358 research outputs found

    Parallelization of the mosaic image alighment algorithm

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 33).Laughton M. Stanley.S.B.and M.Eng

    04251 -- Imaging Beyond the Pinhole Camera

    Get PDF
    From 13.06.04 to 18.06.04, the Dagstuhl Seminar 04251 ``Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Design of Immersive Online Hotel Walkthrough System Using Image-Based (Concentric Mosaics) Rendering

    Get PDF
    Conventional hotel booking websites only represents their services in 2D photos to show their facilities. 2D photos are just static photos that cannot be move and rotate. Imagebased virtual walkthrough for the hospitality industry is a potential technology to attract more customers. In this project, a research will be carried out to create an Image-based rendering (IBR) virtual walkthrough and panoramic-based walkthrough by using only Macromedia Flash Professional 8, Photovista Panorama 3.0 and Reality Studio for the interaction of the images. The web-based of the image-based are using the Macromedia Dreamweaver Professional 8. The images will be displayed in Adobe Flash Player 8 or higher. In making image-based walkthrough, a concentric mosaic technique is used while image mosaicing technique is applied in panoramic-based walkthrough. A comparison of the both walkthrough is compared. The study is also focus on the comparison between number of pictures and smoothness of the walkthrough. There are advantages of using different techniques such as image-based walkthrough is a real time walkthrough since the user can walk around right, left, forward and backward whereas the panoramic-based cannot experience real time walkthrough because the user can only view 360 degrees from a fixed spot

    A ROBUST RGB-D SLAM SYSTEM FOR 3D ENVIRONMENT WITH PLANAR SURFACES

    Get PDF
    Simultaneous localization and mapping is the technique to construct a 3D map of unknown environment. With the increasing popularity of RGB-depth (RGB-D) sensors such as the Microsoft Kinect, there have been much research on capturing and reconstructing 3D environments using a movable RGB-D sensor. The key process behind these kinds of simultaneous location and mapping (SLAM) systems is the iterative closest point or ICP algorithm, which is an iterative algorithm that can estimate the rigid movement of the camera based on the captured 3D point clouds. While ICP is a well-studied algorithm, it is problematic when it is used in scanning large planar regions such as wall surfaces in a room. The lack of depth variations on planar surfaces makes the global alignment an ill-conditioned problem. In this thesis, we present a novel approach for registering 3D point clouds by combining both color and depth information. Instead of directly searching for point correspondences among 3D data, the proposed method first extracts features from the RGB images, and then back-projects the features to the 3D space to identify more reliable correspondences. These color correspondences form the initial input to the ICP procedure which then proceeds to refine the alignment. Experimental results show that our proposed approach can achieve better accuracy than existing SLAMs in reconstructing indoor environments with large planar surfaces

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Development of the opto-mechanical design for ICE-T

    Full text link
    ICE-T (International Concordia Explorer Telescope) is a double 60 cm f/1.1 photometric robotic telescope, on a parallactic mount, which will operate at Dome C, in the long Antarctic night, aiming to investigate exoplanets and activity of the hosting stars. Antarctic Plateau site is well known to be one of the best in the world for observations because of sky transparency in all wavelengths and low scintillation noise. Due to the extremely harsh environmental conditions (the lowest average temperature is -80^\circC) the criteria adopted for an optimal design are really challenging. Here we present the strategies we have adopted so far to fulfill the mechanical and optical requirements.Comment: 7 pages, 2 figures, contributed talk at 'An astronomical Observatory at Concordia (Dome C, Antarctica) for the next decade', 11-15 May, Rome (Italy

    Tele-immersive display with live-streamed video.

    Get PDF
    Tang Wai-Kwan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 88-95).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Applications --- p.3Chapter 1.2 --- Motivation and Goal --- p.6Chapter 1.3 --- Thesis Outline --- p.7Chapter 2 --- Background and Related Work --- p.8Chapter 2.1 --- Panoramic Image Navigation --- p.8Chapter 2.2 --- Image Mosaicing --- p.9Chapter 2.2.1 --- Image Registration --- p.10Chapter 2.2.2 --- Image Composition --- p.12Chapter 2.3 --- Immersive Display --- p.13Chapter 2.4 --- Video Streaming --- p.14Chapter 2.4.1 --- Video Coding --- p.15Chapter 2.4.2 --- Transport Protocol --- p.18Chapter 3 --- System Design --- p.19Chapter 3.1 --- System Architecture --- p.19Chapter 3.1.1 --- Video Capture Module --- p.19Chapter 3.1.2 --- Video Streaming Module --- p.23Chapter 3.1.3 --- Stitching and Rendering Module --- p.24Chapter 3.1.4 --- Display Module --- p.24Chapter 3.2 --- Design Issues --- p.25Chapter 3.2.1 --- Modular Design --- p.25Chapter 3.2.2 --- Scalability --- p.26Chapter 3.2.3 --- Workload distribution --- p.26Chapter 4 --- Panoramic Video Mosaic --- p.28Chapter 4.1 --- Video Mosaic to Image Mosaic --- p.28Chapter 4.1.1 --- Assumptions --- p.29Chapter 4.1.2 --- Processing Pipeline --- p.30Chapter 4.2 --- Camera Calibration --- p.33Chapter 4.2.1 --- Perspective Projection --- p.33Chapter 4.2.2 --- Distortion --- p.36Chapter 4.2.3 --- Calibration Procedure --- p.37Chapter 4.3 --- Panorama Generation --- p.39Chapter 4.3.1 --- Cylindrical and Spherical Panoramas --- p.39Chapter 4.3.2 --- Homography --- p.41Chapter 4.3.3 --- Homography Computation --- p.42Chapter 4.3.4 --- Error Minimization --- p.44Chapter 4.3.5 --- Stitching Multiple Images --- p.46Chapter 4.3.6 --- Seamless Composition --- p.47Chapter 4.4 --- Image Mosaic to Video Mosaic --- p.49Chapter 4.4.1 --- Varying Intensity --- p.49Chapter 4.4.2 --- Video Frame Management --- p.50Chapter 5 --- Immersive Display --- p.52Chapter 5.1 --- Human Perception System --- p.52Chapter 5.2 --- Creating Virtual Scene --- p.53Chapter 5.3 --- VisionStation --- p.54Chapter 5.3.1 --- F-Theta Lens --- p.55Chapter 5.3.2 --- VisionStation Geometry --- p.56Chapter 5.3.3 --- Sweet Spot Relocation and Projection --- p.57Chapter 5.3.4 --- Sweet Spot Relocation in Vector Representation --- p.61Chapter 6 --- Video Streaming --- p.65Chapter 6.1 --- Video Compression --- p.66Chapter 6.2 --- Transport Protocol --- p.66Chapter 6.3 --- Latency and Jitter Control --- p.67Chapter 6.4 --- Synchronization --- p.70Chapter 7 --- Implementation and Results --- p.71Chapter 7.1 --- Video Capture --- p.71Chapter 7.2 --- Video Streaming --- p.73Chapter 7.2.1 --- Video Encoding --- p.73Chapter 7.2.2 --- Streaming Protocol --- p.75Chapter 7.3 --- Implementation Results --- p.76Chapter 7.3.1 --- Indoor Scene --- p.76Chapter 7.3.2 --- Outdoor Scene --- p.78Chapter 7.4 --- Evaluation --- p.78Chapter 8 --- Conclusion --- p.83Chapter 8.1 --- Summary --- p.83Chapter 8.2 --- Future Directions --- p.84Chapter A --- Parallax --- p.8

    Robust Techniques for Feature-based Image Mosaicing

    Get PDF
    Since the last few decades, image mosaicing in real time applications has been a challenging field for image processing experts. It has wide applications in the field of video conferencing, 3D image reconstruction, satellite imaging and several medical as well as computer vision fields. It can also be used for mosaic-based localization, motion detection & tracking, augmented reality, resolution enhancement, generating large FOV etc. In this research work, feature based image mosaicing technique using image fusion have been proposed. The image mosaicing algorithms can be categorized into two broad horizons. The first is the direct method and the second one is based on image features. The direct methods need an ambient initialization whereas, Feature based methods does not require initialization during registration. The feature-based techniques are primarily followed by the four steps: feature detection, feature matching, transformation model estimation, image resampling and transformation. SIFT and SURF are such algorithms which are based on the feature detection for the accomplishment of image mosaicing, but both the algorithms has their own limitations as well as advantages according to the applications concerned. The proposed method employs this two feature based image mosaicing techniques to generate an output image that works out the limitations of the both in terms of image quality The developed robust algorithm takes care of the combined effect of rotation, illumination, noise variation and other minor variation. Initially, the input images are stitched together using the popular stitching algorithms i.e. Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). To extract the best features from the stitching results, the blending process is done by means of Discrete Wavelet Transform (DWT) using the maximum selection rule for both approximate as well as detail-components

    Spherical mosaic construction using physical analogy for consistent image alignment

    Get PDF
    The research contained in this thesis is an investigation into mosaic construction. Mosaic techniques are used to obtain images with a large field of view by assembling a sequence of smaller individual overlapping images. In existing methods of mosaic construction only successive images are aligned. Accumulation of small alignment errors occur, and in the case of the image path returning to a previous position in the mosaic, a significant mismatch between nonconsecutive images will result (looping path problem). A new method for consistently aligning all the images in a mosaic is proposed in this thesis. This is achieved by distribution of the small alignment errors. Each image is allowed to modify its position relative to its neighbour images in the mosaic by a small amount with respect to the computed registration. Two images recorded by a rotating ideal camera are related by the same transformation that relates the camera's sensor plane at the time the images were captured. When two images overlap, the intensity values in both images coincide through the intersection line of the sensor planes. This intersection line has the property that the images can be seamlessly joined through that line. An analogy between the images and the physical world is proposed to solve the looping path problem. The images correspond to rigid objects, and these are linked with forces which pull them towards the right positions with respect to their neighbours. That is, every pair of overlapping images are "hinged" through their corresponding intersection line. Aided by another constraint named the spherical constraint, this network of selforganising images has the ability of distributing itself on the surface of a sphere. As a direct result of the new concepts developed in this research work, spherical mosaics (i.e. mosaics with unlimited horizontal and vertical field of view) can be created
    corecore