNet network. We can have a clear understanding towards the feature
extraction network module workflow as well as the node location SSDLite
builds on to extract features. The number in the left side indicates the
intermediate feature map while in the right side indicates the corresponding
bottleneck number.

We show the way SSDLite extracts features from our
compressed MobileNet and the original MobileNet v2 in
Fig. 3. SSDLite is a special SSD variant by changing its
convolution to depth wise convolution, reducing the Params
by a factor of 7 and FLOPs by a factor of 4. We can
clearly see that unlike the original MobileNet v2 that ex-
tracts features from six kinds of feature maps with various
scales and consecutively exploits the last 72 x 1280 feature
map by adding extra convolution operator, our compressed
MobileNet fully leverages the 7 x 7 feature maps to extract
feature multiple times. Experimental result in the next section
shows superiority of our proposed method.

IV. EXPERIMENT

Network Initialization We train all models with Tensor-
Flow [37] and GPU 8 GTX 1080Ti. We pre-train our pro-
posed compressed MobileNet on ILSVRC 2012 dataset [35]
and construct four compressed MobileNet variants by dif-
fering the depth multiplier ¢+ with 1.4, 1.0, 0.75, 0.5 in
descending order. The initial learning rate is 0.045, decay
rate is 0.98 per epoch. The weight decay is set to 0.00004
and momentum is set to 0.9. RMSProp optimizer is adopted
here. We report top-1 accuracy in Table 2, from which we
can observe that our proposed compressed MobileNet (x 1)
have 20% more model parameters but 21% less FLOPs than
its counterpart MobileNet v2. But it outperforms MobileNet
v2 by nearly 1% top-1 accuracy even with less FLOPs
and minimal more Params. It attests that our proposed
compressed MobileNet shines in model expressiveness under
limited computational budget and it fits for fast inference
due to the reduced FLOPs. Note that, we do not report
MAC value because it heavily depends on hardware and it
is positively correlated with FLOPs and Params.

TABLE II
PERFORMANCE IN ILSVRC 2012 DATASET.

Network Top-1 Accu  FLOPs  Params
MobileNet v2 (x1.4) 74.7% 1170M 69 M
MobileNet v2 (x1.0) 72.0% 600 M 34 M

Compressed MobileNet (x1.4) 75.8% 950 M 7.18 M
Compressed MobileNet (x1.0) 73.1% 487TM 404 M
Compressed MobileNet (x0.75) 69.8% 322 M 2.53 M
Compressed MobileNet (x0.5) 61.3% 140 M 1.35 M

The pre-trained compressed MobileNet models are further
used to fine-tune SSDLite based vehicle detection model. We
train all detection models with TensorFlow object detection
API[38]. For evaluation metric, we adopt the widely-used
COCO detection evaluation metric [13], that is recording the
average precision (AP) for each category and the total mean
average precision across all categories (mAP). For detection
accuracy test, we conduct experiments on both our proposed
compressed MobileNet and MobileNet v2 with various depth
multiplier 7 and input image sizes (i.e. 300 x 300, 224 x 224,
196 x 196). Note that by observing the performance by
changing the depth multiplier # and input image size, we can
gain in-depth understanding on models’ expressiveness under
various computational budget. For detection time test, we run
experiments on three representative hardwares: GPU with
GTX 1080Ti, CPU with 2.8 GHz Intel Core i5 processor and
mobile device with iPhone X. The mobile detector is gener-
ated by TFLite [38]. We report the frame per second (FPS)
as the run-time efficiency metric. For detector training, we
leverage the recommended hyper parameter setting strategy
recommended by TensorFlow object detection API[38].

We have collected 5-k images from camera bounded
on the roof of various urban buildings, capturing vehicles
under different road conditions, motion states. Each image
associates with 15 vehicles on average. We randomly divide
it into 3.5-k, 0.5-k and 1-k for train/val/test respectively.

The first thing we want to figure out is the feasibility and
superiority of our proposed compressed MobileNet in vehi-
cle detection when comparing with other popular relevant
methods, such as MobileNet v2[27] and ShuffleNet [20].
To this end, we exploit the officially provided models pre-
trained on ILSVRC 2012 to train vehicle detection models
for MobileNet v2 and ShuffleNet v2 respectively. The depth
multiplier # = 1 and the image input size that is taken into
consideration is 224 x 224. The detailed result is reported in
Table 3, from which we can learn that, comparing with two
other methods, our proposed compressed MobileNet enjoys
the least FLOPs but outperforms MobileNet v2 by 0.02
mAP improvement and achieves comparable performance
with ShuffleNet v2 [20]. The largest advantage of compressed
MobileNet is that it runs much faster in hardware deployment
and the poorer the hardware is, the relatively faster it
appears to be when comparing with either MobileNet v2
or ShuffleNet v2. ShuffleNet v2 performs inferior in low-
level hardware although it achieves relatively high detection
accuracy. This attests ShuffleNet is unfriendly to hardware.



TABLE III
COMPARISON OF OUR PROPOSED METHOD AND OTHER METHODS.

Evaluation Result (mAP and AP, larger is better) FPS
Network 7 =1 FLOPs Params mAP car bus truck  motorcycle bicycleg motor crowd  bicy crowd | GPU  CPU  Mobile
ShuffleNetv2 (224x) | 650.8 M | 340 M 0.85 098  0.92 0.80 0.71 0.85 0.94 0.76 100 22 8
MobileNetv2 (224x) | 601.8 M | 347 M 0.83 098 091 0.77 0.67 0.83 0.95 0.73 98 23 10
Comp. Mobi (224x) | 4873 M | 4.02M 0.85 098  0.93 0.80 0.72 0.83 0.95 0.75 110 31 15
TABLE IV
COMPARISON OF VARIOUS COMPRESSED MOBILENET VARIANTS.
. . Evaluation Result (mAP and AP, larger is better) FPS
Network (size, 1) FLOPs Params mAP car bus truck  motorcycle bicyc%e motorcrowd ~ bicycrowd | GPU  CPU  Mobile
MobileNet v2 (224 x,1.4) 1.16 B 6.06 M 0.84 098  0.92 0.78 0.69 0.83 0.95 0.76 90 21 7
MobileNet v2 (224 x,1.0) 601.84 M | 347M 0.83 098 091 0.77 0.67 0.83 0.95 0.73 98 23 10
MobileNet v2(224x,0.75) | 41021 M | 221 M 0.80 097 0.89 0.76 0.62 0.80 091 0.69 112 27 16
MobileNet v2 (224 x,0.50) 183.11 M 121 M 0.76 092 0.85 0.72 0.58 0.76 0.90 0.65 130 35 25
Comp. Mobi (300, 1) 9393 M 402 M 0.85 098 092 0.81 0.73 0.82 0.95 0.74 104 26 10
Comp. Mobi (224 x,1) 4873 M 4.02 M 0.85 098 093 0.80 0.72 0.83 0.95 0.75 110 31 15
Comp. Mobi (196, 1) 4404 M 4.02 M 0.82 097  0.90 0.77 0.70 0.81 0.92 0.72 120 35 21
Comp. Mobi (224 x,1.4) 951.1 M 718 M 0.86 098  0.94 0.82 0.73 0.85 0.95 0.77 106 27 13
Comp. Mobi (224 x,0.75) 321.63M | 253 M 0.83 097  0.90 0.79 0.70 0.81 0.93 0.74 124 37 24
Comp. Mobi (224 x,0.50) 140.5 M 1.35 M 0.80 092  0.89 0.76 0.66 0.79 0.90 0.71 147 49 32

(b) inter-category crowdedness

(a) detection with motion blurring

(c) dense environment (d) non-vehicle interference

Fig. 4. Qualitative visualization of sample detection result images. The attention areas are drawn with yellow dotted lines. Zoom in for better visualization.

On the contrary, our proposed compressed MobileNet obtains
the best detection accuracy/speed tradeoff in terms of vehicle
detection from short-range aerial images. Note that we do
not report MobileNet vl and ShuffleNet vl performance as
they have already been shown inferior to their v2 counter-
parts [27][20], we find this applies to vehicle detection too.

To further test the robustness of compressed MobileNet,
we conduct experiment on different compressed MobileNet
variants by changing the depth multiplier # and the input
image spatial resolution. To this end, we create the first
set of variants by changing the depth multiplier but fixing
the spatial resolution as 224 x 224. After that, we reversely
create the second variants by changing the spatial resolution
but fixing the depth multiplier as ¢ = 1. For direct com-
parison, we also report the MobileNet v2 performance of
224 x 224 input size under various depth multiplier. The
detailed result is shown in Table 4. Three conclusions can
be summarized from this table: with the decreasing of depth
multiplier #, MobileNet v2 suffers more accuracy loss (mAP)
than the compressed MobileNet counterpart. Under the same
depth multiplier, compressed MobileNet achieves higher FPS
than MobileNet v2. We have further noticed compressed
MobileNet performs better on hard object detection than
MobileNet v2 under small depth multiplier. For example,
with the depth multiplier r = 0.5, the average precision

of motorcycle and bicycle crowd obtained by compressed
MobileNet is at least 5% higher than the value obtained by
the corresponding MobileNet v2.

We further provide qualitative detection visualization in
Fig. 4. The detection result is generated by compressed
MobileNet with input size 224 x 224 and multiplier ¢ = 1.
We can see from this figure that our proposed compressed
MobileNet can successfully tackle the challenges presented
in Fig. 1, including motion blurring, non-vehicle object
interference, inter-category or intra-category crowdedness.
For example, the black car largely occluded by light pole has
been successfully detected (the right most figure in Fig. 4).

In summary, our proposed compressed MobileNet strikes
great balance between detection accuracy and speed. It
fully exploits the internal characteristics of short-range aerial
images and builds on the state of the art light weight
network engineering guidelines, outperforming the popular
MobileNet v2 by a large margin in terms of accuracy and
speed. Moreover, compressed MobileNet is self scalable and
mobile or embedded device deployment friendly.
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