2,536 research outputs found

    Learned and Controlled Autonomous Robotic Exploration in an Extreme, Unknown Environment

    Full text link
    Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.Comment: Published in: 2019 IEEE Aerospace Conference Date of Conference: 2-9 March 2019 Date Added to IEEE Xplore: 20 June 201

    Tapered whisker reservoir computing for real-time terrain identification-based navigation

    Get PDF
    This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain

    Learning an Efficient Terrain Representation for Haptic Localization of a Legged Robot

    Full text link
    Although haptic sensing has recently been used for legged robot localization in extreme environments where a camera or LiDAR might fail, the problem of efficiently representing the haptic signatures in a learned prior map is still open. This paper introduces an approach to terrain representation for haptic localization inspired by recent trends in machine learning. It combines this approach with the proven Monte Carlo algorithm to obtain an accurate, computation-efficient, and practical method for localizing legged robots under adversarial environmental conditions. We apply the triplet loss concept to learn highly descriptive embeddings in a transformer-based neural network. As the training haptic data are not labeled, the positive and negative examples are discriminated by their geometric locations discovered while training. We demonstrate experimentally that the proposed approach outperforms by a large margin the previous solutions to haptic localization of legged robots concerning the accuracy, inference time, and the amount of data stored in the map. As far as we know, this is the first approach that completely removes the need to use a dense terrain map for accurate haptic localization, thus paving the way to practical applications.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Contributions to Intelligent Scene Understanding of Unstructured Environments from 3D lidar sensors

    Get PDF
    Además, la viabilidad de este enfoque es evaluado mediante la implementación de cuatro tipos de clasificadores de aprendizaje supervisado encontrados en métodos de procesamiento de escenas: red neuronal, máquina de vectores de soporte, procesos gaussianos, y modelos de mezcla gaussiana. La segmentación de objetos es un paso más allá hacia el entendimiento de escena, donde conjuntos de puntos 3D correspondientes al suelo y otros objetos de la escena son aislados. La tesis propone nuevas contribuciones a la segmentación de nubes de puntos basados en mapas de vóxeles caracterizados geométricamente. En concreto, la metodología propuesta se compone de dos pasos: primero, una segmentación del suelo especialmente diseñado para entornos naturales; y segundo, el posterior aislamiento de objetos individuales. Además, el método de segmentación del suelo es integrado en una nueva técnica de mapa de navegabilidad basado en cuadrícula de ocupación el cuál puede ser apropiado para robots móviles en entornos naturales. El diseño y desarrollo de un nuevo y asequible sensor lidar 3D de alta resolución también se ha propuesto en la tesis. Los nuevos MBLs, tales como los desarrollados por Velodyne, están siendo cada vez más un tipo de sensor 3D asequible y popular que ofrece alto ratio de datos en un campo de visión vertical (FOV) limitado. El diseño propuesto consiste en una plataforma giratoria que mejora la resolución y el FOV vertical de un Velodyne VLP-16 de 16 haces. Además, los complejos patrones de escaneo producidos por configuraciones de MBL que rotan se analizan tanto en simulaciones de esfera hueca como en escáneres reales en entornos representativos. Fecha de Lectura de Tesis: 11 de julio 2018.Ingeniería de Sistemas y Automática Resumen tesis: Los sensores lidar 3D son una tecnología clave para navegación, localización, mapeo y entendimiento de escenas en vehículos no tripulados y robots móviles. Esta tecnología, que provee nubes de puntos densas, puede ser especialmente adecuada para nuevas aplicaciones en entornos naturales o desestructurados, tales como búsqueda y rescate, exploración planetaria, agricultura, o exploración fuera de carretera. Esto es un desafío como área de investigación que incluye disciplinas que van desde el diseño de sensor a la inteligencia artificial o el aprendizaje automático (machine learning). En este contexto, esta tesis propone contribuciones al entendimiento inteligente de escenas en entornos desestructurados basado en medidas 3D de distancia a nivel del suelo. En concreto, las contribuciones principales incluyen nuevas metodologías para la clasificación de características espaciales, segmentación de objetos, y evaluación de navegabilidad en entornos naturales y urbanos, y también el diseño y desarrollo de un nuevo lidar rotatorio multi-haz (MBL). La clasificación de características espaciales es muy relevante porque es extensamente requerida como un paso fundamental previo a los problemas de entendimiento de alto nivel de una escena. Las contribuciones de la tesis en este respecto tratan de mejorar la eficacia, tanto en carga computacional como en precisión, de clasificación de aprendizaje supervisado de características de forma espacial (forma tubular, plana o difusa) obtenida mediante el análisis de componentes principales (PCA). Esto se ha conseguido proponiendo un concepto eficiente de vecindario basado en vóxel en una contribución original que define los procedimientos de aprendizaje “offline” y clasificación “online” a la vez que cinco definiciones alternativas de vectores de características basados en PCA

    ToF cameras for active vision in robotics

    Get PDF
    ToF cameras are now a mature technology that is widely being adopted to provide sensory input to robotic applications. Depending on the nature of the objects to be perceived and the viewing distance, we distinguish two groups of applications: those requiring to capture the whole scene and those centered on an object. It will be demonstrated that it is in this last group of applications, in which the robot has to locate and possibly manipulate an object, where the distinctive characteristics of ToF cameras can be better exploited. After presenting the physical sensor features and the calibration requirements of such cameras, we review some representative works highlighting for each one which of the distinctive ToF characteristics have been more essential. Even if at low resolution, the acquisition of 3D images at frame-rate is one of the most important features, as it enables quick background/ foreground segmentation. A common use is in combination with classical color cameras. We present three developed applications, using a mobile robot and a robotic arm, to exemplify with real images some of the stated advantages.This work was supported by the EU project GARNICS FP7-247947, by the Spanish Ministry of Science and Innovation under project PAU+ DPI2011-27510, and by the Catalan Research Commission through SGR-00155Peer Reviewe
    corecore