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ABSTRACT OF THESIS

A ROBUST RGB-D SLAM SYSTEM FOR 3D ENVIRONMENT WITH PLANAR

SURFACES

Simultaneous localization and mapping is the technique to construct a 3D map
of unknown environment. With the increasing popularity of RGB-depth (RGB-D)
sensors such as the Microsoft Kinect, there have been much research on capturing
and reconstructing 3D environments using a movable RGB-D sensor. The key pro-
cess behind these kinds of simultaneous location and mapping (SLAM) systems is
the iterative closest point or ICP algorithm, which is an iterative algorithm that can
estimate the rigid movement of the camera based on the captured 3D point clouds.
While ICP is a well-studied algorithm, it is problematic when it is used in scanning
large planar regions such as wall surfaces in a room. The lack of depth variations on
planar surfaces makes the global alignment an ill-conditioned problem. In this thesis,
we present a novel approach for registering 3D point clouds by combining both color
and depth information. Instead of directly searching for point correspondences among
3D data, the proposed method first extracts features from the RGB images, and then
back-projects the features to the 3D space to identify more reliable correspondences.
These color correspondences form the initial input to the ICP procedure which then
proceeds to refine the alignment. Experimental results show that our proposed ap-
proach can achieve better accuracy than existing SLAMs in reconstructing indoor
environments with large planar surfaces.

KEYWORDS: 3D Reconstruction, Truncated Signed Distance Function, Ray casting
TSDF, Iterative Closest Point, Large-scale planar surface alignment
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Chapter 1

Introduction

In this chapter we introduce the SLAM techniques, its application and our contri-

butions in reconstructing 3D environments. In the first section, we introduce how

SLAM techniques simultaneously track camera’s position and generate 3D point

clouds. Next, we introduce the SLAM techniques applying in the virtual mirror

rendering system. In the third and fourth section, we discuss the existing problems

in reconstructing 3D environments and provide the solution accurately aligning 3D

point clouds. The last section presents the organization of the thesis.

1.1 SLAM Techniques

Simultaneous Localization and Mapping (SLAM) is a technique that uses a mobile

camera to reconstruct an unknown 3D environment. Recent works such as [1] focus

on using structured-light RGB-D cameras like the Microsoft Kinect to capture both

the color and depth data by moving the RGB-D camera by hand through a large

environment. Depth images captured by the moving camera are first projected onto

a moving 3D coordinate system or a camera pose to create a cloud of 3D points. Based

on the similarities between 3D point clouds captured at consecutive time instances, a

rigid transformation is then estimated between the two camera poses. Such a process

is performed over the entire sequence and a globally-consistent alignment of all point

clouds can be obtained by repeated applications of the sequence of estimated rigid
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transformations. The global alignment is crucial for the final step of aggregating all

the point cloud data into a volumetric representation for noise removal and rendering.

The most commonly-used approach to estimate rigid transformations of camera poses

from 3D point clouds is the iterated closest point or ICP algorithm [2–7].

1.2 SLAM Applications in the virtual mirror system

As we mentioned in Section 1.1, the indoor environments can be reconstructed by

a hand-held RGB-D camera. Our lab’s project “Virtual Mirror Rendering System”

developed by Dr. Sen-Ching Samson Cheung and Ju Shen uses the reconstructed

3D environments as virtual mirror’s background to reduce rendering time [8]. The

scanned background can be the large-scale virtual environments which make the

virtual mirror system more robust. Virtual mirror rendering is used to simulate

a virtual mirror on a computer display. Realistic simulation of a mirror requires

viewpoint tracking and rendering, wide-angle viewing of the environment, as well as

real-time performance to provide immediate visual feedback. The depth information

provided by the RGB-D cameras can be used to track the viewpoint and render

the scene from different prospectives. The wide viewing angle of the mirror system

is realized by combining the dynamic scene captured by the static camera with a

3D background model created off-line using a color-depth sequence captured by a

movable RGB-D camera. Figure 1.1 shows the scanned 3D static background. Figure

1.2 shows the results of merging the pre-scanned 3D static background in the virtual

mirror rendering.
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Figure 1.1: Scanned background

Figure 1.2: Mirror View Results: the first row contains the original RGB frames; the
second row is the generated mirror view with virtual background; Images from the
same column correspond to the same frame in the captured video sequence.
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Figure 1.3: Misalignment of a planar surface

1.3 Point Clouds alignment on Planar Surfaces

The alignment accuracy of ICP significantly depends on the scene content. Figure

1.3 shows a virtual view of a vertical wall rendered from a 3D structure created by

applying the ICP algorithm from [1] to align 50 frames of moving depth images. One

can clearly see that the scene points are grossly misaligned.

The misalignment is caused by the failure of ICP in identifying correct correspon-

dences between planar point clouds of successive frames. Such misalignment error

accumulates over multiple frames, making it impossible to process a longer sequence.

This is a significant shortcoming of ICP as vertical walls are common in indoor envi-

ronments.

1.4 Contribution of the Thesis

In this thesis, we propose a novel approach that can accurately reconstruct 3D

indoor environments with large planar surfaces using both color and depth features.

Our SLAM pipeline is based on that from [1]. An important difference is the use
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of color feature descriptors in improving depth data correspondences. Color feature

descriptors are first identified from the color images and their correspondences across

different frames are robustly identified. These correspondences are then projected

onto the 3D coordinate system where they undergo a second stage of noise removal.

An initial camera pose transformation is finally estimated which serves as the starting

point of the iterative ICP process on the depth data. Our contribution is the devel-

opment of this new joint color-depth alignment algorithm which produces significant

better alignment than those from [1] as demonstrated by our experimental results.

1.5 Organization

The rest of this thesis is organized as follows: In Chapter 2 we review existing

techniques for SLAM systems. Chapter 3 first introduces the SLAM system in [1].

We then describe 3D point clouds estimation by Truncated Signed Distance Function

(TSDF) voxel structure and the virtual camera ray casting TSDF structure. In Chap-

ter 4, we propose our novel point cloud registration approach that reconstructs 3D

environments with large planar surface. Experimental results are shown in Chapter

5, followed by conclusions and future work in Chapter 6.
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Chapter 2

Related Work

In this chapter we review existing techniques for SLAM systems and analyze

various point clouds registration and pose optimization approaches in the SLAM

systems. In the first section we discuss the SLAM systems by using a conventional

hand-held camera. The applications include augmented reality, image mosaicing,

sparse feature points and dense scenes reconstruction. In the second section we discuss

the SLAM systems by using a commodity RGB-D camera reconstructing 3D scenes.

In the third section we discuss using portable backpack SLAM system scanning and

reconstructing 3D indoor environments. The backpack is equipped with various types

of sensors to handle different scenarios.

2.1 SLAM With a Conventional Camera

SLAM techniques have been used for twenty years. The early research on SLAM

is usually on the mobile robot, equipped with laser range-finders for navigation. The

significant breakthroughs in this field have come from using a hand-held freely mov-

ing camera in real time performance [9] [10]. The authors proposed a probabilistic

SLAM system that continually corrects current camera localization based on a grow-

ing history of past poses. In this system, the key features between frames are selected

for camera tracking, and the redundant frames can be removed. Once the camera

localization is determined, the sparse sets of features are mapped onto the 3D space.
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The camera pose’s optimization is performed via probabilistic Bayesian framework,

such that tracking errors can be minimized without long-term drift concerns.

The SLAM systems are also applied on augmented reality (AR) research. In [11],

thousands of corresponding feature points are determined in order to build a platform

for AR space in real world using camera tracking. While the camera is moving, the

AR space is generated, and the virtual characters are put on the virtual platform

and interacts with each other. By parallel process tracking and mapping, the system

quickly builds a static AR space while the camera scans surrounding environment. It

is also working well in the case when the camera is at high speed train building AR

space based on the outside environments. However, if the camera tracking relies on

object corners’ features, it occurs tracking failures when rapid camera motion produce

blurry images at the object’s corners.

SLAM is also commonly used in mosaicing sequential 2D images. The first drift-

free, consistent spherical mosaicing images in real time is built in [12]. Extended

Kalman Filter (EKF) with SLAM provides a stable way of mosaicing images with

360 degrees pan. Unlike conventional approaches of relying on local feature correspon-

dences to align neighboring images, the authors instead used the whole image sets

of feature points to estimate and refine the camera pose. The feature point sets are

formed into triangles among neighboring feature points as the skeleton of the global

map. With the new image integrating with the current spherical mosaicing images,

the global map is updated and warped into the proper appearance. The system is fur-

ther improved in [13]. Inspired by [11], parallel implementation is utilized to improve

performance. One thread is responsible for tracking camera motion optimized by effi-
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cient second-order minimization (ESM). Specifically, the authors used only first-order

term of ESM cost function and proved that the convergence in several iterations is

more stable than the Lucas-Kanade method. Another thread is responsible for global

optimization and consistent map based on key frames information.

In [14], dense 3D scenes are rapidly reconstructed with a single live camera. For

the system input, camera poses are estimated by structure from motion (SFM) and

used to generate sparse point clouds. These points form implicit surface initially. The

key frames are selected from the local camera pose and used to refine the local surface.

A global consistent dense 3D scenes is obtained through combing local reconstruc-

tions together. The camera pose estimation is further improved in [15]. Accurately

local depth maps are generated by solving the cost function from hundreds of neigh-

boring images’ photometric information. The system also have ability of occlusion

handling. However, the system operate normally only under the circumstance that

the illumination stay consistency. The system will suffer from tracking failure when

the illumination suddenly changes.

2.2 SLAM With a Commodity RGB-D Camera

Traditional 3D scenes reconstructions are created by structure from motion (SFM)

or multi-view stereo (MVS). Recently, with the commodity RGB-D camera releasing,

depth map obtained from the RGB-D camera can easily convert the 2D pixels into

the 3D points. Henry et.al [16] [17] are the pioneers in proposing reconstructing 3D

dense scenes by using a hand-held commodity RGB-D camera. The camera pose esti-

mation is based on the color information combining with geometry data after several

8



iterations of ICP. Next, pose optimization TORO [18] and dense scenes modeling

SURFELS [19] are used to achieve globally consistent map. The authors showed that

their reconstructed results are well-aligned.

To enable the SLAM system operate in real-time and have intuitive interaction

interface with non-expert users, Du in [20] proposed improving SLAM system to let

non-expert users creating their own 3D scenes reconstruction. The users can obtain

instant feedback while scanning indoor scenes. The capability of recovering camera’s

trajectory from the failure tracking part help users building a large-scale 3D map and

maintain the 3D map globally consistent.

In [21] [22], the authors proposed a novel approach in reconstructing 3D scenes.

First, feature descriptors are extracted from the color images by SURF [23] and

converted into global 3D points according to the camera localization. RANSAC [24] is

used to estimate the transformation among feature point sets. The pose optimization

is performed to refine the camera localization. This approach is similar to ours.

However, they use 3D points instead of voxels in the ICP procedure, which is prone

to drifting error. Our method uses a TSDF structure which enables well-aligned

edges.

Instead of extracting feature points matching two frames, the authors in [25] [26]

defined a warping function that warp current image’s gray level and depth information

to the reference image. Cost function is minimized between the warped image and the

current image. A M-estimator is used to estimate robust camera pose and eliminate

outliers and dynamic objects. The key frames selection and multi-resolution approach

make the system run in real-time.

9



2.3 Portable Backpack SLAM System

Although the SLAM systems on mobile robots are well-developed area, there exist

the limitations on Geographical situations. For example, conducting experiments in

the stairwell make the robots have difficulties moving up and down stairs. Therefore,

the human-operated backpack SLAM system were proposed [27] and had more flex-

ibility on scanning indoor environments, even scanning on the different floors in the

same building. The backpack SLAM system is composed of four 2D scanners and

two inertial measurement units (IMU’s). Each scanner scans a 2D plane and is or-

thogonal to each other, while the IMU’s not only provide the orientation estimation,

but also refine 6 DOF transformation. The authors switched different point clouds

registration approaches to handle different types of scenes.

The authors in [28] proposed improving backpack SLAM system that has the ca-

pability scanning more complex environments such as T-shaped corridor intersection

and two different indoor hallways connected by staircases. The automatic loop de-

tection based on [29] [30] produces accurate camera localization in scanning complex

scenes. To render the global map without misalignment between successive frames,

the backpack is added a camera providing imagery, and image based pose estimation

algorithm [29] [24] refines the results from scanning matching based algorithm.

In [31], the backpack is added two cameras on the left and right to further reduce

localization errors. The system takes the advantage of planar scenes data under the

assumption that the camera localization in planar scenes is accurate. Like previous

backpack systems [27], the adaptive localization algorithm is used to handle the dif-

10



ferent scenarios such as complex scenes or planar scenes, and the portions of planar

scenes data are highly trusted and used in ICP. In the case of scanning staircases, the

camera which faces planar walls determines camera localization. Either of camera is

responsible for backpack’s localization when traversing up and down staircases. Lo-

calization errors are minimized by loop closure events obtained by these two cameras.

11



Chapter 3

3D Point Clouds Estimation and Representation

In this chapter we discuss the approaches used in our SLAM system in estimating

3D points and rendering virtual views. In Section 3.1, we provide an overview of our

SLAM system. We then introduce the essential vision concept, which will be used

in the later discussion. In Section 3.2, we discuss merging all the depth data into

a voxel-based structure. Each voxel has a signed distance function showing how far

each voxel is from the nearest surface point. In Section 3.3, we discuss estimating

surface points by creating a virtual camera ray casting the 3D grid structure. The

surface point is generated while the ray passes through the zero-crossing region in the

3D gird structure. In Section 3.4, we discuss virtual view rendering. The estimated

surface points are mapped with color values from RGB images and applied a layered

interpolation to fill in the gaps on the rendered image.

3.1 Introduction

3.1.1 System Overview

Our SLAM system is based on [1]. A volumetric 3D grid structure called Trun-

cated Signed Distance Function (TSDF) is used to aggregate 3D data obtained by

depth images. Each voxel is signified by a signed distance value from the nearest 3D

point. Using the reconstructed TSDF structure, virtual camera views can be rendered

12



Figure 3.1: Overview of the SLAM system

from an arbitrary camera pose – the virtual camera can ray-cast the TSDF structure

to identify the estimative surface points. Specifically, the zero-crossing region is iden-

tified via a fast search procedure and the estimative surface points are interpolated

within the zero-crossing region. During the model construction stage, ICP is used

to estimate the camera pose with respect to the global coordinate system adopted

by the TSDF structure. Instead of using the typical frame-to-frame tracking method

which is prone to drifting error, the depth data are denoised and then aligned against

the estimative surface points produced from the interpolated TSDF structure. Miss-

ing depth information is incrementally filled with depth data captured at different

frames. Figure 3.1 is the overview of the SLAM system.
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3.1.2 Calculate 3D points from depth maps

Before we send the data into the SLAM system, we first convert depth maps

obtained from the RGB-D camera into 3D points. The intuitive way is to calculate

the similar triangular method to obtain the 3D corresponding point (X, Y, Z) from

the 2D pixel (U,W ), which is denoted by p. We first calculate the corresponding X

value in the 3D coordinate. The horizontal distance from U to the image central Cx

over the focal length fx is proportional to the horizontal distance from the pixel’s

corresponding 3D value X to the central CX over the depth Z.

|U − Cx|
fx

=
|X − CX |

Z
(3.1)

The Equation (3.1) can be rewritten as

X = CX +
Z(|U − Cx|)

fx
(3.2)

the coordinate Y can be computed in the same way:

Y = CY +
Z(|W − Cy|)

fy
(3.3)

Equation 3.2 and 3.3 can be rewritten as

u(U,W ) = ZK−1



U

W

1


 (3.4)

Where u maps the 2D image pixel (U,W ) to its 3D coordinate, and K is the camera

intrinsic matrix

K =



fx 0 Cx

0 fy Cy

0 0 1


 (3.5)
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Equation 3.4 can be simplified as u = K−1ṗ. We use a dot notation to represent

homogeneous vectors ṗ = (p�|1)�. Conversely, K can also be used to project the 3D

point onto the 2D point 

U

W

1


 =

1

Z


K



X

Y

1





 (3.6)

The Equation 3.4 can be simplified as p̂ = Ku. p̂ represent projected points from the

3D space.

3.1.3 3D Projections and 6 DOF transformation

In our research, the data are often transformed between 2D and 3D. Homogeneous

coordinates provide a bridge to project between the 3D point and the 2D plane. After

the 3D point is multiplied by the camera intrinsic matrix, the Z value is scaled to 1

and becomes (X/Z, Y/Z, 1) in the homogeneous coordinate system. The point in the

2D plane is (X/Z, Y/Z). Six degrees of freedom transformation matrix T can convert

the 3D point between the camera coordinate system and the global coordinate system.

T is controlled by the rotation roll, yaw, pitch, translation X, Y , and Z

T =


 Rr Tt

0 1


 (3.7)

Rotation Rr is the 3×3 matrix and translation Tt is the 3×1 matrix. Calculating the

3D point at the nth frame in the global coordinate space is as follows

un = Rn
r · u+ T n

t (3.8)

The Equation (3.8) can be written as

u̇n = T · u̇ (3.9)
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Where u̇ = (u�|1)�.

3.2 Constructing TSDF structure from the 3D data

The raw depth values obtained from the RGB-D camera are the uncertainty mea-

surements along with noise. Therefore, the 3D point clouds we compute from the

raw depth maps may not be aligned accurately between frames. A precise 3D point

estimation method is required in order to build the well-aligned and detailed 3D vir-

tual scenes. To accomplish this goal, first, we construct the truncated signed distance

functions (TSDF) [32] in the voxel-based structure. The structure is composed of a

number of voxels as shown in Figure 3.2. The TSDF voxel structure can be used to

aggregate multiple raw depth images into the same coordinate system and to gen-

erate interpolated 3D point clouds for rendering. The TSDF value stored at each

(a) (b)

Figure 3.2: TSDF voxel-based structure construction. The cuboid in Figure 3.2a is
divided into the voxel-based structure as shown in Figure 3.2b. The red dots are the
3D data obtained from the raw depth maps

voxel is based on the signed distance towards the closest 3D scene point. The sign of

this distance value is based on whether the voxel is in front of or behind the implicit
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surface as defined by the local surface normal. From the camera’s perspective, if the

voxel is behind the surface, a negative sign is assigned. If the voxel is in front of the

surface, a positive sign is assigned. In general, we use brute-force search or KD-tree

search method to search the nearest point. However, it is not the efficient ways to

search the nearest point in the dense point clouds. Instead, we adopt the parallel

projective TSDF approach [1, 33] to compute each voxel’s TSDF. Each voxel V in

the global coordinate space is first converted back to the camera coordinate space,

and then onto the 2D image plane. We search the nearest pixel p = (U,W ) on the

image plane. We exclude the projective pixel (U,W ) if it is out of the image range:

0 < U ≤ 640, 0 < W ≤ 480

p = �(KT−1
n V )� (3.10)

Where K is camera intrinsic matrix, Tn is the 6-DOF transformation at the nth frame.

We also compute the ray direction in the global coordinate space at the nth frame

λ = ‖TnK−1ṗ‖2 (3.11)

Each voxel is assigned a signed distance value

Sn(V ) = (dn(p)− λ−1‖V − tn‖2) (3.12)

Where λ−1‖V − tn‖2 is the depth value from the camera to the voxel, dn(p) is the

depth value at pixel p in the nth frame, and tn is the camera location at the nth frame.

We then checked whether the voxel is in front of the camera’s perspective view while

the voxel is projected onto the image plane. If the voxel is behind the camera’s

perspective view, we don’t update the voxel’s signed distance value at the nth frame.
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The vector P is from the camera to the voxel V . The vector Q is the l2 norm of the

central pixel’s ray direction. The voxel’s signed distance function is valid if the dot

product of vectors P and Q is grater than zero. Once we verify all the valid voxels

which are in front of camera’s perspective, the signed distance value is ”truncated”

as only the voxel values that are sufficiently closed to the surface are recorded. We

compute the voxels’ truncated signed distance functions STn if the voxels are within

the truncated signed distance range as follows

STn(V ) =




min(1, Sn(V )
µ

) iff µ ≥ Sn(V ) > 0

max(−1,−Sn(V )
µ

) iff 0 > Sn(V ) ≥ ν

null otherwise

(3.13)

Where STn is the truncated signed distance function at the nth frame, µ is the max-

imum truncated signed distance, and ν is the minimum truncated signed distance.

We then proceed to update the global TSDF ST using the current frame’s STn . An

exponentially weighted average is applied to the TSDF value at each voxel that is

sufficiently close to a 3D point from the current frame

ST (V ) =
Wn(V )STn(V ) +Wn−1(V )STn−1(V )

Wn(V ) +Wn−1(V )
(3.14)

W (V ) =Wn(V ) +Wn−1(V ) (3.15)

The averaging helps to remove inherent in the depth images data and multiple passes

of all the depth images are usually required to produce a consistent and stable TSDF

structure. Finally, the global weighted average of truncated signed distance functions

are constructed by all the frames without error or drifting concerns.
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3.3 Surface points estimation by ray casting TSDF structure

Given a TSDF structure, we can generate the estimative 3D points by first ray

casting from the virtual camera and traverse through the voxel structure. We adopt

the fast voxel traversal algorithm in [34]. A visible surface point is identified when the

ray passes through a zero-crossing region in which the distance values change from

positive to negative. The ray stops passing through the voxel structure when the

zero-crossing region or the back side of the object is found, or the ray ultimately exits

the TSDF voxel structure. Each pixel’s corresponding ray direction λ in the global

coordinate space is the same as Equation (3.11). The distance from the camera to

the surface point is λdn(p). Truncated values are used to decrease the voxel traversal

time. In other words, the ray can start from the truncated distance λdn(p)−µ instead

of starting from the camera. The µ is the truncated value. The truncated point Xt is

Xt = TnDK
−1ṗ (3.16)

Where D is the depth value from camera to the truncated point

D =
λdn(p)− µ

λ
(3.17)

The Figure 3.3 shows the ray passing through the TSDF structure from the virtual

camera and truncated point, respectively. Once the zero-crossing region is identified,

linear interpolation is used to estimate a surface point us based on the TSDF values

of the two boundary voxels. The trilinear points Va and Vb in the voxels are extracted

and used as the linear interpolation’s reference points

us =



Va +

ST (Va)
ST (Vb)

‖Va − Vb‖2 iff λ > 0

Va − ST (Va)
ST (Vb)

‖Va − Vb‖2 iff λ < 0

(3.18)
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(a) (b)

(c) (d)

Figure 3.3: Ray passing through the TSDF voxel structure. Figure 3.3a and 3.3b show
that the ray passes through the TSDF structure starting from the virtual camera.
Figure 3.3c and 3.3d show that the ray passes through the TSDF structure starting
from the truncated point by using ray skipping method. The small blue cubes are the
paths that the ray passing through. The blue dot O is the virtual camera location,
the red dot T is the truncated point, and green dot P is the estimative surface point

Where Va is in front of the surface and Vb is behind the surface. All the identified

surface points from a 3D point clouds as if it was captured from a virtual camera

placed at (X, Y, Z). In addition, the higher resolution voxels (dividing the same size

of voxel structure into a number of smaller size voxels) we create, the more accurate
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surface points we obtain. For the voxel’s trilinear point where is very close to the

surface, we can assume that this point’s normal vector is roughly the same as the

surface point’s normal vector which has the same ray passing through from the virtual

camera. To compute this point’s normal vector, we take the derivative of ST (V )

Ns = (
∂ST (V )

∂x
,
∂ST (V )

∂y
,
∂ST (V )

∂z
)

The Nsur can be expanded as follows

∂ST (V )

∂x
=
ST (x+ 1, y, z)− ST (x− 1, y, z)

2

∂ST (V )

∂y
=
ST (x, y + 1, z)− ST (x, y − 1, z)

2

∂ST (V )

∂z
=
ST (x, y, z + 1)− ST (x, y, z − 1)

2

Before we do the point clouds registration in the next chapter, we make all the normal

vectors pointing outwards the surfaces. We use simple dot product checking method

to check whether the normal vectors is pointing outwards the surfaces. Beside the

Ns vector we have obtained, the vector G is formed from the surface point us to the

camera. If the dot product of these two vectors is negative, the Ns is flipped 180

degrees.

3.4 Virtual view rendering

After obtaining the estimative points by raycasting TSDF structure, each esti-

mative point is mapped with a color value based on RGB image. In the raycasting

process, each pixel has a corresponding ray passing through TSDF voxel structure,

the pixel’s color value is directly mapped to the corresponding estimative point. We
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use OpenGL to render the estimative points. Since the reconstructed scene is just a

group of discretely distributed point cloud. The generated image may have many un-

rendered regions caused by the gaps between neighboring points. We apply a layered

interpolation to fill in the gaps on the rendered image. This process can be described

as follows: for the pixels with no display points, they need to be interpolated from

neighboring pixels. A naive approach would be to perform spatial interpolation after

obtaining the color values for all the pixels that contain at least one display points.

We notice that this approach creates a great deal of blending of scene objects at

different depth. To better preserve object boundaries, we separate the rendering into

two phases based on the depth values from the scene points those that are at or

closer than the viewer and those that are beyond. These two sets typically have very

different depth values. We first start with the latter group with scene points that are

far away, apply the above process of identifying color for each pixel and then perform

interpolation on both depth and color values to fill in small gaps. These interpolated

values are inserted back to the data structure of the closer pixels as if they are from

the true 3D point clouds. In the second phase, we render all these closer pixels, se-

lect the correct color value based on both 3D point clouds and interpolated results,

and finally perform one more round of interpolation just on the color values. Such a

layered approach provides a far sharper object boundaries as it respects the inherent

depth values. It is possible to increase the number of depth levels to create a better

rendering but two levels are sufficient for our application.
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Chapter 4

Point Clouds Registration and Camera Pose Estimation

In Chapter 3, we have obtained the surface points from TSDF structure. In this

chapter we describe the SLAM system estimating the camera pose. In Section 4.1, we

discuss using Bilateral filter removing noises on raw depth images. We test different

Bilateral filter parameters filtering raw depth images and compare the corresponding

filtered depth images. In Section 4.2, we discuss estimating camera pose according

to the previous estimated surface points. In Section 4.3, we define the problem on

aligning planar surfaces. In Section 4.4, we present our approach estimating camera

pose based on joint color-depth information.

4.1 Noise removal by Bilateral filter

Raw depth images taken by the RGB-D camera are noisy. Therefore, noise re-

duction is a crucial step if we want to calculate accurate 3D points from the depth

maps. Without reducing the noise, estimating the correct camera pose will be af-

fected, and the drifting problem will occur. In general, Gaussian filter is commonly

used to smooth the images. However, it blurs depth discontinuities in the depth maps.

Instead, we use Bilateral filter [35] filtering out the noise from the raw depth images.

Bilateral filter is controlled by two parameters: spatial weight and depth weight. Ac-

cording to these two weights, Bilateral filter not only smoothes depth images, but

also preserves the depth discontinuities. The spatial weight is determined by how
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close between the nearby pixel and the central pixel in the filter window. The shorter

Euclidean distance between nearby pixels and the central pixel in the filter window,

the higher spatial weight the nearby pixels obtain. The depth weight is determined

by the similarity between nearby pixels’ depth values and the central pixel’s depth

value in the filter window. The nearby pixel will receive higher weight if the depth

difference between the nearby pixel and the central pixel is smaller. Equation 4.1

computes the filtered depth values by using Bilateral filter.

Df(p) =
1

Ch

∑
q∈M

e
−‖p−q‖2

2σ2
s e

−|R(p)−R(q)|2
2σ2

r R(q) (4.1)

Bilateral filter window size M is (2m + 1) × (2m + 1). Where m is the radius of

Bilateral filter window, q are the neighboring pixels surrounding the central pixel p

in the filter window, σs is the Gaussian spatial parameter, σr is the Gaussian depth

parameter, and Ch is the normalization constant

Ch =
∑
q∈M

e
−‖p−q‖2

2σ2
s e

−|R(p)−R(q)|2
2σ2

r (4.2)

Compared to Gaussian depth parameter σr, Gaussian spatial parameter σs only has

very small influence on the depth maps. In our tests, we fix the Gaussian spatial value

and select different Gaussian spatial values to compare the corresponding filtered

depth images. In Figure 4.1, from the first row to the second row, we gradually

increase the σr from 5 to 120. The results shows that the depth image is more

smoother when the σr gradually increases.

After we calculate the filtered depth value from the depth map, we back-project

the filtered depth values to the 3D points in the camera’s coordinate space. As we
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(a) σr = 5 (b) σr = 30

(c) σr = 60 (d) σr = 120

Figure 4.1: Filtered depth images comparison

mentioned in Section 3.1.2, 3D points are obtained by the following equation

u(U,W ) = Df (p)K
−1



U

W

1


 (4.3)

Where Df (p) is the filtered depth value at the pixel (U,W ). To compute each 3D

vertex’s normal vector, we select the neighboring 3D vertices forming the two vectors

from the 3D vertex u(U,W ) to the neighboring 3D vertices u(U+1,W ) and u(U,W+

1). The cross product of these two vectors is the normal vector N(p) of the 3D vertex

u(U,W ).

N(p) = (u(U + 1,W )− u(U,W ))× (u(U,W + 1)− u(U,W )) (4.4)
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The normal vector’s normalization ν

ν = N(p)/‖N(p)‖2 (4.5)

To ensure all normal vectors pointing outwards the surfaces, we use dot product

checking normal vector’s direction and flip all normal vectors pointing outwards if

the normal vectors is pointing inwards originally.

4.2 Camera pose estimation based on the previous surface points

In the RGB-D SLAM system, the camera pose is estimated sequentially by align-

ing the captured 3D point cloud at the current frame with the predictive surface

points obtained from the TSDF structure followed by an Euclidean transformation

corresponding to the last estimated camera pose. The alignment is achieved by es-

timating the rotation and translation based on the iterative Closest Point algorithm

(ICP), which minimize the point-pairs between the current frame and the previous

frame. The first step of ICP algorithm is to search point correspondences. In this sec-

tion, we search point correspondences from the previous surface points. Parallel fast

projective data association approach in [1] is used to find the point correspondences

in the dense point clouds. Since we don’t know the new frame’s camera pose, we

take a initial guess that the new frame’s initial camera pose is equal to the previous

frame’s camera pose

unew = Tn−1u̇n(p) (4.6)

Now we need to perform ICP for several times, each iteration δ in ICP obtains the

relative transformation T δ
n between iteration δ and δ − 1. Note that Tn−1 is equal to
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T δ=1
n . Equation (4.6) can be rewritten as

unew = T δ
nu̇n(p) (4.7)

We project each new 3D point unew in the current frame onto the previous frame’s

image plane and search the nearest neighbor to find the corresponding projective

pixel

p̂ = �(KT−1
n unew)� (4.8)

Where the projective pixel p̂(U,W ) must be in the range: 0 < U ≤ 640, 0 < W ≤ 480.

The projective pixel’s 3D point ûn−1 serve as the point correspondence for unew. Point-

pairs with unusually large distances or disparate normal directions are excluded for

the estimation of the transformation.

‖unew − ûn−1(p̂)‖2 ≤ φ (4.9)

(Rδ
nNn(p), N̂n−1(p̂)) ≤ ψ (4.10)

To speedup the computation time on T δ
n , we assume there is only a small angle change

(θ ≈ 0) between δ and δ−1 due to the depth camera capturing frame rate is at 30HZ.

Based on this assumption, sinθ ≈ θ and cosθ ≈ 1. The problem is simplified as linear

least-square optimization problem [36]. Therefore, The relative transformation T δ
inc

can be written as

T δ
inc =




1 α −γ tx

−α 1 β ty

γ −β 1 tz


 (4.11)
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The new transformation is equal to relative transformation T δ
inc multiplied by previous

transformation matrix T δ−1
n

T δ
n = T δ

incT
δ−1
n (4.12)

The updated parameters can be written as a vector

ε = (β, γ, α, tx, ty, tz)
� (4.13)

To solve the vector ε, we minimize the cost function by computing point pairs’ point-

plane energy.

Epoint−plane =
∑

‖(T δ
n u̇n(p)− ûn−1(p̂))

T · N̂n−1(p̂)‖2 (4.14)

The newly estimative 3D position in the global space is T δ
nu̇n(p) and can be rewritten

as another representation by adding the matrix g(p)

T δ
nu̇n(p) = g(p)ε+ unew (4.15)

Where g(p) is the skew-symmetric matrix combining with the identity matrix [G(p)|I]

g(p) =




1 −az ay 1 0 0

az 0 −ax 0 1 0

−ay ax 0 0 0 1


 (4.16)

For each point-pair’s cost function, the equation can be written as

Epoint−plane = N̂n−1(p̂)
�(g(p)ε+ unew − ûn−1(p̂)) (4.17)

We take the derivative of cost function and the equation can be rewritten as Aε = B

N̂n−1(p̂)
�g(p)ε = N̂n−1(p̂)

�(ûn−1(p̂)− unew) (4.18)
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In order to solve the parameter vector ε, a 6X6 symmetric linear system is formed by

multiplying A�. The equation can be rewritten as follow

Σ(A�A)ε = Σ(A�B) (4.19)

We use Cholesky decomposition to decompose A�A. The sum of A�A can be decom-

posed into upper matrix R and lower matrix R�

Σ(A�A) = R�R (4.20)

The followings are the equations solving lower matrix R� and upper matrix R

R�yl = Σ(A�B) (4.21)

Rε = yl (4.22)

The above processes are iterated until convergence as the current frame is gradu-

ally moved towards the previous frame by the transformation estimated. The rigid

transformation is then applied to construct TSDF structure which we have already

discussed in Chapter 3.

Estimating camera pose based on the previous surface points is robust when the

indoor environments have depth variations. However, it fails on low geometry scenes

such as large planar surfaces.

4.3 Problem Statement

To understand the problem on aligning planar surfaces, let us first review the

basic procedure of ICP as summarized in Algorithm 1 [2]. Given two consecutive

frames of 3D point clouds Ft−1 and Ft, the algorithm aims at iteratively refining
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Algorithm 1 ICP

Require: Ft−1 = {p1, p2, ... , pm} ∈ R
3

Ft = {q1, q2, ... , qn} ∈ R
3

1: Initialization:
s := 0 and F (s) := Ft

2: Identify closest points: ∀pi ∈ Ft−1

di := minq∈F (s) ‖pi − q‖2
f (s)(pi) :=

{
argminq∈F (s) ‖pi − q‖2, di ≤ ε

unmatched otherwise

3: Find R(s) and t(s) to minimize the average of
‖pi − (R(s) · f (s)(pi) + t(s))‖22

among all pi’s with a matching f (s)(pi)
4: Refinement:

F (s+1) := {q′i : q′i := R(R) · qi + t(s)}
5: s := s+ 1
6: Go back to step 2 until error in step 3 is below a threshold

a rotation matrix R(s) and a translational vector t(s) which are applied Ft to best

align each point in Ft−1 to its closest point in Ft. The distance parameter ε excludes

correspondences that are too far apart to be considered as reasonable.

When ICP initially identifies the closest points between the two point clouds,

there could be many false correspondences. The goal of ICP is to improve these

correspondences by moving two point clouds closer to each other in each iteration.

However, the above procedure may fail if the majority of the 3D points fall on a planar

surface. This is illustrated in Figure 4.2. The red points from each plane indicate

the true correspondences. But the closest-point search wrongly assigns the green

points from Ft−1 to match the points in Ft. If there were significant depth variations

among the 3D points, no rigid transformation could produce a good match between

these wrong correspondences and step 3 of the ICP algorithm merely produces a

transformation that moves the two clouds closer. However, for a planar surface, these
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Figure 4.2: How ICP fails to align planar structures

wrong correspondences may lead to a rotation about the x and the y-axis and a

translation in the z direction that can completely align the two planes. The lack of

depth variations prevents the in-plane rotation and the translation along the x − y

plane to be effectively estimated. As such, we have an underdetermined system and

the ICP prematurely terminates without providing the true alignment. Notice that

such misalignment error accumulates over time and thereby significantly affects the

subsequent reconstruction of the 3D structure.

4.4 Joint color-depth camera pose estimation

The proposed camera pose estimation algorithm based on fused color and depth

information works as follows. The RGB and depth cameras are extrinsically aligned

and temporally synchronized using the OpenNI software library. Our camera pose es-

timation starts by first extracting the SIFT features from the color frames and search

for the closest match between frames [29, 37]. If all the SIFT feature points fall on

the same plane, the matching correspondences between frames would be related by a

planar homography. However, if the scene structure is more complex, we need a more
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robust procedure to identify the subset of correspondences that could fit well within

a planar homography. To this end, we use a RANSAC-like procedure to identify such

a subset and to estimate the optimal homography between correspondences [24]: all

the correspondences are first used to estimate a homography matrix. We then apply

the estimated homography to map one set of points to the other and eliminate those

pairs that are too far apart. We repeat this process until it converges to a stable

subset of correspondences that are well described by a single homography matrix.

Finally these corresponding pairs along with the associated depth measurements are

projected back onto the 3D space to be used as the initial point correspondences for

the ICP algorithm.

Note that the SIFT correspondences are based on the current and previous color

frames captured by the camera while the ICP is used to align the current depth frame

with the TSDF voxel structure. We use the SIFT correspondences as the initial match

between the estimated surface points from the previous frame and the captured point

cloud from the current frame. To ensure a robust matching, we again use RANSAC

to find the inliers as a subroutine within ICP – outliers are iteratively removed if they

do not agree with the estimated transformation [38] until the procedure converges to

a stable set of correspondences.
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Chapter 5

Experimental results

In this chapter we present the reconstructed results from our novel point clouds reg-

istration approach. We evaluate the reconstructed results on qualities and quantities.

Before we perform scanning the indoor environments, we first build a table comparing

real depths with raw depths. We then test different truncated distances constructing

TSDF structure. We also use the estimative virtual camera location with respect

to the real camera location for comparison. In the last two section, we present our

reconstructed results and show that our proposed approach can achieve better accu-

racy than existing SLAMs in reconstructing indoor environments with large planar

surfaces.

5.1 Raw depths vs. real depths

In this section, we measure the real depths and obtain the corresponding raw

depths from the depth camera. In Figure 5.1, we take the big brown box as the original

point. The depth camera gradually move backward and detect the corresponding

depth values. The software we capture the depth images is OpenNI. The measurement

results are shown in Figure 5.1. In our experiment, the unit for depths is millimeter.
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Figure 5.1: Real depths versus raw depths

The result shows that the ratio between the real depth and raw depth is roughly 1 to

1 when the real depth is less than 2000. None of the depth value exceeds 2000 during

the experiments when scanning the 3D environments.

5.2 Constructing TSDF structure on different truncated distances

In this section, we test different negative truncated distance ν on the constructed

TSDF voxel structure. The voxel which is beyond ν will not be updated. The

constructed TSDF structure is used to estimate the surface points when the virtual

camera ray casts the TSDF structure. We perform the 360◦ human body scanning

and observe the reconstructed results with different ν. The voxel size is 8 × 8 × 8

mm, and Wn(V ) = 1. In Figure 5.2a, we test ν = -300 and find the result having
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(a) ν = −300 (b) ν = −200

(c) ν = −100 (d) ν = −30

Figure 5.2: Reconstructed human bodies from the different truncated distance

serious misalignment. We then gradually test ν from -300 to -30 and find the errors

on the reconstructed human body continuously decrease. Figure 5.2d shows that the

point clouds are aligned correctly with ν = -30. We conclude that when we perform

360◦ human body scanning starting from the front side and passing 1
2
circle to the

back side, the voxel which is in front of the back side still has the negative TSDF

value if ν is very long. It results in generating the wrong surface points. To avoid

this problem, we need to make sure negative truncated distance is inside the human

body from perspective view. Therefore, we only store the voxels’ TSDF values which

are sufficiently closed to the surface.
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5.3 Virtual Camera localization measurement

The accuracies of the virtual camera’s locations influence the 3D reconstruction

results. We perform the 360◦ scanning on the dummy and record the tracking lo-

cations. To make sure the RGB-D camera is stable while moving, we mounted the

camera on the tripod wheeled trolley. The torpedo level is also put on the tripod

to ensure the depth camera is parallel to the floor. The camera doesn’t move in Y

dimension during the entire scanning. We record tracking locations by selecting 8

spots with the color labels. From 0◦ to 360◦, each 45◦ sets a recording point. The

laser pointer is hung on the tripod and used to identify whether the camera passes

through recording point. The scanning equipment are shown in Figure 5.3a and 5.3b.

(a) Tripod wheeled trolley (b) Torpedo level and laser pointer

Figure 5.3: 360◦ scanning equipment

Note that the direction in X dimension is reversed in all depth and color images taken

by the RGB-D camera during the experiments. When the camera is moving toward
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Table 5.1: Ground truth location versus virtual camera location

Physical location (cm) VR’s location (cm) MSE

Original Point (0◦) (0, 0, 0) (0, 0, 0) 0.0

1/8 circle (45◦) (56.5, 0, 28) (57.3, 0.2, 27.7) 0.8775

1/4 circle (90◦) (70.5, 0, 82) (71.6, 0.92, 81.4) 1.5545

3/8 circle (135◦) (47, 0, 151.1) (48.1, 1.8, 149.6) 2.5884

1/2 circle (180◦) (7, 0, 164.5) (5.6, 2.1, 166.4) 3.1591

5/8 circle (225◦) (-60, 0, 144.5) (-61.9, 2, 148.9) 5.1933

3/4 circle (270◦) (-74, 0, 90.5) (-78.7, 0.94, 89.2) 4.9662

7/8 circle (315◦) (-69, 0, 24) (-72.2, 0.7, 19.1) 5.8941

1 circle (360◦) (0, 0, 0) (0.8, -0.35, -2.4) 2.5539

positive direction in X axis, the color and depth images are actually moving toward

negative direction in X axis. Table 5.1 shows that virtual camera’s locations with

respect to the ground truth camera locations, only having tiny errors between the

virtual camera location and the ground truth camera location.

5.4 3D reconstructions on human bodies and indoor environments

In this section, we show our reconstructed result on the human bodies and 3D

environments. Figure 5.4 is the result of our 360◦ scanning on dummy in Section

5.3, and the reconstructed dummy is viewed in different perspectives. Figure 5.5 are

other human bodies scanning and viewed in different perspectives. Figure 5.6 shows

the reconstructed results on the indoor environment.
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(a) (b)

(c) (d)

Figure 5.4: The dummy 360◦ scanning: a) Camera passing 1
4
circle. b) Camera

passing 1
2
circle. c) Camera passing 3

4
circle. d) Camera passing one circle. The

Camera moves in the counterclockwise direction
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Figure 5.5: Reconstructed front side bodies
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Figure 5.6: Overview of the reconstructed indoor environment
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5.5 3D reconstructions with large planar surface

5.5.1 Qualitative Evaluation

Figure 5.7 is our reconstructed indoor environment with the planar surfaces, and

the voxel size is 10× 10× 10 mm. To give a better analysis of the proposed method,

we concentrate on the planar areas of the scanned environment and compare the

reconstructed results with the ones by [1]. The reason of choosing [1] for comparison

is that it represents a relatively popular approach that has been adopted by many

others [39,40]. In Figure 5.8, the images are rendered by projecting the reconstructed

3D data to an arbitrary virtual view. Our results have significant improvements over

the original scheme through a better preservation of the texture information on the

planes. In particular, the text on the posters are clearly legible in the virtual views.

5.5.2 Quantitative Evaluation

For quantitative evaluation, we compare the estimated camera poses and locations

against the ground truth, which is manually measured. We first use the Kinect

to scan the environment against a predefined path. Along the path, we pick 10

arbitrary positions and physically measure the relative translation T and rotation R

of the cameras on each spot. According to the manual measurements, a sequence of

cameras are plotted in the 3D space as green cameras in Figure 5.9a. Then based on

the associated frames on the spots, two sequences of transformations are estimated

respectively by our proposed method and [1]. Their results are shown in the same

figure. For demonstration purpose, we arbitrarily raise the blue cameras (our result)
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Figure 5.7: Overview of reconstructed indoor environment with the planar surfaces

42



(a)

(b) (c)

(d) (e)

Figure 5.8: Virtual views comparisons: (a) is our improved result with respect to
Figure 1.3 in introduction; (b)(d) and (c)(e) are the corresponding results by [1] and
our method.

and cyan cameras ( [1]) along the y axis by a fixed distance.

Figure 5.9b provides the top view of the results: the scan starts from the left side

along the x axis and ends in the z direction. The total path is about 3.5m. For the first

few camera positions, all the three results are aligned closely due to the corresponding

part of the captured environment involves considerable depth variation. After the red
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Table 5.2: Estimation errors

Category error T error R

By [1]
nonplanar 0.012m 0.208◦

planar 0.731m 39.20◦

Ours
nonplanar 0.009m 0.224◦

planar 0.024m 0.875◦

boundary, the camera enters large plane regions (the indoor wall), which causes the

estimated cyan cameras start to mess up. In contrast, our results are not affected

notably by the planes and remains consistent changes against the ground truth.

Table 5.2 summarizes the estimation errors: the translation error T and rotation

error R are statistically computed in terms of the offsets from the ground truth when

the camera is scanned with a movement of 1.0m. The analysis is conducted by two

different occasions depending on whether the scanned environment has dominant

plane surfaces.

(a) (b)

Figure 5.9: Camera pose estimation results: the ground truth is physically measured

as the green cameras shows; the cyan cameras and blue cameras respectively indicate

the results by [1] and our method.
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Chapter 6

Conclusion an Future Work

In this research, we have presented a novel point cloud registration approach by using

a commodity RGB-D camera reconstructing 3D indoor environments with planar sur-

faces. Color feature descriptors are first identified from the color images and their cor-

respondences across different frames are robustly identified. These correspondences

are then projected onto the 3D coordinate system where they undergo a second stage

of noise removal. An initial camera pose transformation is finally estimated which

serves as the starting point of the iterative ICP process on the depth data. All the

depth data are aggregated in a voxel structure which is essential in reducing the

drifting error and rendering virtual camera views. We have also demonstrated that

virtual camera’s locations only have tiny errors comparing with the corresponding

real camera locations we measured.

In the future research, we plan to scan and reconstruct more complicated and

bigger indoor environments with higher voxel resolution. In the large indoor envi-

ronment sannings, we may encounter the drifting problems because we need tens of

thousands of frames reconstructing the whole scene even though we only have very

tiny errors aligning around a thousand frames. Since errors are accumulated when

more and more frames are aligned together. The virtual camera will deviate from

tracking trajectory. The globally consistent alignment approach TORO [18] could

be integrated into our SLAM system and continuously refine the rigid transforma-
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tion. Another direction we are interested is applying our reconstructed results on

human-computer interaction interface. For example, our research group are work-

ing on virtual mirror project relieving autism children’s symptom. The treatment

called Video Self Modeling (VSM). The system creates virtual objects and patient

themselves to redress patient’s social behaviors. Finally, the memory capacity limit

us reconstructing very large-scale indoor environments. The bigger space we recon-

struct, the more voxels we need. In addition, while the RGB-D camera is moving

and ray casting the TSDF structure, most of the voxels are useless and will take lots

of time on computing TSDF. How to smartly avoid computing the useless voxels in

the whole TSDF structure is challenging. We may back-project the image corners to

the 3D space and form a pyramid. The voxels which are out of the pyramid range

will not consider computing TSDF.
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