9 research outputs found

    Real-time reach planning for animated characters using hardware acceleration

    Get PDF
    We present a heuristic-based real-time reach planning algorithm for virtual human figures. Given the start and goal positions in a 3D workspace, our problem is to compute a collision-free path that specifies all the configurations for a human arm to move from the start to the goal. Our algorithm consists of three modules: spatial search, inverse kinematics, and collision detection. For the search module, instead of searching in joint configuration space like most existing motion planning methods do, we run a direct search in the workspace, guided by a heuristic distance-to-goal evaluation function. The inverse kinematics module attempts to select natural posture configurations for the arm along the path found in the workspace. During the search, candidate configurations will be checked for collisions taking advantage of the graphics hardware – depth buffer. The algorithm is fast and easy to implement. It allows real-time planning not only in static, structured environments, but also in dynamic, unstructured environments. No preprocessing and prior knowledge about the environment is required. Several examples are shown illustrating the competence of the planner at generating motion plans for a typical human arm model with seven degrees of freedom

    On Randomized Path Coverage of Configuration Spaces

    Get PDF
    We present a sampling-based algorithm that generates a set of locally-optimal paths that differ in visibility

    Synthesizing animations of human manipulation tasks

    Full text link

    Algoritma Rapidly Exploring Random Tree Star Dengan Integrasi Metode Sampling Goal Biassing, Gaussian, Dan Boundary

    Get PDF
    The path planning algorithm is to find a path that takes the robot from the start state to the goal state while avoiding collisions with obstacles. In path planning, various applications have been used such as animation, medicine, aircraft, etc. The purpose of this study is to design a new sampling method by integrating sampling methods based on goal biasing, Gaussian and Boundary and then implementing it in path planning problems using the Rapidly Exploring Random Tree* (RRT*) algorithm. We call this sampling method the integration sampling method. The path planning algorithm using this integration sampling method is implemented in the Labview programming language. The algorithm parameters in Labview can be modified to observe the output performance of the RRT* algorithm. The test was carried out in an environment of obstacle clutter, SquareField BW, and traps, where the test was carried out 20 times for each obstacle. The test was conducted to compare the path distance and computation time of the RRT* algorithm using the integration sampling method, against the RRT* algorithm using the Gaussian, and Boundary sampling method. Based on the test results, it is found that the RRT* algorithm using the integration sampling method can produce a shorter path than the RRT* algorithm using the Gaussian method and the RRT* algorithm using Boundary sampling. Comparison of the resulting computational time is faster than the Gaussian integration method. However, a comparison with Boundary shows that Boundary requires less time than integration. Therefore, it can be concluded that the Rapidly Exploring Random Tree* algorithm integration method is superior to the Gaussian method and the Boundary method.Algoritma perencanaan jalur adalah untuk menemukan lintasan yang membawa robot dari keadaan awal (start) ke keadaan tujuan (goal) sambil menghindari tabrakan dengan rintangan. Dalam perencanaan jalur, berbagai aplikasi telah digunakan seperti animasi, kedokteran, pesawat, dll. Tujuan penelitian ini adalah merancang metode sampling baru dengan cara melakukan integrasi metode sampling berbasis goal biassing, Gaussian dan Boundary lalu mengimplementasikannya pada masalah perencanaan jalur menggunakan algoritma Rapidly Exploring Random Tree* (RRT*). Metode sampling tersebut kami namakan metode sampling integrasi. Algoritma perencanaan jalur menggunakan metode sampling integrasi ini diimplementasikan pada bahasa pemograman Labview. Parameter algoritma pada Labview dapat dimodifikasi untuk mengamati performansi output dari algoritma RRT*. Pengujian dilakukan pada lingkungan obstacle clutter, SquareField BW, dan trap, dimana pengujian dilakukan 20 kali percobaan pada masing-masing obstacle. Pengujian dilakukan untuk membandingan jarak jalur serta waktu komputasi dari algoritma RRT* yang menggunakan metode sampling integrasi, terhadap algoritma RRT* yang menggunakan metode sampling Gaussian, dan Boundary. Berdasarkan hasil pengujian, diperoleh bahwa algoritma RRT* yang menggunakan metode sampling integrasi dapat menghasilkan jalur yang lebih pendek dibandingkan dengan algoritma RRT* yang menggunakan metode Gaussian maupun algoritma RRT* yang menggunakan sampling Boundary. Perbandingan waktu komputasi yang dihasilkan lebih cepat metode integrasi dibandingkan dengan Gaussian. Akan tetapi, pada perbandingan dengan Boundary menunjukkan bahwa Boundary memerlukan lebih sedikit waktu dibandingkan dengan integrasi. Maka dari itu dapat disimpulkan bahwa algortima Rapidly Exploring Random Tree* metode integrasi lebih unggul dibandingkan dengan metode Gaussian maupun metode Boundary

    Collision-Free Humanoid Reaching: Past, Present and Future

    Get PDF

    Incremental Sampling-based Algorithms for Optimal Motion Planning

    Full text link
    During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms have been established so far. The first contribution of this paper is a negative result: it is proven that, under mild technical conditions, the cost of the best path in the RRT converges almost surely to a non-optimal value. Second, a new algorithm is considered, called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost of the best path in the RRG converges to the optimum almost surely. Third, a tree version of RRG is introduced, called the RRT^* algorithm, which preserves the asymptotic optimality of RRG while maintaining a tree structure like RRT. The analysis of the new algorithms hinges on novel connections between sampling-based motion planning algorithms and the theory of random geometric graphs. In terms of computational complexity, it is shown that the number of simple operations required by both the RRG and RRT^* algorithms is asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the International Journal of Robotics Research, a short version is to appear at the 2010 Robotics: Science and Systems Conference

    Motion Planning : from Digital Actors to Humanoid Robots

    Get PDF
    Le but de ce travail est de développer des algorithmes de planification de mouvement pour des figures anthropomorphes en tenant compte de la géométrie, de la cinématique et de la dynamique du mécanisme et de son environnement. Par planification de mouvement, on entend la capacité de donner des directives à un niveau élevé et de les transformer en instructions de bas niveau qui produiront une séquence de valeurs articulaires qui reproduissent les mouvements humains. Ces instructions doivent considérer l'évitement des obstacles dans un environnement qui peut être plus au moins contraint. Ceci a comme consequence que l'on peut exprimer des directives comme “porte ce plat de la table jusqu'ac'estu coin du piano”, qui seront ensuite traduites en une série de buts intermédiaires et de contraintes qui produiront les mouvements appropriés des articulations du robot, de façon a effectuer l'action demandée tout en evitant les obstacles dans la chambre. Nos algorithmes se basent sur l'observation que les humains ne planifient pas des mouvements précis pour aller à un endroit donné. On planifie grossièrement la direction de marche et, tout en avançant, on exécute les mouvements nécessaires des articulations afin de nous mener à l'endroit voulu. Nous avons donc cherché à concevoir des algorithmes au sein d'un tel paradigme, algorithmes qui: 1. Produisent un chemin sans collision avec une version réduite du mécanisme et qui le mènent au but spécifié. 2. Utilisent les contrôleurs disponibles pour générer un mouvement qui assigne des valeurs à chacune des articulations du mécanisme pour suivre le chemin trouvé précédemment. 3. Modifient itérativement ces trajectoires jusqu'à ce que toutes les contraintes géométriques, cinématiques et dynamiques soient satisfaites. Dans ce travail nous appliquons cette approche à trois étages au problème de la planification de mouvements pour des figures anthropomorphes qui manipulent des objets encombrants tout en marchant. Dans le processus, plusieurs problèmes intéressants, ainsi que des propositions pour les résoudre, sont présentés. Ces problèmes sont principalement l'évitement tri-dimensionnel des obstacles, la manipulation des objets à deux mains, la manipulation coopérative des objets et la combinaison de comportements hétérogènes. La contribution principale de ce travail est la modélisation du problème de la génération automatique des mouvements de manipulation et de locomotion. Ce modèle considère les difficultés exprimées ci dessus, dans les contexte de mécanismes bipèdes. Trois principes fondent notre modèle: une décomposition fonctionnelle des membres du mécanisme, un modèle de manipulation coopérative et, un modéle simplifié des facultés de déplacement du mécanisme dans son environnement.Ce travail est principalement et surtout, un travail de synthèse. Nous nous servons des techniques disponibles pour commander la locomotion des mécanismes bipèdes (contrôleurs) provenant soit de l'animation par ordinateur, soit de la robotique humanoïde, et nous les relions dans un planificateur des mouvements original. Ce planificateur de mouvements est agnostique vis-à-vis du contrôleur utilisé, c'est-à-dire qu'il est capable de produire des mouvements libres de collision avec n'importe quel contrôleur tandis que les entrées et sorties restent compatibles. Naturellement, l'exécution de notre planificateur dépend en grand partie de la qualité du contrôleur utilisé. Dans cette thèse, le planificateur de mouvement est relié à différents contrôleurs et ses bonnes performances sont validées avec des mécanismes différents, tant virtuels que physiques. Ce travail à été fait dans le cadre des projets de recherche communs entre la France, la Russie et le Japon, où nous avons fourni le cadre de planification de mouvement à ses différents contrôleurs. Plusieurs publications issues de ces collaborations ont été présentées dans des conférences internationales. Ces résultats sont compilés et présentés dans cette thèse, et le choix des techniques ainsi que les avantages et inconvénients de notre approche sont discutés. ABSTRACT : The goal of this work is to develop motion planning algorithms for human-like figures taking into account the geometry, kinematics and dynamics of the mechanism and its environment. By motion planning it is understood the ability to specify high-level directives and transform them into low-level instructions for the articulations of the human-like figure. This is usually done while considering obstacle avoidance within the environment. This results in one being able to express directives as “carry this plate from the table to the piano corner” and have them translate into a series of goals and constraints that result in the pertinent motions from the robot's articulations in such a way as to carry out the action while avoiding collisions with the obstacles in the room. Our algorithms are based on the observation that humans do not plan their exact motions when getting to a location. We roughly plan our direction and, as we advance, we execute the motions needed to get to the desired place. This has led us to design algorithms that: 1. Produce a rough collision free path that takes a simplified model of the mechanism to the desired location. 2. Use available controllers to generate a trajectory that assigns values to each of the mechanism's articulations to follow the path. 3. Modify iteratively these trajectories until all the geometric, kinematic and dynamic constraints of the problem are satisfied.Throughout this work, we apply this three-stage approach with the problem of generating motions for human-like figures that manipulate bulky objects while walking. In the process, several interesting problems and their solution are brought into focus. These problems are, three- imensional collision avoidance, two-hand object manipulation, cooperative manipulation among several characters or robots and the combination of different behaviors. The main contribution of this work is the modeling of the automatic generation of cooperative manipulation motions. This model considers the above difficulties, all in the context of bipedal walking mechanisms. Three principles inform the model: a functional decomposition of the mechanism's limbs, a model for cooperative manipulation and, a simplified model to represent the mechanism when generating the rough path. This work is mainly and above all, one of synthesis. We make use of available techniques for controlling locomotion of bipedal mechanisms (controllers), from the fields of computer graphics and robotics, and connect them to a novel motion planner. This motion planner is controller-agnostic, that is, it is able to produce collision-free motions with any controller, despite whatever errors introduced by the controller itself. Of course, the performance of our motion planner depends on the quality of the used controller. In this thesis, the motion planner, connected to different controllers, is used and tested in different mechanisms, both virtual and physical. This in the context of different research projects in France, Russia and Japan, where we have provided the motion planning framework to their controllers. Several papers in peer-reviewed international conferences have resulted from these collaborations. The present work compiles these results and provides a more comprehensive and detailed depiction of the system and its benefits, both when applied to different mechanisms and compared to alternative approache

    Sampling-based algorithms for optimal path planning problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 141-152).Sampling-based motion planning received increasing attention during the last decade. In particular, some of the leading paradigms, such the Probabilistic RoadMap (PRM) and the Rapidly-exploring Random Tree (RRT) algorithms, have been demonstrated on several robotic platforms, and found applications well outside the robotics domain. However, a large portion of this research effort has been limited to the classical feasible path planning problem, which asks for finding a path that starts from an initial configuration and reaches a goal configuration while avoiding collision with obstacles. The main contribution of this dissertation is a novel class of algorithms that extend the application domain of sampling-based methods to two new directions: optimal path planning and path planning with complex task specifications. Regarding the optimal path planning problem, we first show that the existing algorithms either lack asymptotic optimality, i. e., almost-sure convergence to optimal solutions, or they lack computational efficiency: on one hand, neither the RRT nor the k-nearest PRM (for any fixed k) is asymptotically optimal; on the other hand, the simple PRM algorithm, where the connections are sought within fixed radius balls, is not computationally as efficient as the RRT or the efficient PRM variants. Subsequently, we propose two novel algorithms, called PRM* and RRT*, both of which guarantee asymptotic optimality without sacrificing computational efficiency. In fact, the proposed algorithms and the most efficient existing algorithms, such as the RRT, have the same asymptotic computational complexity. Regarding the path planning problem with complex task specifications, we propose an incremental sampling-based algorithm that is provably correct and probabilistically complete, i.e., it generates a correct-by-design path that satisfies a given deterministic pt-calculus specification, when such a path exists, with probability approaching to one as the number of samples approaches infinity. For this purpose, we develop two key ingredients. First, we propose an incremental sampling-based algorithm, called the RRG, that generates a representative set of paths in the form of a graph, with guaranteed almost-sure convergence towards feasible paths. Second, we propose an incremental local model-checking algorithm for the deterministic p-calculus. Moreover, with the help of these tools and the ideas behind the RRT*, we construct algorithms that also guarantee almost sure convergence to optimal solutions.by Sertac Karaman.Ph.D

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion
    corecore