
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-027 November 18, 2013

On Randomized Path Coverage of
Configuration Spaces
Alejandro Perez

On Randomized Path Coverage of Configuration Spaces

Alejandro Perez

Abstract We present a sampling-based algorithm that generates a set of locally-optimal paths that differ in visibility.

1 Introduction

Sampling-based algorithms have been successfully applied to motion planning, a problem known to be PSPACE-hard
[35], [20], in robotics [18], [20] and other fields [11], [24], [2]. However, although methods like the Probabilistic
RoadMap [16], the RRT [21], and their optimal variants [14], are able to compute solutions to high-dimensional
instances of this problem in a timely manner, these return a single feasible path, be it a suboptimal one or an approxi-
mation of the optimal solution.

There is an increased interest in applying these approaches to swiftly compute minimal sets of high-quality paths.
Indeed, several applications have been proposed in the literature [1], [6]. For example, a small set of paths that are
distinct and locally-optimal could allow a robot to efficiently reason about multiple options for a given task [33],
compactly represent configuration spaces that are computed offline [23], speedup replanning in dynamic environments
[13], serve as local paths used by multiple robots to coordinate distributed motion plans [26], aid the pruning and
searching of paths that meet certain constraints [10], and guide the search of protein conformations for multiple energy
minima and transition paths [11].

In this paper we present a sampling-based algorithm that computes a set of paths that are locally-optimal in terms
of their visibility. The algorithm iteratively constructs and updates a set of guards that cover the space with their
visibility domains. Each guard maintains a trajectory that asymptotically approximates the locally-optimal path within
its visibility domain. The algorithm avoids explicitly computing the redundancy or deformability between paths and
instead removes guards found to be approximating the same locally-optimal path once their current solutions overlap.
Because all visibility computations are based on a local method that represents the local ‘reachability’ of a given
system, the approach is applicable to instances of the motion planning of arbitrary dimensions and is able to generate
paths that differ in ways other than their relationship to obstacles. For example, this approach can reason about path
difference induced by constraints imposed on the system, or the physical limitations of the platform. The resulting
algorithm has a running time comparable to that of standard optimal sampling-based planners, as it requires a minimal
set of additional procedures at each iteration and lazily constructs multiple paths simultaneously.

Alejandro Perez, e-mail: atp@csail.mit.edu

1

(a) (b) (c)

(d) (e) (f)

Fig. 1 The Drawer environment. The proposed algorithm finds three types of paths: one through each hole, and one that avoids the obstacle
entirely. Guard nodes are white spheres, dominated guard nodes are black spheres, and locally-optimal approximation for each visibility-
domain are shown with a different color. In (a) one path provides a solution through the bottom part of the object (yellow path); a tree
(not rendered) rooted at the top opening is being constructed. (b) shows the first guarded paths (purple and yellow lines), dominated guards
(black spheres) from dominated paths can be seen. (c) Three locally-optimal solutions are shown; yellow for the bottom opening, gray for
the top, and light purple for the path that goes around and behind the object. (d,e) progress during another run in the same environment. (f)
Three paths.

2 Related Work

The problem of finding a set of feasible paths in a configuration space has been explored over the last two decades.
Brock and Khatib [5] presented an approach to generate sets of paths by computing approximations of free space, or
bubbles, and using this information to verify if there exist continuous mappings between paths. However, the different
solution classes are implicitly represented as regions of the configuration space, and a path planner is required to find
a solution within each one. Lamound and Nissoux presented the Visibility-PRM, a variant of the PRM algorithm that
reasons about the visibility between configurations in order to cover the configuration space with a sparse roadmap
[19]. This approach was extended by Jaillet and Simeon [12] to allow multiple class-equivalent paths to be constructed
if their deformation meets certain criteria. These algorithms probabilistically cover the space with guards and construct
compact roadmaps that represents the different classes of paths. However, the resulting coverage is suboptimal as it
does not attempt to find optimal locations for the guards or to minimize the cardinality of the set. Moreover, there are
no guarantees regarding the quality of the paths.

Another approach that has received a considerable amount of attention is to classify or represent the different homo-
topy classes in a given space. Bhattacharya et al. consider a representation of the homotopy classes while performing
search-based planning on a graph to generate non-homotopic paths [3], [4]. This approach has been successful in
generating optimal paths for different instances of the motion planning problem. However, the algorithm is only able

2

to find path homotopies induced by obstacles, is limited to three-dimensional problems, and is complete and optimal
only with respect to its discretization of the space.

Schmitzberger et al. [34] define Homotopy Preserving Probabilistic Roadmaps, or roadmaps that include the list
of paths that cannot be deformed into one another without colliding with obstacles, and propose an algorithm that
constructs them. The resulting approach incorporates guarded visibility domains [19] and considers a family of balls
that form a topological base of the configuration space to compute a set with every feasible, non-redundant path
such that all paths are non-homotopic. The algorithm was theoretically characterized and successfully applied to a
six-dimensional instance of the motion planning problem. However, although the approach attempts to minimize the
cardinality of the set of paths by considering redundancy, the paths themselves are of suboptimal quality. Furthermore,
the redundancy operation is computationally expensive, as it requires numerous calls to collision-checking procedures.

In this paper we present a sampling-based algorithm that covers the space with the minimum set of locally-optimal
paths that differ in visibility.

3 Problem Formulation

In this section we formalize the minimum guarded path cover problem. We begin by presenting the path planning
problem in terms of configurations and visibility.

Let X ⊆ Rd , referred to as the configuration space, be a compact set. The elements of X are called configurations.
Let Xinv be an open set, called the invisible region and the set defined as Xvis := X \Xinv be the visible-space

It can be noted that the term visibility represents feasibility and local ‘reachability’. In general terms, the configu-
ration x′ is visible from configuration x if a local method is able to compute a feasible path that connects them. We use
this notion in this way in order to maintain consistency with the visibility-based algorithms literature [30]. However,
this terminology is equivalent to that used in the motion planning literature [20], i.e., visible-space is equivalent to
free-space, invisible region to obstacle region, feasible to collision-free, and so on.

Now we consider the problem of finding feasible paths composed of configurations in this space.

Definition 1. (Path) A path in X is a continuous function σ : [0,1]→ X . The path σ is considered to be feasible, if
σ(τ) ∈ Xvis for all τ ∈ [0,1]. The set of all feasible paths is denoted by Σvis.

Problem 1. (Path Planning) Given an initial configuration xinit, an invisible region Xinv, and a goal configuration
xgoal, find a feasible path σ : [0,1]→ Xvis that starts from the initial configuration σ(0) = xinit and reaches the goal
configuration σ(1) = xgoal.

Problem 2. (Optimal Path Planning [14]) Given a cost functional c : Σvis→ R≥0 that maps each feasible path to a
non-negative cost, find a feasible path σ∗ : [0,1]→ Xvis that solves the path planning problem, and minimizes the cost
functional c(·).

The incremental approximation of optimal paths will play a key role in the proposed algorithm. We will discuss
this in more detail in the next section.

Now let us explore the relationship between the solutions found in a given instance of the path planning problem.
This relationship will be based on the visibility of the guards that ‘own’ each path. Let us first define how we compute
this visibility.

Definition 2. (Local method) Let L denote a local method that computes a local path L(x,x′) where x and x′ are two
configurations to be connected and furthermore, returns whether the resulting path is feasible. For kinematic systems,
local paths can be represented as straight line paths in the configuration space.

Definition 3. (Visibility Domain [19]) Given a local method L, the visibility domain of a configuration x is defined as
VisL(x) = {x′ ∈ Xvis s.t. L(x,x′)⊂ Xvis}. 1

1 In this paper we assume local displacements in manifolds can be modeled by computing visibility between configurations via a local
method. Extending this approach to cover more complex topologies is left for future work.

3

The visibility domain is rooted in configuration x, which is the guard configuration of VisL(x) [30]. A guard is not
visible by any of the other guards in Xvis.

Guards and their visibility domains are essential components in the algorithm presented in the next section. We will
use a local method to determine the visibility among guards and to move them around in the space. Consider Figure 2.
Let the yellow and blue squares represent the start and goal states respectively. The gray object is an obstacle or hole,
i.e., an invisible region, in the space.

Fig. 2 Example A

Let us consider the three guards in this space. These
are shown as white circles; each one ‘owns’ a path of
a different color. In this paper, an ‘owned’ path is said
to be the path of best cost that solves the path planning
problem and contains the configuration of a particular
guard.

Now consider the guards that own the blue and green
paths. You will notice they are not able to ‘see’ each
other. However, their current paths are similar, i.e., they
both move above the hole to reach the goal. Intuitively
speaking, these two guards can be thought to be ‘guard-
ing’ the upper edge of the hole or obstacle in the cen-
ter. Moreover, imagine you were to stretch or tighten
these two paths into their shortest possible length. These
would clearly merge or overlap above the top of the hole
or obstacle. However, this is not the case for the guard
on the red path. Like the other guards, it is not visible.
However, the path it owns takes another route entirely.

Our goal will be to minimize the number of paths in a space while ensuring the ones we keep are not redundant
(e.g., blue and green paths in Figure 2). Let us explore how to ‘cover’ the space with guards and the paths they own.
First, we define a guarded path.

Definition 4. (Guarded path) Given a guard configuration xguard in the configuration space X , a guarded path g.σ :
[0,1] → Xvis is a feasible path in X , that starts from the initial configuration g.σ(0) = xinit and reaches the goal
configuration g.σ(1) = xgoal, such that g.σ(·) ∈ Xvis, and contains the xg configuration, i.e., ∃α ∈ [0,1] such that
σ(α) = xguard.

Figure 2 shows three guarded paths. There is no location in this space that cannot be ‘seen’ by the guards in it.
When this is the case, we consider the set of guards a solution to the visible-space coverage problem.

Problem 3. (Visible-space Coverage [19]) Given the configuration space X and a local method L, find a guard set G
such that the union of their visibility domains covers Xvis.

In this paper we will consider the optimal version of this problem. Imagine you wanted to reduce the number of
guards in Figure 2. If a single guard centered above the object replaces the guards with the green and blue paths the
space could be covered by two guards instead of three. Let us now consider this version of this problem.

Problem 4. (Minimal visible-space Coverage) Given the configuration space X and a local method L, find the mini-
mum guard set G∗, that is, a set of minimal cardinality, such that the union of their visibility domains covers Xvis.

The approach we present in this paper constructs approximate visibility domains using sampling-based algorithms.
Therefore, the resulting problem could be thought of as a probabilistic version of the art gallery problem (more specifi-
cally minimal guard coverage) [30] or a special case of the minimum set cover [17] problem. Yet, in this paper we will
focus more on the paths these guards are able to generate from their locations and less on how the guards themselves
cover the space with their visibility. We can think of this component of the problem as a version of the minimum path
cover problem [29].

4

From the literature we know that asymptotically optimal path planning algorithms are able to turn any path in a
given space into the optimal one [14]. In the next section we will explain how to use this property to remove guards
and paths that are unnecessary. However, we first need to describe what it means for paths to be optimal within their
own visibility domains.

Definition 5. (Locally-optimal path) Given a guard configuration xguard in the space X and its visibility-domain
VisL(xguard), the locally-optimal path is the guarded path for the configuration in VisL(xguard) that provides the mini-
mal cost c(g.σ).

Problem 5. (Path Cover Planning) Given an initial configuration xinit, an invisible region Xinv, and a goal configura-
tion xgoal, find a set of guard configurations G that solves the visible-space coverage problem and a guarded path for
each guard.

Problem 6. (Minimum Path Cover Planning) Given the configuration space X , an invisible region Xinv, and the
initial and goal configurations xinit and xgoal, find (i) the set of guard configurations G∗ that solves the minimal visible-
space coverage problem and (ii) a locally-optimal path for each guard such that the number of guarded paths is
minimized.

4 Probabilistic Path Cover

In this section, we present an incremental sampling-based algorithm for path coverage of configuration spaces. The
minimum path cover planning problem has an input of (X ,xinit,xgoal,c(·),L(·)) and returns an output of F = (G,Σvis),
where G = {(xroot,Tvis,σbest)}, i.e., each guard in the set G is composed of a rooting configuration xroot, a tree Tvis,
and the path that reaches xgoal with the lowest cost σbest. The set Σvis contains all paths in F that reach xgoal. Recall the
scenario shown in Figure 2. The location of each guard (white circle) represent xroot, the colored paths represent σbest,
and finally, Tvis (not rendered) represents an optimal tree that is constructed from this location and which is responsible
for generating σbest.

In the previous section we saw how simply using a standard sampling-based algorithm to cover the space with
guards can result in suboptimal coverage of the space. We will now consider an algorithm that is able to merge similar
paths into each other and uses this property to minimize the cardinality of the guard set.

4.1 Algorithmic Procedures

Let us now describe the primitives of the proposed algorithm.

SampleForest: The SampleForest procedure returns a guard grand randomly sampled from the set of guards in
forest F where grand = {(xroot,Tvis,σbest)}.
Extend: Given a tree Trand the Extend procedure performs one iteration of an asymptotically-optimal sampling-based
algorithm, e.g., RRT∗, k-RRT∗, on grand.Tvis and returns the latest vertex added to the tree xnew along with the updated
tree, i.e., Trand = (V,E,Σvis,xnew). A path is added to Σvis if L(xnew,xgoal).

CoveringBalls [14]: Given a path σn : [0,1]→ X and the real number rn the CoveringBalls procedure returns the
set Bn = {Bn,1,Bn,2, . . . ,Bn,Mn} of Mn balls of connection radius rn such that Bn,m is centered at σ(τm) and the set
collectively covers the path σn. The radius of the balls along the path is the connection radius of the RRT∗ algorithm,
i.e., rn = γF(log |V |

|V |)1/d where |V | is the number of vertices in the forest F . For details see Lemma 71 by Karaman and
Frazzoli [14] and the Borel-Cantelli lemma [7].

RandomVertex: Given a forest F , the RandomVertex procedure randomly selects and returns a vertex from the set
of trees.

5

(a) (b)

(c) (d)

Fig. 3 The progress in the Window scenario is shown. (a) Only one path has been found while a tree (not rendered) rooted at a guard (center
white sphere) is constructed from inside the object. (b-d) solutions for both trajectories improve, reroot, and eventually overlap leaving the
dominant paths. Intuitively speaking, imagine the paths in (a) and (b) as rubber bands that are being deformed to be as short as possible.
The light-blue and yellow paths eventually overlap, creating a dominated guard node in the process. Finally, the dominating path becomes
the purple solution and another tree constructed through the opening creates the yellow path (c,d).

Cost-to-go: The cost-to-go function serves as an equivalent to the admissible heuristic h(x) employed by A∗ planning
algorithms [9]. Given a vertex x, the CostToGo procedure returns the admissible global cost from that vertex, i.e.,
Cost(x)+ h(x) where h(x) is the admissible cost incurred by the straight line path from x to the goal configuration.
More specifically, c(σa), where, σa← L(x,xgoal), and the feasibility of the path is not considered.

Dominates: Given two guard vertices g and g′ the Dominates procedure determines whether g dominates g′. Let
g.σbest and g′.σbest be the paths of lowest cost owned by guards g and g′ respectively, then g dominates g′ if c(g.σbest) <
c(g′.σbest).

Guard: The Guard procedure verifies the visibility of guard candidate xnew from all guards in G and G′, i.e.,
L(xnew,g) for all g∈G∪G′. The xnew configuration is considered a guard if it is not visible from any of the guards. The

6

guard procedure considers new configurations only when each existing guard in G owns a solution, i.e., g.σbest 6= /0 for
all g ∈ G.

4.2 Proposed Algorithm

The proposed algorithm incrementally constructs a forest of trees rooted at guard configurations. Vertices are added to
the set of guards if they are unreachable by any of the guards in the current set. Each tree asymptotically approximates
the optimal path from its root to xgoal. These are rerooted and reconstructed when configurations that provide better
path cost with the same visibility are discovered. Moreover, redundant guards, i.e, those that are found to be in the
covering balls of a guarded path, are removed from the set.

The procedure is presented in Algorithm 1. The algorithm is initialized with a forest F that contains a single initial
tree rooted at the guard configuration of a vertex representing the initial state. The procedure iterates by sampling a
random guards grand from F (Line 4), and performing one step of optimal tree construction on its tree (Line 5). At this
point, the visibility of xnew, the latest vertex added to F , is tested against the guards in G and G′ (Line 6). If xnew is not
visible by any of the guards, it is added to G and a tree is initialized at its vertex (Lines 7-8).

Fig. 4 Example B

In the second phase, the algorithm attempts to move
grand with the Reroot procedure (Line 9, Algorithm 2).
The RandomVertex procedure returns a random config-
uration xrand from F (Line 2). The guard is rerooted at
xrand if the following two conditions are met: The admis-
sible cost of xrand is lower than that of grand (Line 3) and
the sampled configuration is visible only by the current
guard configuration (Lines 5, 7). In this case, the guard
starts constructing a new tree at this new configuration.
Note that the best solution found by the previous tree is
kept (Line 8) and is only replaced if one of lower cost is
found.

In the final phase, the algorithm attempts to remove
redundant guards with the GuardDominance procedure
(Line 10, Algorithm 3). If grand owns a path, the algo-
rithm samples a random guard g′. Then, it computes the
set of CoveringBalls for the path owned by grand (Line
3) and verifies if g′ is contained in any of the balls (Lines
4-5). In this event, the guard of best solution cost is re-
moved from G, added to the set of dominated guards G′, and its tree is removed from F (Lines 6-9).

Consider again the example in the previous section. Let us now focus on the visibility-domains owned by the guards
and the covering balls for the guarded paths. The space of possible rerooting locations within the visibility-domains
of the blue and red guards are depicted as regions of that color in Figure 4. Note that if the blue guard moves outside
this region, it will be seen by either the red or green guards.

As the algorithm iterates, the blue guard will move to configurations that provide guarded paths of lower cost. An
optimal configuration for this guard is rendered as the blue circle with the dashed edge. Additionally, the guarded
path that becomes possible at this configuration along with paths of increasingly less cost are shown as dashed blue
lines. Now, notice how the resulting locally-optimal path for the blue guard lies inside the covering balls of the green
guard. When this event takes place, the guard with the path of highest cost loses its path (and tree) and is added to the
dominated guard set. This prevents another guard from appearing in the same region.

7

Algorithm 1: (X ,xinit,xgoal,c(·),L(·))
V ←{xinit}; E← /0; G′← /0;Σvis← /0; ;1
Tmain← (V,E,Σvis); F ←{Tmain}; G←{(xinit,Tmain, /0)};2
for i = 1 . . .n do3

grand← SampleForest(F);4
(V,E,Σvis,xnew)← Extend(grand.Tvis);5
if Guard(G,G′,xnew) then6

Tnew←{V = {xnew},E = /0,Σ = /0}; F ← F ∪{Tnew};7
G← G∪{(xnew,Tnew,σbest = /0)};8

(F,G)← Reroot(F,G,grand);9
(F,G,G′)← GuardDominance(F,G,G′,grand);10

return F = (G,Σvis).11

Algorithm 2: Reroot (F,G,grand)
if grand.σbest 6= /0 then1

xrand← RandomVertex(F);2
if CostToGo(xrand) < CostToGo(grand) then3

foreach g ∈ G\{grand} do4
if L(g,xrand) then5

return (F,G,Σvis)6

if L(xrand,grand) then7
g.Tvis← (V = {xrand},E = /0,Σnew = {grand.σbest});8
F ← F\{grand.T};F ← F ∪{Tnew};9

return (F,G)10

Algorithm 3: GuardDominance(F,G,G′,grand)
if grand.σbest 6= /0 then1

g′← SampleForest(F);2

Bn← CoveringBalls(grand.σbest ,γF(log |V |
|V |)1/d);3

foreach b ∈ Bn do4
if g′ in b then5

if Dominates(grand,g′) then6
F ← F\{g′.T};G′← G′∪{g′};G← G\{g′};7

else8
F ← F\{g.T};G′← G′∪{grand};G← G\{grand};9

return (F,G,G′)10

Finally, consider the red guard. There is no possible rerooting location which will put its guard inside the covering
balls of another guarded path in the space. The algorithm continues to iterate in this manner and eventually covers
the space with guards (both dominated and dominating) and approximates the locally-optimal path for each remaining
guard.

4.3 Computational Complexity

In this section, we consider the computational complexity of the proposed algorithm.
There are two main procedures invoked during graph construction. These are, collision checking, and near or range

search. It is known from the literature that the expected number of calls to a collision-checking procedure during
the construction of an optimal tree using an algorithm such as RRT∗, or k-RRT∗, requires time k logn for all n with
n/ logn > k where n is the number of iterations [14]. Moreover, the near computation, or the calculation of the points

8

(a) (b)

(c) (d)

Fig. 5 The Cube scenario only has one local optimum. However, because the algorithm iterates in an anytime manner, several potential
guards are considered initially (a-b). Guards are shown as white spheres, dominated guards as black spheres, and locally-optimal paths as
colored paths. In (a) a guard candidate is found behind the cube. (b) three guards with a solution each are found. (c) These paths eventually
overlap and are dominated by the one of lowest cost (yellow). (d) The remaining path is optimized, dominated guards from previous paths
maintain other trees from being created.

in some range, e.g., inside a ball of a specific radius, has a worst-case time of complexity O(n1−1/d + m) where m is
the number of returned points [22]. More formally, at the algorithmic level, the time complexity of computing each
tree is O(n logn) and its space complexity is O(n).

The algorithm presented in this paper constructs multiple trees simultaneously. However, because most operations
are done lazily, and only a single tree is considered at each iteration, the computational burden is comparable to
that of single-tree optimal planners. In fact, the algorithm incurs additional computation at each iteration solely to
calculate the overlap of covering balls and the visibility between guards. In the next section we empirically compare
the performance of the proposed to algorithm to a single-tree optimal planner. We leave the theoretical characterization
of the increased expected time and space complexity for future work.

9

5 Experimental Results

0 500 1000 1500 2000 2500 3000
Number of iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r

of
 s

ol
ut

io
ns

Cube
Window
Drawer

(a)

0 500 1000 1500 2000 2500 3000
Number of iterations

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 d

om
in

at
ed

 g
ua

rd
s

Cube
Window
Drawer

(b)

0 500 1000 1500 2000 2500 3000
Number of iterations

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

 ti
m

e
ra

tio

Cube
Window
Drawer

(c)

Fig. 6 The proposed algorithm is run 200 times for 3000 iterations in all three environments.

In this section we present and discuss some experimental results. The proposed algorithm was implemented in
Python and tested on a computer with 4GB RAM and a 1.80 GHz x 4 processor. The focus of the experiments is to
illustrate the ability of the algorithm to find a minimal set of guards with locally-optimal paths. We consider three
problem instances: the cube scenario has a single cube shaped obstacle (Figure 5), the window scenario has a hollow
obstacle (Figure 3), and the drawer scenario has a hollow obstacle with two separate openings (Figure 1). The number
of expected paths for each scenario are one, two, and three respectively.

Figure 6 depicts the average performance of the algorithm in terms of number of solutions, number of dominated
guards, and computational ratio over a single-tree RRT∗, averaged over 200 runs. The three scenarios are shown
as blue, red, and green lines for the Cube, Window, and Drawer environments respectively. Figure 6 (a) shows the
average number of solutions/guards at every iteration. These values converge to the expected one, two, and three for
the Cube, Window, and Drawer scenarios respectively. In (b), the average number of dominated guards is plotted
against iterations for all three cases. (c) Shows the ratio of the running time of the proposed algorithm over a standard
single-tree RRT∗. It can be seen to converge to less than 1.5 in simple scenarios. In the Drawer scenario, it was
observed that the algorithm took longer to fill the space with dominated guards and therefore continues to incur extra
computation.

Cube

Alg. It. t (s) Fn. t (s) NNs V CCs
RRT∗ 0.014 43.01 5408.34 2546.12 24202.26
Proposed 0.017 50.06 7853.94 2140.55 80946.47

Window

Alg. It. t (s) Fn. t (s) NNs V CCs
RRT∗ 0.013 37.76 5198.13 2436.99 27247.50
Proposed 0.018 54.94 11087.64 1544.84 88405.68

Drawer

Alg. It. t (s) Fn. t (s) NNs V CCs
RRT∗ 0.013 37.95 5141.36 2405.12 27584.65
Proposed 0.033 97.85 22264.46 1253.95 88288.97

Table 1

10

Table 1 summarizes the performance of the proposed algorithm and a standard single-tree RRT∗ in the three envi-
ronments. The columns depict iteration time (It. t), completion time (Fn. t), number of nearest neighbor queries (NNs),
number of vertices in the graph at completion (V), and number of collision-checking queries (CCs) averaged over 200
runs of 3000 iterations.

6 Discussion and Future Work

It is essential to theoretically characterize the complexity, correctness, and optimality of the approach. In general
terms, the algorithm leverages theoretical properties of asymptotically-optimal sampling-based algorithms, i.e., RRT∗,
k-RRT∗, RRG, to deform paths into each other and to remove redundant guards (see Karaman and Frazzoli [14] and
the Borel-Cantelli lemma [7]). However, a detailed theoretical analysis of the overall approach is left for future work.
Similarly, although the computational complexity of several related problems are in the literature, i.e., set cover [17],
art gallery [30], path cover [29], and counting problems [36], the complexity of the problem presented in this paper is
not discussed.

The properties of the paths computed by the approach also require theoretical analysis. The paths clearly differ
in visibility, as this is directly computed and considered by the algorithm. However, it is unclear what topological
relationship the resulting path classes might have (e.g., are all paths non-homotopic?) [27]. Indeed, the analysis of
more complicated manifolds along with the resulting solutions generated by the approach are left for future work.

Moreover, given that the algorithm uses a simple local method to generate and remove paths, the approach can be
applied to high-dimensional motion planning problems, e.g., computing multiple, distinct paths for arm manipulation
with a PR2 or Baxter robot [31], and to instances of the motion planning problem where the platform has compli-
cated dynamics that might result in different solution classes for reasons other than collisions with obstacles in the
environment, e.g., underactuated systems [28], nonholonomic vehicles [15], belief space planning [32], kinodynamic
planning for specific time horizons [8], and chance-constrained path planning [25]. Application to other domains
should be straightforward.

References

[1] P. Agarwal. “Compact Representations for Shortest-Path Queries”. In: IROS Workshop on Progress and Open
Problems in Motion Planning. 2011.

[2] A. Bhatia and E. Frazzoli. “Incremental Search Methods for Reachability Analysis of Continuous and Hybrid
Systems”. In: Hybrid Systems: Computation and Control. Ed. by R. Alur and G. Pappas. Lecture Notes in
Computer Science 2993. 2004, pp. 451–471.

[3] S. Bhattacharya, V. Kumar, and M. Likhachev. “Search-based path planning with homotopy class constraints”.
In: In Proc. National Conference on Artificial Intelligence.

[4] S. Bhattacharya, M. Likhachev, and V. Kumar. Identification and Representation of Homotopy Classes of Tra-
jectories for Search-based Path Planning in 3D.

[5] O. Brock and O. Khatib. “Elastic Strips: A Framework for Motion Generation in Human Environments”. In:
The International Journal of Robotics Research 21.12 (2002), pp. 1031–1052.

[6] A. Dobson, A. Krontiris, and K. E. Bekris. “Sparse Roadmap Spanners”. In: Workshop on the Algorithmic
Foundations of Robotics (WAFR). 2012.

[7] D. S. G. Grimmett. Probability and Random Processes. Third. Oxford University Press, 2001.
[8] G. Goretkin et al. “Optimal Sampling-Based Planning for Linear-Quadratic Kinodynamic Systems”. In: IEEE

International Conference on Robotics and Automation (ICRA). 2013.
[9] P. E. Hart, N. J. Nilsson, and B. Raphael. “A formal basis for the heuristic determination of minimum cost

paths”. In: IEEE Transactions on Systems, Science, and Cybernetics SSC-4.2 (1968), pp. 100–107.

11

[10] K. Hauser. “The Minimum Constraint Removal Problem with Three Robotics Applications”. In: WAFR. 2012,
pp. 1–17.

[11] L. Jaillet et al. “Randomized tree construction algorithm to explore energy landscapes”. In: Journal of Compu-
tational Chemistry (2011), pp. 3464–3474.

[12] L. Jaillet and T. Simon. “Path deformation roadmaps”. In: in Proceedings of the International Workshop on the
Algorithmic Foundations of Robotics. 2006.

[13] M. Kallmann and M. J. Matarić. “Motion Planning Using Dynamic Roadmaps”. In: International Conference
on Robotics and Automation. 2004, pp. 4399–4404.

[14] S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal Motion Planning”. In: International
Journal of Robotics Research (2011).

[15] S. Karaman et al. “Anytime Motion Planning using the RRT*”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2011.

[16] L. Kavraki et al. “Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces”. In:
Proceedings of the IEEE International Conference on Robotics and Automation. 1996, pp. 566–580.

[17] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. 4th. Springer Publishing Com-
pany, Incorporated, 2007. ISBN: 3540718435, 9783540718437.

[18] J. Latombe. “Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts”. In: Int’l
J. of Robotics Research 18.11 (1999), pp. 1119–1128.

[19] J p. Laumond and C. Nissoux. “Visibility-based probabilistic roadmaps for motion planning”. In: Journal of
Advanced Robotics 14 (2000), p. 2000.

[20] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[21] S. M. LaValle and J. J. Kuffner. “Randomized Kinodynamic Planning”. In: International Journal of Robotics

Research 20.5 (2001), pp. 378–400.
[22] D. Lee and C. Wong. “Worst-case analysis for region and partial region searches in multidimensional binary

search trees and balanced quad trees”. English. In: Acta Informatica 9.1 (1977), pp. 23–29. ISSN: 0001-5903.
[23] P. Leven and S. Hutchinson. “A Framework for Real-time Path Planning in Changing Environments.” In: I. J.

Robotic Res. 21.12 (2002), pp. 999–1030.
[24] Y. Liu and N. Badler. “Real-time reach planning for animated characters using hardware acceleration”. In: IEEE

Int’l Conf. on Computer Animation and Social Characters. 2003, pp. 86–93.
[25] B. D. Luders, S. Karaman, and J. P. How. “Robust Sampling-based Motion Planning with Asymptotic Optimal-

ity Guarantees”. In: AIAA Guidance, Navigation, and Control Conference (GNC). Boston, MA, 2013.
[26] R. Luna and K. E. Bekris. “Network-guided multi-robot path planning in discrete representations”. In: 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan.
IEEE, 2010, pp. 4596–4602. ISBN: 978-1-4244-6674-0.

[27] J. Munkres. Topology. Topology. Prentice Hall, Incorporated, 2000. ISBN: 9780131784499.
[28] R. Murray and J. Hauser. A Case Study in Approximate Linearization: The Acrobot Example. Tech. rep.

UCB/ERL M91/46. EECS Department, University of California, Berkeley, 1991.
[29] S. C. Ntafos and S. L. Hakimi. “On Path Cover Problems in Digraphs and Applications to Program Testing”.

In: IEEE Trans. Software Eng. 5.5 (1979), pp. 520–529.
[30] J. O’Rourke. Art gallery theorems and algorithms. New York, NY, USA: Oxford University Press, Inc., 1987.

ISBN: 0-19-503965-3.
[31] A. Perez et al. “Asymptotically-optimal Manipulation Planning using Incremental Sampling-based Algo-

rithms”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2011.
[32] A. Perez et al. “LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension

Heuristics”. In: IEEE International Conference on Robotics and Automation (ICRA). 2012.
[33] E. Plaku. “Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions”. In: Advances

in Autonomous Robotics. Ed. by G. Herrmann et al. Vol. 7429. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 331–342. ISBN: 978-3-642-32526-7.

[34] E. Schmitzberger et al. “Capture of homotopy classes with probabilistic road map”. In: IROS. 2002, pp. 2317–
2322.

12

[35] J. T. Schwartz and M. Sharir. “On the ‘piano movers’ problem: II. General Techniques for Computing Topolog-
ical Properties of Real Algebraic Manifolds”. In: Advances in Applied Mathematics 4 (1983), pp. 298–351.

[36] L. G. Valiant. “The Complexity of Computing the Permanent”. In: Theoretical Computer Science 8 (1979),
pp. 189–201.

13

