28 research outputs found

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    Real-Time Implementation of Vision-Aided Monocular Navigation for Small Fixed-Wing Unmanned Aerial Systems

    Get PDF
    The goal of this project was to develop and implement algorithms to demonstrate real-time positioning of a UAV using a monocular camera combined with previously collected orthorectified imagery. Unlike previous tests, this project did not utilize a full inertial navigation system (INS) for attitude, but instead had to rely on the attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The system consisted of primarily COTS components and open-source software, and was own over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system obtained valid solutions over much of the flight path, identifying features in the flight image, matching those features with a database of features, and then solving both the 6DOF solution, and an attitude-aided 3DOF solution. The tests demonstrated that such attitude aiding is beneficial, since the horizontal DRMS of the 6DOF solution was 59m, whereas the 3DOF solution DRMS was 15m. Post processing was done to improve the algorithm to correct for system errors, obtaining a 3DOF solution DRMS of 8.22 meters. Overall, this project increased our understanding of the capabilities and limitations of real-time vision-aided navigation, and demonstrated that such navigation is possible on a relatively small platform with limited computational power

    Robotic navigation and inspection of bridge bearings

    Get PDF
    This thesis focuses on the development of a robotic platform for bridge bearing inspection. The existing literature on this topic highlights an aspiration for increased automation of bridge inspection, due to an increasing amount of ageing infrastructure and costly inspection. Furthermore, bridge bearings are highlighted as being one of the most costly components of the bridge to maintain. However, although autonomous robotic inspection is often stated as an aspiration, the existing literature for robotic bridge inspection often neglects to include the requirement of autonomous navigation. To achieve autonomous inspection, some methods for mapping and localising in the bridge structure are required. This thesis compares existing methods for simultaneous localisation and mapping (SLAM) with localisation-only methods. In addition, a method for using pre-existing data to create maps for localisation is proposed. A robotic platform was developed and these methods for localisation and mapping were then compared in a laboratory environment and then in a real bridge environment. The errors in the bridge environment are greater than in the laboratory environment, but remained within a defined error bound. A combined approach is suggested as an appropriate method for combining the lower errors of a SLAM approach with the advantages of a localisation approach for defining existing goals. Longer-term testing in a real bridge environment is still required. The use of existing inspection data is then extended to the creation of a simulation environment, with the goal of creating a methodology for testing different configurations of bridges or robots in a more realistic environment than laboratory testing, or other existing simulation environments. Finally, the inspection of the structure surrounding the bridge bearing is considered, with a particular focus on the detection and segmentation of cracks in concrete. A deep learning approach is used to segment cracks from an existing dataset and compared to an existing machine learning approach, with the deep-learning approach achieving a higher performance using a pixel-based evaluation. Other evaluation methods were also compared that take the structure of the crack, and other related datasets, into account. The generalisation of the approach for crack segmentation is evaluated by comparing the results of the trained on different datasets. Finally, recommendations for improving the datasets to allow better comparisons in future work is given

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Uncrewed Aircraft Systems for Autonomous Infrastructure Inspection

    Get PDF
    Uncrewed Aircraft Systems (UAS) are becoming increasingly popular for infrastructure inspections since they offer increased safety, decreased costs and consistent results, compared to traditional methods. However, there are still many open challenges before fully autonomous, reliable, and repeatable UAS inspections. While a UAS platform has increased mobility and can easily approach hard to reach areas, it has limited range and payload capacity and is susceptible to environmental disturbances. Therefore, current operations are limited to Visual Line of Sight (VLOS) manual inspections that usually result in just a qualitative (visual) assessment of the structure. The objective of this work is to propose solutions to these limitations in an effort to improve the effectiveness of UAS as an autonomous inspection platform. First, a heterogeneous marsupial robotic system is proposed as a solution to the limited range and flight time of UAS. The proposed system uses an Autonomous Surface Vehicle (ASV) to ferry the UAS close to the area of interest, where the latter can perform an inspection. Combining these two different platforms in a single system takes advantage of the individual strengths resulting on a platform that has the reach and high point of view of a UAS but has the range and operation time of the ASV. The proposed system was extensively tested over a six-month period in field deployments at Lake Murray and at the Congaree River, SC, USA, to validate its capabilities. As a solution to go beyond visual UAS inspections, a UAS equipped with a Stereo Digital Image Correlation (StereoDIC) system is proposed. StereoDIC is a non-contact non-destructive evaluation method that can accurately measure displacements, strains, strain rates, and geometry profiles. StereoDIC has become a method of choice in experimental mechanics with most studies performed in controlled lab environments with controlled lighting and stationary cameras positioned in the appropriate distance from the measured object. A prototype is built and tested in a lab setting to investigate its effectiveness and understand the challenges that might arise from the deployment of such a system. A comparative study using a stationary StereoDIC system validates the accuracy of the measurements while the acquisition of measurements showing the onset and evolution of defects and the dynamic response of the structure during a harmonic oscillation verifies the ability of the system to produce a quantitative assessment. Finally, using the lessons learned from the lab experiments, a new, upgraded, StereoDIC enabled UAS is developed for outdoor deployment and infrastructure inspection. To allow safe field deployments, the new system features a state estimation framework enabling operation in GNSS degraded environments while also estimating any external disturbances acting on the platform. These disturbances are utilized by the controller to make the platform adaptable to challenging weather conditions. The new system was deployed over an eight-month period at a railroad bridge in Columbia, SC. Initial data were collected that guided the investigations of effective speckle pattern applications. Experimental results from bridge measurements, while loaded from crossing trains, are presented and discussed

    Geometric, Semantic, and System-Level Scene Understanding for Improved Construction and Operation of the Built Environment

    Full text link
    Recent advances in robotics and enabling fields such as computer vision, deep learning, and low-latency data passing offer significant potential for developing efficient and low-cost solutions for improved construction and operation of the built environment. Examples of such potential solutions include the introduction of automation in environment monitoring, infrastructure inspections, asset management, and building performance analyses. In an effort to advance the fundamental computational building blocks for such applications, this dissertation explored three categories of scene understanding capabilities: 1) Localization and mapping for geometric scene understanding that enables a mobile agent (e.g., robot) to locate itself in an environment, map the geometry of the environment, and navigate through it; 2) Object recognition for semantic scene understanding that allows for automatic asset information extraction for asset tracking and resource management; 3) Distributed coupling analysis for system-level scene understanding that allows for discovery of interdependencies between different built-environment processes for system-level performance analyses and response-planning. First, this dissertation advanced Simultaneous Localization and Mapping (SLAM) techniques for convenient and low-cost locating capabilities compared with previous work. To provide a versatile Real-Time Location System (RTLS), an occupancy grid mapping enhanced visual SLAM (vSLAM) was developed to support path planning and continuous navigation that cannot be implemented directly on vSLAM’s original feature map. The system’s localization accuracy was experimentally evaluated with a set of visual landmarks. The achieved marker position measurement accuracy ranges from 0.039m to 0.186m, proving the method’s feasibility and applicability in providing real-time localization for a wide range of applications. In addition, a Self-Adaptive Feature Transform (SAFT) was proposed to improve such an RTLS’s robustness in challenging environments. As an example implementation, the SAFT descriptor was implemented with a learning-based descriptor and integrated into a vSLAM for experimentation. The evaluation results on two public datasets proved the feasibility and effectiveness of SAFT in improving the matching performance of learning-based descriptors for locating applications. Second, this dissertation explored vision-based 1D barcode marker extraction for automated object recognition and asset tracking that is more convenient and efficient than the traditional methods of using barcode or asset scanners. As an example application in inventory management, a 1D barcode extraction framework was designed to extract 1D barcodes from video scan of a built environment. The performance of the framework was evaluated with video scan data collected from an active logistics warehouse near Detroit Metropolitan Airport (DTW), demonstrating its applicability in automating inventory tracking and management applications. Finally, this dissertation explored distributed coupling analysis for understanding interdependencies between processes affecting the built environment and its occupants, allowing for accurate performance and response analyses compared with previous research. In this research, a Lightweight Communications and Marshalling (LCM)-based distributed coupling analysis framework and a message wrapper were designed. This proposed framework and message wrapper were tested with analysis models from wind engineering and structural engineering, where they demonstrated the abilities to link analysis models from different domains and reveal key interdependencies between the involved built-environment processes.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155042/1/lichaox_1.pd
    corecore