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Abstract

Sampling-based motion planning received increasing attention during the last decade.
In particular, some of the leading paradigms, such the Probabilistic RoadMap (PRM)
and the Rapidly-exploring Random Tree (RRT) algorithms, have been demonstrated
on several robotic platforms, and found applications well outside the robotics domain.
However, a large portion of this research effort has been limited to the classical feasible
path planning problem, which asks for finding a path that starts from an initial
configuration and reaches a goal configuration while avoiding collision with obstacles.

The main contribution of this dissertation is a novel class of algorithms that extend
the application domain of sampling-based methods to two new directions: optimal
path planning and path planning with complex task specifications.

Regarding the optimal path planning problem, we first show that the existing
algorithms either lack asymptotic optimality, i. e., almost-sure convergence to optimal
solutions, or they lack computational efficiency: on one hand, neither the RRT nor
the k-nearest PRM (for any fixed k) is asymptotically optimal; on the other hand,
the simple PRM algorithm, where the connections are sought within fixed radius
balls, is not computationally as efficient as the RRT or the efficient PRM variants.
Subsequently, we propose two novel algorithms, called PRM* and RRT*, both of
which guarantee asymptotic optimality without sacrificing computational efficiency.
In fact, the proposed algorithms and the most efficient existing algorithms, such as
the RRT, have the same asymptotic computational complexity.

Regarding the path planning problem with complex task specifications, we propose
an incremental sampling-based algorithm that is provably correct and probabilistically
complete, i.e., it generates a correct-by-design path that satisfies a given determinis-
tic pt-calculus specification, when such a path exists, with probability approaching to
one as the number of samples approaches infinity. For this purpose, we develop two
key ingredients. First, we propose an incremental sampling-based algorithm, called
the RRG, that generates a representative set of paths in the form of a graph, with
guaranteed almost-sure convergence towards feasible paths. Second, we propose an in-
cremental local model-checking algorithm for the deterministic p-calculus. Moreover,
with the help of these tools and the ideas behind the RRT*, we construct algorithms
that also guarantee almost sure convergence to optimal solutions.
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Chapter 1

Introduction

1.1 Robot Motion Planning

The robot motion planning problem has received a considerable amount of attention,
especially over the last decade, as robots started becoming a vital part of modern
industry as well as our daily life (Latombe, 1999; Choset et al., 2005; LaValle, 2006).
Even though modern robots may possess significant differences in sensing, actuation,
size, workspace, application, etc., the problem of navigating through a complex envi-
ronment is embedded and essential in almost all robotics applications. Moreover, this
problem is relevant to other disciplines such as verification, computational biology,
and computer animation (Finn and Kavraki, 1999; Latombe, 1999; Branicky et al.,
2001; Liu and Badler, 2003; Bhatia and Frazzoli, 2004; Cortes et al., 2007).

Informally speaking, given a robot with a description of its dynamics, a description
of the environment, an initial state, and a set of goal states, the motion planning
problem is to find a sequence of control inputs so as the drive the robot from its initial
state to one of the goal states while obeying the rules of the environment, e.g., not
colliding with the surrounding obstacles. In a widely-studied variant of this problem,
the robot is a rigid body that translates and rotates in the d-dimensional Euclidean
space populated with fixed obstacles; then, the algorithmic question is to design a
procedure to find a sequence of such rigid body transformations that takes the robot
from its initial configuration to a goal configuration. Due to the obvious analogy, this
problem is called the mover's problem (Reif, 1979), or the piano mover's problem in
some references (Schwartz and Sharir, 1983b,a). A similar class of problems, with a
wide range of applications, is also called spatial planning by Lozano-Perez (1983). An
important generalization, often called the generalized mover's problem (Reif, 1979,
1987), features an articulated robot that consists of multiple rigid bodies conjoined
with freely-actuated joints. The motivation behind the generalized mover's problem
is the robotic manipulator arms commonly found in many modern assembly lines.

An important assumption in the (generalized) mover's problem is the exclusion
of complex dynamics, in other words, the absence of differential constraints. In the
sequel, such motion planning problems without differential constraints are called path
planning problems. Path planning problems arise in a number of practical applications
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of robotics and beyond (see, e.g., Lozano-Perez, 1983), and a large body of literature
is devoted to algorithmic approaches for this problem and the characterization of its
complexity, which we review in this section briefly.

Complete Algorithms: An algorithm that addresses a motion planning problem
is said to be complete if it terminates in finite time, returning a valid solution if one
exists, and failure otherwise.

An important step in the design of complete algorithms for motion planning has
been the introduction of the notion of configuration space by Lozano-Perez and Wesley
(1979) (see also Udupa, 1977; Lozano-Perez, 1983), whereby the rigid-body robot is
"shrunk" to a point moving in an Euclidean space of dimension equal to the number of
degrees of freedom of the robot. This has motivated a number of complete algorithms
that represent the obstacle-free portion of the configuration space, called the free
space, in a computationally convenient form; Then, they evaluate the connectivity of
the free space, in particular the connectivity of the initial and the goal configurations,
to solve the motion planning problem.

One of the early algorithms in this class was proposed by Schwartz and Sharir
(1983a). Their algorithm, often called the cell decomposition algorithm (see Sharir,
1997), recursively partitions the configuration space into finite number of cylindrical
cells, such that the free space is precisely the union of a subset of these cells. The
algorithm, then, constructs a "connectivity graph" in which all adjacent cells are
connected by edges. Finally, the motion planning problem is answered by checking
whether the two cells that contain the initial and the final configurations are connected
to each other through the connectivity graph.

The cell decomposition algorithm is complete. However, being able to guarantee
such a strong property comes with a substantial computational cost: the running
time of the algorithm is doubly exponential in the number of degrees of freedom of
the robot. Later, Canny (1988) proposed the roadmap algorithm, which significantly
improved the cell decomposition algorithm: the roadmap algorithm runs in time that
is only singly exponential in the number of degrees of freedom.

Computational Complexity: It has long been known that, unfortunately, it is
very unlikely that the running time of the roadmap algorithm can be improved sub-
stantially. As early as 1979, Reif (1979) had shown that the generalized mover's
problem is PSPACE-hard in the number of degrees of the robot. However, it is worth
noting at this point that both the cell decomposition algorithm and the roadmap
algorithm have running times that grow polynomially with both the geometric and
the algebraic complexity of the obstacles (see Sharir, 1997). Hence, what makes the
(generalized) mover's problem hard is the number of degrees of freedom of the robot,
rather than complexity of the environment.

In fact, there are a number of related planning problems, involving several in-
dependently actuated parts, with similar computational complexity properties. Ar-
guably, the simplest such problem is the warehouseman's problem, which amounts
to moving several rectangles on the plane from their initial configurations to their
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goal configurations while avoiding collisions with each other. Despite its algebraic,
geometric, and conceptual simplicity, the many-degrees-of-freedom nature of the ware-
houseman's problem renders it PSPACE-hard in the number of rectangles (Hopcroft
et al., 1984b). Several other planning problems involving many degrees of freedom,
ranging from path planning problems for manipulator arms to many popular puz-
zles are also known to be PSPACE-hard (Hopcroft et al., 1982; Chazelle et al., 1984;
Hopcroft et al., 1984a; Dor and Zwick, 1999; Flake and Baum, 2002; Hearn, 2006).

Practical Approaches: These computational complexity results strongly suggest
that any complete algorithm is doomed to suffer from computational intractability
in problem instances involving robots with several degrees of freedom. In the light
of these results, many practitioners turned to algorithms that relax the completeness
requirement one way or another.

Early practical approaches, such as decomposition methods (Brooks and Lozano-
Perez, 1983), relaxed the completeness requirement to resolution completeness. That
is, if properly implemented, these algorithms return a solution, when one exists, if
the resolution parameter of the algorithm is set fine enough. Others, such as poten-
tial fields (Khatib, 1986; Hwang and Ahuja, 1992), relaxed completeness guarantees
altogether.

These planners demonstrated remarkable performance in accomplishing various
tasks in complex environments within reasonable time bounds (Ge and Cui, 2002).
However, their practical applications were mostly limited to state spaces with up to
five dimensions, since decomposition-based methods suffered from large number of
cells, and potential field methods from local minima (Koren and Borenstein, 1991).
Important contributions towards broader applicability of these methods include navi-
gation functions (Rimon and Koditschek, 1992) and randomization (Barraquand and
Latombe, 1991).

Sampling-based Algorithms: The above methods rely on an explicit representa-
tion of the obstacles in the configuration space, which is used directly to construct
a solution. This may result in an excessive computational burden in high dimen-
sions, and even in environments described by a large number of obstacles. Avoiding
such a representation has been the main underlying idea leading to the development of
sampling-based algorithms (Kavraki and Latombe, 1994; Kavraki et al., 1996; LaValle
and Kuffner, 2001). See (Lindemann and LaValle, 2005) for a historical perspective.
These algorithms proved to be very effective for motion planning in high-dimensional
spaces, and attracted significant attention over the last decade, including very recent
work (see, e.g., Yershova et al., 2005; Stilman et al., 2007; Berenson et al., 2008;
Koyuncu et al., 2009; Prentice and Roy, 2009; Tedrake et al., 2010).

Instead of using an explicit representation of the environment, sampling-based
algorithms rely on a collision-checking module, providing information about feasibility
of candidate trajectories, and connect a set of points sampled from the obstacle-free
space in order to build a graph (roadmap) of feasible trajectories. The roadmap is
then used to construct the solution to the original motion-planning problem.
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Informally speaking, sampling-based methods provide large amounts of computa-
tional savings by avoiding explicit construction of obstacles in the configuration space,
as opposed to most complete motion planning algorithms. Even though sampling-
based algorithms are not complete, they provide probabilistic completeness guarantees:
roughly speaking, the probability that the planner fails to return a solution, if one ex-

ists, decays to zero as the number of samples approaches infinity (Barraquand et al.,
1997); see also (Hsu et al., 1997b; Kavraki et al., 1998; Ladd and Kavraki, 2004).
Moreover, the rate of decay of the probability of failure is exponential, under the
assumption that the environment has good "visibility" properties (Barraquand et al.,
1997; Hsu et al., 1997b). More recently, the empirical success of sampling-based algo-
rithms was argued to be strongly tied to the hypothesis that most practical robotic

applications, even though involving robots with many degrees of freedom, feature
environments with such good visibility properties (Hsu et al., 2006).

Arguably, the most influential sampling-based motion planning algorithms to date
include Probabilistic RoadMaps (PRMs) (Kavraki et al., 1996, 1998) and Rapidly-
exploring Random Trees (RRTs) (LaValle and Kuffner, 2001). Even though the
idea of connecting points sampled randomly from the state space is essential in both
approaches, these two algorithms differ in the way that they construct a graph con-
necting these points.

The PRM algorithm and its variants are multiple-query methods that first con-

struct a graph (the roadmap), which represents a rich set of collision-free trajectories,
and then answer queries by computing a shortest path that connects the initial state
with a final state through the roadmap. The PRM algorithm has been reported to
perform well in high-dimensional state spaces (Kavraki et al., 1996). Furthermore, the
PRM algorithm is probabilistically complete, and such that the probability of failure

decays to zero exponentially with the number of samples used in the construction of
the roadmap (Kavraki et al., 1998). During the last two decades, the PRM algorithm
has been a focus of robotics research: several improvements were suggested by many
authors and the reasons to why it performs well in many practical cases were better
understood (see, e.g., Branicky et al., 2001; Hsu et al., 2006; Ladd and Kavraki, 2004,
for some examples).

Even though multiple-query methods are valuable in highly structured environ-
ments, such as factory floors, most online planning problems do not require multiple
queries, since, for instance, the robot moves from one environment to another, or
the environment is not known a priori. Moreover, in some applications, computing
a roadmap a priori may be computationally challenging or even infeasible. Tailored
mainly for these applications, incremental sampling-based planning algorithms such

as RRTs have emerged as an online, single-query counterpart to PRMs (see, e.g.,
LaValle and Kuffner, 2001; Hsu et al., 2002). The incremental nature of these algo-
rithms avoids the necessity to set the number of samples a priori, and returns a solu-
tion as soon as the set of trajectories built by the algorithm is rich enough, enabling
on-line implementations. Moreover, tree-based planners do not require connecting
two states exactly and more easily handle systems with differential constraints. The
RRT algorithm has been shown to be probabilistically complete (LaValle and Kuffner,
2001), with an exponential rate of decay for the probability of failure (LaValle and
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Kuffner, 2001; Frazzoli et al., 2002). The basic version of the RRT algorithm has
been extended in several directions, and found many applications in the robotics do-
main and elsewhere (see, e.g., Frazzoli et al., 2002; Bhatia and Frazzoli, 2004; Cortes
et al., 2007; Branicky et al., 2006; Zucker et al., 2007). In particular, RRTs have
been shown to work effectively for systems with differential constraints and nonlinear
dynamics (LaValle and Kuffner, 2001; Frazzoli et al., 2002) as well as purely discrete
or hybrid systems (Branicky et al., 2003). Moreover, the RRT algorithm was demon-
strated in major robotics events on various experimental robotic platforms (Kuffner
et al., 2002; Bruce and Veloso, 2003; Kuwata et al., 2009; Teller et al., 2010).

Other sampling-based planners of note include Expansive Space Trees (EST) (Hsu
et al., 1997a) and Sampling-based Roadmap of Trees (SRT) (Plaku et al., 2005). The
latter combines the main features of multiple-query algorithms such as PRM with
those of single-query algorithms such as RRT and EST.

1.2 Optimal Motion Planning

Although the mover's problem captures a large class of practical problem instances,
it imposes no constraint on the quality of the solution returned by the algorithm.
In most applications, however, one may be interested in finding paths of minimum
cost, with respect to a given cost functional, such as the length of a path, or the time
required to execute it. Throughout this dissertation, the class of problems that seek
only a feasible solution, such as the mover's problem, will be called feasible motion
planning problems. The class of problems that seek a feasible solution with minimal
cost, on the other hand, will be called optimal motion planning problems.

Today, there is a rich body of literature devoted to feasible motion planning prob-
lems. However, the importance of the optimal motion planning problem has not gone
unnoticed. In fact, shortly after complete algorithms were designed for the mover's
problem, variants of the optimal motion planning problem were also considered. For
instance, Reif and Storer (1985) proposed a complete algorithm with running time
that is exponential, in particular in the number of obstacles in the environment.

The computational intractability of the existing complete algorithms comes at no
surprise. In fact, the problem of computing optimal motion plans has been proven
to be computationally challenging, substantially more so than the feasible motion
planning problem. Canny (1988) has shown that computing the shortest path in
the three-dimensional Euclidean space populated with obstacles is NP-hard in the
number of obstacles. Hence, the optimal motion planning problem is computationally
challenging, even when the number of degrees of freedom of the robot is fixed.

More recently, algorithms with resolution completeness properties that address
the optimal motion planning problem were also proposed. In particular, graph search
algorithms, such as A*, can be applied over a finite discretization (based, e.g., on
a grid, or a cell decomposition of the configuration space) that is generated offline.
Indeed, recently, these algorithms received a large amount of attention. In particular,
they were extended to run in an anytime fashion (Likhachev et al., 2008), deal with
dynamic environments (Stentz, 1995; Likhachev et al., 2008), and handle systems
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with differential constraints (Likhachev and Ferguson, 2009). These have also been
successfully demonstrated on various robotic platforms (Likhachev and Ferguson,
2009; Dolgov et al., 2009). Note, however, that the optimality guarantees of these
algorithms are ensured only up to the grid resolution. Moreover, since the number
of grid points grows exponentially with the dimensionality of the state space, so does
the (worst-case) running time of these algorithms.

In the context of sampling-based motion planning algorithms, the importance of
computing optimal solutions has been pointed out in early seminal papers (LaValle
and Kuffner, 2001). However, optimality properties of sampling-based motion plan-
ning algorithms have not been systematically investigated; Most of the existing rele-
vant work relies on heuristics. For instance, Urmson and Simmons (2003) proposed
heuristics to bias the tree growth in RRT towards those regions that result in low-cost
solutions. They have also shown experimental results evaluating the performance of
different heuristics in terms of the quality of the solution returned. Ferguson and
Stentz (2006) considered running the RRT algorithm multiple times in order to pro-
gressively improve the quality of the solution. They showed that each run of the algo-
rithm results in a path with smaller cost, even though the procedure is not guaranteed
to converge to an optimal solution. A more recent approach is the transition-based
RRT (T-RRT) designed to combine rapid exploration properties of the RRT with
stochastic optimization methods (Jaillet et al., 2010; Berenson et al., 2011).

1.3 Planning with Complex Task Specifications

In the classical feasible path planning problem, one seeks a path that fulfills a simple
task specification: "reach the goal region while avoiding collision with obstacles."
An important extension is one that incorporates complex task specifications, which
may include, for example, a logical and temporal combination of reachability, safety,
ordering, and liveness requirements.

Naturally describing the behavior of complex engineering systems has been a focus
of academic research for a long time. Among the most influential publications is the
seminal paper by Pnueli (1977), who proposed using temporal logic to describe the
behavior of complex computer programs. Pnueli was initially motivated by the model
checking problem (see Clarke et al., 1999), i.e., checking whether a given complex
computer program satisfies a high-level behavior given in temporal logic. However,
the problem of automated synthesis, i. e., automatic generation of computer programs
from their high-level specifications, have become another important research direc-
tion very shortly; see for example (Emerson and Clarke, 1982; Manna and Wolper,
1984). Today, model checking and automated synthesis of both computer software
and hardware is widely studied in the context of computer science (Holzmann, 1997;
Clarke et al., 1999; Peled et al., 2009).

Most early models used in the computer science literature had discrete state
spaces. Rigorous introduction of models with continuous state space dates back
to early 1990s, for instance, to address problems involving timed systems. How-
ever, model checking and especially automated synthesis problems for more complex
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continuous-space control systems were considered only very recently.
Motivated by the rich literature in computer science, Tabuada and Pappas (2003)

considered model checking of controllable discrete-time linear dynamical systems for
Linear Temporal Logic (LTL) specifications. Shortly after, Tabuada and Pappas
(2006) also addressed the automated synthesis problem for the same class of dynam-
ical systems. Their work largely relies on generating a discrete abstraction of the
original continuous system such that the abstraction exhibits those properties that
the original system is endowed with (see Alur et al., 2000). In the recent years, exact
and approximate bisimulation relations were introduced as discrete abstractions of
a large class of dynamical systems with continuous state spaces (see, e.g., Pappas,
2003; Girard and Pappas, 2007; Fainekos et al., 2009; Girard and Pappas, 2011).

However, it was quickly recognized that constructing bisimulation relations is
computationally challenging. Thus, the more recent literature has focused on algo-
rithms that achieve computational efficiency, often by sacrificing the completeness
guarantees. For instance, Kloetzer and Belta (2008) considered the problem of con-
trol synthesis from LTL specifications for continuous-time affine dynamical systems.
More recently, Wongpiromsarn et al. (2009) proposed an automated control synthesis
algorithm based on a receding-horizon control strategy for a larger class of dynamical
systems. Although computationally effective, these approaches fail to provide any
completeness guarantees.

Today, there is a large and growing literature devoted to the application formal
methods in the context of control theory and robotics. In addition to those referred to
above, see also (Belta et al., 2007; Kress-Gazit et al., 2007, 2009). The literature on
automated synthesis of optimal control strategies is relatively narrow, although the
problem has been considered more recently (see, e.g., Smith et al., 2010; Karaman and
Frazzoli, 2011a). However, to the best of the author's knowledge, with the exception
of the work we present in this dissertation and that given in (Bhatia et al., 2010),
sampling-based approaches to address feasible or optimal motion planning problems
with complex task specifications have not yet been considered.

1.4 Statement of Contributions

The main contribution of this thesis is a novel class of sampling-based algorithms that
collectively address the optimal path planning problem as well as the path planning
problem with complex task specifications, while providing provable guarantees on cor-
rectness, completeness, computational complexity, and convergence towards globally
optimal solutions. While introducing these algorithms, we also present a thorough
analysis of existing sampling-based algorithms in terms of these properties.

More formally, the contributions of this thesis can be listed as follows. We first
analyze the existing algorithms, the PRM and the RRT, in terms of probabilistic com-
pleteness, computational complexity, as well as asymptotic optimality, i.e., almost-
sure convergence to optimal solutions. We show that all existing algorithms either fail
to converge to optimal solutions or lack computational efficiency. We then propose
novel algorithms, called the PRM* and the RRT*, which are shown to be asymptot-
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ically optimal while preserving the computational effectiveness of, for instance, the
RRT algorithm. Next, we consider the path planning problems with complex task
specifications. We propose another novel algorithm, called the Rapidly-exploring
Random Graph (RRG), that operates in an incremental way, like the RRT, and at
the same time provides suitable guarantees on convergence to paths of a certain class.
We also propose novel incremental model-checking algorithms that decide whether or
not a task specification, given in the form of deterministic p-calculus, is satisfied as
the graph maintained by the RRG gets richer. A careful combination of this incre-
mental model-checking algorithm with the RRG yields incremental sampling-based
algorithms that guarantee convergence to paths that satisfy the given task speci-
fication. We also propose a sampling-based algorithm that guarantees almost-sure
convergence towards an optimal path that satisfies the given task specification.

An important property of the proposed sampling-based algorithms is their anytime
flavor; they provide a feasible solution almost as fast the existing computationally-
effective sampling-based algorithms, such as the RRT, and improve this solution to-
wards a globally optimal one if allowed more computation time. In fact, in many
field implementations of sampling-based planning algorithms (see, e.g., Kuwata et al.,
2009), it is often the case that, since a feasible path is found quickly, additional avail-
able computation time is devoted to improving the solution using heuristics until the
solution is executed, without any performance guarantees.

The broader aim of this thesis is to outline a program to extend the application
domain of anytime sampling-based algorithms beyond feasible motion planning prob-
lems, such as differential games, stochastic optimal control, and partially-observable
optimal control problems. In all these applications, we seek sampling-based algo-
rithms with suitable convergence and computational complexity guarantees, leading
to an suitably-defined anytime flavor as in the case of RRT* and its variants. We
denote a chapter to outline some of our recent work in this direction.

This material presented in this thesis is largely based on two recent publications
by Karaman and Frazzoli (2011b, 2012). The material presented in Chapter ?? is
taken from a number of publications co-authored by the author of this dissertation;
these publications are referred to therein whenever appropriate.

1.5 Organization

This dissertation is organized as follows. First, some preliminary material is provided
in Chapter 2. In particular, the notation used throughout the dissertation is intro-
duced in Section 2.1; the theory of random geometric graphs and the pt-calculus are
briefly introduced in Sections 2.2 and 2.3, respectively.

Chapter 3 is devoted to the formulation of the path planning problems that this
dissertation is concerned with. The feasible path planning problem is introduced in
Section 3.1, followed by the optimal path planning problem in Section 3.2. These
problems are extended with complex task specifications in Section 3.3, where feasible
and optimal path planning planning with deterministic p-calculus are formulated.

Chapter 4 is devoted the introduction of the sampling-based algorithms analyzed
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in this thesis. First, two important paradigms in sampling-based motion planning,
namely the probabilistic roadmaps and the rapidly-exploring random trees, are in-
troduced. Subsequently, novel algorithms that extend PRMs and RRTs to deal with
optimal path planning problems and path planning problems with deterministic p-
calculus specifications are given. Finally, in Chapter 4.4, a simulation study is pre-
sented to demonstrate the proposed incremental optimal path planning algorithms in
a number of illustrative examples.

In Chapter 5, both the existing and the proposed algorithms are analyzed in terms
of probabilistic completeness, asymptotic optimality, and computational complexity.
First, the results are reviewed, without proofs, in Section 5.1. Then, the proofs of
all major results regarding completeness, optimality, and complexity are presented in
Sections 5.2, 5.3, and 5.4, respectively.

The dissertation is concluded with a summary and some remarks in Chapter 6.
This chapter also provides a review of a number of recent results that extend the
algorithms presented in this thesis in a number of novel directions. In particular,
some partial results for extending the proposed algorithms to handle motion plan-
ning problems involving non-trivial differential constraints is discussed. Moreover,
recently-proposed incremental sampling-based algorithms for a number of control
problems, namely differential games, stochastic optimal control, and optimal filter-
ing, are reviewed. Along the way, a number of open problems are pointed out.
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Chapter 2

Preliminaries

2.1 Notation

This section formalizes the notation used in this dissertation. When in doubt, the
user is referred to this section to clarify notation. Unfortunately, clash of notation has
been impossible to avoid. Under such circumstances, however, we routinely remind
any unusual definition. Throughout the dissertation, we make every effort to follow
the standard notation adopted in standard text books and widely-known manuscripts.

Let N denote the set of positive integers and R denote the set of reals. In a number
of places, we use w to denote the set of all non-negative integers, since this notation
is commonly used in the mathematical logic literature. Let No = N U {0}, and Ryo,
R>o denote the sets of positive and non-negative reals, respectively. The cardinality
of a set is denoted by card (-). A sequence on a set A is a mapping from N to A,
denoted as {ailEN, where ai E A is the element that i E N is mapped to. Given
a, b c R, closed and open intervals between a and b are denoted by [a, b] and (a, b),
respectively. The Euclidean norm is denoted by | - 1. We reserve the notation || - ||
for function norms, which we introduce later in the text. Given a set X c Rd, the
closure of X is denoted by cl(X). The closed ball of radius r > 0 centered at x E Rd,
Z.e., {y c Rd y - x| < r, is denoted by Bx,, also called the r-ball centered at x.
Given a set X C Rd, the Lebesgue measure of X is denoted by p(X). The Lebesgue
measure of such a set is also referred to as its volume. The volume of the unit ball in
Rd, is denoted by (d, i.e., (d = p(Bo,1). The letter e is used to denote the base of the
natural logarithm, also called the Euler's number.

Given a probability space (Q,F, P), where Q is a sample space, F C 2' is a
o-algebra, and P is a probability measure, an event A is an element of F. The
complement of an event A is denoted by Ac. Given a sequence of events {An},eN,
the event n 1 A is denoted by lim sup, A,; In this case, An is said to
occur infinitely often. The event U"_1 nn A is denoted by lim infn, An; In this
particular case, An is said to occur for all large n. A (real) random variable is a
measurable function that maps Q into R. An extended random variable can also take
the values toc with non-zero probability. If o(w) is a property that is either true
or false for any given w E Q, the event that denotes the set of all w for which so(w)
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holds, i.e., {w C Q : a(w)}, is simply written as {yp}, for notational convenience.
For instance, {w C Q : lim+* Yn(W) =Y(w)} is written as {limn . Yn = Y}.
Expected value of a random variable Y is defined as E[Y] = f Y dP. A sequence
of random variables {Yn}nEN is said to converge surely to a random variable Y if

lims. Yn(W) = Y(W) for all w C Q; the sequence is said to converge almost surely if

P({limnso Y = Y}) = 1. The Poisson random variable with parameter A is denoted
by Poisson(A). The binomial random variable with parameters n and p is denoted by
Binomial(n, p).

Let f(n) and g(n) be two functions with domain and range N or R. The function
f(n) is said to be O(g(n)), denoted as f (n) c O(g(n)), if there exists two constants
M and no such that f(n) < Mg(n) for all n > no. The function f(n) is said to be
Q(g(n)), denoted as f(n) c Q(g(n)), if there exists constants M and no such that
f(n) > Mg(n) for all n > no. The function f (n) is said to be 8(g(n)), denoted as
f(n) E E(g (n)), if f(n) E O(g (n)) and f (n) E Q(g(n)).

Let X be a subset of Rd. A (directed) graph G = (V, E) on X is composed of
a vertex set V and an edge set E, such that V is a finite subset of X, and E is
a subset of V x V. A directed path on G is a sequence (v1, v2 ,... ,vn) of vertices
such that (vi, v+i) C E for all 1 < i < n - 1. Given a vertex v C V, the sets
{u c V : (u, v) E E} and {u c V : (v, u) E E} are said to be its incoming neighbors
and outgoing neighbors, respectively. A (directed) tree is a directed graph, in which
each vertex but one has a unique incoming neighbor. The vertex with no incoming
neighbor is called the root vertex, and any vertex with no outgoing neighbors is called
a leaf vertex.

2.2 Random Geometric Graphs

The objective of this section is to summarize some of the results on random geo-
metric graphs that are available in the literature, and are relevant to the analysis of
sampling-based path planning algorithms. In the remainder of this thesis, several con-
nections are made between the theory of random geometric graphs and path-planning
algorithms in robotics, providing insight on a number of issues, including, e.g., prob-
abilistic completeness and asymptotic optimality, as well as technical tools to analyze
the algorithms and establish their properties. In fact, the data structures constructed
by most sampling-based motion planning algorithms in the literature coincide, in the
absence of obstacles, with the standard models of random geometric graphs.

Random geometric graphs are in general defined as stochastic collections of points
in a metric space, connected pairwise by edges if certain conditions (e.g., on the
distance between the points) are satisfied. Such objects have been studied since their
introduction by Gilbert (1961); See, e.g., (Penrose, 2003; Bollobis and Riordan, 2006;
Balister et al., 2008) for an overview of recent results.

A large amount of the literature on random geometric graphs is devoted to in-
finite graphs defined on unbounded domains, with vertices generated by a homo-
geneous Poisson point process. Recall that a Poisson random variable of parame-
ter A C R>o is an integer-valued random variable Poisson(A) : Q -+ No such that
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IP({Poisson(A) = k}) = e- AAk/k!. A homogeneous Poisson point process of intensity
A on R d is a random countable set of points P c Rd such that, for any disjoint
measurable sets S 1, S2 c Rd, Si n S2 0, the numbers of points of PA in each
set are independent Poisson variables, i.e., card (Pd n S1 ) = Poisson(A p(Si)) and
card (Pnfl S2) = Poisson(A p(S2)). In particular, the intensity of a homogeneous
Poisson point process can be interpreted as the expected number of points generated
in the unit cube, i.e., E(card (P\fn (0, i)d)) = E(Poisson(A)) = A.

One of the most widely studied models of infinite random geometric graphs is the
following, introduced by Gilbert (1961), and often called Gilbert's disc model, or the
Boolean model:

Definition 2.1 (Infinite random r-disc graph) Let A, r E Ryo, and d E N. An
infinite random r-disc graph Gisc(A, r) in d dimensions is an infinite graph with
vertices {Xi}iCN = Pd, and such that (Xi,Xj), i, j C N, is an edge if and only if
|Xz - X3| < r.

A fundamental issue in infinite random graphs is whether the graph contains
an infinite connected component, with non-zero probability. If it does, the random
graph is said to percolate. Percolation is an important paradigm in statistical physics,
with many applications in disparate fields such as material science, epidemiology, and
microchip manufacturing, just to name a few (Sahimi, 1994).

Consider the infinite random r-disc graph, for r = 1, i.e., Gdsc(A, 1), and assume
that the origin is one of the vertices of this graph. Let pk(A) denote the probability
that the connected component of Gdsc(A, 1) containing the origin contains k vertices,
and define po(A) as po(A) = 1 - _1pk(A). The function po : A -+ po(A) is
monotone, and po(0) = 0 and liMA , 0po(A) = 1 (Penrose, 2003). A key result in
percolation theory is that there exists a critical intensity Ac := sup{A : po(A) = 0},
that is non-zero and finite. In other words, for all A > Ac, there is a non-zero prob-
ability that the origin is in an infinite connected component of Gisc (A, 1); moreover,
under these conditions, the graph has precisely one infinite connected component,
almost surely (Meester and Roy, 1996). The function po is continuous for all A # Ac:
in other words, the graph undergoes a phase transition at the critical density Ac, often
also called the continuum percolation threshold Penrose (2003). The exact value of
Ac is not known; Meester and Roy (1996) provide 0.696 < Ac < 3.372 for d = 2, and
simulations studies by Quintanilla and Torquato (2000) suggest that Ac ~ 1.44.

For many applications, including those studied in this dissertation, models of finite
graphs on a bounded domain are more relevant. An widely-studied such model (see
Penrose, 2003) is defined below:

Definition 2.2 (Random r-disc graph) Let r E R>o, and n, d E N. A random r-
disc graph Gdisc(n, r) in d dimensions is a graph whose n vertices, {X, X 2, .. . ,Xn

are independent, uniformly distributed random variables in (0, 1)d, and such that
(Xi, Xi), i,j E {1, .... .,n}, i /j, is an edge if and only if |Xi -X| <r.

For finite random geometric graph models, one is typically interested in whether
a random geometric graph possesses certain properties asymptotically as n increases.
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Since the number of vertices is finite in random graphs, percolation can not be defined
easily. In this case, percolation is studied in terms of the scaling of the number
of vertices in the largest connected component with respect to the total number
of vertices; in particular, a finite random geometric graph is said to percolate if it
contains a "giant" connected component containing at least a constant fraction of
all the nodes. As in the infinite case, percolation in finite random geometric graphs
exhibits a suitably-defined phase transition. The following result is available for
random r-disc graphs:

Theorem 2.3 (Percolation of random r-disc graphs (Penrose, 2003)) Let
Gdisc(n, r) be a random r-disc graph in d > 2 dimensions, and let Nmax(Gdisc (n, r))
be the number of vertices in its largest connected component. Then, almost surely,

Nmax(G disc (nI rn)) 1/allim = 0, if rn < (Ac/n) ln-oo n

and
Nmax (Gaisc (n , r) Il1/lim > 0, if rn > (Ac/n)l,

n- oo n

where Ac is the continuum percolation threshold.

A random r-disc graph with limnsoo n rd = A E (0, oo) is said to operate in the
thermodynamic limit. The random r-disc graph is said to be in the subcritical regime
when A < Ac and in the supercritical regime when A > Ac.

Another property of interest is connectivity. Clearly, connectivity implies per-
colation. Interestingly, similar to percolation, emergence of connectivity in random
geometric graphs also exhibits a phase transition.

Theorem 2.4 (Connectivity of random r-disc graphs (Penrose, 2003)) Let
Gdisc(n, r) be a random r-disc graph in d dimensions. Then,

lim P ({Gdisc(n, r) is connected { if (drd > log(n)/n,

n/oo 0, if (drd < log(n)/n,

where (d is the volume of the unit ball in d dimensions.

Another model of random geometric graphs considers edges between k nearest
neighbors. Both infinite and finite models are considered, as follows.

Definition 2.5 (Infinite random k-nearest neighbor graph) Let A E R>, and
d, k c N. An infinite random k-nearest neighbor graph G"*ar(A, k) in d dimensions is
an infinite graph with vertices {Xi}icN = pd, and such that (Xi, XG), i, j C N, is an
edge if X is among the k nearest neighbors of Xj, or if Xi is among the k nearest

neighbors of Xj.

Definition 2.6 (Random k-nearest neighbor graph) Let d, k, n E N. A random
k-nearest neighbor graph Gnear(n, k) in d dimensions is a graph whose n vertices,
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{X1, X 2, ... , Xn}, are independent, uniformly distributed random variables in (0, 1)d,
and such that (Xi,Xj), i,j E {1,...,n}, i j, is an edge if Xj is among the k
nearest neighbors of Xi, or if Xi is among the k nearest neighbors of X3 .

Percolation and connectivity for random k-nearest neighbor graphs exhibit phase
transition phenomena, as in the random r-disc case. However, the results available
in the literature are more limited. In particular, the following result characterizes, to
some degree, the percolation phenomenon in infinite k-nearest graphs:

Theorem 2.7 (Percolation in infinite random k-nearest graphs (Balister
et al., 2008)) Let G"*ar (A, k) be an infinite random k-nearest neighbor graph in
d;> 2 dimensions. Then, there exists a constant kP > 0 such that

1, if k > k ,
P ({G,ar(1, k) has an infinite component }) = { 0. if k < k.

The value of kP is not known. However, it is believed that kP = 3, and kP = 2 for
all d > 3 (Balister et al., 2008). It is known that percolation does not occur for
k = 1 (Balister et al., 2008).

Regarding connectivity of random k-nearest neighbor graphs, the only available
results in the literature are not stated in terms of a given number of vertices, i.e.,
in terms of the Binomial point process. Rather, the results are stated in terms of
the restriction of a homogeneous Poisson point process to the unit cube. In other
words, the vertices of the graph are obtained as {X1, X 2 ,.. .} =P d n (0, I)d. This is
equivalent to setting the number of vertices as a Poisson random variable of parameter
n, and then sampling the Poisson(n) vertices independently and uniformly in (0, l)d:

Lemma 2.8 ((Stoyan et al., 1995)) Let {Xi}iEN be a sequence of points drawn
independently and uniformly from S C X. Let Poisson(n) be a Poisson random
variable with parameter n. Then, {X1, X 2,... , XPoisson(nf)} is the restriction to S of a
homogeneous Poisson point process with intensity n/1p(S).

The main advantage in using such a model to generate the vertices of a random
geometric graph is independence: in the Poisson case, the numbers of points in any
two disjoint measurable regions S1, S 2 C [0, 1]d, S n S2 = 0, are independent Poisson
random variables, with mean p(S 1)A and p(S 2)A, respectively. These two random
variables would not be independent if the total number of vertices were fixed a priori
(also called a binomial point process). With some abuse of notation, such a random
geometric graph model will be indicated as Gnea(Poisson(n), k).

Theorem 2.9 (Connectivity of random k-nearest graphs (Xue and Kumar,
2004)) Let Gnear(Poisson(n), k) indicate a k-nearest neighbor graph model in d
2 dimensions, such that its vertices are generated using a Poisson point process of
intensity n. Then, there exists a constant k' > 0 such that

1{ if k > k'
lim IP ({Gnear(Poisson(n), [klog(n)]) is connected}) =<

n-+oo 0, if k k.
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The value of k' is not known; the current best estimate is 0.3043 < k' <
0.5139 (Balister et al., 2005).

Finally, the last model of random geometric graph that will be relevant for the
analysis of the algorithms in this paper is the following:

Definition 2.10 (Online nearest neighbor graph) Let d, n E N. An online near-
est neighbor graph GONN (n) in d dimensions is a graph whose n vertices, (X 1 , X 2,. .. ,Xn)

are independent, uniformly distributed random variables in (0, 1)d, and such that

(Xi, Xi), i,j E {1, . .. , n}, j > 1, is an edge if and only if Xj - Xj I = min14k< IXk -
Xi|.

Clearly, the online nearest neighbor graph is connected by construction. Recent
results for this random geometric graph model include estimates of the total power-
weighted edge length and an analysis of the vertex degree distribution (see, e.g.,
Wade, 2009).

2.3 p-calculus, Infinite Games, and Tree Automata

In this section, we introduce the necessary machinery to describe and study complex
task specifications in a formal manner. First, we introduce a fixed-point logic called
the p-calculus. Subsequently, we focus on the deterministic fragment of p-calculus
and discuss its expressive power. Next, we introduce infinite parity games, a widely-
studied class of two-person zero-sum infinite games played on a finite graph. We point
out an important connection between a given p-calculus formula and a corresponding
infinite parity game, using alternating tree automata, which we also introduce in the
text. Our notation closely follows that of Gradel et al. (2002).

Kripke Structures and the p-calculus

In the computer science literature, Kripke structures are widely used as models of
computer software and hardware, especially for the purposes of verification and au-
tomated synthesis. In what follows, we first define this model, and subsequently we
introduce a fixed-point logic called the p-calculus.

Let I be a finite set. An element of I is called atomic proposition.

Definition 2.11 (Kripke Structure) A Kripke structure K defined on a set 1I of
atomic propositions is a tuple IC = (S, sinit, R, L), where S is a finite set of states,
Sinit E S is the initial state, R C S x S is a transition relation, and L : S -± 21 is a
set of atomic propositions.

The syntax of p-calculus is defined as follows. Let Var be a finite set of variables.

Definition 2.12 (Syntax of p-calculus) The syntax of p-calculus is given in the
Backus-Naur form as follows:

#0::=_|T I p|,p xzl #/\##VqI # qO #px.# vox.#,
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where x E Var and p E rl. The set of all p-calculus formulas is denoted by LA.

Let IC = (S, sinit, R, C) be a Kripke structure defined on a set H of atomic propo-
sitions, and $ be a p-calculus formula. We denote by ft$j the set of all states in
S that satisfy $. Below, we provide the semantics of the p-calculus, which aims to
define the set [#kC precisely for any given IC and $.

Given a set S C S of states and a variable x C Var, let KI denote the Kripke
structure KI (S, sinit, R, L'), defined on an augmented set H U {x} of atomic
positions, where

C(s) U {x}, for all s S,
L(s), for all s ( S.

Then, the semantics of the p-calculus is given as follows.

Definition 2.13 (Semantics of p-calculus) Let p E H, x C Var, $, C L., and
IC = (Ss init, R, L). Then, the set [[$k of states that satisfy $ is defined recursively
as follows:

*Tk - S;

e [p = s E S : p E L(s)};

Sf-ph = {s c S p V L(s)};

N* dqA/C = Hk /9M ;

e 20$J)c {s C S: there exists s' C S such that (s, s') E R and s' C ($};

" ftOk = {s C S for all s' E S with (s, s') E R there holds s' E

e [yx. $O is the set-inclusion-wise least fixed point of the set-valued function
f(S) = jks, i.e., px.$k is such that (i) fpx.q$c =. and (ii)
for any S C S with S = $s we have (px.$k C S;

e Tvx.$5jc is the set-inclusion-wise greatest fixed point of the set-valued function
f(S) = 5$s, i.e., Tvx.$~k is such that (i) vx.pjc = T$jg.. and (ii) for

any S C S with S =f($s we have S C fvx.q$kj.

For any LA formula $ and Kripke structure IC, semantics of the p-calculus describes
a recursive procedure to compute [$k, the set of all states in IC satisfying p. Note
that this procedure requires computing least and greatest fixed points of set functions.
These fixed points can be computed using a simple algorithm described in the Knaster-
Tarski fixed point theorem provided below.
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Theorem 2.14 (Knaster-Tarski Theorem (see e.g., (Schneider, 2004))) Let
IC = (S, sinit, R, L) be a Kripke structure and # be an LI formula. Define Qi recur-
sively as follows: Qi = #Qi, where Qo := 0.

Then, Qi C Qi_1 for all i E N, and there exists a number n E N such that Q =
Qn_1 = Tpx.#Oc. Furthermore, if Qo := S in the above definition, then Qi_1 C Qi
for all i E N, and there exists a number m C N such that Q, = Qm_1 =

The deterministic p-calculus is a fragment of the p-calculus. The formulas of
the deterministic p-calculus is given by the following syntax. Recall that H and Var
denote the finite sets of atomic propositions and variables, respectively.

Definition 2.15 (Syntax of deterministic p-calculus) The syntax of the deter-
ministic fragment of pu-calculus is given in the Backus-Naur form as follows:

#0::= LIT |p|,p~x Ap l # /\-pl#V#| px.#| vx.#,

where p E II and x E Var. The set of all deterministic p-calculus formulas is denoted
by L 1.

The deterministic fragment of p-calculus differs from the full p-calculus in two
ways. Firstly, conjunctions of two arbitrary formulas are not allowed. More precisely,
one of the formulas in a conjunction must be a literal, i.e., either an atomic propo-
sition or its negation. Secondly, the "EI" operator is not present in the deterministic
fragment of the p-calculus.

In Section 3.3, we provide some examples of deterministic p-calculus formulas in
the context of robot motion planning. We also discuss the expressive power of the
deterministic p-calculus in the same section.

Infinite Parity Games

An infinite parity game is a zero-sum two-person infinite game played on a finite graph.
Infinite parity games are essential in the definition of alternating tree automata, which
we discuss in the next section.

Let V be a finite set vertices, and let Vi and V2 be a partition of V, i.e., V n V2 = 0

and V1 U V2 = V. An arena is a tuple A = (V1, V2 , E), where Vi and V2 are the set
of vertices of players one and two, respectively, and S C V x V is an edge relation.
Notice that there are no restrictions on the number of outgoing edges of a vertex, nor
we assume that the partition (V1, V2) makes the graph bipartite.

An infinite game played on a finite graph can be explained informally as follows.
Initially, the players place a token on one of the vertices, usually called the initial
vertex. In each stage, Player 1 (respectively Player 2) gets to push the token to a new
vertex along the edges in 8, if the token is on one of the vertices in V1 (respectively in
V2). Repeating this for as many stages as possible, the token travels on the vertices
of the graph (V, E). Possibly, the game is played for infinitely many stages, if the
token never gets stuck, i.e., never reaches a vertex with no outgoing edges; otherwise,
the game stops when the token gets stuck. This path of the token is called a play of
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the game on arena A = (V1, V2 , S). More precisely, denoted by 7r, a play is a finite or
an infinite sequence of vertices that constitutes path through the graph (V, 8), i.e.,
consecutive vertices that appear in 7 respect the edge relation. When the play is
finite, i.e., in the form 7r = (vo, v1,. . . Vk), the final vertex Vk has no outgoing edges.

The winner of a given play is determined as follows. If the play -r is finite, then the
player that gets stuck loses the game. That is, Player 1 wins all plays of the form 7r =
(vo, vi, ... , Vk), where Vk E V2; otherwise Player 2 wins. If the play -r is infinite, the
winner is decided in a more elaborate way. Let C be a finite set of non-negative inte-
gers. Define the coloring function as x : V - C, which assigns each vertex in V a color
from C. Player 1 is said to win play r = (vo, vi, . . . ), if the maximum color appearing
infinitely often in 7r is even, i.e., max{X(v) : v is repeated infinitely often in 7r} is
even; otherwise, Player 2 wins 7r. For future reference, we formalize the definition of
an infinite parity game below.

Definition 2.16 (Infinite Parity Game) An infinite parity game is a tuple (A
(V 1 , V2, 8), x), where A is an arena and X is a coloring function.

A (memoryless) strategy for Player 1 is a function hi : Vi -+ V such that
(v, hi(v)) E 8 for all v E V1. A play -r = (vo, vi,... ) is said to be consistent with
strategy hi, if vi E V1 implies that vi+1 = hi(vi) for all i E w. Roughly speaking,
when Player 1 plays according to the strategy hi, she moves the token to vertex hi (v)
whenever the token is in vertex v E V1. Since her strategy does not involve at all the
history of the play, but only the current vertex, such a strategy is called memoryless.

A strategy hi is said to be a winning strategy for Player 1, if she wins all plays
consistent with hi. A winning strategy for Player 2 is defined similarly. An important
result in the theory of infinite games is the fact that infinite parity games are mem-
orylessly determined: in any infinite parity game, there exists a memoryless winning
strategy either for Player 1 or for Player 2. Thus, it is enough to consider only the
(finite) set of memoryless strategies when searching for a winning strategy.

Alternating Tree Automata

The usual finite state automata (see, e.g., Sipser, 2006) accept or reject finite strings.
Alternating tree automata are finite-state abstract computational devices that accept
or reject Kripke structures. In fact, we will see in the next section that, for any
p-calculus formula #, there exists an alternating tree automata that accepts exactly
those Kripke structures IC = (S, sinit, RI, f) for which 5 init C [c.

Let us note the following preliminary definitions before formalizing the behavior
of an alternating tree automaton. Let Q be a finite set of automaton states. We
define the set of transition conditions, denoted by TCQ, as follows: (i) 0 and 1 are in
TCQ, (ii) p, -,p E TCQ for all p E II, and (iii) Oq, Elq, qi A q2, and qi V q2 are in TCQ
for all q, q1, q2 E Q. Then, an alternating tree automaton is defined as follows.

Definition 2.17 (Alternating tree automaton) An alternating tree automaton
is a tuple A (Q,qi, 6, Q), where Q is a finite set of states, qini C Q is an initial
state, 6 : Q -4 TCQ is a transition function, and Q : Q -- w is the priority function.
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The precise behavior of an alternating tree automaton is defined using infinite

parity games. Let C = (S, sinit, R, L) be a Kripke structure defined on set H of atomic

propositions, and let A = (Q, qinit, 6, Q) be an alternating tree automaton. We define

an infinite parity game (A = (V1, V2, E), X), where V1 U V2 G ({0, 1} U H U Q) x S, as
follows. Firstly, the sets V and E of vertices and edges are defined as follows.

" if 6(q) = 0, then (0, s) E V;

" if 6(q) = 1, then (1, s) C V;

* if 6(q) = p for some p E H, then (p, s) E V;

" if 6(q) = -,p for some p C H, then (-p, s) E V;

e if 6(q) = q' for some q E Q, then (q', s) E V and ((q, s), (q', s)) E 8;
* if 6(q) = qi A q2 or 6(q) = q2 V q2 for some qi, q2 E Q, then (qi, s), (q2 , s) E V

and ((q, s), (q1, s)), ((q, s), (q2 , s)) C 8;
" if 6(q) = Oq' or 6(q) = EOq' for some q' E Q, then (q', s') E V and ((q, s), (q', s')) E

E for all s' E S with (s, s') c 2.

Second, the vertex sets Vi and V2 that partition V are defined as follows. A
vertex v = (q, s) E V belongs to Player 1, i.e., v E V1, if one of the following holds:

(i) 6(q) = 0, (ii) 6(q) =p and p $ L (s), (iii) 6(q) = -,p and p c 1 (s), (iv) 6(q) = q' for

some q' E Q, (v) 6(q) q1 V q2 for some q1, q2 E Q, or (vi) 6(q) = Oq' for some q' G Q.
Vertex v belongs to Player 2 otherwise, i.e., when one of the following conditions

are satisfied: (i) 6(q) = 1, (ii) 6(q) = p and p E L(s), (iii) 6(q) = qi A q2 for some

q1,q 2 C Q, or (iv) 6(q) = Eq' for some q' E Q.
Third, the coloring function x of the infinite parity game is defined as X((q, s))

Q(q). In the sequel, we denote the resulting game (A = (V1, V2, 8), x) by gAK.
Finally, we are ready to present the behavior of the automaton A on a Kripke

structure AZ as follows: The automaton A accepts the Kripke structure KZ, if Player
1 has a winning strategy in the game gAK. The language of an alternating tree

automaton A is the set of all Kripke structures accepted by A.

From p-calculus to Alternating Tree Automata

The p-calculus and the theory of alternating tree automata are tightly connected. For

any p-calculus formula 4, there exists an alternating tree automaton AO such that

the following holds: for any Kripke structure C = (S, sinit, R, L), we have sinit E O4k

if and only if AO accepts k. This section is devoted to the construction of AO. The

correctness of the construction is proven in (Gradel et al., 2002).
First let us note the following preliminary definitions. Let # be a p-calculus

formula. Then, V) is said to be a subformula of #, denoted by @ < #, if 4 contains

0 as a substring. Roughly speaking, a variable x E Var is said to be a free variable

in # if it is not bound with a fixed point operator. More precisely, the set of all free

variables in 4 is defined recursively as follows: (i) FreeVarg(L) = FreeVaro(T) = 0,
(ii) FreeVaro(p) = FreeVarp(p) = 0 for all p C H, (iii) FreeVarp(x) = {x} for all x C

Var, (iv) FreeVar(4'i A 02) = FreeVarp(oi V 02) = FreeVarg(@i) n FreeVaro(V)2)
for 01,02 c L., (v) FreeVarg(OV)) = FreeVarg(I14) = FreeVar( ) for all 4'E L1,
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and (vi) FreeVarg(pux.4) = FreeVarg(vx.4') = FreeVarg(@) \ {x}. A variable x is
said to be bound in #, if x is a subformula of # but it is not a free variable in #.
Finally, # is said to be in normal formal if every bound variable is bound exactly
once, i.e., for all x C Var with x < #, there exists a unique subformula < # of the
form 0 = px.' or 4 = vx. '. This unique subformula is called the binding formula of
x, and it is denoted by BindingFormula,(x). Let us note that any p-calculus formula
can be put into normal form simply by renaming those variables that appear more
than once. In the sequel, we tacitly assume that any p-calculus under consideration
is in normal form.
. The alternation depth of a p-calculus formula # is an integer that counts the num-
ber of alternations of least and greatest fixed points in #. More precisely, the alterna-
tion depth of q, denoted by a(#), is defined recursively as follows: (i) a(1<) = a(T) =
0, (ii) a(p) = a(-p) = 0 for all p C H, (iii) a(D4') = a(O0) = a(O), (iv) a(px.o) =
max{{1.a(O)} U {a(vx'.O') + 1 : vx'.J' < 4 and x C FreeVarg(v'x'.')}}, and (v)
ae(vx.) = max{{1.a(')} U {a(pt'.O') + 1 : px'.0' < 4 and x E FreeVarO(pX'.')}}.

For notational convenience, let us denote the set of all p-calculus formulas of the
form p.x.o and vx. by F, and F, respectively, and let us define F. := F, U F, .
Without loss of any generality, assume that all atomic propositions in 1 and all
variables in Var appear in the formula #. For any subformula 4 < #, we define a
state, denoted by (/). Finally, the automata A = (Q, qinit, 6, Q) is defined as follows:

Q= {(0) : V) #};
e qinit = (e)
* 6 : Q -> TCQ is defined recursively as follows: (i) 6(1) = 0 and 6(T) = 1, (ii)

6(p) = (p) and 6(-p) = (-ip) for all p C H, (iii) 6(x) (BindingFormulaW(x))
for all x C Var, (iv) 6(01 A #b2) = (1)^ (A(2) and 6(01 V 02) = (1) V (02) for all

1 A 02, #1 V 02 $, (v) 6(00) = O(#) and 6(E0) = E(0) for all 0O0, E0 < #,
and (vi) 6(,px.4) 6(vx.@') = (@) for all px.$, vx.@ < #;
Q Q : Q -+ w is defined as follows: (i) Q((V))) is the smallest odd number greater
than or equal to a(o) - 1 if @ E FIA, (ii) Q((O)) is the smallest even number
greater than or equal to a(@o) - 1 if 4 C F, , and (iii) Q((4)) = 0 if (4) V Fn.

The p-calculus and Infinite Games

The automaton Ag gives rise to an infinite parity game called the L, game.

Definition 2.18 (L, Game) Let C = (S, sinit, R, L) be a Kripke structure and #
be a pi-calculus formula. The L, game for IC and # is the infinite parity game (A =

(V, V2, 8), x) defined as follows. For all s E S,

" (s,p) C V, for all p C H with p $ L(s);
" (s,-p) C V, for all p G H with p G L(s);
* (s, x) c V1 and ((s, x), (s, BindingFormulao(x))) C S for all x c Var;

* (s, 41 V 4 2 ) c V, and ((s,'Oi V ' 2 ), (s, 1)), ((s, 1 V 0 2), (s, 2)) E E for all

4i V 02 4;
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* (s, 00) E Vi and ((s, O7/), (s', V))) E S for all O0 < $ and all (s, s') E R;

* (s, iq.7/) c V1 and ((s, Wx.0)) C S for all Tx.0 < q, where 7 E {pA, v};
* (s,p) E V2 for all p E l with p E L(s);

e (s,-p) E V2 for all p E 1 with p $ 1(s);
e (s, 01 A 72) E V2 and ((s, 01 A 7b2), (si 1)), ((sj 1 A 0 2), (s, 7 2)) E S for all

i A 0 2  #
* (s, E0) C V2 and ((s, EI /), (s', 0)) E E for all 10 < 4 and all (s, s') E R.

The coloring function x : V {0,1,.. , a() + 1} satisfies: for all s E S and V) < $,

* if 7 is of the form / = yx.@', then x(@)) is equal to the smallest odd number
greater than or equal to a();

" if / is of the form 9 = vx.@', then x(O) is equal to the smallest even number
greater than or equal to a();

e otherwise, x(# ) = 0.

The following theorem can be deduced easily from the constructions presented in
the previous sections.

Theorem 2.19 Let C = (S, sinit, R, L) be a Kripke structure and # be a p-calculus
formula. Then, # is satisfied at sinit of C, i.e., sinit E j#]k if and only if Player 1 has
a (memoryless) winning strategy in the L, game for C and $.

An important class of infinite parity games captures exactly those that are induced
by a deterministic p-calculus formula. These games are endowed with a number of
important properties which we point out in the rest of this section.

The L1 game of a deterministic p-calculus formula # and a Kripke structure C is
defined as in Defintion 2.18. Theorem 2.19 holds also for L1 games. Notice that in the
L1 game for C and #, the actions of Player 2 are very limited. Firstly, Player 2 does
not have any vertices of the form (s, D7/9), since the "E" operator is not present in
the deterministic fragment of p-calculus. Second, any vertex of Player 2 of the form

(s, / A /') satisfies either 0' = p or /' = -p for some p E 1. In fact, these limitations
are severe enough that, roughly speaking, Player 2 can not take any actions that
influences the game for more than one stage. This "deterministic" nature of the
L1 game is tightly connected to the expressive power of the deterministic p-calculus
being limited only to linear-time properties.

L1 games are important for the purposes of this thesis for two reasons. Firstly, L1

games will be used to provide a rigorous definition of optimal path planning problems
with complex (linear-time) task specifications given in the form of deterministic p-
calculus (see Section 3.3). Secondly, the memoryless determinacy of L1 games and
their simple structure will be the key ingredient in the analysis of a computationally-
efficient incremental model-checking algorithm (see Section 4.3.4).
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Chapter 3

Path Planning Problems

This chapter is devoted to a formal definition of the path planning problems that this
thesis is concerned with. The feasible and optimal path planning problems are formal-
ized in Sections 3.1 and 3.2, respectively. In Section 3.3, these problems are extended
with complex task specifications given in the form of deterministic 1 -calculus.

3.1 Feasible Path Planning

Roughly speaking, the feasible path problem is to find a collision-free path between
an initial and a final configuration. We formalize this problem as follows. The config-
uration space, i.e., the set of all configurations of the robot, is defined as X := (0, I)d.

The obstacle set and the goal set are denoted by XobS and Xgoal, respectively, and the
initial configuration is denoted by init. We assume that Xobs and Xgoal are open sets.
The free space is defined as Xree := cl(X \ XobS), where cl(.) is the closure operator,

Given a function o : [0, 1] - Rd, its total variation is defined as follows:

TV(u) := sup 1 lo(ri) - O(ri_1
nEN,O-To<r1<-<Tns i=

A function o- with TV(u) < oc is said to have bounded variation. A continuous
function - : [0, 1] - Rd is called a path if it has bounded variation. Note that the
total variation of a path is essentially its length, in other words the Euclidean distance
traversed by the path in Rd. Thus, a path has finite length by definition.

A path is said to be collision free if it avoids the obstacle set, i.e., o(T) E Xfree for
all r E [0, 1]. A collision-free path is said to be feasible, if it starts form the initial
configuration and reaches a goal configuration, i.e., o-(0) = zinit and c-(1) E Xgoal.
The feasible path planning problem is to find a feasible path if one exists, and return
failure otherwise. An instance of this problem is denoted by (Xree, Xinit, Xgoai).

Problem 3.1 (Feasible Path Planning) Given a feasible path planning problem
instance (Xree, Xinit, Xgoai), find a path o : [0, 1] -+ d that:

" starts from the initial configuration, i.e., o-(0)= xinit
e reaches the goal set, i.e., -(1) E Xgoa1, and
" avoids collision with obstacles, i.e., U(T) C Xree for all T c [0,1].

35



3.2 Optimal Path Planning

Let E denote the set of all paths. A function c : E -+ R>0 is said to be a cost function
if it assigns a non-negative cost to all non-trivial paths, i.e., c(o) = 0 if and only if
O-(T) = o-(0) for all T E (0,1]. The optimal path planning problem asks for finding a
feasible path with minimum cost. We denote an instance of the optimal path planning
problem by the tuple (Xree, Xinit, Xgoali, c).

Problem 3.2 (Optimal Path Plannig) Given an optimal path planning problem
instance (Xree, Xinit, Xgoa1, c), find a feasible path o-* such that c(o-*) = min{c(or)
o- is feasible}, and return failure if no such path exists.

3.3 Path Planning Problems with Deterministic p-
calculus Specifications

In this section, we introduce a novel class of path planning problems. As opposed to
the classical path planning problem of finding a path that "reaches the goal region
while avoiding collision with the obstacle region," this new class of problems asks for
finding a path that satisfies a given complex task specification given in the form of
deterministic p-calculus. In the rest of this section, we first formalize this class of
problems and subsequently discuss its generality.

Recall that a path is defined as a continuous function with bounded variation, of
the form o- : [0, 1] - X. During execution, the robot implements this path starting
from configuration o-(O) and eventually terminating at configuration -(1). In this
section, we will consider infinite-horizon paths, i.e., motions that do not necessarily
terminate. These paths capture, in particular, tasks that are repeated infinitely often,
such as persistent surveillance. For all practical purposes, however, we are only inter-
ested in infinite-horizon paths that can be finitely parametrized.In this dissertation,
we consider paths that are represented by a finite prefix together with an infinitely-
repeated suffix.1 More precisely, an infinite-horizon path is parametrized by a prefix
and a suffix, denoted by o-, and o-,, respectively, such that o-(1) = a-(0) = o-,(1),
i. e., the suffix starts and ends at the configuration where the prefix ends; during
execution time, the robot first implements u followed by an infinitely-repeated im-
plementation of o. By setting the suffix path to a constant value, i.e., o-S(r) = up(1)

for all T E [0, 1], this definition also captures motions that terminate. In the sequel,
we denote infinite-horizon paths parameterized in this way by (u, o-,).

Recall that the configuration space is denoted by X c R d. Let R 1, R 2 , ... , Rf C X
be open sets. Define the corresponding set of atomic propositions as 1I ={pi, P2, . .. ,
Pk}. Given a configuration x C X, the set of atomic propositions satisfied by x is a
set-valued function defined as follows: A(x) := {pk : x E Rk}.

1Note that this parametrization is not restrictive when working with the deterministic p-calculus.
Since any deterministic -calculus specification can be represented by a non-deterministic Bfichi
automaton (see, e.g., Gradel et al., 2002), by the definition, any satisfying path is a finite prefix
followed by an infinitely-repeated suffix. That is, any deterministic p-calculus specification can be
satisfied by executing such a path, if the specification can be satisfied at all.
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Figure 3-1: The trace (XO, iX, X2, X3) of a path o is illustrated. The regions R 1, R 2, R 3

are also shown.

Let o: [0,1) -+ X be a (finite-horizon) path. The trace of o- is a sequence

(Xo, X,. .. , xi) of configurations, for which there exists non-negative real numbers
To < T < < TI such that (i) xi = U(T) for all i C {0, 1, ... , l}, (ii) To = 0 and

Ti = 1, (iii) A(o-(T)) $ A(o(ri+1)) for all i E {0, 1, ... , I - 1}, and (iv) A(U(T)) E

{A(oari)), A( (Ti+ 1 ))} for all T E (Ti, Ti+1) and all i E {0, 1,..., 1 - 1}. That is, the
trace of a path is a minimal sequence of configurations along the path such that no
change in the labels A(U(T)) is skipped as T varies. See Figure 3-1. It is trivial to
show that the trace corresponding to a given path is always unique.

Let (op, a-) be an infinite-horizon path. The Kripke structure induced by (o-,, o-,)
is denoted by K(,,,) = (S, sinit, 7Z, L) and defined as follows:

* S= {so, 2, .-. ,Isl+1, ... sj+m};

* 8 init = sO

* (si, si) for all i E {0,1,...,l+m}, (si, si+ 1) E R for all i E {0,,..., 1l+m-1},
and (Si+m- 1, sj) E R;

* f (si) = A(z4) for all i E {0, 1, . . , l}, and f(sl+i) = A(xf) for all i c {1, 2, .. . , m}
where (z", xP,..., xf) and (x", x ,..., xm) are the traces of u and o-'.

A natural extension of the feasible path planning problem (see Problem 3.1) is
the problem of feasible path planning with deterministic p-calculus specifications.
The latter problem is formalized as follows. We denote an instance of the feasi-
ble path planning problem with deterministic p-calculus specifications by the tuple

(zinit, R 1, R 2, ... , Rk, 4spec), where #spec is a deterministic p-calculus formula.

Problem 3.3 (Feasible Path Planning with Deterministic p-calculus Spec-
ifications) Given a problem instance (zinit, R 1, R 2 ,.. , Rk, $spec), find an infinite-
horizon path (o-, o-,) such that the Kripke structure I,,, = (S, sinit, R, 1) induced
by (up, o-) satisfies the following: sinit E [0spec1 (,p,,,,)-
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An infinite-horizon path is said to be feasible if it solves Problem 3.3.
The optimal path planning with deterministic t-calculus specification is an ex-

tension of the optimal path planning problem presented in Problem 3.2 in a similar
way. Recall that E denotes the set of all (finite-horizon) paths. The set of all infinite-
horizon paths (that are finitely parametrized by a prefix and a suffix) is a well-defined
subset of the Cartesian product E x E. A function c : E x E -± R>0 is said to be a
cost function if it assigns a non-negative cost to all non-trivial infinite-horizon paths,
i.e., c((o-, o-,)) = 0 if and only if o-,(T) = o,(0) and o- (T) = o-,(0).

An instance of the optimal path planning problem with deterministic p-calculus
specifications is denoted by (zinit R1, R 2, .. . , Rk, #spec, c).

Problem 3.4 (Optimal Path Planning with Deterministic p-calculus Speci-
fications) Given a problem instance (zinii R 1 , R 2 , ... , R, #spec, c), find a feasible path

(os, o*) such that c((o, os*)) = min{c((crp, o-)) : (u, o,) is feasible}.

Deterministic p-calculus is the fragment of modal t-calculus in which no branch-
ing property can be expressed. Rather than a limitation, this is a desirable feature for
motion planning problems, since the motion plan in the end is itself a "trajectory" re-
specting the linear flow of the time. Hence, by employing the deterministic p-calculus
we rule out all the branching-time specifications and focus only on those specifications
for which a linear time trajectory can be generated. In terms of its expressive power,
the deterministic p-calculus is strictly more expressive than the Linear Temporal
Logic (LTL); See, e.g., (Emerson et al., 2001; Henzinger et al., 2005). More precisely,
L 1 is known to be equally expressive as the set of all w-regular properties. That is,
any temporal property that can be expressed using, for instance, non-deterministic
Biichi automata (Thomas, 1991), can be, expressed in the deterministic p-calculus (see
Emerson et al., 2001; Henzinger et al., 2005, for constructive proofs). Hence, deter-
ministic p-calculus is indeed the most expressive regular language that can be used
for the specification of linear time properties, which makes it the most expressive
temporal logic for motion planning applications.

Despite its raw expressive power, the p-calculus is not well accepted for direct use
in practical applications due to its unnatural semantics. That is, unlike, for instance,
the LTL, long p-calculus specifications are found to be quite hard to understand by
inspection, and expressing temporal properties using p-calculus, even though possible,
is hard for humans. However, there are algorithms which convert a given temporal
logic specification, e.g., in LTL, into a deterministic p-calculus specification auto-
matically (see, e.g., Emerson et al., 2001). To further introduce the deterministic
fragment of p-calculus, we present a few example formulas below.

Reachability Specifications: Consider the p-calculus formula #spec =tX.(pV0K X.
In words, #spec is satisfied by the smallest set of states, which, if labeled with x, would
satisfy p V Ox. Notice that such set is the set Q of all states that either satisfy p or
can reach a state that satisfies p. One way to see this is to carry out the iteration in
the Tarski-Knaster theorem (see Theorem 2.14): Q1 is the set of states that satisfy p,
Q2 is the set of states that either satisfy p (that are in Q1) or that have an outgoing
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edge to a state that satisfies p, Q3 is the set of states that are either in Q2 or have a
transition to a state in Q2, etc. This iteration converges to the set of all states from
which there is a trajectory leading to a state that satisfies p. Another, perhaps more
intuitive look at #spec is the following. First, note that such set of states is indeed a
fixed point, i.e., if Q is labeled with x, then the set of states that satisfy p V Ox would
be Q itself. That is, all the states in Q satisfy p V Ox and no other state outside Q
satisfy p V Ox. The former statement is true, since each state in Q either satisfy p
or has a transition to a state that satisfies x. The latter one is also correct, since
if there is any state s' that is not in Q but it satisfies p V Ox, then it either has to
satisfy p or it has to have a transition to a state which is labeled with x. In any case,
s' would have a path that reaches Q and thus reaches a state that satisfy p. Hence,
#spec defines a reachability property, ensuring reaching to a state that satisfies p.

Safety Specifications: Next, consider #spec = vx.(q A Ox). In words, this formula
is satisfied by the largest set Q of states that both satisfy q and has a transition to
a state with the same property. Hence, for any state in Q, there must be a cycle of
states, all of which satisfy q.

Safely Reaching a Region: The standard motion planning objective is to avoid
obstacles and reach a goal state. Let us label the goal states with p and the obstacles
with q. Then, the specification #spec = tx. (-q A (p V Ox)) is the smallest set of states
for which there exists a trajectory reaching a state that satisfies p (i.e., a goal state)
and along the way never goes through a state that satisfies q (i.e., an obstacle state).

Reaching a Safe Region: Another example is to eventually reach a point where
a property p can be retained forever. Essentially, this can be done easily by merging
the first two examples together as in #spec = px.u((y.(p A Oy)) V Ox).

Ordering Specifications: A common specification is, for instance, to ensure some
property p until another property q is attained. In this case, a corresponding p-
calculus specification is #spec = px.(p V (q A Ox)), which intuitively states that either
q is satisfied or there is a next state which satisfies p and the property p V (q A Ox).

Liveness Specifications: Consider a final example, where it is desired to satisfy
a property p infinitely often. That is, at all points along the path, p is satisfied in
the future. One way to specify such a behavior is to use #spec = ly.px.((p A y) V x),
which intuitively states that in the next states either the property p is satisfied, or
there is a path to a state which satisfies p (stated via the disjunction and the pux.
operators). Moreover, this statement is true at all times (stated via the conjunction
and the vy. operators).
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Chapter 4

Algorithms

This section is devoted to a detailed presentation of the sampling-based path plan-
ning algorithms that this dissertation is concerned with. First, the PRM and the
RRT algorithms are outlined, as they are representatives of the major paradigms for
sampling-based path planning algorithms in the literature. Subsequently, a number
of novel sampling-based algorithms, namely the PRM*, RRT*, and the RRG algo-
rithms, are introduced as extensions of PRM and RRT to address the optimal path
planning problem as well as path planning problems with deterministic p-calculus
specifications. To address the latter class of problems, an incremental model-checking
algorithm, used in conjunction with the RRG, is also provided. Finally, the chapter
is concluded with a simulation study involving an illustrative example.

4.1 Primitive Procedures

Before introducing the PRM and the RRT algorithms, let us introduce the primitive
procedures that these algorithms rely on.

Sampling: The Sample procedures returns a sequence of independent and iden-
tically distributed (i.i.d.) samples from the configuration space X. For notational
convenience, the ith sample in this sequence is denoted by Sample(i). For simplic-
ity, we assume throughout that the samples are drawn from a uniform distribution,
although our results naturally extend to any absolutely continuous sampling distri-
bution with density bounded away from zero on X. For convenience, we define also
the SampleFree procedure, which returns i.i.d. samples from the free space Xree.

Nearest and Near Neighbors: Given a finite set V c X of configurations and a
configuration x E X, the Nearest procedure returns the vertex in V that is 'closest' to
x in terms of a given distance function. Throughout this thesis, we use the Euclidean
distance for simplicity. We refer the interested reader to (LaValle and Kuffner, 2001)
for alternative choices. Hence,

Nearest(V, x) := arg min Ix - v|,
v6V
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where I - I is the usual Euclidean norm in the d-dimensional Euclidean space.
We also define two set-valued versions of this procedure. The kNearest(V, x, k)

procedure returns the k vertices that are closest to x in V in terms of the same distance
procedure; by convention the procedure returns V if the cardinality of V is smaller
than k. For the sake of mathematical rigor, this procedure can be defined as follows:
kNearest(V, x) := arg minv/cvcard(v')=c EVEV, lx - v, where k = min{k, card (V)}.
The Near(V, x, r) procedure returns the set of all configurations in V that are within
a distance r from x in terms of the same distance function, i.e.,

Near(V, x, r) := {v c V : Ix - vj < r}.

Steering: Given two configurations x, x' c X, the Steer procedure returns a con-
figuration x" such that x" is closer to x' than is x. Unless stated otherwise, we define
the Steer procedure such that

Steer(x, X') := arg min Ix" - x'j,
x"EX, x"-xI r/

where ry > 0 is a pre-specified parameter.

Collision Queries: Given two points x, x' E X, the CollisionFree(x, X') proce-
dure returns True if the line segment between x and x' lies entirely in Xfree; it returns
False otherwise.

4.2 Existing Algorithms

In this section, we recall from the literature two of the important paradigms in
sampling-based motion planing, namely the PRM and the RRT algorithms. The
inputs and the outputs of the algorithms are as follows. These algorithms take as in-
put a feasible path planning problem instance (Xree, Xinit, Xgoai) and an integer n E N.
These inputs are shared with the procedures called within the algorithms. That is,
all primitive procedures have access to these inputs. All algorithms return a graph
G = (V, E), where V C Xree and E C V x V. The solution to the feasible path
planning problem can be easily deduced from such a graph, for example, using stan-
dard graph search algorithms (Schrijver, 2003). Similarly, given a cost function c, the
solution to the optimal path planning problem can be deduced from the same graph
via standard shortest-path algorithms (Schrijver, 2003).

4.2.1 Probabilistic Roadmaps

The PRM algorithm is primarily aimed at multi-query applications. In its basic form,
it consists of a pre-processing phase, in which a roadmap is constructed by attempting
connections among n configurations randomly sampled from the free space, and a
query phase, in which paths connecting the initial and the final configurations through
the roadmap are sought. The PRM algorithm has been a focus of robotics research
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for many years. A number of extensions and variations have been proposed. In
this section, we describe a number of important variations of the algorithm. In
particular, we describe the algorithm proposed by Kavraki et al. (1996) and the
algorithm analysed by Kavraki et al. (1998). Although a number of "expansion"
heuristics are available in the literature (see Kavraki et al., 1996), they do not have
any impact on the analysis. Thus, these heuristics will not be discussed here.

The pre-processing phase, given in Algorithm 1, begins with an empty graph. At
each iteration, a configuration Xrand E Xfree is sampled, and added to the vertex set V.
Then, connections are attempted between £rand and other vertices in V within a ball
of radius r centered at Xrand, in the order of increasing distance from £rand, using a
simple local planner, for example a straight-line connection. Successful, i. e., collision-
free, connections result in the addition of a new edge to the edge set E. Since the
focus of the algorithm is establishing connectivity (to solve the feasible path planning
problem), connections between Xrand and vertices in the same connected component
are avoided. Hence, the roadmap constructed by PRM is a forest, i.e., a collection of
trees.

In the literature, mathematically rigorous analysis of, for example, probabilistic
completeness, is only available for a "simplified" version of the PRM algorithm (see
Kavraki et al., 1998), which we call the sPRM algorithm in this text. See Algorithm 2.
The simplified PRM algorithm initializes the vertex set with the initial configuration,
samples n configurations from the free space, and attempts to connect the sampled
configuration to all configurations within a distance r. All sampled configurations are
added to the vertex set, and all successful connections result in the addition of a new
edge to the edge set. The connection logic for the sPRM algorithm is similar to that
of the PRM algorithm, with the difference that connections between vertices in the
same connected component are allowed. Note that in the absence of obstacles, i.e.,
when Xfree = X, the roadmap constructed in this way is a random r-disc graph (see
Section 2.2).

In many practical implementations of (s)PRM algorithms, alternative choices have
been considered for the computation of the set U of vertices, with which the connec-
tions are attempted (see Line 4 in Algorithm 1 and Line 3 in Algorithm 2). The
following criteria are of particular interest for our purposes:

" k-nearest (s)PRM: Choose the nearest k neighbors to the sample, for some
prespecified k, a typical value for which was reported as k = 15 (see LaValle,
2006). That is, U <- kNearest(G = (V, E), Xrand, k) in Line 4 of Algorithm 1
and U <- kNearest(G = (V, E), v, k) \ {v} in Line 3 of Algorithm 2. Notice that
the graph constructed in this way in an obstacle-free environment is a random
k-nearest graph.

" Bounded-degree (s)PRM: For any fixed r, the average number of connec-
tions attempted for each sample is proportional to the number of vertices in V,
and can result in excessive computational burden for large n. To address this
issue, an upper bound k can be imposed on the cardinality of the set U. A typi-
cal value for this upper bound was reported as k = 20 (see LaValle, 2006). More
precisely, U +- Near(G, Xrand, r) nkNearest(G, Xrand, k) in Line 4 of Algorithm 1
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and U <- (Near(G, v, r) n kNe arest(G, v, k)) \ {v} Line 3 of Algorithm 2.

* Variable-radius (s)PRM: Another option to maintain the degree of the ver-
tices in the roadmap computationally manageable is to scale the connection
radius r appropriately as a function of the number of samples n. However,
there are no clear indications in the literature on the appropriate functional
relationship between r and n.

Algorithm 1: PRM (pre-processing phase)

1 V +-0; E+- 0;
2 for i= 1,2, ... , n do
3 xrand +- SampleFree(i);
4 U +- Near(G = (V, E), Xrand, r);
5 V- V U {Xrand};
6 for all u E U in increasing order of |u - Xrand|| do
7 if Xrand and u are in different connected components of G = (V, E) then
8 if CollisionFree(Xrand, u) then
9 1LE <- E U {(rand, u), ( Xrand)};

10 return G = (V, E);

Algorithm 2: sPRM

1 V <- {Xinit} U {SampleFree(i) : i = 1, 2,..., n}; E +- 0;
2 for all v E V do
3 U <- Near(G = (V, E), v, r) \ {v};
4 for allu Udo
5 if CollisionFree(v, u) then
6 E <- E U {(v, u), (u, v)};

4.2.2 Rapidly-exploring Random Trees

The RRT algorithm is primarily aimed at single-query applications. In its basic form,
the algorithm incrementally builds a tree of collision-free trajectories, rooted at the
initial configuration. See Algorithm 3. The algorithm is initialized with a graph that
includes the initial configuration as its single vertex, and no edges. At each iteration,
the algorithm samples a configuration Xrand E Xfree, and attempts to connect the

nearest vertex Vnearest to a new vertex, denoted by Xnew, that is close to Xrand. If the
connection is successful, the algorithm adds Xnew to the graph along with an edge

connecting Vnearest and Xnew.

In the original version of the RRT the iteration is stopped as soon a feasible

trajectory is found, i.e., the vertex set contains a configuration that lies in the goal
set. However, for the purposes of consistency, in this thesis, the iteration is performed
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n times regardless. Notice that in the absence of obstacles, i.e., when Xree = X, the
tree constructed in this manner is an online nearest neighbor graph (see Section 2.2).

Algorithm 3: RRT

1 V <- {finit}; E +- 0;
2 for i = 1,2, . .. ,n do
3 Xrand +- SampleFree(i);
4 onearest - Nearest (G = (V, E), Xrand);
5 Xnew - Steer(nearest, Xrand);
6 if Collis ionFree (nearest, Xnew) then
7 V- V U {Xnew};
8 E + E U {(Vnearest, Xnew)};

4.3 Proposed Algorithms

The PRM and the RRT algorithms were originally designed to solve the feasible path
planning problem. In this section, we introduce a number of algorithms that extend
PRMs and RRTs to solve optimal path planning problem as well as path planning
problems with complex task specifications. First, we introduce the PRM* and RRT*
algorithms as computationally-efficient and asymptotically-optimal counterparts of
the PRM and the RRT algorithms. Along the way, we also introduce the RRG
algorithm which builds a graph of trajectories like the PRM, but in an incremental way
like the RRT. The RRG algorithm and a novel incremental model-checking procedure
are the two key building blocks for sampling-based algorithms that we propose to
address path planning problems with deterministic p-calculus specifications.

4.3.1 Optimal Probabilistic Roadmap (PRM*)

In the standard PRM algorithm, as well as in the simplified "batch" version which
we call sPRM, connections are attempted between roadmap vertices that are within
a fixed radius r from one another. The constant r is a parameter to the (s)PRM
algorithm. The proposed PRM* algorithm, given in Algorithm 4, is similar to sPRM,
except that the connection radius is chosen as a function of the number of samples
n as r(n) := YPRM(log(n)/n) 1/d, where 'PRM > 7PRM * 2 (1 + I 1d)/d( (Xfree) /d),
d is the dimensionality of the space X, and p(-) and (d denote the usual Lebesgue
measure and the volume of the unit ball in the d-dimensional Euclidean space. The
connection radius decreases with the number of samples. The rate of decay is chosen
such that the expected number of connections attempted for each roadmap vertex is
proportional to log(n).

Let us note at this point that, in the discussion of variable-radius PRM, LaValle
(2006) suggests that radius is chosen as a function of the sample dispersion.1 Indeed,

'Recall that the dispersion of a point set contained in a bounded set S c Rd is the radius of the
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the dispersion of a set of n random configurations sampled uniformly and indepen-
dently from the bounded set Xfree is proportional to (log(n)/n)l/d (see Niederreiter,
1992), which is precisely the rate at which the connection radius is scaled in PRM*.

Algorithm 4: PRM*

1 V <- {xinit} u {SampleFree(i)}; E +- 0;
2 for all v E V do

3 U 4- Near(G = (V, E), V, YPRM (log(n)/n)1/d);

4 for all u E U do
5 if CollisionFree(v,u) then
6 E-E U {(v, u), (u, v)};

7 return G = (V, E);

Another version of the PRM* algorithm is called the k-nearest PRM*, where the

connections are sought within k-nearest neighbors like the k-nearest PRM algorithm,
with the exception that the number of k is chosen as a function of the number of

samples n, rather than a fixed constant. More precisely, we set k(n) := kPRM log(n),
where kPRM > kRM = e(1 + 1/d), and U <- kNearest(G = (V, E), v, kPRMlog(n))

{v} in Line 3 of Algorithm 4.

4.3.2 Rapidly-exploring Random Graph (RRG)

The Rapidly-exploring Random Graph (RRG) algorithm is introduced as an incre-

mental algorithm to build a connected roadmap, possibly containing cycles. See Al-
gorithm 5. The RRG algorithm is similar to the RRT in that it first attempts to
connect the nearest node to the new sample. If the connection attempt is successful,
the new configuration is added to the vertex set. However, the RRG differs from
the RRT as follows. Each time a new configuration xne, is added to the vertex set

V, connections are attempted from all other vertices in V that are within a ball of
radius r(card (V)) = min{YRRG(log(card (V))/ card (V))I/d, TI}, where q is the con-

stant that appears in the definition of the Steer procedure and 7YRRG > 7YRRG
2(1 + 1/d)1/d(p(Xfree)/(d)1/d. For each successful connection, a new edge is added to

the edge set E.

It is clear that, when run with the same sample sequence, the RRT graph, as a

directed tree, is a subset of the RRG graph. More precisely, the two graphs share the

same vertex set, and the edge set of the RRG graph contains that of the RRT graph.

Another version of the RRG algorithm is called the k-nearest RRG, in which

the connections are sought within k-nearest neighbors with k(card (V)) := kRRG

log(card (V)), where kRRG > kRRG = e(1l+1d) /d, and U - kNearest(G new, 7RRG

log(card (V))) in Line 7 of Algorithm 5.

largest ball empty ball centered at some point inside S.
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Algorithm 5: RRG
1 V <- {xinit}; E <- 0;
2 for i = 1, 2, ... ,n do
3 Xrand <- SampleFree(i);
4 onearest <- Nearest(G = (V, E), Xrand);
5 Xnew <- Steer(nearest, Xrand);
6 if Collis ionFree(nearest, Xnew) then
7 U <- Near (G = (V, E), Xnew, min{7yRRG(log(card (V))/ card (V))l/d, q});

8 V -- V U {Xnew}; E <- E U {(Vnearest, Xnew), (Xnew, Vnearest)};
9 for alluE Udo

10 if CollisionFree(u, Xnew) then

11 LE <- E U {(U, Xnew), (xnew, U)};

12 return G = (V, E);

4.3.3 Optimal Rapidly-exploring Random Tree (RRT*)

Maintaining a tree structure rather than a graph is not only economical in terms of
memory requirements, but may also be advantageous in some applications, due to,
for example, relatively easy extensions to motion planning problems with differential
constraints, or to cope with modeling errors. The RRT* algorithm is obtained by
modifying the RRG in such a way that the formation of cycles is avoided, by removing
"redundant" edges. Since the RRT and the RRT* graphs are directed trees with the
same root and vertex set, and the edge sets that are subsets of that of the RRG, this
amounts to a "rewiring" of the RRT tree, ensuring that vertices are reached through
paths converging to those with minimal cost.

Before presenting the algorithm in detail, let us introduce the following two data
structures. First, the Parent : V -+ V function maps a vertex v E V to the unique
vertex u E V with (u, v) E V. By convention, Parent(vo) = vo, where vo is the root
vertex. Second, Cost : V -+ R>0 maps each vertex v to the cost of the unique path
from vo to v. By convention, Cost(vo) 0. For simplicity, we assume that the cost
function c is additive so that Cost(v) Cost(Parent(v)) + c(o-), where o-, is the
straight-line path that connects Parent(v) and v. In the algorithm description, we
denote the straight path between two configurations x, x' C X by Path(x, x').

The RRT* algorithm is presented in Algorithm 6. The algorithm adds new con-
figurations to the vertex set V in the same way as the RRT and the RRG. It also
considers connections from the new vertex xnew to vertices set U of vertices within a
distance r(card (V)) := min{7yRRT* (log(card (V))/ card (V))l/d, T1} to Xnew (see Line 7
of Algorithm 6). However, not all feasible connections result in new edges being in-
serted into the edge set E. In particular, (i) an edge is created from the vertex in U
that can be connected to Xnew along a path with minimal cost, and (ii) new edges are
created from Xnew to vertices in U, if the path through Xnew has lower cost than the
path through the current parent; in the latter case, the edge linking the vertex to its
current parent is deleted, to maintain the tree structure.
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Algorithm 6: RRT*
1 V <- {xi1it}; E <- 0;
2 for i= 1, 2, ... ,n do
3 Xrand 4- SampleFree(i);
4 Vnearest + Nearest(G = (V, E), Xrand);

5 Xnew < Steer(nearest, xnew);

6 if Collis ionFree(nearestx new) then
7 U +- Near(G = (V, E), Xnew, min{7RRT* (log(card (V))/ card (V))1/d',qj);

8 V+- V U {xnew};

// Connect along a minimum-cost path

9 omin <-- Vnearest; Cmin <- Cost (Vnearest) + c(Path(nearest, Xnew));
10 for alluE Udo
11 if CollisionFree(u, Xnew) and Cost(u) + c(Path(u, Xnew)) < Cmin then
12 K Vmin <- u; cmin + Cost(u) + c(Path(u, xnew));

13 E <- E U {(Vmin, Xnew)}

// Rewire vertices

14 for alluE U do
15 if Collis ionFree (new, U) and Cost(xnew) + c(Path(xnew, u)) < Cost(u)

then
16 Vparent <- Parent(u);
17 E +- (E \{(vparent, u)}) U {(Xnew, u)};

18 return G = (V, E);

Another version of the algorithm is called the k-nearest RRT*, in which connec-
tions are sought to k(card (V)) := kRRT* log(card (V)) nearest neighbors and we set
U <- kNearest(G = (V, E), Xnew, kRRT* log(card (V))) in Line 7 of Algorithm 6.

4.3.4 Incremental Model Checking for the Deterministic p-
calculus

Recall the definition of a Kripke structure and that of a p-calculus formula from

Section 2.3. Roughly speaking, given a Kripke structure IC = (S, sinit, R,£E) and

a p-calculus formula #, a global model checking algorithm (for the p-calculus) is a

procedure that computes the set T#Dc, i.e., the set of all states that satisfies the given

formula. A local model checking algorithm is a procedure that decides whether or not

sinit - [#bc (see, e.g., Clarke et al., 1999; Schneider, 2004).
A incremental model checking algorithm is one that maintains suitable data struc-

tures to answer the model checking query on the fly, as new states and transitions

are being inserted into the Kripke structure (see, e.g. Sokolsky and Smolka, 1994).
An algorithm that decides the model checking question while states or transitions
are being deleted is usually called decremental, whereas one that can handle both
insertions and deletions is called dynamic.
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In this section, we provide an incremental local model checking algorithm for the
deterministic p-calculus. In Section 4.3.5, this algorithm is used in conjunction with
the RRG to solve path planning problems with deterministic p-calculus specifications.
Clearly, in the context of sampling-based motion planning, a decremental model-
checking algorithm is not necessary, since edges and vertices are never deleted once
they are inserted into the graph. Note that (non-incremental) local or global model
checking algorithms for the deterministic p-calculus are widely known. The reader is
referred to (Gradel et al., 2002; Schneider, 2004) for detailed surveys.

The algorithm we present in this section heavily relies on the preliminary material
presented in Section 2.3. In particular, the incremental model-checking algorithm
maintains a subset of the arena of the L1 game for C and # (see Definition 2.18 in
Section 2.3 and following discussion). Loosely speaking, this subset contains the set
of all vertices that Player 1 can move the token to without loosing the game. As new
states and transitions are added to the k, the corresponding arena is populated in a
computationally efficient manner.

Global Variables: Together with the corresponding arena, the algorithm maintains
five types of global variables, denoted by RV, Pr, Cs, Cs, Nv, and Lv. The global
variable RV, defined for all game arena vertices (s, ) E V, is a subset of the the arena
vertices, i.e., RV(s, @) C V, such that, for all (s',4") E RV(s, V), Player 1 can move
the token from (s', 0') to (s, 4) without Player 2 being able to push the token to an
arena vertex in which Player 1 loses the game by getting stuck. The global variable
Pr, defined for all pairs of arena vertices (s, @), (s', 0') E V with (s', 4') E RV(s, 4),
returns an arena vertex (s", 4"). The arena vertex (s", 4") is the parent to (s, 4') in
the token path starting from (s', 4') such that the token passes through (s", 4") right
before reaching (s, 4). This variable is used to recover the (optimal) winning strategy
for Player 1 in a computationally efficient manner. The global variable Cs, similarly
defined for all pairs of arena vertices (s, 4), (s', 4") E V with (s', 4') E RV(s, 4),
maintains the cost for the path of the token to reach (s, 4) starting from (s', 4'). The
global variable Nv is the set of some select arena vertices (s, 4), where 4 is of the form
4'= vx.4' for some 4' c L 1. In the sequel, such arena vertices are called v-vertices.
Finally, the global variable Lv is the set of all arena vertices (s, 4), where 4 is of the
form 4 is of the form 4 = p or 4' = -,p for some atomic proposition p E H. Such
arena vertices are called literal vertices.

Interfacing Functions: The interface to the incremental model-checking algorithm
is through two procedures, namely the AddState and the AddTransition procedures.
The AddState procedure takes as input a new state s along with the pair (IC, A), where
K is some Kripke structure and A is a subset of the game arena for the L1 game for k
and formula #. The procedure returns the updated Kripke structure which includes
the new state s, and the updated game arena. The AddTransition procedure takes
as input a new transition (s, s') along with a pair (k, A), and returns the updated
Kripke structure (with the new transition) and the updated game arena.

The AddState procedure is presented in Algorithm 7. The procedure simply adds
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the new state to the set S of states, while keeping the game arena unchanged. The
AddTransition procedure, given in Algorithm 8, first adds the new transition into the
transition relation, and calls the UpdateArena and the UpdateGlobalDataStructures
procedures. The UpdateArena procedure is presented in Algorithm 9. The procedure
takes as input the pair (K, A) along with the two arena vertices (si, 01), (s2 , 02). First,
it ensures that the latter vertex (s2,'02) is added to the vertex set of the appropriate
player (Lines 13-16). Second, it adds ((si, 41), (S2, 02)) to the edge set of the arena
(Line 17). Finally, it recursively calls itself to expand new vertices and edges that are
connected to the vertex (82,'02) (Lines 18-32).

To maintain computational efficiency, the algorithm does not expand the arena to
include vertices starting from which Player 1 is doomed to lose the game by getting
stuck (Lines 2-8). It also updates the set of v-vertices, whenever AcceptVertex(A,
(s2 , 02)) returns true (Lines 9-10).2 The UpdateArena procedure also updates the set
of all literal vertices when it encounters a literal vertex (Lines 11-12). The procedure,
then, adds the new arena vertex to the appropriate player's vertex set (Lines 13-16),
and updates the edge relation of the game arena (Line 17). Finally, the algorithm
recursively calls itself to ensure that the game arena is fully populated (Lines 18-32).

The UpdateGlobalDataStructures procedure is given in Algorithm 10. Recall
that the function X is the coloring function in the L1 game for the Kripke structure C
and the deterministic p-calculus formula # (see Definition 2.18). This procedure first
transfers all vertices in RV((s1, 41)) with color number less than that of (82, 42) to
the set RV(s 2, #2) (Lines 2-7). Second, if (si, 01) is a v-vertex, then (si, 01) is placed
into the set RV(s 2, 02), if it satisfies the same color condition (Lines 8-13). Along the
way, the parent vertices and the costs are updated. If any additions to RV(s 2, 2),

then updates are propagated (Lines 14-16). With a slight abuse of notation, the cost
of the straight path between configurations si and S2 is denoted by Cost(si, S2); by
convention, Cost(si, 82) = 0 when si 82.

Algorithm 7: AddState( K = (Sisinit, R,), A =(V1, V2 , E),s)

1 S - SU{s};
2 return (K = (S, sinit, R, L), A = (V1, V 2,&E));

Algorithm 8: AddTransition(K = (S, sinit, R, C), A = (V1 , V2, 8), (s, s'))

1 R +- R u (s s')};
2 for all 00 < # do
3 A <- UpdateArena(K, A, (s, 00), (s', 0));
4 UpdateGlobalDataStructures (K, A, (s, p4), (s', 0));

5 return (K = (S, sinit, R, L),A = (Vi, V2, E));

2Different implementations of the Acceptvertex procedure leads to different algorithmic prop-
erties. In the next section, we discuss a particular implementation that leads to computationally-
efficient sampling-based algorithm.
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Algorithm 9: UpdateArena(C (S, siit, R, ), A = (V1 , V2, S), (si, #1), (82, 02))

1 if ((si, 41), (s2, 02)) V S then

// Remove arena vertex if there is no winning strategy for Player 1
2 if (02 =p and p V L(s 2 )) or (#2 = -,p and p E L(s2)) or

(02 =' A p and p V L(s 2 )) or (4'2 =' A p and p E L(s 2 )) then
3 (s, V) <- (82, 02);
4 while '# # 0' V @" and #K 0' do

5 Vi <- Vi \ {(s, @)}; V2 <- V2 \ {(s, )};
6 Lv A- Lv\ {(s, 0)}; Nv +- Nv\ {(s, '4)};
7 (s,0) 4- Pr((s, 0));

8 return A (VI, V2, S);

// Update the set of v-vertices

9 if (si, 0i) V Nv and 01 = vx.4' and AcceptVertex (A, (si, 01)) then
10 LN <-- Nv U {(si, 1};

// Update the set of literal vertices
11 if (si, $1) V Lv and (#1 = p or 02 -p) then
12 Lv +- Lv U {(si, 1)};

// Update the vertex set

13 if (02 =' A p and p E L(s)) or (02 = ' A -,p and p L (s)) then
14 V2 <- V2 U {(s 2 , 0 2 )};
15 else

16 L Vi - Vi U {(s 2 , 0 2 )};

// Update the edge relation
17 E <- E U { ((Si, $1),1 (82, 02))}1;

// Recursively add new vertices/edges to the arena
18 case '2 -4'A p and p E L(s 2)
19 A <- UpdateArena(A, (s2,4'2), (82, 4'));

20 case 02 = ' A -,p and p V C(82)
21 A <- UpdateArena(A, (s2,02), (s2, '))
22 case 02 = V' V /"
23 A <- UpdateArena(A, (s2, 02), (S2, '));

24 A <- UpdateArena(A, (s2,02), (S2, "));
25 case 02 = 0 '
26 for all s' E S with (s 2 , s') E R do

27 LA <- UpdateArena(A, (s2, 02), (s', 0'));

28 case 2 = X
29 '- BindingFormulao(x);

30 A +- UpdateArena(A, (82, 02), (82, 0'));
31 case 2 = PX.' or 42 = v .1

32 A +- UpdateArena(A, (s2,4'2), (82,4b'));

33 return A = (VI, V2,S);
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Algorithm 10: UpdateGlobalDataStructures (K, A, (si, V51), (s2, 02))

1 UpdatedVertexSet <- False;
2 for all (s', ') E RV(si, 01) do
3 if (s', ') V RV(s 2 , #2) and x((s2, 472)) < X ((s', 0')) then
4 RV(s 2 , 4'2) +- RV(s 2 , 4'2) U {(s, 0")1;
5 Pr((s', '), (s 2 , 0 2 )) <- (si, 1b);
6 Cs ((s', '), (s 2 , 0 2 )) - Cs ((s',"), (si, 01)) + Cost (si, s2);
7 UpdatedVertexSet - True;

8 if (si, 01) E Nv then
9 if (si,4'1) ( RV(s 2 , 4'2) and X((s2, 2)) X((si, 01)) then

10 RV(s2, 4 2) +- RV(s2, 0 2 ) U {(si, I1)};
11 Pr ((si, 01), (s2, 02)) (si, 0i);

12 Cs ((si, 01), (s2, 02)) - Cost (si, s 2 );
13 UpdatedVertexSet <- True;

14 if UpdatedVertexSet = True then
15 for all (s', 0') c V with ((s2, 02), (s', <')) E E do
16 L UpdateGlobalDataStructures (V, (s2, 02), (s', 4));

Termination Criteria and the Solution Obtained From the Algorithm:
Player 1 has a winning strategy in the Li game of IC and #, when either one of
the following is satisfied: (i) there exists a (s, 4') E Lv, or (ii) there exists (s, 4') E Nv
such that (s, 4) C RV(s, 4). In the former case, it is guaranteed that Player 1 can
move the token to vertex (s, 4), where Player 2 gets stuck and loses the game. In the
latter case, Player 1 can move the token to (s, 4) and then it can cycle the token in a
path that later visits (s, 4'). In both cases, Player 1 does not give Player 2 the chance
to win the game while moving the token, because all the vertices starting from which
are deleted from the arena immediately after they are discovered (see Lines 2-8). This
argument establishes the soundness of the incremental model-checking algorithm. 3

4.3.5 Algorithms for Problems with Complex Task Specifi-
cations

In this section, we introduce two novel incremental sampling-based algorithms, called
the p-RRT and [L-RRT*, that solve, respectively, the feasible and the optimal path
planning problems introduced in Section 3.3. These algorithms extend the RRT

3A more elaborate analysis would carefully investigate Algorithm 9 case by case, for each operator.
This analysis would first establish that a vertex is deleted from the arena if and only if Player 2 win
starting from that vertex. This can be established by carefully examining Lines 2-8 of Algorithm 9.
This implies that the as long as there is a path in the arena to some vertex (s, 4') E Lv, then Player
1 can move the token to that vertex, without leaving Player 2 a move to win the game during
the process. The same argument applies to moving the token to a vertex (s, @) E Nv first and
then repeating a cycle that starts and ends at this vertex. Notice that in this cycle the maximum
appearing color is the color assigned to (s, 0).
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and the RRT* algorithms to handle complex task specifications given in the form of
deterministic p-calculus, using the incremental model-checking algorithm presented
in Section 4.3.4. In particular, the algorithms presented in this section have access to
the global data structures maintained by the incremental model-checking algorithm.

The p-RRT algorithm, presented in Algorithm 11, simply extends RRG algorithm
with appropriate calls to the incremental model-checking algorithm. In this manner,
while the graph representing a rich set of paths is generated, the model checking
algorithm is invoked to decide whether the resulting graph contains a feasible solution.
Instead of the CollisionFree procedure, a new procedure, called SingleLabel, is
employed in the p-RRT algorithm. Let o denote the straight path connecting the two
configurations x and x'. Then, the SingleLabel(x, X') procedure checks whether the
set of atomic propositions satisfied along o- switches at most once, i. e., set set-valued
function A(o(T)) switches value at most once as T varies from zero to one.

The p-RRT* algorithm, given in Algorithm 12, extends the p-RRT algorithm with
an RRT*-like strategy to keep track of optimal paths.

Algorithm 11: p-RRT
// Initialize the Kripke structure and the game arena

1 S <- {xinit}; sinit +- Xinit; .R <- 0; E(sinit) <- A(Xinit);
2 Vi +- {(sinit, #spec)}; V2 -- 0; 5 <- 0;
3 IC - (V, sinit, R, L); A +- (VI, V2 , S);

// Initialize the global data structures
4 Nv <- 0; Lv s 0; RV((Xinit, kspec)) -- (Xinit, Ospec);
5 Pr((Xinit, Ospec), (zinit, Ispec)) <- NULL; Cs((Xinit, #spec), (init, spec)) +- 0;

// Incremental search
6 while i = 1, 2,..., n do
7 Xrand <- Sample(i);
8 Vnearest <- Nearest(xrand);

9 Xnew +- Steer(nearest, Xnew);
10 if Single Label(nearest, Xnew) then

// Update the graph maintained by the algorithm
11 V <- V U {Xnew}; E <- E U {(Vnearest, xnew)};

// Expand the Kripke structure and the game arena

12 (k, A) +-AddState((K, A), znew);
13 (k, A) +- AddTransition((KC, A), Vnearest, Xnew);

// Make connections with near vertices

14 U <- Near(V, Xnew, min{yRRG(log(card (V))/ card (V))l/d, 27});

15 for alluE Udo
16 if SingleLabel(xnewu) then
17 (k, A) <- AddTransition((k, A), (Xnew, u));
18 (C, A) <- AddTransition((C, A), (u, Xnew));
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Algorithm 12: ,-RRT*

// Initialize the Kripke structure and the game arena
1 S +- {xinit}; sinit <- Xinit; R +- 0; f(sinit) +- A(xinit);
2 VI +- {(sinit, # spec)}; V2 <-- 0; S +- 0;
3 IC - (V, sinit, R, L); A +- (Vi, V2 , S);

// Initialize the global data structures

4 Nv +- 0; Lv <- 0; RV((Xinit, q spec)) <- (Xinit, Ospec);

5 Pr((Xinit, spec), (Xinit, spec)) +- NULL; Cs((xinit, spec), (Xinit, qspec)) <- 0;

// Incremental search
6 while i = 1, 2, ... , n do
7 Xrand 4- Sample(i);
8 Vneaest <- Nearest(xrand);

9 xnew <- Steer(vnearest, Xnew );
10 if SingleLabel(nearest, Xnew) then

// Update the graph maintained by the algorithm

11 V +- V U {Xnew}; E +- E U {(Vnearest, Xnew)};

// Expand the Kripke structure and the game arena
12 (k, A) e-AddSt ate((IC, A), Xnew);
13 (IC, A) <- AddTransition((C,A),nearest,xnew);

// Make connections with near vertices

14 U <- Near(V, onew, min{7RRG (log(card (V)) /card (V))1/d
15 for all u E U do
16 if SingleLabel(xnewu) then
17 (k, A) +-AddTransition((IC, A), (xnew, u));
18 L (k, A) <-AddTransition((IC, A), (u, xnew));

// Find the best parent

19 for all (xnew, 0) E V with 00 < Ospec do
20 for all (s', 'O) E RV((xnew, 4)) do
21 for all (s, O@) E V with ((s, O ), (Xnew, 0)) E E do
22 if Cs((s, O0)) + Cost(xnew, s) < Cs((xnew, 0)) then
23 Pr((s', '"), (Xnew, 0)) <- (8, O );
24 K Cost((S', '), (Xnew, )) < Cs((s, O0)) + Cost (Xnew, s);

// Rewire vertices

25 for all (xnew, 0) e V do
26 for all (s', O') E RV((Xnew, 00)) do
27 for all (s,4') E V with ((xnew, O), (s, 0)) E S do
28 if CS((Xnew, <040)) + Cost (xnew, s) < Cs(s, 4) then
29 Pr((s', '), (s, ')) < (Xnew, 00);
30 Cs((s', '), (s, 4)) <- CS((Xnew, O4)) + Cost (znew, s);
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4.4 Computational Experiments

This section is devoted to computational experiments. The computational experi-
ments presented in this section have previously appeared in (Karaman and Frazzoli,
2011b), and focus on demonstrating the performance of the RRT* algorithm in an
illustrative example. More simulation studies demonstrating the performance of the
proposed algorithms in challenging practical examples can be found in (Karaman and
Frazzoli, 2010a; Karaman et al., 2011; Perez et al., 2011; Jeon et al., 2011).

The RRT and the RRT* algorithms were implemented using the C language and
executed on a computer with 2.66 GHz processor and 4GB RAM running the Linux
operating system. Unless stated otherwise, the cost of a path is its total variation.

The first scenario includes no obstacles. Both algorithms are run in a square
environment. The trees maintained by the algorithms are shown in Figure 4-1 at
several stages. The figure illustrates that, in this case, the RRT algorithm does not
improve the solution towards an optimum solution. On the other hand, running
the RRT* algorithm further improves the paths in the tree to lower cost ones. The
convergence properties of the two algorithms are also investigated in Monte-Carlo
runs. Both algorithms were run for 20,000 iterations 500 times and the cost of the
best path in the trees were averaged for each iteration. The results are shown in
Figure 4-2, which shows that in the limit the RRT algorithm has cost very close
to a v'2 factor the optimal solution, whereas the RRT* converges to the optimal
solution. Moreover, the variance over different RRT runs approaches 2.5, while that
of the RRT* approaches zero. Hence, almost all RRT* runs have the property of
convergence to an optimal solution, as expected.

In the second scenario, both algorithms are run in an environment in presence of
obstacles. In Figure 4-3, the trees maintained by the algorithms are shown after 20,000
iterations. The tree maintained by the RRT* algorithm is also shown in Figure 4-4 in
different stages. It can be observed that the RRT* first rapidly explores the state space
just like the RRT. Moreover, as the number of samples increase, the RRT* improves
its tree to include paths with smaller cost and eventually discovers a path in a different
homotopy class, which reduces the cost of reaching the target considerably. Results
of a Monte-Carlo study for this scenario is presented in Figure 4-5. Both algorithms
were run alongside up until 20,000 iterations 500 times and cost of the best path in
the trees were averaged for each iteration. The figures illustrate that all runs of the
RRT* algorithm converges to the optimum, whereas the RRT algorithm is about 1.5
of the optimal solution on average. The high variance in solutions returned by the
RRT algorithm stems from the fact that there are two different homotopy classes of
paths that reach the goal. If the RRT luckily converges to a path of the homotopy
class that contains an optimum solution, then the resulting path is relatively closer
to the optimum than it is on average. If, on the other hand, the RRT first explores a
path of the second homotopy class, which is often the case for this particular scenario,
then the solution that RRT converges to is generally around twice the optimum.

Finally, in the third scenario, where no obstacles are present, the cost function is
selected to be the line integral of a function, which evaluates to 2 in the high cost
region, 1/2 in the low cost region, and 1 everywhere else. The tree maintained by the
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RRT* algorithm is shown after 20,000 iterations in Figure 4-6. Notice that the tree
either avoids the high cost region or crosses it quickly, and vice-versa for the low-cost
region.

To compare the running time, both algorithms were run alongside in an environ-
ment with no obstacles for up to one million iterations. Figure 4-7, shows the ratio of
the running time of RRT* and that of RRT versus the number of iterations averaged
over 50 runs. As expected from the computational complexity analysis, this ratio
converges to a constant value. A similar figure is produced for the second scenario
and provided in Figure 4-8.

The RRT* algorithm was also run in a 5-dimensional state space. The number
of iterations versus the cost of the best path averaged over 100 trials is shown in
Figure 4-9. A comparison with the RRT algorithm is provided in the same figure.
The ratio of the running times of the RRT* and the RRT algorithms is provided in
Figure 4-10. The same experiment is carried out for a 10-dimensional configuration
space. The results are shown in Figure 4-11.
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Figure 4-1: A Comparison of the RRT* and RRT algorithms on a simulation example
with no obstacles. Both algorithms were run with the same sample sequence. Con-
sequently, in this case, the vertices of the trees at a given iteration number are the
same for both of the algorithms; only the edges differ. The edges formed by the RRT
algorithm are shown in (a)-(d) and (i), whereas those formed by the RRT* algorithm
are shown in (e)-(h) and (j). The tree snapshots (a), (e) contain 250 vertices, (b), (f)
500 vertices, (c), (g) 2500 vertices, (d), (h) 10,000 vertices and (i), (j) 20,000 vertices.
The goal regions are shown in magenta (in upper right). The best paths that reach
the target in all the trees are highlighted with red.
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Figure 4-2: The cost of the best paths in the RRT (shown in red) and the RRT* (shown
in blue) plotted against iterations averaged over 500 trials in (a). The optimal cost
is shown in black. The variance of the trials is shown in (b).
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Figure 4-3: A Comparison of the RRT (shown in (a)) and RRT* (shown in (b))
algorithms on a simulation example with obstacles. Both algorithms were run with
the same sample sequence for 20,000 samples. The cost of best path in the RRT and
the RRG were 21.02 and 14.51, respectively.
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Figure 4-4: RRT* algorithm shown
10,000 (e), 15,000 (f) iterations.
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Figure 4-5: An environment cluttered with obstacles is considered. The cost of the
best paths in the RRT (shown in red) and the RRT* (shown in blue) plotted against
iterations averaged over 500 trials in (a). The optimal cost is shown in black. The
variance of the trials is shown in (b).
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Figure 4-6: RRT* algorithm at the end of iteration 20,000 in an environment with no
obstacles. The upper yellow region is the high-cost region, whereas the lower yellow
region is low-cost.
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Figure 4-7: A comparison of the running time of the RRT* and the RRT algorithms.
The ratio of the running time of the RRT* over that of the RRT up until each iteration
is plotted versus the number of iterations.
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Figure 4-8: A comparison of the running time of the RRT* and the RRT algorithms
in an environment with obstacles. The ratio of the running time of the RRT* over
that of the RRT up until each iteration is plotted versus the number of iterations.
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Figure 4-9: The cost of the best paths in the RRT (shown in red) and the RRT* (shown
in blue) run in a 5 dimensional obstacle-free configuration space plotted against it-
erations averaged over 100 trials in (a). The optimal cost is shown in black. The
variance of the trials is shown in (b).
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Figure 4-11: The cost of the best paths in the RRT (shown in red) and the RRT*
(shown in blue) run in a 10 dimensional configuration space involving obstacles plotted
against iterations averaged over 25 trials in (a). The variance of the trials is shown
in (b).

62

.2

E

1



Chapter 5

Analysis

This chapter is devoted to the theoretical contributions of the thesis. The algorithms
introduced in Chapter 4 are analyzed in terms of probabilistic completeness, asymp-
totic optimality, and computational complexity. First, in Section 5.1, we state all our
major results without the proofs. We discuss important implications of ours results
in this section. Then, in Sections 5.2, 5.3, and 5.4, we provide detailed proofs for the
novel results stated in Section 5.1.

5.1 Statement of Results

5.1.1 Probabilistic Completeness

In this section, we list a number of results regarding the probabilistic completeness of
the algorithms introduced in Chapter 4. Some of the results that we present in this
section can be found in the literature. For those, we point out the suitable references.
The proofs of novel results are given in Section 5.2.

A rigorous definition of probabilistic completeness: Consider a feasible path
planning problem instance (Xfree, Xinit, Xgoai), where Xree is the free space, zinit is
the initial configuration, and Xgoal is the goal set. Let 6 > 0 be a real number. A
configuration x E Xfree is said to be a 6-interior configuration, if the closed Euclidean
ball of radius 6 lies entirely inside Xfree. The 6-interior of Xfree is defined as the
collection of all 6-interior configurations, i.e., int6(Xree) :{= {X Xfree : 36 (x) C Xfree},
where B 6(x) is the Euclidean ball of radius 6 centered at x. See Figure 5-1. A collision-
free path o- : [0, 1] - Xree is said to have strong 6-clearance, if o- lies entirely inside
the 6-interior of the free space, i.e., o(T) c int6 (Xfree) for all T E [0, 1]. A feasible
path planning problem instance is said to be robustly feasible instance, if there exists a
path o with strong 6-clearance, for some 6 > 0, such that o is feasible for the problem
instance at hand. In the sequel, such a path o is called a robustly feasible path.

Finally, we define probabilistic completeness as follows. Let G = (V, E) be a
graph, where V c R d and E C V x V. The set of all paths through G = (V, E)
contains exactly those paths that visit a finite number of vertices from V in an
order that respects the edge relation E, where consecutive vertices are connected via
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I F

Figure 5-1: An illustration of the 6-interior of Xfree. The obstacle set XObS is shown
in dark gray and the 6-interior of Xfre is shown in light gray. The distance between
the dashed boundary of int6 (Xfree) and the solid boundary of Xfree is precisely 6.

straight paths. Strictly speaking, a path o : [0,1] -+ Rd is said to be a path through
G = (V, E), if there exists a sequence (vo, v 1 ,. ., Vk) of vertices and a sequence
(TO, r 1 ,. .. , r) of real numbers, such that (i) (vi- 1 , vi) E E, (ii) To = 0, Tk = 1,
and Ti_ 1 < -ri for all i, (iii) o-(Ti) = vi for all i, and (iv) o(T) = (T - rj_1(rj -

T-I)vi + (ri - r)/(ri - ri_1)vi_1 for all T c (-ri, T4+1) and all i.

Definition 5.1 (Probabilistic Completeness) An algorithm ALG is said to be
probabilistically complete, if, for any robustly feasible path planning problem in-
stance,1

lim inf P({ There exists a feasible path o- through GnALG nALG EALG 1
n--*o

If an algorithm is probabilistically complete, and the problem instance at hand
is robustly feasible, then the limit limn,,o P({There exists a feasible path o through
GALG _(VALG EALG)}) does exist and is equal to one. On the other hand, it can be
shown that the same limit is equal to zero for any sampling-based algorithm (including
probabilistically complete ones) if the problem instance is not robustly feasible, unless
the samples are drawn from a singular distribution adapted to the problem.2

Note that Definition 5.1, in its current form, only applies to instances of Prob-
lem 3.1. To define probabilistic completeness for Problem 3.3, we first extend the defi-

'Note that, when Xfree is an open set, any feasible path is robustly feasible. Hence, in that
case, any feasible problem instance is also robustly feasible. Yet, the notion of robust feasibility is
important for our purposes for the following reasons. However, when defining asymptotic optimality,
we will require Xfree to be closed in order to ensure the existence optimal solutions. Moreover, the
definition of robustly feasible paths will allow us to easily define robustly optimal paths, which will
in turn be used to define asymptotic optimality.

2More precisely, in this case, we define a sampling-based algorithm as one that has access to the
problem instance, (Xree, Xinit, obs), only through the primitive procedures provided in Section 4.1.
(All relevant algorithms presented in this thesis satisfy this property.) Then, it can be shown that,
for any sampling-based algorithm ALG, the probability that there exists a feasible path in o- through
GALG =(yALG, EALG) is equal to zero for all n E N, in any problem instance that is not robustly
feasible, even when ALG is probabilistically complete.
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nition of strong 6-clearance as follows. Consider an instance of the feasible path prob-
lem with deterministic p-calculus specifications, denoted by (Xinit, R 1, R2 , .. , R, #spec),
where Xinit is the initial configuration, R 1, R 2, ... , R1 c X are open sets, and #spec
is a deterministic p-calculus formula. Let 6 be a positive real number. Define the
6-exterior of Ri as the set of all configurations that are at most 6 apart from Ri, i.e.,
R {x E X :3B(x) n Ri f 0}. The 6-interior of Ri is defined in the usual way, and
denoted simply by Ri-6. A path o-: [0, 1] - X that is feasible for Problem 3.3 is said
to be robustly feasible, if there exists some 6 > 0 such that it is feasible, and moreover
its trace is invariant, for all problem instances (init, Rfi, R2, ... , R, #spec), where

' . . , ki E [-6,61. A problem instance is said to be robustly feasible, if it admits a
robustly feasible path. Then, probabilistic completeness, as defined in Definition 5.1,
extends naturally to the instances of Problem 3.3.

Analysis of existing algorithms: It is known that the sPRM and the RRT algo-
rithms are probabilistically complete. Moreover, for these algorithms, the probability
of failure to return a feasible solution, when a robustly feasible one exists, converges
to zero exponentially fast with increasing number of samples:

Theorem 5.2 (Probabilistic Completeness of sPRM (Kavraki et al., 1998))
Let (Xree, Xinit, Xgoa1) be a robustly feasible path planning problem instance. There
exists constants a > 0 and no G N, both independent of n, such that, for all n > no,

P({ There exists a feasible path o through G'PRM - (sPRM EsPRM) > 1 e -an

Theorem 5.3 (Probabilistic Completeness of RRT (LaValle and Kuffner,
2001)) Let (Xfree, init, Xgoa1) be a robustly feasible path planning problem instance.
There exists constants a > 0 and no C N, both independent of n, such that, for all
n > no,

P({ There exists a feasible path o through GRT =(VR , ERRT)} >1 e an

Probabilistic completeness results do not necessarily extend to the heuristics used
in practical implementations of the (s)PRM algorithm. Consider, for example, the
k-nearest PRM algorithm with k = 1. That is, each vertex is connected to its nearest
neighbor and the resulting undirected graph is returned as the output. This PRM
variant will be called the 1-nearest PRM, and it will be indicated by the label 1-PRM.
The RRT algorithm can be thought of as the incremental version of the 1-nearest PRM
algorithm: the RRT algorithm also connects each sample to its nearest neighbor, but
forces connectivity of the graph by an incremental construction.

The following theorem shows that the 1-nearest PRM algorithm is not probabilisti-
cally complete, although the RRT is (see Theorem 5.3). Furthermore, the probability
that the 1-nearest PRM algorithm fails to return a feasible path converges to one as
the number of samples approaches infinity.
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Theorem 5.4 (Incompleteness of 1-nearest PRM) The k-nearest PRM algo-
rithm is not probabilistically complete for k = 1. Furthermore,

lim P({ There exists a feasible path o- through G-PRM (l-PRM, E-PRM )n->oo

The proof of this theorem is provided in Section 5.2.1.
Similarly, the variable-radius PRM algorithm lacks probabilistic completeness if

the radius is shrunk too fast.

Theorem 5.5 (Incompleteness of variable-radius PRM for rn < yn-l/d) There
exists a constant -y, independent of n, such that the variable radius PRM algorithm
with connection radius -yn-l/d is not probabilistically complete. Furthermore, for any
such variable radius PRM algorithm ALG,

lim P ({ There exists a feasible path o- through GnALG I ALG E ALG
n-+oo

The proof of this theorem is given in Section 5.2.2. The constant -Y in Theorem 5.5
is the percolation threshold for random r-disc graphs, which is closely related to the
continuum percolation threshold (see Theorem 2.3).

Analysis of proposed algorithms: The algorithms PRM*, RRG, and RRT* are
all probabilistically complete, for the feasible path planning problem (Problem 3.1).
In fact, for the RRG and the RRT*, it is easy to prove a stronger result.

Theorem 5.6 (Probabilistic Completeness of PRM*) The PRM* algorithm is
probabilistically complete.

Theorem 5.7 (Probabilistic Completeness of RRG) The RRG algorithm is
probabilistically complete. Furthermore, for any robustly feasible problem instance
(Xfree, Xinit, obs), there exists constants a > 0 and no c N, both independent of n,
such that, for all n > no,

P({There exists a feasible path o- through GRRG = (vRREG, ERG)}>le -an

Theorem 5.8 (Probabilistic Completeness of RRT*) The RRT* algorithm is
probabilistically complete. Furthermore, for any robustly feasible problem instance
(Xyfree, Xinit, obs), there exists constants a > 0 and no G N, both independent of n,
such that, for all n > no,

P({ There exists a feasible path o through GnR* (n EkRT* >1- e-an

The proofs of Theorems 5.6-5.8 are given in Section 5.2.3.
The p-RRT and p-RRT* algorithms are probabilistically complete, for the feasible

path planning problem with deterministic p-calculus specifications (Problem 3.3).

Theorem 5.9 (Probabilistic Completeness of p-RRT and p-RRT*) The p-
RRT and the p-RRT* algorithms are probabilistically complete.

The proof of Theorem-5.9 is provided in Section 5.2.4.
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5.1.2 Asymptotic Optimality

In this section, we analyze the algorithms that were introduced in Chapter 4 in
terms of their ability to return paths that converge to optimal solutions. We first
introduce a precise definition of asymptotic optimality. Then, we show that two of
the existing algorithms, namely the RRT and the k-nearest PRM, for any fixed k,
lack this property. Finally, we show that the PRM*, RRG, and the RRT* algorithms
as well as their k-nearest variants are asymptotically optimal. We also argue the
asymptotic optimality of the p-RRT* algorithm for the optimal path problem with
deterministic p-calculus specifications.

A rigorous definition of asymptotic optimality: Recall from the previous sec-
tion that a path is robustly feasible, for a given path planning problem instance, if it
is feasible and it has strong 6-clearance. We use a similar notion, called weak clear-
ance and introduced below, together with a (semi-)continuity property for the cost
functional, to define robustly optimal paths.

Let o-1, or2 be two collision-free paths with the same end points, i.e., o-(0) = U 2 (0)
and o-1(1) = o-(1). Then, o-1 is said to be homotopic to or2, if there exists a continuous
function : [0, 1] - Efree such that ((0) = o-, ((1) = o2 , and ((r) is a collision-
free path for all T E (0, 1). In this case, the function ( is called the homotopy.
Intuitively, any path that is homotopic to o can be continuously transformed to a-
through collision-free paths (see Munkres, 2000).

A collision-free path o- : [0, 1] - Xfree is said to have weak clearance, if there exists
a path o-' that has strong 6-clearance, for some 6 > 0, and there exists a homotopy (,
with ((0) = o-' and ((1) = o, such that for all T E [0, 1) there exists some 6 > 0 such
that the path ((r) has strong 6T-clearance. In other words, a path has weak clearance
if it is homotopic to a path through paths that have strong 6-clearance. An important
consequence of weak clearance is the following: A path o- with weak clearance may
not have strong 6-clearance for any 6 > 0; however, there exists a sequence of paths,
all of which have strong 6-clearance, and this sequence of paths converges to o-. We
make this claim precise later in our analysis (see Lemma 5.47).

The weak clearance property is illustrated, for a path planning problem in Fig-
ure 5-2 in a simple example. A more complex example is provided in Figure 5-3. A
path that violates the weak clearance property is shown in Figure 5-4.

Note that the notion of weak clearance extends directly to paths that solve path
planning problems with complex task specifications (Problems 3.3 and 3.4), since the
notion of strong 6-clearance also extends to such paths (see the discussion after the
definition of strong 6-clearance given in the previous section). Moreover, the notion
of homotopy classes can also be defined in problems with complex task specifications.
Strictly speaking, two feasible paths are homotopic if they can be continuously de-
formed to one another through feasible paths. Here, we require a stronger notion,
called trace homotopy, whereby two paths are declared trace homotopic if they can
be continuously deformed to one another through paths with the same trace.

To make precise the notion of limit of a sequence paths, we introduce the set of all
paths as a normed space. Recall that E is the set of all paths, and TV(.) is the total
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Figure 5-2: An illustration of a path a that has weak clearance. The path o', with
strong 6-clearance, that is in the same homotopy class with a is also shown in the
figure. Note that o does not have strong 6-clearance.

Front view Side view

Figure 5-3: An illustration of a path that has weak clearance. The path passes
through a point where two obstacles come in contact. Clearly, the path does not have
strong 6-clearance for any 6 > 0.

variation, i.e., the length, of a path (see Section 3.1). Given two paths o1, o2 E Z,
which, recall, are continuous functions with (bounded variation) of the form ol, or2 :
[0, 1] -+ R , the addition operation is defined as (U1 + o 2 )(T) = 0-1(T) + U2 (T) for all
T C [0, 1]. Given a path o E E and a scalar a E R, the multiplication by a scalar
operation is defined as (a o)(T) = ao(T) for all T E [0, 1]. Clearly, the set E of paths
is closed under addition and scalar multiplication. In fact, with these operators, the
function space E is a vector space.

On the vector space E, define the norm ||0IBV 0 o-(T) dT + TV(o-), where -
denotes the usual Euclidean norm in Rd. This norm induces the following distance
function:

distBV (ui, o-2 ) := oi - 9 2 1 BV = j l ( - o2) (T)I dT + TV( i- 0 2 )-

A sequence of paths {jan}nEN of paths is said to converge to a path d, denoted simply
by lim a, = a, if lim,,c| H|n - allBV = 0.

A path is said to be optimal, if it solves the optimal path planning problem. An
optimal path o* E Efre is said to be robustly optimal, if it has weak clearance and,
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Figure 5-4: An illustration of a path o that does not have weak clearance. In par-
ticular, for any positive value of 6, there is no path in the 6-interior of the free space
that is homotopic to a.

for any sequence {n}nEN Of collision-free paths with o-, E Efte for all n E N and
lim- +o- = a-, we have limn_, c(U) = c(o*). Clearly, a path planning problem
that admits a robustly optimal solution is robustly feasible.

Let ALG be a sampling-based planning algorithm. Let c* denote the cost of an
optimal solution. Denote by yALG the cost of the minimum-cost feasible path through
the graph GALG -(VALG, EALG), which ALG returns when it is run with n samples.

Definition 5.10 (Asymptotic Optimality) An algorithm ALG is said to be asymp-
totically optimal, if, for any optimal path planning problem instance that admits a
robustly optimal solution with finite cost c*,

P({lim sup yALG= c*} 1.

Since YALG > c* for all n E N, asymptotic optimality implies that limn, YALG

exists and is equal to c*, almost surely. Clearly, probabilistic completeness is necessary
for asymptotic optimality.

Preliminary results: Before stating our main results, we note a number of inter-
esting properties of sampling-based algorithms regarding asymptotic optimality.

Firstly, an application of Kolmogorov's zero-one law leads to the following fact.
Under certain assumptions, the event that a sampling-based algorithm converges to
an optimal solution has probability either zero or one. That is, a given sampling-
based planning algorithm either converges to an optimal solution in almost all runs
or the convergence fails to occur in almost all runs, for a fixed problem instance. See
the following proposition, the proof of which can be found in Section 5.3.1.

Proposition 5.11 Suppose the only randomness in the sampling-based algorithm is
introduced by the Sample procedure. Conditioning on the event that ALG returns a so-
lution eventually, i.e., lim sup,,, ALG < oo, the probability that lim supn,,YALG __
c* is either zero or one.
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Secondly, it is easy to show that the limit lim Yo YALG exists, if the algorithm
ALG satisfies a certain monotonicity condition. A graph G = (V, E) is contained
in another graph G' = (V', E') if V C V' and E C E'. The proof for the following
proposition is given in Section 5.3.1.

Proposition 5.12 Suppose, for all sample sequences, G ALG C G ̂ 2L for all n E N.
Then, the limit limnoo YALG exists surely.

The incremental algorithms, namely the RRT, RRG, RRT*, and p-RRT*, all
satisfy the monotonicity condition of Proposition 5.12. The said limit does exists,
almost surely, for the other algorithms, in particular the PRM*. However, a rigorous
proof requires a more involved coupling argument.

Finally, we make the following assumption throughout this dissertation, to rule
out trivial cases where the optimal path may be found with only finitely many sam-
ples. Let E* denote the set of all optimal paths, and let Xpt denote the set of all
configurations an optimal path passes through, i.e.,

X opt := {x E Xfree : there exists -* E E* and 7 E [0, 1] such that x = o*(r)}.

Recall that p(-) is the usual Lebesgue measure in the d-dimensional Euclidean space.

Assumption 5.13 (Zero-measure optimal paths) The set of all points traversed
by optimal paths has Lebesgue measure zero, i.e., p(Xopt) = 0.

Arguably, this assumption holds in most practical cases. Note that this assump-

tion does not imply that there is a single optimal path. In fact, there are problem
instances with uncountably many optimal paths, for which Assumption 5.13 holds. 3

Assumption 5.13 implies that, roughly speaking, no sampling-based planning algo-

rithm can find a solution to the optimal path planning problem in a finite number of
iterations, almost surely.4 The proof of the following theorem is given in Section 5.3.1.

Proposition 5.14 Suppose Assumption 5.13 holds. Then, the probability that ALG
returns a graph containing an optimal at a finite iteration n C N is zero, i.e.,

(U EN I yALG c* 0.

Throughout, we assume that Assumption 5.13 holds, which implies that Proposi-

tion 5.14 holds also. 5

3 Consider, for example, a motion planning problem in the three-dimensional configuration space
where a (Euclidean-)ball-shaped obstacle is placed such that its center lies on the straight path that
connects the initial and the goal configurations.

4When making this claim, we assume that a sampling-based algorithm has access to the configura-
tion space and the problem instance only through the primitive procedures described in Section 4.1.

5 Note that, although Assumption 5.13 is sufficient for Proposition 5.14 to hold, it is not a neces-
sary condition. There are weaker conditions under which Proposition 5.14 holds. We do not discuss
such conditions here, in order to keep the technical argument simple.
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Analysis of existing algorithms: Next, we state our results regarding the asymp-
totic optimality or the lack thereof for the existing algorithms.

First, consider the PRM algorithm and its variants. The PRM algorithm, in its
original form, is not asymptotically optimal.

Theorem 5.15 (Non-optimality of the PRM) The PRM algorithm is not asymp-
totically optimal.

The proof of this theorem is provided in Section 5.3.2. The lack of asymptotic op-
timality in PRM is due to its incremental construction, coupled with the constraint
eliminating edges that make unnecessary connections within a connected component.
Such a constraint is not present in the batch construction of the sPRM algorithm,
which is indeed asymptotically optimal (at the expense of computational complexity;
see Section 5.4). The proof of the following theorem is given in Section 5.3.3

Theorem 5.16 (Asymptotic Optimality of sPRM) The sPRM algorithm is
asymptotically optimal.

On the other hand, as in the case of probabilistic completeness, the heuristics
that are often used in the practical implementations of (s)PRM are not necessarily
asymptotically optimal.

Theorem 5.17 (Non-optimality of the k-nearest sPRM) The k-nearest PRM
algorithm is not asymptotically optimal, for any fixed k C N.

The proof of this theorem is given in Section 5.3.4.
A large class of variable-radius sPRMs, where the connection radius is shrunk at

a rate that is faster than in the PRM*, also lack the asymptotic optimality property.

Theorem 5.18 (Non-optimality of variable-radius sPRM with r(n) yn- 1/d)
The variable-radius sPRM with connection radius r(n) ' n -1/d is not asymptotically
optimal, for all fixed -y > 0.

The proof of this theorem is given in Section 5.3.5.
Like widely-used variants of the PRM algorithm, the RRT algorithm is not asymp-

totically optimal either. The proof of the following theorem is given in Section 5.3.6.

Theorem 5.19 (Non-optimality of the RRT) The RRT algorithm is not asymp-
totically optimal.

A straightforward application of Propositions 5.11 and 5.12 shows that, for those
algorithms that are not asymptotically optimal, the probability that they converge to
an optimal solution is, in fact, zero. In other words, all these algorithms converge to
a non-optimal solution, almost surely, i.e., IP({limsup, yALG *})n= 1, where
ALG is one of the algorithms mentioned in Theorems 5.15, 5.17, 5.18, and 5.19.
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Analysis of proposed algorithms: Next, we discuss the asymptotic optimality
of the algorithms PRM*, RRG, and RRT* as well as their k-nearest variants, in the
optimal path planning problem given in Problem 3.2.

The proofs of the following theorems are provided in Sections 5.3.7-5.3.11.

Theorem 5.20 (Asymptotic Optimality of PRM*) The PRM* algorithm is
asymptotically optimal.

Theorem 5.21 (Asymptotic Optimality of k-nearest PRM*) The k-nearest
PRM* algorithm is asymptotically optimal.

Theorem 5.22 (Asymptotic Optimality of RRG) The RRG algorithm is asymp-
totically optimal.

Theorem 5.23 (Asymptotic Optimality of k-nearest RRG) The k-nearest RRG
algorithm is asymptotically optimal.

Theorem 5.24 (Asymptotic Optimality of RRT*) The RRPT algorithm is asymp-
totically optimal.

Theorem 5.25 (Asymptotic Optimality of k-nearest RRT*) The k-nearest
RRT* algorithm is asymptotically optimal.

The p-RRT* algorithm and its k-nearest variant are asymptotically optimal for
the optimal path planning problem with deterministic p-calculus specifications (Prob-
lem 3.4). The proofs of the following theorems are given in Section 5.3.13.

Theorem 5.26 (Asymptotic Optimality of p-RRT*) The p-RRT' algorithm is
asymptotically optimal.

Theorem 5.27 (Asymptotic Optimality of k-nearest p-RRT*) The k-nearest
p-RRT' algorithm is asymptotically optimal.

5.1.3 Computational Complexity

In this section, we compare the algorithms provided in Chapter 4 in terms of com-
putational complexity. First, we analyze each algorithm in terms of number of calls
to the CollisionFree procedure. Subsequently, we comment on the computational
complexity of the Nearest and Near procedures. These results lead to a thorough
analysis of the time complexity of the algorithms in terms of simple computational
operations, such as additions, multiplications, and comparisons.

Throughout this section, we use the following notation for stating asymptotic com-
putational complexity. Let W LG be a function of the graph GALG (yALG, E LG)
returned by algorithm ALG when ALG is run with n samples. Clearly, WnLG is
a random variable that depends on the problem instance. Let f : N -4 N be a
non-decreasing function with lim, f(n) = oc. Following the usual asymptotic
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computational complexity notation, the random variable WALG is said to belong to
Q(f(n)), denoted by W LG E Q(f(n)), if there exists a problem instance for which
lim inf-, E[Wn LG/f(n) > 0. Similarly, W LG is said to belong to O(f (n)), denoted
by WfLG E O(f (n)), if lim sup( EW LG/n) < oc for all problem instances. In
other words, on one hand, in the case of WnLG E Q(f(n)), there exists at least one
problem instance in which the expected value of the random variable W LG grows at
least as fast as f(n); on the other hand, in the case of WnLG E O(f(n)), the random
variable W LG grows slower than f(n) in all problem instances. We will use these
two notations to describe lower and upper bounds for the asymptotic computational
complexity of the sampling-based algorithms that this thesis is concerned with.

Number of calls to the CollisionFree procedure: Let M LG denote the total
number of calls to the CollisionFree procedure by algorithm ALG, when ALG is
run with n samples.

First, note the following lower bounds for the PRM and the sPRM algorithms. The
proofs of Lemmas 5.28 and 5.29 are provided in Sections 5.4.1 and 5.4.2, respectively.

Lemma 5.28 (Collision-checking Complexity of PRM) For the PRM algo-
rithm, MPRM E 2).

Lemma 5.29 (Collision-checking Complexity of sPRM) For the sPRM algo-
rithm, M PRM E Q(n 2)

Clearly, for the k-nearest PRM and the RRT algorithms, MkPRM = k n and
MRRT = n, for all n E N in all problem instances. Compare these results with
those of Lemmas 5.28 and 5.29. The proposed algorithms have time complexity that
is much closer to the more efficient algorithms, RRT and the k-nearest PRM.

Lemma 5.30 (Collision-checking Complexity of PRM*, RRG, and RRT*)
For the PRM*, RRG, and RRT' algorithms, MiRM*, M0G, M"T* eO(n log(n)).

The proof of this lemma is provided in Section 5.4.3.
Finally, for the k-nearest variants of the proposed algorithms, trivially, MkPRM* _

MkRRG = MkRRT* = k log(n) for some constant k that is independent of n.

Computational Complexity of the CollisionFree procedure: Now, let us
characterize the amount of computational effort required to execute the CollisionFree
procedure itself. Clearly, the number of simple computational operations required to
do so is independent of the number of samples n. However, in general, this number
depends on the characteristics of the environment.

The problem of collision checking a path against obstacles is a widely studied
problem in the context computational geometry (see Lin and Manocha, 2012, for a
survey). There are several practical algorithms that efficiently implement the collision
checking procedure. In particular, using data structures based on spatial trees, the
algorithm given by Six and Wood (1982) runs in time O(logd(m)), where d is the
dimensionality of the configuration space and m is the number of obstacles (see also
Edelsbrunner and Maurer, 1981; Hopcroft et al., 1983).
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Computational Complexity of the Nearest procedure: The nearest neigh-
bor search problem is also widely studied in the literature, since it has a number
of applications in, e.g., computer graphics, database systems, image processing, pat-
tern recognition etc. (Samet, 1990a). The computational complexity of the nearest
procedure clearly depends on the number of vertices, thus the number of samples n.

A naive algorithm that examines every vertex runs in O(n) time and requires 0(1)
space. However, in many online real-time applications such as robotics, it is highly
desirable to reduce computation time of each iteration within sublinear bounds, e.g.,
O(log n) time. Such algorithms may be especially valuable in anytime algorithms
that intend to improve the solution as the number of iterations increases.

Fortunately, there exist very efficient algorithms for computing an "approximate"
nearest neighbor, if not an exact one. In the sequel, a vertex v E V C X is said to
be an E-approximate nearest neighbor of a configuration x, if |v - x < (1 + E)|u - x|
for all u E V. An approximate nearest neighbor can be computed, for instance,
by using balanced-box decomposition (BDD) trees, which achieves O(cd,, log n) query
time using O(d n) space, where cd,, < d [ 1+6 d/eld (Arya et al., 1998). This algorithm
is computationally optimal in fixed dimensions, since it closely matches a lower bound
for algorithms that use a tree structure stored in roughly linear space (see Arya et al.,
1998). These rdsults suggest that the Nearest procedure requires at least O(log n)
time answer nearest neighbor queries or an approximation thereof. Finally, note that
approximate nearest neighbor computation in the context of PRMs and RRTs was
discussed very recently (Yershova and LaValle, 2007; Plaku and Kavraki, 2008).

Computational Complexity of the Near procedure: Problems similar to that
solved by the Near procedure are also widely studied in the literature, often under the
name of "range search problems" (Samet, 1990b). Using k-d trees, in fixed dimensions
and in the worst case, computing the exact set of vertices that reside in a ball of radius
r,, centered at some query point takes 0(n-1/d+m), where m is the number of vertices
returned by the search (Lee and Wong, 1977). See also (Chanzy et al., 2000) for an
analysis of the average case.

Similar to the nearest-neighbor search, computing approximate solutions to the
range search problem is computationally easier. A range search algorithm is said to
be E-approximate if it returns all vertices that reside in the ball of size r, and no
vertices outside a ball of radius (1 +e)rr,, but may or may not return the vertices that
lie outside the former ball and inside the latter box.

Computing e-approximate near neighbors using BBD-trees requires 0 (2 d log n +
d(3v/d/c)d) time when using O(d n) space, in the worst case (Arya and Mount, 2000).
Thus, in fixed dimensions, the complexity of this algorithm is O(logn + (1 + e)d-1),
which is known to be computationally optimal, closely matching a lower bound (Arya
and Mount, 2000). More recently, algorithms that can provide trade-offs between time
and space were also proposed (see Arya et al., 2005).

Note that the Near procedure can be implemented as an approximate range search
while the maintaining asymptotic optimality guarantee and without changing the
number of calls to the CollisionFree procedure up to a constant factor, in all of
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the proposed algorithms. Hence, the Near procedure can be implemented to run in
O(log n) expected time and linear space, in fixed dimensions.

Computational Complexity of the Incremental Model Checking Algorithm:
The p-RRT and the p-RRT* algorithms, proposed in Section 4.3.5, employ the in-
cremental model checking algorithm proposed in Section 4.3.4. In this section, we
characterize the computational complexity of this model checking algorithm in terms
of the size of the Kripke structure that it generates.

IC = (S, sinit, K, L) is the Kripke structure generated using the AddState and the
AddTransition procedures. Let NKs and NcD denote the total number of simple com-
putational operations executed by the AddState and the AddTransition procedures,
respectively, in the process of generating this Kripke structure. During this process,
in general, the said procedures are executed multiple times; NKs and N.D denote the
aggregate number of simple operations performed in all these executions. Recall that
card (-) is the cardinality operator. Let |#| denote the size of the p-calculus formula
# defined as the total number of appearances of all operators, atomic propositions,
and variables in #. Let SF,(#) denote the set of all subformulas V) of # that are of
the form 0 = vx.4' for some x E Var and 0' E L1 .

Lemma 5.31 (Time Complexity of Incremental Model Checking) Suppose
the incremental model checking procedure is executed (using the interfacing procedures
AddState and AddTransition), with the deterministic p-calculus formula # as input,
to generate a Kripke structure K = (S, sinit, R, L). Then, the number of simple
operations executed by the AddState and the AddTransition procedures satisfy NAS c
O(card (S)) and NIAD E O(log(card (S) card (SF,(#))) card (7Z) 1#|).

The proof of this lemma is given in Section 5.4.4. The overall time complexity of the
incremental model checking algorithm satisfies N.s+NAD E O(log(card (S)) card (R)

q#|), since card (S) < card (R) by construction.

Time Complexity: Let N ALG denote the time complexity of algorithm ALG when
it is run with n samples. The time complexity is measured in terms of the number of
simple computational operations, such as additions, multiplications, and comparisons,
executed by the algorithm. The following theorems are deduced easily from the results
provided later in this section. Nevertheless, their proofs are provided in Section 5.4.5.

Among the existing algorithms, the PRM and the sPRM algorithms have the
following complexity.

Theorem 5.32 (Time Complexity of PRM and sPRM) The PRM and the
sPRM algorithms satisfy NPRM, NsPRM E Q(n 2 ).

The RRT and the k-nearest PRM are substantially more efficient in this measure.

Theorem 5.33 (Time Complexity of k-nearest PRM and RRT) The k-nearest
PRM and the RRT algorithms satisfy NkPRM, N RTeQ(nlogn).
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Finally, the proposed algorithms match the computational complexity of the most
efficient existing algorithms.

Theorem 5.34 (Time Complexity of PRM*, RRG, and RRT*) The time com-
plexity of PRM*, RRG, and RRT* algorithms and their k-nearest variants satisfy
NPRM E O(n log n), where ALG E {PRM*, kPRM*, RRG, kRRG, RRT*, kRRT*}.

Theorem 5.35 (Time Complexity of p-RRT and p-RRT*) The time complexity
of the p-RRT and the pa-RRT' algorithms satisfy Nn RG, NRRG* 2E O( log n)

The proofs of Theorems 5.32, 5.33, and 5.34 can be found in Section 5.4.5.
Note that these results measure only the computational effort devoted to con-

structing the graph GALG = (ALG, EALG) that is returned by the algorithm. They
do not reflect the query time, i.e., time devoted to extracting a feasible path or the
path with minimum cost from the graph. In some cases, the query process is sim-
ple. For example, in the RRT and the RRT* algorithms the query process consists
of finding a vertex in the goal region and tracing it back to the root. In algorithms
like the PRM, PRM*, and the RRG, a standard shortest path algorithm (that runs
on finite graphs) can be used for the query phase. Given a graph G = (V, E) with
a cost function c : E - Ry>o that assigns each edge with a cost, the path the small-
est accumulated cost from an initial vertex to all other vertices can be found in
O(card (V) log (card (V)) + card (E)) time, where card (.) denotes the cardinality of
a set (Schrijver, 2003). Using this result and the intermediate results established in
Sections 5.4.1-5.4.3, the time complexity of the query phase for all the algorithms
analyzed in this thesis is exactly the same as their time complexity for computing the
output graph, which was reported in Theorems 5.32-5.34.

5.2 Proofs on Probabilistic Completeness

In this section, the proofs of our results on the probabilistic completeness or the lack
there off of the existing and proposed algorithms are presented.

5.2.1 Incompleteness of 1-nearest PRM

In this section, we provide a proof of Theorem 5.4, establishing the lack of probabilistic
completeness in 1-nearest PRM. The proof of this theorem requires two intermediate
results, which we provide below.

For simplicity of the presentation, consider the case when Xree = X. Let GI-PRM

(V1-PRM, En-PRM) denote the graph returned by the 1-nearest sPRM algorithm, when
the algorithm is run with n samples. The Euclidean length of an edge e = (v, v') E
E&-PRM is defined as lv -v'j, where |-| is the usual Euclidean norm in the d-dimensional
Euclidean space. Let L, denote the total Euclidean length of all the edges present
in G-PRM. Recall that (d denotes the volume of the unit ball in the d-dimensional
Euclidean space. Let (d' denote the total volume of the union of two unit balls whose
centers are a unit distance apart.
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Lemma 5.36 (Total length of the 1-nearest neighbor graph (Wade, 2007))
For all d > 2, Ln/nI-/d converges to a constant in mean square, i.e.,

lim E ( -Il 1 + =0.
nim [(ni /d d ( 2 (Cd')1+1/d )

Proof This lemma is a direct consequence of Theorem 3 in (Wade, 2007). U

Let Nn denote the number of connected components of GPRM.

Lemma 5.37 (Number of connected components of the 1-nearest neighbor
graph) For all d > 2, Nn/n converges to a constant in mean square, i.e.,

lim E n 0.
n- o ( n 2(d'

Proof A reciprocal pair is a pair of vertices each of which is the other one's nearest
neighbor. In a graph formed by connecting each vertex to its nearest neighbor, any
connected component includes exactly one reciprocal pair whenever the number of
vertices is greater than 2 (see, e.g. Eppstein et al., 1997). The number of reciprocal
pairs in such a graph was shown to converge to (d/(2(d') in mean square in (Henze,
1987); See also Remark 2 in (Wade, 2007). U

Proof of Theorem 5.4 Let Ln denote the average length of a connected component
in GIPRMi.e., L: Ln/Nn. Let L' denote the length of the connected component
that includes Xinit. Since the samples are drawn independently and uniformly, the
random variables Ln and L' have the same distribution (although they are clearly de-
pendent). Let 7YL denote the constant that Ln/nI-1/d converges to (see Lemma 5.36).
Similarly, let -YN denote the constant that Nn/n converges to (see Lemma 5.37).

Recall that convergence in mean square implies convergence in probability and
hence convergence in distribution (Grimmett and Stirzaker, 2001). Since both L,/n-1 /d

and Na/n converge in mean square to constants and P({Nn = 0}) = 0 for all n E N,
by Slutsky's theorem (Resnick, 1999), nl/d L_ - /t/n csL
distribution. In this case, it also converges in probability, since -/ is a constant (Grim-
mett and Stirzaker, 2001). Then, nl/d L' also converges to -y in probability, since L
and L' are identically distributed for all n E N. Thus, La converges to 0 in probabil-
ity, i.e., lim-oo P ({L' > e}) = 0, for all e > 0.

Let E > 0 be such that e < infEXgoai IX - ziniel. Let An denote the event that the
graph returned by the 1-nearest sPRM algorithm contains a feasible path, i.e., one
that starts from Linit and reaches the goal region while avoiding obstalces. Clearly,
the event {Ln > c} occurs whenever An does, i.e., An ; {Ln > c}. Then, P(An) <
IP({L, > c}). Taking the limit superior of both sides

liminfIP(An) < limsupP(An) < limsupP({Ln > e}) = 0.

In other words, the limit limno 0 IP(A,) exists and is equal zero. U
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5.2.2 Incompleteness of a Class of Variable-radius PRMs

In this section, we provide a proof of Theorem 5.5, establishing the lack of probabilistic
completeness in a large class of variable radius PRM algorithms. The proof of this
theorem requires an intermediate result from the random geometric graph theory.
First, we recall this result below.

Recall that Ac is the critical density, or continuum percolation threshold (see
Section 2.2). Given a Borel set F C Rd, let Gisc (n, r) denote the random r-disc
graph formed with vertices independent and uniformly sampled from F and edges
connecting two vertices, v and v', whenever Iv - v'l < rn, where I is the usual
Euclidean norm in Rd

Lemma 5.38 ((Penrose, 2003)) Let A E (0, Ac) and F c Rd be a Borel set. Con-
sider a sequence {rl}nEN that satisfies nr d < A, Vn E N. Let Nmax(Gdisc(n, rn))
denote the size of the largest component in Grisc(n, rn). Then, there exist constants
a, b > 0 and mo G N such that for all m > m o,

P ({Nmax(Gdisc (n, rn)) > m}) < n (e-am + e bn)

Proof of Theorem 5.5 Let e > 0 such that E < infxcxg, IX - XinitI and that the

26-ball centered at ximit lies entirely within the obstacle-free space. Let GRM

(VTPRM, EnRM) denote the graph returned by this variable-radius sPRM, when the
algorithm is run with n samples. Let G, = (V, En) denote the the restriction of G RM

to the 2 6-ball centered at x i.e., V VRM gxinit,2, E = (V, x Vs) n ERM

Clearly, G, is equivalent to the random r-disc graph on F = Bon,2e. Let
Nmax(Gn) denote the number of vertices in the largest connected component of Gn.
By Lemma 5.38, there exists constants a, b > 0 and no E N such that

P({Nmax(Gn) > m}) < n (e-am + e- bn)

for all m > m. Then, for all m = (E/2) nl/d > ino,

IP Nmax(Gn) > n /d) < E (e-a (/2)n/d + ebn)

Let Ln denote the total length of all the edges in the connected component that

includes Xinit. Since rn = Al/n-/d,

IP L > ' I 1/d (e-a (E/2)n/d + e-bn)

Since the right hand side is summable, by the Borel-Cantelli lemma the event {Ln > e/2}

occurs infinitely often with probability zero, i.e., P(limsupn_,o{L ;> c/2}) = 0.

Given a graph G = (V, E) define the diameter of this graph as the distance
between the farthest pair of vertices in V, i.e., maxv,V/EV IV - v'l. Let Dn denote

the diameter of the largest component in Gn. Clearly, D_ K L_ holds surely. Thus,

P (lim sup_,o {D > c/2}) = 0.
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Let I E N be the smallest number that satisfies r, < c/2. Notice that the edges
connected to the vertices V/fPRM q g coincide with those connected to V, n ,e,

for all n > I. Let Rn denote distance of the farthest vertex v E VPRM to Xinit
in the component that contains zinit in GPRM. Notice also that R, > E only if
Dn > E/2, for all n > I. That is, for all n > I, {R, > e} C {Dn > e/2}, which
implies P (lim supn, 0s {R >}) = 0.

Let An denote the event that the graph returned by this variable radius sPRM
algorithm includes a path that reaches the goal region. Clearly, {Rn > e} holds,
whenever An holds. Hence, P(An) P({Rn > E}). Taking the limit superior,

lim infIP(An) < lim sup P(A,)
n-+oo n-oo

< lim sup P ({R >e}) IP(lim sup {Rn> }) 0,
n-+oo (n--+oo

where the last inequality follows from Fatou's lemma (see, e.g., Resnick, 1999). Hence,
we establish that limneo, P(An) exists and is equal to zero.

5.2.3 Completeness of PRM*, RRG, and RRT*

In this section, we prove the probabilistic completeness of the PRM*, RRG, and RRT*
algorithms, for solving Problem 3.1.

First, we prove Theorem 5.6, establishing the probabilistic completeness of PRM*.

Proof of Theorem 5.6 The result is a direct consequence of the asymptotic opti-
mality of the PRM* algorithm (see Theorem 5.20). U

Recall that Theorems 5.7 and 5.8 establish the probabilistic completeness as well
as the exponential decay of the probability of failure to find a feasible solution when
one exists. The proofs of these two theorems are almost identical. We present these
proofs together below.

Proofs of Theorems 5.7 and 5.8 Let Q denote the sample space that describes
the randomness in the Sample procedure. Each element of Q can be considered an infi-
nite sequence of configurations. Given such w E Q, let GnLG (VALG (w), EnALG(W))
denote the graph returned by an algorithm ALG when it is run with the sample se-
quence encoded by w.

Notice that, by construction, the set of vertices in the graph constructed by the
RRG and the RRT* is exactly the same that in the graph constructed by the RRT,
only the edge set is different. That is, VRRG(w) = y&RRT* (w) y 1RRT(w) for all sample
sequences w E Q and all n E N. Noting that, in all these three graphs, every vertex is
connected to the initial configuration Xinit, we establish that the RRG and the RRT*
algorithms contain a path that solves the feasible path planning problem whenever
does the RRT. Then, the result follows directly from Theorem 5.3. M
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5.2.4 Completeness of p-RRT and p-RRT*

In this section, we prove Theorem 5.9, which establishes the probabilistic completeness
of the p-RRT and the p-RRT* algorithms.

The probabilistic completeness of p-RRT* follows trivially from that of the t-RRT
algorithm, since, for any sample sequence, they generate the same arena; the only
difference is that the p-RRT* does slightly more work to keep track of the costs of the
incurred solutions. Thus, in what follows we concentrate on the t-RRT* algorithm.

First, we establish the completeness of the incremental model-checking algorithm
introduced in Section 4.3.4, under certain conditions.

Lemma 5.39 Suppose that the AcceptVertex(A, v) procedure (see Line 9 of Algo-
rithm 9) returns True for any input. Then, the incremental model checking algorithm
is complete, i.e., the algorithm finds a winning strategy for Player 1 whenever Player
1 has a winning strategy on the arena of the L1 game of IC and $.

Before proving Lemma 5.39, note the following intermediate result, which states
that those vertices deleted from the arena in Lines 2-8 of Algorithm 9 are exactly
those starting from which Player 1 loses the game or Player 1 can not get the token
to starting from the initial vertex (sinit, #).

Lemma 5.40 Let A = (V1 , V2 , E) denote the arena generated by the incremental
model-checking algorithm. Let A' = (V', V, E') denote the arena corresponding to the
L1 game of IC and $. Recall that V = 1 U V2 and V' = V(U V2. Then, for any
v G V1 \V2, one of the following holds: (i) starting from v Player 1 loses any play or
(ii) Player 1 can not take the token to v starting from the initial vertex (sini, #).

Proof We make two key observations. Firstly, in the L1 game of KC and $, there is
only one way for Player 2 to win the game: the token gets to a vertex (s, #), where
either (i) 0 is of the form 0 = p and p L(s), or (ii) = -,p and p EE 1(s). Secondly,
the only class of vertices where Player 2 has more than one action to play consists of
exactly those (s, @b), where 4 = 0' A p or 4 = 0' A -p, for some L1 formula 0' and
atomic proposition p. Notice that whenever Algorithm 9 starts deleting vertices from
the arena it maintains, it starts exactly with one of those vertices that satisfy the the
conditions given above. All vertices that reach a vertex that satisfies these conditions
are also deleted for convenience.

Now, we are ready to prove Lemma 5.39

Proof of 5.39 Firstly, by Lemma 5.40, Player 1 has a winning strategy in A if and
only if Player 1 has a winning strategy in the L1 game of k and #, where A is the
arena generated by the algorithm. Moreover, further investigating Algorithm 10, the
incremental model-checking algorithm keeps track of any winning strategy in which
the token ends in a literal vertex as well as winning strategies that repeatedly passes
the token through a v-vertex with maximal color.

Finally, we prove the main result of this section.
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Proof of Theorem 5.9 As noted earlier, we only show the probabilistic complete-
ness of the p-RRT algorithm, and the probabilistic completeness of the p-RRT* al-
gorithm follows from that of p-RRT.

By Lemma 5.39, the incremental model-checking algorithm is complete, when
AcceptVertex procedure accepts all instances. However, we have designed this pro-
cedure so that it accepts a vertex with probability 1/k upon the kth time it is called.6

This implies that the procedure returns True infinitely often, almost surely, as a
consequence of the Borel-Cantelli Lemma (see Grimmett and Stirzaker, 2001).

Let v = (s, V)) be some v-vertex for which AcceptVertex(A, v) returns False.
Since the problem is robustly optimal, however, a configuration s' will be sampled
such that s' is close to s and that L(s) = L(s') will be sampled and the vertex (s', )
will be accepted by the AcceptVertex procedure eventually, with probability one. U

5.3 Proofs on Asymptotic Optimality

In this section, we provide the proofs of our results on asymptotic optimality. Some
of the proofs follow a very similar outline and use the same techniques. In such cases,
we will sketch some of the intermediate results to repetitions. In particular, the
proofs of Theorems 5.25, 5.26, and 5.27 will only be sketched, since they are merely
a combination of the previous results.

5.3.1 Preliminary Results on Asymptotic Optimality

In this section, we provide the proofs for Propositions 5.11, 5.12, and 5.14.

Proof of Proposition 5.11 First,. let us recall Kolmogorov's zero-one law. Given
a sequence { Y}nEN of random variables, let F' denote the o-field generated by the
sequence {Y} l-m of random variables. The tail o-field T is defined as T = fnEN *n
An event A is said to be a tail event if A E T. An important result in probability
theory is that any tail event occurs with probability either zero or one. This theorem
is often called the Kolmogorov's zero-one law (Resnick, 1999).

Before proving the proposition, note that conditioning on the event {lim sup,,o
YALG < oo} ensures that YALG is finite, thus a random variable, for all large n.
Consider the sequence {YALGf nEN of random variables. Let F' denote the a-fields
generated by {YALGoo m. Then,

{ lim sup~, 0oyALG _ C*

= {lim supn+o,n>m YALG = c* F. for all n c N.

Hence, {YALG = C* E n is a tail event. The result stated in the proposition
follows from the Kolmogorov's zero-one law.

6Our choice is due to computational complexity reasons; See Theorem 5.31.
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Proof of Proposition 5.12 Let Q denote the sample space. Its elements, which
can be thought of infinite sequences of samples, are denoted by w. Let G ALG(W)

(VALG(w), EALG(w)) denote the graph returned by the algorithm ALG when it is
run with the first n samples in the sample sequence encoded by w E Q. Let YALG P)

denote the cost of the minimum-cost feasible path through G ALG(W)

The monotonicity of the graphs, namely the condition that G ALG(W) C G i^G(W)
holds for all n E N and all w E , implies that Y+G) ALG(w) for all n c N and
all w E Q. Since YALG(W) > c*, where c* is the cost of an optimal path that solves
the problem, we establish that limn, YALGe

Proof of Proposition 5.14 Let Bn denote the event that ALG constructs a graph
containing a path with cost exactly equal to c* when it is run with n samples, i.e.,
Bn= {YALG = C*}. Let B denote the event that ALG returns a graph containing a
path that costs exactly c* for some finite n. Then, B can be written as B = UnENBn.
Since Bn C Bn±i, we have, by the monotonocity of measures, lim, P(Bn) = P(B).
By Assumption 5.13 and the definition of the sampling procedure, P(Bn) = 0 for all
n c N, since the probability that the set U" {SampleFree(i)} of points contains a
point from a zero-measure set is zero. Hence, P(B) = 0.

5.3.2 Non-optimality of PRM

In this section we provide a proof of Theorem 5.15, which establishes that the PRM
algorithm is not asymptotically optimal.

Proof of Theorem 5.15 Recall that an algorithm lacks asymptotic optimality if
there is at least one problem instance that admits a robustly optimal solution, such
that the algorithm fails to converge to an optimal when input this problem instance.
To prove this result we provide a particular problem instance, in which the PRM
algorithm performs exactly like a particular kind of RRT algorithm. Then, the re-
sult we prove in Section 5.3.6, that the RRT algorithm fails to converge to optimal
solutions in all problem instances, implies the claim of this theorem.

Consider a convex, obstacle-free environment, e.g., Xfree = X. Choose the con-
nection radius for PRM and the steering parameter of the RRT such that r,,q > vd,
so that r, r is larger than the maximum distance between any two points from Xfree.

At each iteration, exactly one vertex and one edge is added to the graph, since
(i) all connection attempts using the local planner (e.g., straight line connections as
considered in this document) are collision-free, and (ii) at the end of each iteration,
the graph is connected (i.e., it contains only one connected component).

For Xinit = SampleFree(0) and for any Xgoai, then yPRM _ yRRT for all n E N,
surely. In particular, since both PRM and RRT satisfy the monotonicity condition

in Proposition 5.12, Theorem 5.19 implies

IP ({lim sup, yPRM _ c*}) = P (lima YPRM c*})

= P({limn-. yRRT _ c*}) = 0.

Hence, the result follows.
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5.3.3 Asymptotic Optimality of sPRM

The asymptotic optimality of the sPRM algorithm follows easily from that of the
PRM* algorithm.

Proof of Theorem 5.16 Notice that the the graph returned by the sPRM algo-
rithm contains that returned by the PRM* algorithm. More precisely, by construc-
tion, VsPRM(w) VPRM*(w) and EsPRM(w) ; EPRM*(w), for all n C N and all sample
sequences w C Q. Thus, any path through the graph G LG(w) is also a path through
GALG(w), for all w C Q. Then, the result follows from the asymptotic optimality of
the PRM* algorithm (see Theorem 5.20). U

5.3.4 Non-optimality of k-nearest PRM

In this section, we prove Theorem 5.17, establishing that the k-nearest PRM algo-
rithm is not asymptotically optimal for any fixed k. For simplicity, the theorem will
be proven under the assumption that the underlying point process is Poisson. This
assumption provides us with certain spatial independence properties, which signif-
icantly simplify the proof. More precisely, it is assumed that the algorithm is run
with Poisson(n) samples, where Poisson(n) is a Poisson random variable with mean
n. That is, the number of samples that the algorithm is run with is precisely the
realization of a Poisson random variable with mean n. Hence, the expected number
of samples is equal to n; moreover, for large n, large deviations from n are unlikely,
since the Poisson distribution has exponentially-decaying tails (see, e.g., Grimmett
and Stirzaker, 2001, for a more precise statement).

With a slight abuse of notation, the cost of the minimum-cost feasible path through
the graph returned by the k-nearest PRM algorithm, when the algorithm is run
with Poisson(n) number of samples, is also denoted by YnPRM It is shown that
IP({lim sup", ykPRM _c*_ 0.

Proof of Theorem 5.17 Let o-* denote an optimal path and s* denote its length,
i.e., s* = TV(o-*). For each n, consider a tiling of o-* with disjoint open hypercubes,
each with edge length 2 n- 1 /d, such that the center of each cube is a point on o-. See
Figure 5-5. Let Mn denote the maximum number of tiles that can be generated in
this manner and note Mn > * n/ Partition each tile into several open cubes as
follows: place an inner cube with edge length n-l/d at the center of the tile and place
several outer cubes each with edge length n-1 /d around the cube at the center as
shown in Figure 5-5. Let Fd denote the number of outer cubes. The volumes of the
inner cube and each of the outer cubes are n- and 2-- n-1, respectively.

For n C N and m E {1, 2, ... , Mn}, consider the tile m when the algorithm is
run with Poisson(n) samples. Let Im denote the indicator random variable for the
event that the center cube of this tile contains no samples, whereas every outer cube
contains at least k + 1 samples, in tile m.

The probability that the inner cube contains no samples is e-l/ (free). The proba-
bility that an outer cube contains at least k+1 samples is 1-IP ({Poisson(2d/1p(Xree))
> k + i}) 1 - P({Poisson(2d/p(Xree)) < k}) 1 _ F(k+1,2-- /gxree)) where F(-,-)
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is the incomplete gamma function (Abramowitz and Stegun, 1964). Then, noting
that the cubes in a given tile are disjoint and using the independence property of the
Poisson process (see Lemma 2.8),

E [In,m] = e 1/(Xfree) (i _ F(k + 1, 2 d/p(Xfree)) Fd

which is a constant independent of n; denote this constant by a.
Let G, = (V, E,) denote the graph returned by the k-nearest PRM algorithm by

the end of Poisson(n) iterations. Observe that if In,m = 1, then there is no edge of
G, crossing the cube of side length j n-1/d that is centered at the center of the inner
cube in tile m (shown as the white cube in Figure 5-6). To prove this claim, note the
following two facts. First, no point that is outside of the cubes can have an edge that
crosses the inner cube. Second, no point in one of the outer cubes has a edge that
has length greater than d i-1/d. Thus, no edge can cross the white cube illustrated
in Figure 5-6.

Let o-, denote the path in G, that is closest to o* in terms of the bounded variation
norm. Let Un := ||on - o*1|BV, where || - ||BV denotes the bounded variation norm.
Notice that Un > 1 n-1/d Z nim = jn/d = I Then,

[= 1 * a s*
E lim sup Un > lim sup E [Un] lim sup - E [In,m] > - > 0,

Ino . nwo n o 4 4

where the first inequality follows from Fatou's lemma (Resnick, 1999). This implies

P({lim sup_, Un > 0}) > 0. Since Ui > 0 implies Yn > c* surely,

P({lim supn_,YkPRM> c*}) > P ({lim sup, Un > 0}) > 0.

Hence, we establish that IP ({limsup_ YaPRM = c*}) < 1. In fact, by Proposi-
tion 5.11, IP ({lim supn_ YPRM = *

5.3.5 Non-optimality of a Class of Variable-radius PRMs

In this section, we provide a proof of Theorem 5.18, which shows that the lack of
asymptotic optimality in any variable radius PRM with connection radius r(n) <
ynl/d for some -y > 0, where d is the dimensionality of the configuration space.

Inner cube
2n- 1/d

Outer cubes

Figure 5-5: An illustration of the tiles covering an optimal path. A single tile is shown
in the left; a tiling of the optimal path o* is shown on the right.
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2 n-1/d

Figure 5-6: The event that the inner cube contains no points and each outer cube
contains at least k points of the point process is illustrated. The cube of side length
1 n 1/d is shown in white.

Proof of Theorem 5.18 Let &* denote a path that is a robust solution to the op-
timality problem. Let n denote the number of samples that the algorithm is run
with. For all n , construct a set B = {Bn, 1, Bn,2 ,. . . , Bn,MnI} of openly disjoint balls
as follows. Each ball in Bn has radius rn = -y n-1/d, and lies entirely inside Xfree.
Furthermore, the balls in Bn "tile" a* such that the center of each ball lies on o* (see
Figure 5-7). Let Mn denote the maximum number of balls, 9 denote the length of the
portion of a* that lies within the 6-interior of Xree, and no C N denote the number
for which rn < 6 for all n > no.

Then, for all n > no,

Ms > = n1/d.
27 ( )1/d 27

Xinit --

Figure 5-7: An illustration of the covering of the optimal path, a*, with openly disjoint
balls. The balls cover only a portion of a* that lies within the 6-interior of Xree.

Indicate the graph returned by this sPRM algorithm as Gn = (V, En). Denote
the event that the ball Bn,m contains no vertex in V by An,m. Denote the indicator
random variable for the event An,m by In,m, i.e., In,m 1 when An,m holds and
In,m = 0 otherwise. Then, for all n > no,

E[Inm] = P(Anm) = 1I- p(Bn,m ) dQ- IdY1

pd dXree) e t n(uXere ) n

Let Nn be the random variable that denotes the total number of balls in Bn that
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contain no vertex in V, i.e., N, = Em- Inm. Then, for all n > no,

E[Nn] = E [ZM1 In,m]M=1 = Z ME[In,m ] = M E[In,1 ] > -n/d Y 1 (X n I-
M=12 y p(Xtee)n

Consider a ball Bn,m that contains no vertices of this sPRM algorithm. Then, no
edges of the graph returned by this algorithm cross the ball of radius J3rn centered
at the center of Bn,m. See Figure 5-8.

(
Figure 5-8: If the outer ball does not contain vertices of the PRM graph, then no
edge of the graph corresponds to a path crossing the inner ball.

Let Pn denote the (finite) set of all acyclic paths that reach the goal region in the
graph returned by this sPRM algorithm when the algorithm is run with n samples.
Let Un denote the total variation of the path that is closest to -* among all paths in
Pn, i.e., Un := minanGPn ||o-n - o-*||BV. Then,

> (( 1 yd -)n
2 p( Xfree) n)

Taking the limit superior of both sides, the following inequality can be established:

E lim sup Un]
n-+oo .

> lim sup E [Un]
n-+ oo

g ((1 1 d,, n
> limsup- 1-

n_4oo 2 p(Xfree) n

s - >
= -e Mee) >0,
2

where the first inequality follows from Fatou's lemma (Resnick, 1999). Hence, we have
P({lim supn, Un > 0}) > 0, which implies that P ({lim supn, YALG >
That is, P ({lim supno YnAL * < 1. In fact, P (lim sup~n-+ nALG n*

by the Kolmogorov zero-one law (see Proposition 5.11). M
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5.3.6 Non-optimality of RRT

In this section, we provide a proof of Theorem 5.19, thus establishing that the RRT
algorithm is not asymptotically optimal. In fact, our proof shows directly, i.e., with-
out using Kolmogorov's zero-one law (Proposition 5.11), that the RRT algorithm
converges to an optimal solution with probability zero. Along the way, we provide a
number of results which were previously unknown, including the expected length of
the longest path in the RRT.

For simplicity, the theorem will be proven assuming that (i) the environment
contains no obstacles, i.e., Xree = [0, I]d, and (ii) the parameter rj of the steering
procedure is set large enough, e.g., q > diam (Xfree) = v/d. One one hand, considering
this case is enough to prove that the RRT algorithm is not asymptotically optimal, as
it demonstrates a case for which the RRT algorithm fails to converge to an optimal
solution, although the problem instance is clearly robustly optimal. On the other
hand, these assumptions are not essential, and the claims extend to the more general
case, but the technical details of the proof are considerably more complicated.

The proof can be outlined as follows. Order the vertices in the RRT according to
the iteration at which they are added to the tree. The set of vertices that contains
the k-th child of the root along with all its descendants in the tree is called the k-th
branch of the tree. First, it is shown that a necessary condition for the asymptotic
optimality of RRT is that infinitely many branches of the tree contain vertices outside
a small ball centered at the initial condition. Then, the RRT algorithm is shown to
violate this condition, with probability one.

A necessary condition: First, we provide a necessary condition for the RRT al-
gorithm to be asymptotically optimal.

Lemma 5.41 Let 0 < R < infyEx,|g. Iy - xiit|, where | denotes the usual Euclidean
norm. The event {limN-o, YRRT C*} occurs only if the k-th branch of the RRT
contains vertices outside the R-ball centered at xinit for infinitely many k.

Proof Let {x 1 , X2 1 ... } denote the set of children to the root vertex in the order they
are added to the tree. Let F(xk) denote the optimal cost of a path starting from the
root vertex, passing through zk, and reaching the goal region. By our assumption
that the measure of the set of all points that are on the optimal path is zero (see
Assumption 27 and Lemma 28), the probability that F(Xk) = c* is zero for all k E N.
Hence,

00

IP(UkN {F(Xk) C*) < ZI({F(Xk) c*) 0-
k=1

Let Ak denote the event that at least one vertex in the k-th branch of the tree is
outside the ball of radius R centered at xinit in some iteration of the RRT algorithm.
Consider the case when the event {lim supk,,o Ak} does not occur and the events
{F(xk) > c*} occur for all k E N. Then, Ak occurs for only finitely many k. Let
K denote the largest number such that AK occurs. Then, the cost of the best path
in the tree is at least sup{F(Xk) k E {1, 2, ... , K}}, which is strictly larger than c*,
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since {I1(Xk) > c*} for all finite k. Thus, limn-co YnRRT > c* must hold. That is, we
have argued that

lim sup Ak n {r(Xk) > c*}) C l RRTc*}
koo kEN

Taking the complement of both sides and using monotonicity of probability measures,

lm YnRR T = c*}) P((limsupAk) U (U N(Xk) = ,

< P (lim sup Ak) - P(UkCN{ (Xk) = C*})
k->oo

where the last inequality follows from the union bound. The lemma follows from the
fact that the last term in the right hand side is equal to zero as shown above. N

Length of the first path in a branch: The following result provides a useful
characterization of the RRT structure.

Lemma 5.42 Let U ={X 1 , X 2 ,. . . , Xn} be a set of independently sampled and uni-
formly distributed points in the d-dimensional unit cube, [0, I]d. Let Xn+1 be a point
that is sampled independently from all the other points according to the uniform dis-
tribution on [0, 1 ]d. Then, the probability that among all points in U the point Xi is
the one that is closest to Xn+1 is 1/n, for all i E {1, 2,... , n}. Moreover, the expected

distance from Xn+1 to its nearest neighbor in U is n-/d.

Proof Since the probability distribution is uniform, the probability that Xn+1 is
closest to Xi is the same for all i E {1, 2,... , n}, which implies that this probability
is equal to 1/n. The expected distance to the closest point in U is an application of
the order statistics of the uniform distribution. U

An immediate consequence of this result is that each vertex of the RRT has unbounded
degree, almost surely, as the number of samples approaches infinity.

One can also define a notion of infinite paths in the RRT, as follows. Let A be
the set of infinite sequences of natural numbers a = (ai, a 2, .. .). For any i E N, let

Zri : E - Ni, (ai, a 2 ,... , ai, .. .) F-+ (ai, a 2 , . . . , ai), be a function returning the prefix

of length i of an infinite sequence in A. The lexicographic ordering of A is such that,
given a, E E, a < 3 if and only if there exists j E N such that ai = #i for all
i c N, i < j - 1, and a3 < #5. This is a total ordering of A, since N is a totally
ordered set. Given a E A and i E N, let E,,(,) be the sum of the distances from
the root vertex init to its ai-th child, from this vertex to its a 2-th child, etc., for
a total of i terms. Because of Lemma 5.42, this construction is well defined, almost
surely, for a sufficiently large number of samples. For any infinite sequence a E A, let
La = limi_±+oo E-%(a); the limit exists since Li() is non-decreasing in i.

Consider infinite strings of the form k = (k, 1, 1, . . ), k E N, and introduce the
shorthand Lk := L(k,1,1,...). The following lemma shows that, for any k E N, Lk has
finite expectation, which immediately implies that L takes only finite values with
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probability one. The lemma also provides a couple of other useful properties of Lk,

which will be used later on.

Lemma 5.43 The expected value E[Ck] is non-negative and finite, and monotoni-
cally non-increasing, in the sense that E[Lk+1] < E[Lk], for any k E N. Moreover,
limk_,, E [Lk] = 0.-

Proof Under the simplifying assumptions that there are no obstacles in the unit
cube and r/ is large enough, the vertex set VRT of the graph maintained by the RRT
algorithm is precisely the first n samples and each new sample is connected to its
nearest neighbor in VfrT.

Define Zi as a random variable describing the contribution to L1 realized at iter-
ation i; in other words, Z is the distance of the i-th sample to its nearest neighbor
among the first i - 1 samples if the i-th sample is on the path used in computing L1,
and zero otherwise. Then, using Lemma 5.42,

IE[L1] = E Z = E[Zl] = /d C- = Zeta(1 + 1/d),

where the second equality follows from the monotone convergence theorem and Zeta
is the Riemann zeta function. Since Zeta(y) is finite for any y > 1, E[I4 1 ] is a finite
number for all d C N.

Let Nk be the iteration at which the first sample contributing to Lk is generated.
Then, an argument similar to the one given above yields

0o Nk

ELk+1] = 3 i (1+1d/) - E[4 1] - i-(l+l/d)

i=Nk+1 i=1

Then, clearly, E[Lk+l] < E[L] for all k c N. Moreover, since Nk > k, it is the case
that limk--o E[Lk] = 0. E

Length of the longest path in a branch: Given k E N, and the sequence
k = (k, 1, 1, .. .), the quantity supe>k L, is an upper bound on the length of any path
in the k-th branch of the RRT, or in any of the following branches. The next result
bounds the probability that this quantity is very large.

Lemma 5.44 For any e > 0,

P ({supa>k LaC > 6 -ELkI

First, we state and prove the following intermediate result.

Lemma 5.45 E[L4] < E[L], for all c ;> k.
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Proof The proof is by induction. Since a > k, then 7ri(a) > k, and Lemma 5.43
implies that E[L((a),1,1,....)] < E[Lk]. Moreover, it is also the case that, for any
i E N (and some abuse of notation), E[L(7r+ 1(a),1,,...)] < E[L(r(a),1,1,...)], by a similar
argument considering a tree rooted at the last vertex reached by the finite path 7re(a).
Since (ri+1(a), 1, 1, . . ) > (7ri(a), 1, 1, .. .) > (k, 1, 1, .. .), the result follows. U

Proof of Lemma 5.44 Define the random variable a := inf{a > kI L > c}, and
set a := k if La < c for all a > k. Note that a > k holds surely. Hence, by
Lemma 5.45, E[La] < E[Lk]. Let 1, be the indicator random variable for the event

Se {sup~a>k L, > c}. Then,

E[Lk] > E[La] = E[Lae] + E[La(1 - IE)] > E P(SE),

where the last inequality follows from the fact that Lc is at least e whenever the event
Se occurs. 0

A useful corollary of Lemmas 5.43 and 5.44 is the following.

Corollary 5.46 For any e > 0,

lim P({sup La > c}) = 0.
k-+oo a>k

Violation of the necessary condition: Finally, the proof of the theorem follows
showing that the necessary condition in Lemma 5.41 is violated.

Proof of Theorem 5.19 Recall from Lemma 5.41 that a necessary condition for
asymptotic optimality is that the k-th branch of the RRT contains vertices outside
the R-ball centered at xinit for infinitely many k, where 0 < R < infyCXgaI Y - Xinit l.
Clearly, the latter event can occur only if longest path in the k-th branch of the RRT
is longer than R for infinitely many k. That is,

IP ({limsoo yRRT = C') < IP (lim Supkoo {SUPa>k La > R})-

The event on the right hand side is monotonic in the sense that {supa>k+1 L, >
R} D {sup,>k L, > R} for all k E N. Hence, limka,o{sup>k Lc, > R} exists. In
particular,

P M( limsupk o{supak La > R})

= P(limk,e{sup>k L > R}) = limkaoo P({supak L, > R})

where the last equality follows from the continuity of probability measures. Since

limk,,o P ({sup,>k La > R}) = 0 for all R > 0 by Corollary 5.46, we conclude that

P({limn_4eo YRRT = C*}) = 0, which completes the proof. U
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5.3.7 Asymptotic Optimality of PRM*

In this section, we prove Theorem 5.20, thus establishing the asymptotic optimality
of the the PRM* algorithm. The proof is long and technical. In what follows, we first
outline the proof; subsequently, we provide the details.

Outline of the proof: Let o* denote a robust optimal path. By definition, o-*
has weak clearance. First, define a sequence {6 n}nCN such that 6n > 0 for all n E N
and 6, approaches zero as n approaches infinity. Construct a sequence {o-n}nCN Of
paths such that U has strong 6n-clearance for all n E N and o-n converges to o* as n
approaches infinity.

Second, define a sequence {qn}nEN. For all n E N, construct a set B = {B=,1, Bn,2
... , Bn,M} of overlapping balls, each with radius qn, that collectively "cover" the path
o-.7 See Figures 5-9 and 5-10. Let xm c Bn,m and x,+, E Bn,m+1 be any two points
from two consecutive balls in B,. Construct Bn such that (i) x, and xm+1 have
distance no more than the connection radius r(n) and (ii) the straight path connecting
xm and xm+1 lies entirely within the obstacle free space. These requirements can be
satisfied by setting on and qn to certain constant fractions of r(n).

Let An denote the event that each ball in B, contains at least one vertex of the
graph returned by the PRM* algorithm, when the algorithm is run with n samples.
Third, show that An occurs for all large n, with probability one. Clearly, in this case,
the PRM* algorithm will connect the vertices in consecutive balls with an edge, and
any path formed in this way will be collision-free.

Finally, show that any sequence of paths generated in this way converges to the
optimal path o-*. Using the robustness of o-*, show that the cost of the best path in
the graph returned by the PRM* algorithm converges to c(o-*) almost surely.

Construction of the sequence {o-n}nCN Of paths: The following lemma estab-
lishes a connection between the notions of strong and weak clearance.

Lemma 5.47 Let o* be a path be a path that has weak clearance. Let {6 n}ncN be a
sequence of real numbers such that limno, 6, = 0 and 0 < 6n < 6 for all n G N.
Then, there exists a sequence {on}neN of paths such that limanoo On = o-* and o-, has
strong 6n-clearance for all n G N.

Proof First, define a sequence {Xn}nEN of subsets Of Xfree such that Xn is the closure
of the 6n-interior of Xfree, i.e.,

An := cl(intn (Xree))

for all n E N. Note that, by definition, (i) X are closed subsets of Xree, and (ii) any
point X has distance at least 6n to any point in the obstacle set XobS.

Then, construct the sequence {o-n}nEN of paths, where on E Exn, as follows.
Let 7P : [0, 1] -4 Efree denote the homotopy with 0(0) = o*; the existence of 4 is
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guaranteed by weak clearance of o*. Define

an := maxf{a: (a) E Ex} and o-n:= (an).
aC [0,1]

Since Exn is closed, the maximum in the definition of an is attained. Moreover,
since 0(1) has strong 6-clearance and 6, < 6, o- E Ex,, which implies the strong

on-clearance of o-n.
Clearly, UnCN Xnl = Xfree, since limnoo 6 n = 0. Also, by the weak clearance of o*,

for any a E (0, 1], there exists some 6, E (0, 6] such that @)(a) has strong 6,-clearance.
Then, limnoo an = 0, which implies limno on = -* . U

Recall that the connection radius of the PRM* algorithm was defined as

rn ='-PRM (log n pd 2(1 1/d)l/d (t(Xree) )1d log n 1/d

(n )(d n)

(see Algorithm 4 and the definition of the Near procedure in Section 4.1). Let 01 be
a small positive constant; the precise value of 01 will be provided shortly in the proof

of Lemma 5.49. Define

6n :=min 6, r+ ,n for all n E N.

By definition, 0 < 6 n < 6 holds. Moreover, limneo, 6 n = 0, since limnoo rn = 0.
Then, by Lemma 5.47, there exists a sequence {Un}nEN of paths such that limnoo on
o-* and o-n has strong on-clearance for all n E N.

Construction of the sequence {Bn}nEN of sets of balls: First, a construction of

a finite set of balls that collectively "cover" a path o- is provided. The construction
is illustrated in Figure 5-9.

Definition 5.48 (Covering balls) Given a path Un : [0, 1] - X, and the real num-
bers qn, n E Ryo, the set CoveringBalls(o-n, qn, iln) is defined as a set {Bn,1, Bn,2, --. ,
Bn,M,} of Mn balls of radius qn such that Bn,, is centered at o-(rm), and

" the center of Bn,1 is o-(O), i.e., T = 0,

e the centers of two consecutive balls are exactly in apart, i.e., Tm := min{w C

[Tm-1, 1] : lo-(T) - U(Tm-1)| > n} for all m E {2, 3, . . . , Mn},

* and M - 1 is the largest number of balls that can be generated in this manner

while the center of the last ball, BlM is o(1), i.e., TM, = 1.

For each n E N, define

1 +01

Construct the set Bn = {Bn,1, Bn,2,... , Bn,,} of balls as Bn CoveringBalls(Orn,
qn, 1qn) using Definition 5.48 (see Figure 5-9). By construction, each ball in Bn has
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Bn,r Bnm+1

Figure 5-9: An illustration of the CoveringBalls construction. A set of balls that
collectively cover the trajectory o-n is shown. All balls have the same radius, qn. The
spacing between the centers of two consecutive balls is in.

Figure 5-10: An illustration of the covering balls for PRM* algorithm. The 6n-ball
is guaranteed to be inside the obstacle-free space. The connection radius rn is also
shown as the radius of the connection ball centered at a vertex x E Bn,m. The vertex
x is connected to all other vertices that lie within the connection ball.

radius qn and the centers of consecutive balls in Bn are 6 1qn apart (see Figure 5-10
for an illustration of covering balls with this set of parameters). The balls in Bn
collectively cover the path an.

The probability that each ball in Bn contains at least one vertex: Recall
that GnRM* =(VRM*, EnRM*) denotes the graph returned by the PRM* algorithm,
when the algorithm is run with n samples. Let An,m denote the event that the ball
Bn,m contains at least one vertex of the graph generated by the PRM* algorithm, i.e.,
An,m = {Bn,m n VfRM* / . Let An denote the event that all balls in B, contain at
least one vertex of the PRM* graph, i.e., An = flm$n i An,m-

Lemma 5.49 If -yPRM > 2 (1 -+ 1/d) 1/d A(* eel) Id, then there exists a constant

01 > 0 such that the event that every ball in Bn contains at least one vertex of the
PRM* graph occurs for all large enough n with probability one, i.e.,

P (lim infnO An) = 1.
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Proof The proof is based on a Borel-Cantelli argument which can be summarized as
follows. Recall that Ac denotes the complement of An. First, the sum E 00 P(Ac) is
shown to be bounded. By the Borel-Cantelli lemma (Grimmett and Stirzaker, 2001),
this implies that the probability that An holds infinitely often as n approaches infinity
is zero. Hence, the probability that An holds infinitely often is one. In the rest of the
proof, an upper bound on P(An) is computed, and this upper bound is shown to be
summable.

First, compute a bound on the number of balls in Bn as follows. Let sn denote
the length of on, i.e., sn := TV(o-n). Recall that the balls in Bn were constructed
such that the centers of two consecutive balls in Bn have distance 01 qn. The segment
of a,, that starts at the center of Bn,m and ends at the center of Bn,m+1 has length at
least 61qn, except for the last segment, which has length less than or equal to 61qn.
Let no C N be the number such that on < S for all n > no. Then, for all n > no,

card (Bn) = Mn < o (i2 01) 
01, 6 16n 01 rn

(2+01)S( n 11d

0 17PRM log n)

Second, compute the volume of a single ball in Bi as follows. Recall that p(-)
denotes the usual Lebesgue measure, and (d denotes the volume of a unit ball in the

d-dimensional Euclidean space. For all n > no,

p(Bn,m) = d (1 0 1

(d ( n d =d (PRM dlogT

2+1) 2+01 n

For all n > I, the probability that a single ball, say Bn,1 , does not contain a vertex

of the graph generated by the PRM* algorithm, when the algorithm is run with n
samples, is

P (A,1) (Bn,1) )"
n /-p(Xfree))

= C d 7/PRM )dlon

P (Xfree) 2 +01 ) n

Using the inequality (1 - 1/f(n))r < er/f(n), the right-hand side can be bounded as

Id("YPRM dl (YPRM)d

IP(Anj ) <K 1-(Xfree) 2+1) ok =_ in (xfre) k 2+01 I
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Hence,

P (AC) = (u n A m) < P (A ' = Mn P(A1)
n (2 1)s n 

(2±0)s1  / l1d d 'PPRM d

OI -YPRM log n IX~ k 2
O

(2+01)s 1 _-_ -d
01 7YPRM (log n)d

where the first inequality follows from the union bound.
d

Finally, E 1 P(Ac) < oc holds, if f - > 1, which can be satisfied

for any 1PRM > 2(1 + 1/d)l/d (X(Ifree) 1 by appropriately choosing 01. Then, by the

Borel-Cantelli lemma (Grimmett and Stirzaker, 2001), IP(lim supO A') = 0, which
implies P(lim infneo An) = 1. U

Connecting the vertices in subsequent balls in Bn: Let Zn := {Xi, X2, ... , XM }
be any set of points such that Xm E Bn,m for each m c {1, 2, ... , Mn}. The following
lemma states that for all n E N and all m E {1, 2,. . ., M - 1}, the distance between
xm and xm+1 is less than the connection radius, rn, which implies that the PRM*
algorithm will attempt to connect the two points xm and xm+ if they are in the
vertex set of the PRM* algorithm.

Lemma 5.50 If Xn,m E Bn,m and Xn,m+1 c Bn,m+ 1, then |Xn,m+1 - Xn,ml I rn, for all
n G N and all m C {1, 2, ... , Mi - 1}, where | - is the usual Euclidean norm.

Proof Recall that each ball in Bn has radius qn = Given any two points
Xm c Bn,m and Xm+1 E Bn,m+1, all of the following hold: (i) xm has distance qn to
the center of Bn,m, (ii) xm+l has distance qn to the center of Bn,m+1, and (iii) centers
of Bn,m and Bn,m+1 have distance 01 qn to each other. Then,

2 -+ 01

|Xn,m+1 - Xn,ml < (2 + 01) qn = on < rn,

where the first inequality is obtained by an application of the triangle inequality and
the last inequality follows from the definition of 6n = min{6, ' rn}.

By Lemma 5.50, conclude that the RPM* algorithm will attempt to connect any
two vertices in consecutive balls in Bn. The next lemma shows that any such con-
nection attempt will, in fact, be successful. That is, the path connecting Xn,m and
Xn,m+1 is collision-free for all m C {1, 2, ... , Mn}.

Lemma 5.51 For all n E N and all m C {1, 2,... , Mn}, if Xm E Bn,m and xm+l E
Bn,m+1, then the line segment connecting Xn,m and Xn,m+1 lies in the obstacle-free
space, i.e.,

a Xn,m + (1 - a) Xn,m+ I Xree, for all a C [0, 1].

95



Proof Recall that a-, has strong o&-delta clearance and that the radius q, of each
ball in B, was defined as qn = , where 01 > 0 is a constant. Hence, any point
along the trajectory o- has distance at least (1 + 01) qn to any point in the obstacle
set. Let ym and ym+1 denote the centers of the balls Bn,m and Bn,m+1, respectively.
Since ym = Ur(Tm) and ym+1 = u(Tm+1) for some Tm and Tm+1, ym and ym+ also have

distance (1 + 01)qn to any point in the obstacle set.
Clearly, Ixm - yI < qn. Moreover, the following inequality holds:

|Xm+1 - Ym I |(Xm - ym+1) + (Yi - Ym)

< |x+1 - ym+1|+ lym+1 - yml < qn + 01 qn = (1 + 01) qn.

where the second inequality follows from the triangle inequality and the third inequal-
ity follows from the construction of balls in Bn.

For any convex combination x, := a xm + (1 - a) xm+1, where a c [0, 1], the
distance between x, and ym can be bounded as follows:

(a xm + (1 + a) xm+1) - Ym a (xm-ym) + (1 + a) (m+I - ym)

a x.-yml+(1+a)xm+1-ym

=a qn + (1 + a) (1 + gn) <_ (1 + 01) qnI

where the second equality follows from the linearity of the norm. Hence, any point
along the line segment connecting xm and xm+1 has distance at most (1 + 01) qn to
ym. Since, ym has distance at least (1 + 61)qn to any point in the obstacle set, the
line segment connecting n and xm+1 is collision-free. U

Convergence to the optimal path: Let Pn denote the set of all paths in the graph
GRM* =(VPRM*, ERM*). Let o' be the path that is closest to o-n in terms of the
bounded variation norm among all those paths in Pn, i.e., o' := mina'Ep, o BV.
Note that the sequence {o}nEN is a random sequence of paths, since the graph GPRM*
hence the set Pn of paths is random. The following lemma states that the bounded
variation distance between o' and o-n approaches to zero, with probability one.

Lemma 5.52 The random variable U||' -- n|BV converges to zero almost surely, i.e.,

P ({lim,|oI - on||BV = 0}) = 1.

Proof The proof of this lemma is based on a Borel-Cantelli argument. It is shown

that EnCN P( oU - on I BV > e) is finite for any c > 0, which implies that - -n| BV
converges to zero almost surely by the Borel-Cantelli lemma (Grimmett and Stirzaker,
2001). This proof uses a Poissonization argument in one of the intermediate steps.

That is, a particular result is shown to hold in the Poisson process described in

Lemma 2.8. Subsequently, the result is de-Poissonized, i.e., shown to hold also for

the original process.

Fix some e > 0. Let a, E G (0, 1) be two constants, both independent of n. Recall

that qn is the radius of each ball in the set Bn of balls covering the path a. Let
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In,m denote the indicator variable for the event that the ball Bn,m has no point that
is within a distance q, from the center of Bnm. For a more precise definition, let
# Bn,m denote the ball that is centered at the center of Bn,m and has radius rn.
Then,

1, if (#Bm) n VPRM* 0
In,m

0, otherwise.

Let K, denote the number of balls in Bn that do not contain a vertex that is within
a / q, distance to the center of that particular ball, i.e., Kn :=4 In,m.

Consider the event that In,m holds for at most an a fraction of the balls in Bn,
i.e., {Kn < a Mn}. This event is important for the following reason. Recall that the
vertices in subsequent balls in Bn are connected by edges in G PRM* by Lemmas 5.50
and 5.51. If only at most an a fraction of the balls do not have a vertex that is less
than a distance of / rn from their centers (hence, a (1 - a) fraction have at least one
vertex within a distance of # rn from their centers), i.e., {Kn < a Mn} holds, then
the bounded variation difference between aT and on is at most (V a +3(1 - a))L

2 (a + 3)L, where L is a finite bound on the length of all paths in {on}nEN, i.e.,
L := supneN TV(Un). That is,

{Kn a Mn} Q { lao - on|Bv (a + )L

Taking the complement of both sides and using the monotonicity of probability mea-
sures,

P(ure ,n - n BV > 2 (a + ) L < P ({K n > a M n}).

In the rest of the proof, it is shown that the right hand side of the inequality above
is summable for all small a, / > 0, which implies that P ({ |I - -n ||BV > E}) is
summable for all small c > 0.

For this purpose, the process that provides independent uniform samples from Xree
is approximated by an equivalent Poisson process described in Section 2.2. A more
precise definition is given as follows. Let {X 1 , X 2, ... , Xn} denote the binomial point
process corresponding to the SampleFree procedure. Let v < 1 be a constant indepen-
dent of n. Recall that Poisson(v n) denotes the Poisson random variable with intensity
v n (hence, mean value v n). Then, the process Pn := {XI, X 2 ,. . . , Xpoissent( n)} is
a Poisson process restricted to t(Xree) with intensity v n/p(Xfree) (see Lemma 2.8).
Thus, the expected number of points of this Poisson process is y n.

Clearly, the set of points generated by one process is a subset of the those generated
by the other. However, since v < 1, in most trials the Poisson point process Pn is a
subset of the binomial point process.

Define the random variable K, denote the number of balls of that fail to have
one sample within a distance # rn to their centers, when the underlying point process
is Pn (instead of the independent uniform samples provided by the SampleFree
procedure). In other words, K is the random variable that is defined similar to Kn,
except that the former is defined with respect to the points of P1 n whereas the latter
is defined with respect to the n samples returned by SampleFree procedure.
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bn,m Bn,me

Figure 5-11: The set B,, of non-intersection balls is illustrated.

Since {Kn > a Mn} is a decreasing event, i.e., the probability that it occurs
increases if Pn includes fewer samples, the following bound holds (see, e.g., Penrose,
2003):

P({Kn > a Mn}) < P({Kn > a Mn}) + P({Poisson(v n) > n}).

Since a Poisson random variable has exponentially-decaying tails, the second term on

the right hand side can be bounded as

P({Poisson(v n) > n}) < e-cn,

where c > 0 is a constant.

The first term on the right hand side can be computed directly as follows. First,
for all small 3, the balls of radius # rn are all disjoint (see Figure 5-11). Denote this set
of balls by Bn,m = {B, 1 , Bn,2 ,... , Bn,M,}. More precisely, Bn,m is the ball of radius
#q, centered at the center of Bn,m. Second, observe that the event {Kn > a Mn} is

equivalent to the event that at least an a fraction of all the balls in B include at
least one point of the process Pn. Since, the point process Pn is Poisson and the
balls in Bn are disjoint for all small enough #, the probability that a single ball in Bn
does not contain a sample is pn := exp(-(d (#qn)' v n/p(X re)) < exp(-c3 v n) for

some constant c. Third, by the independence property of the Poisson point process,
the number of balls in Bn that do not include a point of the point process PJn is a
binomial random variable with parameters Mn and pn. Then, for all large n,

P({Kn > a Mn}) P ({Binomial(Ms, p) > aMn}) < exp(-Mn pn),

where recall Binomial(Mn, pn) is a binomial random variable with parameter Mn, pn.

Combining the two inequalities above, the following bound is obtained for the
original sampling process

P ({Kn > a Mn}) < en + e-MnPn.
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Summing up both sides,
00

ZIP({Kn > an}) < 00.

n-1

This argument holds for all a, #, v > 0. Hence, for all e > 0,

E P ({||o-on||By > E) < 00.

n=1

Then, by the Borel-Cantelli lemma, P ({limn,,oo |oI - O-n| BV}) =0.

Finally, the following lemma states that the cost of the minimum cost path in
the graph returned by the PRM* algorithm converges to the optimal cost c* with
probability one. Recall that YPRM* denotes the cost of the minimum-cost path in the
graph returned by the PRM* algorithm, when the algorithm is run with n samples.

Lemma 5.53 Under the assumptions of Theorem 5.20, the cost of the minimum-cost
path present in the graph returned by the PRM* algorithm converges to the optimal
cost c* as the number of samples approaches infinity, with probability one, i.e.,

P { lim yPRM* c * 1.
nno

Proof Recall that o-* denotes the optimal path, and that limnOo o-n = o-* holds
surely. By Lemma 5.52, limn, 0 o ||oK - on||Bv = 0 holds with probability one. Thus,
by repeated application of the triangle inequality, limnco |on - o-*||Bv = 0, i.e.,

P { lim ||on - o-*||By = 0V 1-
n-- oo

Then, by the robustness of the optimal path o-*, it follows that

P ({ lim c(o) = c*}) 1.
nno

That is the costs of the paths {on}nE-N converges to the optimal cost almost surely,
as the number of samples approaches infinity.

5.3.8 Asymptotic Optimality of k-nearest PRM*

In this section, we prove Theorem 5.21, which establishes the asymptotic optimality
of the k-nearest PRM* algorithm. The proof follows a similar outline when compared
to the proof of Theorem 5.20. In particular, it is again shown that the algorithm
is able to connects samples that fall into balls of suitable size. However, in this
case, showing that the connections are in fact established requires a substantially
different technique. In what follows, detailed arguments are provided whenever the
proof differs from the proof of Theorem 5.20. When the argument is only sketched
when it is very similar. Below, an outline is given, followed by the detailed argument.
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Outline of the proof: i Let o* be a robust optimal path with weak clearance.
First, define the sequence {-n2}nCN of paths as in the proof of Theorem 5.20.

Second, define a sequence {qn}nEN and tile o- with a set Bn = {Bn,1, Bn,2, ... , Bn,M}
of overlapping balls of radius qn. See Figures 5-9 and 5-12. Let Xm c Bn,m and
Xm+1 C Bn,m+i be any two points from subsequent balls in Bn. Construct B" such

that the straight path connecting xm and xm+1 lies entirely inside the obstacle free
space. Also, construct a set B' of balls such that (i) B' m and Bn,m are centered at the
same point and (ii) Bn,m contains Bn,m, and Bn,m+1, for all m E {1, 2, ... , Mn - 11.

Let An denote the event that each ball in Bn contains at least one vertex, and
A' denote the event that each ball in B' contains at most k(n) vertices of the graph
returned by the k-nearest PRM* algorithm. Third, show that An and A' occur
together for all large n, with probability one. Clearly, this implies that the PRM*
algorithm will connect vertices in subsequent ball in Bn with an edge, and any path

formed by connecting such vertices will be collision-free.

Finally, show that any sequence of paths formed in this way converges to o*. Using

the robustness of o*, show that the best path in the graph returned by the k-nearest

PRM* algorithm converges to c(o-*) almost surely.

Construction of the sequence {Un}nCN of paths: Let 01, 02 E R>o be two con-

stants, the precise values of which will be provided shortly. Define

mi (0) (1+1/d+0 2 )A(Xfree))1d logn)1d

on~~( := mi ),( 1

Since lim-, 0 6n = 0 and 0 < 6n < 6 for all n E N, by Lemma 5.47, there exists a

sequence {o-n}ncN of paths such that liMn o-, =o* and U is strongly 6n-clear for

all n E N.

Construction of the sequence {Bn}nCN of sets of balls: Define

1 + 01'

For each n C N, use Definition 5.48 to construct a set Bn = {Bn,1 , Bn,2 , ... , B,,}
of overlapping balls that collectively cover o-n as Bn := CoveringBalls(O-n, q, Oign)

(see Figures 5-9 and 5-12 for an illustration).

The probability that each ball in Bn contains at least one vertex: Re-
call that GnPRM* _ kPRM*, EnPRM *) denotes the graph returned by the k-nearest

PRM* algorithm, when the algorithm is run with n samples. Let An,m denote the

event that the ball Bn,m contains at least one vertex from VPRM*, I. e., An,m
{ Bn,m 0 VPRM* - V}. Let An denote the event that all balls in Bn,m contains at

least one vertex of GnPRM* ,-i.e., An=LMn1 An,m-

Recall that A' denotes the complement of the event An, p(-) denotes the Lebesgue

measure, and (d is the volume of the unit ball in the d-dimensional Euclidean space.
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B'

Figure 5-12: An illustration
The o& ball is guaranteed to

of the covering balls for the k-nearest PRM* algorithm.
contain the balls Bn,m and Bn,m+1.

Let sn denote the length of orn.

Lemma 5.54 For all 01,02 > 0,

1

(log n)l/d nl+02*

In particular, ( P(A ) < oo for all 01, 02 > 0.

Proof Let no E N be a number for which 6n < 6 for all n > no. A bound on the
number of balls in Bn can computed as follows. For all n > no,

Mn = card (B) <
11d n )

log n01 qn

The volume of each ball Bn can be computed as

p(B,k) =((qn)d = (1 + 1/d + 02) I1(Xfree) log n
n

The probability that the ball Bn,m does not contain a vertex of the k-nearest
PRM* algorithm can be bounded as

P(An,m) = (1 -
p(Bnm))"

p (Xfree) f
- (1 + 1/d+02)

n

n
< -(1I-1/d+0 2)

Finally, the probability that at least one of the balls in Bn contains no vertex of
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the k-nearest PRM* can be bounded as

P(An)
Mn

=D (UP 1 An,m) < IP(An,m) = Mn P(An,1 )
M=1

(()d 
( 1d

01 (1 + 1/d + 2) 4p(Xfree) log n

1

(log n)1/d n1+
0

2'

Clearly, j: 1 P(A') < oo for all 01, 02 > 0. U

Construction of the sequence {B' }nEN of sets of balls: Construct a set B' =

{Bn,1, Bn, 2 ,..., B,M,} of balls as B' := CoveringBal1s(o-n,6n,0 1 qn) so that each

ball in B' has radius 6n and the spacing between two balls is 01qn (see Figure 5-12).
Clearly, the centers of balls in B' coincide with the centers of the balls in Bn, i.e.,

the center of B',m is the same as the center of Bn,m for all mE {1, 2,..., Mn} and

all n E N. However, the balls in B' have a larger radius than those in Bn.

The probability that each ball in B' contains at most k(n) vertices: Recall
that the k-nearest PRM algorithm connects each vertex in the graph with its k(n)
nearest vertices when the algorithm is run with n samples, where k(n) = kPRM log r.
Let A' denote the event that all balls in B' contain at most k(n) vertices of G PRM*

Recall that A' denotes the complement of the event An.

Lemma 5.55 If kPRM > e (1 + 1/d), then there exists some 01,02 > 0 such that

P(A <) 
d

n ~ A1 (1 + 1/d + 2 )P(Xfree)

1

In particular, En 1 P(A') < 00 for some 01, 02 > 0.

Proof Let no E N be a number for which on < 6 for all n > no.
proof of Lemma 5.54, the number of balls in B' satisfies

M = card(B') < = S /d
n igln 01 (1 + 1/d + 02)P(Xree)

As shown in the

log n

For all n > no, the volume of B'm can be computed as

p(B',m) = (d (6n)d = (1 + 0 1)d (1 + 1/d + 02) A (Xree) log -

Let In,,, denote the indicator random variable of the event that sample i falls
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into ball B',m. The expected value of In,m,i can be computed as

E[In,m,i] - p(B'm) - (1 + 61)d (1 + 1/d + 02) .
p (Xfree) n

Let Nn,m denote the number of vertices that fall inside the ball B' m e z

j1 In,m,i. Then,

n

IE[Nn,m] SE[Inmi] = E[In~m] = (1 + 0 1 )d(I + 1/d + 02) log n.

Nn,m =

Since {In,m,i}n 1 are independent identically distributed random variables, large de-
viations of their sum, Mnm, can be bounded by the following Chernoff bound (see,
e.g., Dubhashi and Panconesi, 2009):

P( { Nn,m > (1 + e) E[Nn,ml } )

for all e > 0. In particular, for c e e - 1,

P( { Nn,m > eE[Nnm] ))

Since k(n)
that e E[Nn,k]
01 and 02,

-E[Nn,] _ n- (1+01)d(1+1/d+ 2 )

> e (1 + 1/d) log n, there exists some 01, 02 > 0 independent of n such
= e (1 + 01) (1 + 1/d + 02) log n < k(n). Then, for the same values of

P( { Nn,m > k(n) } ) < P( { Nn,m > e E[Nn,m] } ) < n -(1+01)d(1+1/d+0 2 )

Finally, consider the probability of the event that at least one ball in Bn contains
more than k(n) nodes. Using the union bound together with the inequality above

{Nn,m > k(n)})

Mn+1

K5 IP({Nn,m > k(n)}) = Mn IP({Nn, 1 > k(n)})

P(A) = P (U{Nn,m > k(n)})

+ 1/d +0 2 )it(Xfree) ) (log n) l/d
1

n- (1+O1 )d(1±1/d±9 2 )-

Clearly, 1 P(A') < o for the same values of 01 and 02.

Connecting the vertices in the subsequent balls in Bn:
lowing lemma.

U

First, note the fol-
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Hence,
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Lemma 5.56 If kPRM > e (1 + 1/d)/, then there exists 01,02 > 0 such that the
event that each ball in Bn contains at least one vertex and each ball in B' contains
at most k(n) vertices occurs for all large n, with probability one, i.e.,

PD lim inf (An n A' )) = 1.

Proof Consider the event Ac U A'c which is the complement of As n A'. Using the
union bound,

P (Ac U A'c) < P(A ) + P(A').

Summing both sides,

00 00 00

P(Ac U A') < EI P(Ac) + EIP(A') < 00,
n=i n=1 n=1

where the last inequality follows from Lemmas 5.54 and 5.55. Then, by the Borel-
Cantelli lemma, P (lim supn, 0 (Ac U A')) P (lim supn, 0 (An n A')c) = 0, which
implies P (lim infn.+0 0 (An n A')) = 1.

Note that for each m {1, 2, ... ,, - 1}, both Bn,m and Bn,m+1 lies entirely

inside the ball B', (see Figure 5-12). Hence, whenever the balls Bn,m and Bn,m+i

contain at least one vertex each, and B',m contains at most k(n) vertices, the k-

nearest PRM* algorithm attempts to connect all vertices in Bn,m and Bn,m+1 with

one another.

The following lemma guarantees that connecting any two points from two con-

secutive balls in Bn results in a collision-free trajectory. The proof of the lemma is

essentially the same as that of Lemma 5.51.

Lemma 5.57 For all n E N and all m E {1, 2,.. ., Mn}, if xm E Bn,m and xm+1 E

Bn,m+1, then the line segment connecting xm and xm+1 lies in the obstacle-free space,
i.e.,

a xm (1- a) m+1 Xfree, for all a E [0, 1].

Convergence to the optimal path: The proof of the following lemma is similar

to that of Lemma 5.52, and is omitted here.

Let Pn denote the set of all paths in the graph returned by kPRM* algorithm

at the end of n iterations. Let o' be the path that is closest to on in terms of the

bounded variation norm among all those paths in Ps, i.e., o' := minpn a o'-on||BV-

Lemma 5.58 The random variable ||o-'-o||BV converges to zero almost surely, i.e.,

P({lim, o 0 - on||IBV 0}) 1-

A corollary of the lemma above is that limn, 0, o" -* with probability one.

Then, the result follows by the robustness of the optimal solution (see the proof of

Lemma 5.53 for details).
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5.3.9 Asymptotic Optimality of RRG

This section is devoted to the proof of Theorem 5.22, which establishes the asymptotic
optimality of the RRG algorithm.

Outline of the proof: The proof of this theorem is similar to that of Theorem 5.20.
The main difference is the definition of C, that denotes the event that the RRG
algorithm has sufficiently explored the obstacle free space. More precisely, C" is the
event that for any point x in the obstacle free space, the graph maintained by the
RRG algorithm algorithm includes a vertex that can be connected to x.

Construct the sequence {o-n}nEN of paths and the sequence {Bn}nEN of balls as in
the proof of Theorem 5.20. Let An denote the event that each ball in Bn contains a
vertex of the graph maintained by the RRG by the end of iteration n. Compute n by
conditioning on the event that Ci holds for all i E {[03 n],.. . , n}, where 0 < 03 < 1
is a constant. Show that the probability that Ci fails to occur for any such i is small
enough to guarantee that An occurs for all large n with probability one. Complete
the proof as in the proof of Theorem 5.20.

Definitions of {on}nEN and {BnfnEN: Let 01 > 0 be a constant. Define 6n, o-n, qn,

and Bn as in the proof of Theorem 5.20.

Probability that each ball in Bn contains at least one vertex: Let An,m be
the event that the ball Bn,m contains at least one vertex of the RRG at the end of
n iterations. Let An be the event that all balls in Bn contain at least one vertex of
the RRG at the end of iteration n, i.e., An= r4n An,m, where Mn is the number of
balls in Bn. Recall that '}RRG is the constant used in defining the connection radius
of the RRG algorithm (see Algorithm 5).

Lemma 5.59 If YRRG > 2(1 + 1d)l/d (A(free) then there exists 01 > 0 such that

An occurs for all large n with probability one, i.e.,

IP (lim inf-o An) = 1.

The proof of this lemma requires two intermediate results, which are provided next.
Recall that q is the parameter used in the Steer procedure (see the definition of

Steer procedure in Section 4.1). Let Cn denote the event that for any point x E Xfree,
the graph returned by the RRG algorithm includes a vertex v such that |x - v| < 7
and the line segment joining v and x is collision-free. The following lemma establishes
an bound on the probability that this event fails to occur at iteration n.

Lemma 5.60 There exists constants a, b G R>0 such that P(Cnc) < a e-bn for all
n E N.

Proof Partition Xree into finitely many convex sets such that each partition is
bounded by a ball a radius TI. Such a finite partition exists by the boundedness
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of Xfree. Denote this partition by X', X', ... , X'. Since the probability of failure
decays to zero with an exponential rate, for any m {1, 2, ... , M}, the probability
that Pm fails to contain a vertex of the RRG decays to zero with an exponential rate,
i. e.,

P ({$x E VRRG n x' < a e-bmn

The probability that at least one partition fails to contain one vertex of the RRG also
decays to zero with an exponential rate. That is, there exists a, b (E Ryo such that

M M
(UM { X(EVRR R G} Z(nvnG)Z bn

P {x EVnRG nX,'}) P({$x E VnRRG n X' < E am e-am o

m=1 m=1

where the first inequality follows from the union bound.

Let 0 < 03 < 1 be a constant independent of n. Consider the event that Ci occurs
for all i that is greater than 03n, i.e., _ [o j C. The following lemma analyzes the
probability of the event that n n C fails to occur.

Lemma 5.61 For any 03 E (0, 1),

P c)c) < .

Proof The following inequalities hold:

n C c )c = ( c)EP((i=Lo ,nj C i =to03 nj
n=1 n=1

oo n . o n

< Z EZ P(Cc) < ae-bi,
n=1 i [0 3 ij n=I i= [0 3 nj

where the last inequality follows from Lemma 5.60. The right-hand side is finite for
all a, b > 0. N

Proof of Lemma 5.59 It is shown that _ P(Ax) < oo, which, by the Borel-
Cantelli Lemma (see Grimmett and Stirzaker, 2001), implies that Ac occurs in-
finitely often with probability zero, i.e., P(lim supnso Ac) = 0, which in turn implies
P(lim infno An) = 1.

Let no E N be a number for which 6n < 3 for all n > no. First, for all n > no, the
number of balls in Bn can be bounded by (see the proof of Lemma 5.49 for details)

Mn = card (Bn) <(2+01)Sn (n)
0 1 7RRG log n
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Second, for all n > no, the volume of each ball in B can be calculated as (see the
proof of Lemma 5.49)

p (Bn,m) ( 7PRM> log n
(d 2+01) n

where (d is the volume of the unit ball in the d-dimensional Euclidean space.

Third, conditioning on the event (~ n C , each new sample will be added to the

graph maintained by the RRG algorithm as a new vertex between iterations i = [03 nj

and i = n. Thus,

iL03 n] Ci)
p(Bn,m)

pI(Xfree)

(d

P (Xfree)

n- L03nj

) -K
/d

7RRG

2+01)

logn

p(Bn,m)

P( Xree)

(1-03)C 'YR d lg (-3) Cd (iRB0 ~d
K A~(Xfree) ( 2+01)og < 12 P(Xfree) k2+011

where the fourth inequality follows from (1 - 1/f(n))g() < eg')/f(n).

Fourth,

( A L0 i 
MP< (Umi1AC, Ci)

Mn

< 1: P AC,m
m=1

= IP (A 1

i= L03 n] ~0z[3njC)

- (Xfree) 2 01S(2+01)S n )

01'7RRG log n

Hence,

i=L03nj Ci)
< 00,

whenever -- 1/d > 1, i.e., 'YRRG > (2 + 01)(1 + 1d1/d (Xfree) d

which is satisfied by appropriately choosing the constants 01 and 03, since 7YRRG >

2 (1 + 1/d)1/d (it(Xree) 11d
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Finally,

nD (Ac n (n n
n A =L3n Ci(A)P _ ( oC))

,D (ni=L0 3 n]j Ci)
> IP(Ac n (nL3nj)

= 1 - P(An U (n =Ln 3  )

> 1 - P(An) - P((n L03 n] Ci)C)

= P(Ac) - P ((nn C))

Taking the infinite sum of both sides yields

P(Ac) < P (A i n + PCn
n= nO 0 ~n) +ZIP 0 n))

n-1 n=1 n=1

The first term on the right hand side is shown to be finite above. The second term is
finite by Lemma 5.61. Hence, _ P(An) < oc. Then, by the Borel Cantelli lemma,
Ac occurs infinitely often with probability zero, which implies that its complement
An occurs for all large n, with probability one.

Convergence to the optimal path: The proof of the following lemma is similar
to that of Lemma 5.52, and is omitted here.

Let Pn denote the set of all paths in the graph returned by RRG algorithm at the
end of n iterations. Let o,' be the path that is closest to on in terms of the bounded
variation norm among all those paths in Pn, i.e., -' := minaE'p | -n oBV-

Lemma 5.62 The random variable ||o-0n -|BV converges to zero almost surely, i.e.,

P ({limn+,, ||o-' - Un BV = 0}) 1.

A corollary of the lemma above is that limno o-'= o-* with probability one.
Then, the result follows by the robustness of the optimal solution (see the proof of
Lemma 5.53 for details).

5.3.10 Asymptotic Optimality of k-nearest RRG

This section is devoted to the proof of Theorem 5.23, which states that the RRG
algorithm is asymptotically optimal.

Outline of the proof: The proof of this theorem is a combination of that of
Theorem 5.21 and 5.22.

Define the sequences {Un}ncN, {Bn}nEN, and {B'}ncN as in the proof of Theo-
rem 5.21. Define the event Cn as in the proof of Theorem 5.22. Let An denote the
event that each ball in Bn contains at least one vertex, and A' denote the event that
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each ball in B' contains at most k(n) vertices of the graph maintained by the RRG
algorithm, by the end of iteration n. Compute An and A' by conditioning on the
event that Ci holds for all i = 03 n to n. Show that this is enough to guarantee that
An and A' hold together for all large n, with probability one.

Definitions of {-n}nEN, {Bn}nEN, and {BnEfCN: Let 01,02 > 0 be two constants.
Define 6n, U, qn, Bs, and B' as in the proof of Theorem 5.21.

The probability that each ball in Bn contains at least one vertex: Let
An,m denote the event that the ball Bn,m contains at least one vertex of the graph
maintained by the k-nearest RRG algorithm by the end of iteration n. Let An denote
the event that all balls in B,,m contain at least one vertex of the same graph, i.e.,
An= MJ1 An,m. Let s, denote the length of o-2 , i.e., TV(on). Recall q is the
parameter in the Steer procedure. Let Cn denote the event that for any point
X E Xfree, the k-nearest RRG algorithm includes a vertex v such that IX - v| < .

Lemma 5.63 For any 01, 02 > 0 and any 03 E (0, 1),

(Ac Ci)

i =[103 n]

s n (d 1/d1

01 61 (1 + 1/d + 02) P(Xfree)) (log n)l/d n(1-O3)(1+1/d+02)-1/d

In particular, _1 P (A L _nj Ci) < oc for any 01,02 > 0 and some 03 E (0, 1).

Proof Let no E N be a number for which on < 6 for all n > no. Then, for all n > no,

su s7 C \1/d n/
Mn = card (Bn) < Sn - (____________ 1/d

01 qn 01 (1 + 1 /d + 02) P(Xfree) log n

The volume of each ball Bn can be computed as

pu(Bn,k) = (d(q)d (1 + 1/d + 02) P(Xfree) log .
n

Given ~iF Ci, the probability that the ball Bn,m does not contain a vertex of

the k-nearest PRM* algorithm can be bounded as

I A m [ ] nc t) ( I _ p (B n ) (1-0 3) n

"'" i=[F03 n] p(Xfree))

(i (1± /d Ologn) (103)1 n 1-0 3 ) (1±1/dI0 2 )=nl1 - (1 + l/d + o2) nta o+v of
n )

Finally, the probability that at least one of the balls in Bn contains no vertex of
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the k-nearest PRM* can be bounded as

1(U An,m) <

01 ((1 +1/d +02)

IP(An,m) = Mn P(An,1)
m=1

A (X free)) 
1/ d 1

Clearly, for all 01, 02 > 0, there exists some 03 E (0, 1) such that _:L1P(Ac) < o.

The probability that each ball in B' contains at most k(n) vertices:

Ui

Let
A' denote the event that all balls in B' contain at most k(n) vertices of the graph
maintained by the RRG algorithm, by end of iteration n.

Lemma 5.64 If kPRM > e (1 + 1/d), then there exists 01, 02, 03 > 0 such that

IP(A' Cs)Si=[3 nj

Sn

<1 S(1 +

1(d ± X )

1/d +062) A(Xfree) )

In particular, EZ_1 nP A L0 nj Ci) < oo for some 01,02 > 0 and some 03 > 0.

Proof Let no c N be a number for which An < for all n > no. Then, the number
of balls in B' and the volume of each ball can be computed as

Xfree)) 

ld
Mn = card (B'

p(B'm)

) < n
- O1qn ( n 1 dlog n)

(d (An)d = (I+ 61)d (1 + 1/d+0 2 ) /(Xree) login
in

Let In,m,i denote the indicator random variable of the event that sample i falls
into ball B',m. The expected value of In,m,i can be computed as

E[In,m,i] - (Bme) - (1 + 61)d (1 + 1/d + 02) -
p( Xfree ) n

Let N,, denote the number of vertices that fall inside the ball B',m between iterations

L3 n] and n, i.e., Nn,m = E-LOn In,m,i. Then,

E[Nn,m] =

i=[03 n

Since {In,m,i}n are independent identically distributed random variables, large devi-
ations of their sum, Mn,m, can be bounded by the following Chernoff bound (Dubhashi
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and Panconesi, 2009):

P( { Nn,m > (1 + ) E[N,m] }I) < ( + )1)E[nm

for all c > 0. In particular, for e = e - 1,

P( { Nn,m > e E[Nn,m] }) e -E[Nn,m_] n- (1-0 3 ) (1+01)d(1+1/d+0 2 )

Since k(n) > e (1 + 1/d) log n, there exists some 01,02 > 0 and 03 E (0, 1),
independent of n, such that e E[Nn,k] = e (1 - 03) (1 + 01) (1 + 1/d + 02) log n < k(n).
Then, for the same values of 01 and 02,

P( { Nn,m > k(n) } < P( { Nn,m > e E[Nn,m] < n-(1-03) (1+01)d (1+1/d+02).

Finally, consider the probability of the event that at least one ball in Bn contains
more than k(n) nodes. Using the union bound together with the inequality above

Mn+1

< E P({Nn,m > k(n)})
rn-i

= Mn P({N, 1 > k(n)})

Hence,

P(Anq C,) = P (U: {Nn,m > k(n)})

(log n)1/d n-(1-

1
03) (1+01)d(1+1/d+0 2 )'

Clearly, J: P(A' | n C) < oc for the same values of 01, 02, and 03. .

Connecting the vertices in subsequent balls in Bn:

Lemma 5.65 If kPRM > e (1 + 1/d)l/d, then there exists 01,02 > 0 such that the
event that each ball in Bn contains at least one vertex and each ball in B' contains
at most k(n) vertices occurs for all large n, with probability one, i.e.,

P (lim inf (An n A')) = 1.

First note the following lemma.

Lemma 5.66 For any 03 E (0, 1),

000

o S c tn C n < o

Proof Since the RRG algorithm and the k-nearest RRG algorithm have the same
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vertex sets, i.e., VRRG ynRRG for all n E N, the lemma follows from Lemma 5.61.
U

Proof of Lemma 5.65 Note that

P (Ac n (n n )
P (Ac U A'f) Ci) = =L3n i

n i=L[03nj P n

2 ((Ac U A') n ( n= Ci))
P(Ac U A'c) - P((n lC)c),

where the last inequality follows from the union bound. Rearranging and using the
union bound,

P(Ac U A') < P(Ac in C ) P(Ai n=L3 n] C) + P(( n L 3 nj C)c).

Summing both sides,

0o

P(Ac U A')
n=1

00

ZCP (Ac 0
3 n] Ci) A'D CA niL93nJcz) + E P ((C ,

n=1 =[3ni= 3njn=1 i[3n

where the right hand side is finite by Lemmas 5.63, 5.64, and 5.66, by picking 03
close to one. Hence, 0 P(A' U A'c) < oc. Then, by the Borel-Cantelli lemma,
P(lim supnlo (A' U A')) = 0, or equivalently P(lim infn Oc (An n A')) = 1. U

Convergence to the optimal path: The proof of the following two lemmas are
essentially the same as that of Lemma 5.52, and is omitted here. Let P denote the
set of all paths in the graph returned by kRRG algorithm at the end of n iterations.
Let o-' be the path that is closest to or- in terms of the bounded variation norm among
all those paths in P, i.e., o, := mina '-Ep -n|BV-

Lemma 5.67 The random variable |lo -o-n||BV converges to zero almost surely, i.e.,

P ({lim' 0 o ||or - nBV 0) 1.

A corollary of the lemma above is that lim oc o-, = o-* with probability one.
Then, the result follows by the robustness of the optimal solution (see the proof of
Lemma 5.53 for details).

5.3.11 Asymptotic Optimality of RRT*

This section is devoted to the proof of Theorem 5.24, which establishes the optimality
of the RRT* algorithm. For simplicity, we assume that the steering parameter 77 is
large enough, i.e., q > diam(X), although the results hold for any q > 0.
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Marked point process: Consider the following marked point process. Let {X 1, X2,
... , Xn} be a independent uniformly distributed points drawn from Xee and let

{Y1 , Y2 ,... , Yn} be independent uniform random variables with support [0, 1]. Each
point Xi is associated with a mark Y that describes the order of Xi in the process.
More precisely, a point Xi is assumed to be drawn after another point Xi' if Yg1 < Yi.
We will also assume that the point process includes the point xinit with mark Y = 0.

Consider the graph formed by adding an edge (X,, Xi), whenever (i) Yj' < Y
and (ii) ||Xi - X | I r, both hold. Notice that, formed in this way, G" includes no
directed cycles. Denote this graph by G = (V, En). Also, consider a subgraph G'
of Gn formed as follows. Let c(Xi) denote the cost of best path starting from xinit
and reaching Xi. In G' , each vertex Xi has a single parent Xi with the smallest cost
c(Xi). Since the graph is built incrementally, the cost of the best path reaching Xi
will be the same as the one reaching X, in both G and G'. Clearly, G' is equivalent
to the graph returned by the RRT* algorithm at the end of n iterations, if the steering
parameter r is large enough.

Let Yn and the Y' denote the costs of the best paths starting from xinit and reaching
the goal region in G, and G',, respectively. Then, lim sup_ Y,= lim supn_, Y'
surely. In the rest of the proof, it is shown that P({limsupn_, Yn}) = 1, which
implies that P({limsup_,. Y'}) = 1, which in turn implies the result.

Definitions of {o-n}nN and {Bl}nEN: Let o-* denote an optimal path. Define

6, := min{6,4 rn},

where rn is the connection radius of the RRT* algorithm. Let {on}neN be the sequence
paths, the existence of which is guaranteed by Lemma 5.47.

For each n c N, construct a sequence {Bn}ncN of balls that cover o-n as B, =
{B,1, Bn,2 ,... , Bn,.,} := Cover ingBalls(o-n, rn, 2rn) (see Definition 5.48), where

rn is the connection radius of the RRT* algorithm, i.e., rn = 7RRT* (1/gn) l1d Clearly,
the balls in Bn are openly disjoint, since the spacing between any two consecutive

balls is 2 rn.

Connecting the vertices in subsequent balls in Bn: For all m E {1, 2, ... ,Mn
let An,m denote the event that there exists two vertices Xi, Xg E VRRT* such that

Xi c Bn,m, Xi E Bn,m+1 and Y < Y, where Yi and Yg2 are the marks associated

with points Xi and Xi,, respectively. Notice that, in this case, Xi and Xi, will be

connected with an edge in Gn. Let An denote the event that An,m holds for all

m E {1, 2, . .. , M}, i.e., An = l4_' An,m.

Lemma 5.68 If YRRT* > 4 (A(Xfree) )ld , then An occurs for all large n, with proba-

bility one, i.e.,

P (lim inf An) = 1.
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Proof The proof of this result is based on a Poissonization argument. Let Poisson(A)
be a Poisson random variable with parameter A = On, where 0 E (0, 1) is a constant
independent of n. Consider the point process that consists of exactly Poisson(0 n)
points, i.e., {X 1 , X 2 , ... , Xpoissen(on)}. This point process is a Poisson point process
with intensity 0 n /p(Xree) by Lemma 2.8.

Let An,m denote the event that there exists two vertices Xi and Xj' in the vertex set
of the RRT* algorithm such that Xi and X2' are connected with an edge in Gn, where
G is the graph returned by the RRT* when the algorithm is run for Poisson(O n)
many iterations, i.e., Poisson(O n) samples are drawn from Xfree.

Clearly, P(A",m) = P(A(,Am {Poisson(0 n) = n}). Moreover,

P(As,m) P(Am) + P({Poisson(0 n) > n}).

since P(Ac,m) is non-increasing with n (see, e.g., Penrose, 2003). Since 0 < 1,
P({Poisson(On) > n}) < e-an, where a > 0 is a constant independent of n.

To compute P(Am), a number of definitions are provided. Let Nn,m denote the

number of vertices that lie in the interior of Bn,m. Clearly, E[Nn,m] = log n, for
II(Xfree) lgr~ o

all m E {1, 2, ... , Mn}. For notational simplicity, define a (dRRT*. Let e E (0, 1)
II(Xfree)

be a constant independent of n. Define the event

Cn,m,e := {Nn,m > (1 - E) E[Nn,m]l} = {Nn,m > (1 - c) a log n}

Since Nn,m,e is binomially distributed, its large deviations from its mean can be
bounded as follows (Penrose, 2003),

IP (CmE) = P({Nn,m,, (1 - )E[Nn,m]}) -H() logn - aH(E)

where H(c) = + (1 - c) log(1 - c). Notice that H(c) is a continuous function of C
with H(0) = 0 and H(1) = 1. Hence, H(e) can be made arbitrary close to one by
taking e close to one.

Then,

P(A m) =P(Acm Cn,m,e n Cn,m+1,E) P(Cn,m ,e n Cn,m+1,e)

+P(A,m | (Cn,m,E n Cnm+e)C) P((Cn,m,e n Cn,m+1,E)C)

P(Ac,m | Cn,m,e n C,m+1,e) P(Cn,m,e n Cn,m+1,e) + P(Cme) + P(Cnm+le),

where the last inequality follows from the union bound.

First, using the spatial independence of the underlying point process,

P (Cn,m,e n Cn,m+1,e) = P (Cnmc) P (Cnm+1,e) < n-2a H(E)

Second, observe that P(Ac,m Nn,m = k, Nn,m+1 = k') is a non-increasing function

of both k and k', since the probability of the event An,m can not increase with the
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increasing number of points in both balls, B,,m and Bn,m+ 1. Then,

IP(As,m Cn,m,e nCn,m+1,e)

= P(Am |{Nn,m ;> (1 - c) a log Nn,m, Nn,m+ > (1 - E) a log Nn,m+1})

<IP(Am {Nn,m (1 - c) a log Nn,m, Nn,m+1 (1 - E) a log Nn,m+i})-

The term on the right hand side is one minus the probability that the maximum

of a log n number of uniform samples drawn from [0, 1] is smaller than the minimum

of a log n number of samples again drawn from [0, 1], where all the samples are drawn

independently. This probability can be calculated as follows. From the order statistics

of uniform distribution, the minimum of a log n points sampled independently and

uniformly from [0,1] has the following probability distribution function:

(1 - x) logn -1

Bet a(1, a log(n))'

where Beta(., -) is the Beta function (also called the Euler integral) (Abramowitz

and Stegun, 1964). The maximum of the same number of independent uniformly

distributed random variables with support [0, 1] has the following cumulative distri-

bution function:

Fm.(x) = xa1ogn

Then,

IP(A ,ml Cn,m,e n Cn,m+,e) Fmax(X) fmin(x) dx

Gamma((1 - E) a log n) Gamma((1 - E)E log n)

2 Gamma(2(1 - E) a log(n))

< ((1 - c) a log n)! ((1 - e) a log n)!

2(2(1 -E)a logrn)!

((1 - E) a log n)!

2(2(1 - c) a log n)(2(1 - c) a log n - 1) ... 1

2 01 a n- log(2)(1-E) a
- 2(1-c)oa og n

where Gamma(.) is the gamma function (see Abramowitz and Stegun, 1964).

Then,

P(AKm) < ac(2H(E)+log(2)(1-E)) +2n -a H(E)

Since 2 H(c) + log(2) (1 - 6) and H(E) are both continuous and increasing in the

interval (0.5, 1), the former is equal to 2 - log(4) > 0.5 and the latter is equal to
1 as c approaches one from below, there exists some 6 c (0.5, 1) such that both
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2 H( ) + log(2) (1 - ) > 0.5 and H(E) > 0.5. Thus,

P(Am) < n ac/2 + 2 n-/2 = 3 n-a/2

Hence,

P M(A,m) < nP(An) + IP(Poisson (O n) > n)
< 3-a/ 2 + -an

Recall that An denotes the event that Anm holds for all m E {1, 2, ... , Mn}. Then,

= ( An,m P (U= A~im) < Z P (Acim) =M P(Ac,

where the last inequality follows from the union bound. The number of balls in Bn
can be bounded as

Bnl= Mn < #
log n

where # is a constant. Combining this with the inequality above,

IP(A) _ ( n ) Ild (3 n-/ 2 +e -an)n) 0log n)/

which is summable for a > 2 (1 + 1/d). Thus, by the Borel-Cantelli lemma, the
probability that A' occurs infinitely often is zero, i.e., IP(lim sup_, A') = 0, which
implies that An occurs for all large n with probability one, i.e., P(lim infna, An) = 1.

U

Convergence to the optimal path: The proof of the following lemma is similar
to that of Lemma 5.52, and is omitted here.

Let Pn denote the set of all paths in the graph returned by RRT* algorithm at the

end of n iterations. Let o' be the path that is closest to o, in terms of the bounded

variation norm among all those paths in P, i.e., o-' minep |' - o-n

Lemma 5.69 The random variable ||a -Un||Bv converges to zero almost surely, i.e.,

P({limn_ ||or - on||Bv 0}) =1.

A corollary of the lemma above is that limnln o-' = o* with probability one.
Then, the result follows by the robustness of the optimal solution (see the proof of

Lemma 5.53 for details).

5.3.12 Asymptotic Optimality of k-nearest RRT*

In this section the proof of Theorem 5.25 is provided. The proof is almost identical to

that of Theorem 5.24 given in detail in Section 5.3.11, with minor exceptions. Instead
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of repeating the whole argument, here we only sketch the proof, providing detailed
arguments in places with substantial differences. Again, for simplicity, we assume
that the steering parameter rq is large enough, i.e., rj > diam(X).

As in the previous section, the incremental nature of sampling is represented by
a marked point process, where each sample is assigned a mark that imposes a strict
ordering of the samples. That is, {Xi, X 2 ,. .. , X.} are assumed to be independent
uniformly distributed samples drawn from Xree, and {Y, Y2 ,... , Y} are marks as-
sociated with the samples. Rather than their indices, the ordering of the samples is
determined by their marks, i.e., we consider Xi to be sampled before X, if Y < Y.
Consider the graph build by connecting each Xi to the ki-nearest vertices among
{Xj : j < i}, which is a subgraph of the k-nearest RRT* graph. We show that this
subgraph contains a sequence of paths that converge to an optimal path.

We define a sequence {o-n}nEN of paths and a sequence {Bn}nEN of sets of covering
balls as in Section 5.3.11. The argument in the same section shows that each such ball
contains a sample, almost surely. However, a different argument must be carried out
to show that samples that fall into consecutive balls are connected by an edge. This
can be done, as in the proof of Theorem 5.23 given in Section 5.3.10). More precisely,
we first define a larger sequence {B'}fnEN sets of balls, such that B", contains B'
for all m and all n. Again, following the argument in Section 5.3.10, it can be shown
that the outer balls in Bn contain no more than k samples (in fact, at any point
up until iteration n), hence samples in subsequent balls are connected to each other.
Following the argument in Lemma 5.68, it can be shown in each inner ball in Bn
contains at least one vertex sampled in the correct order. Hence, an edge is generated
between two the vertices in two subsequent balls in Bn, for all n.

Finally, to prove almost-sure convergence towards an optimal path, Lemma 5.52
is applied, as we have done in Section 5.3.11.

5.3.13 Asymptotic Optimality of p-RRT*

In this section, we prove the asymptotic optimality of the pu-RRT* algorithm and
its k-nearest variant. The proof is almost identical to the proof of Theorem 5.24.
However, a number of technical difficulties arise. We outline these difficulties below,
and explain how they can be overcome. In order not to repeat the arguments provided
earlier, we refrain from providing a full proof.

Firstly, we shall show that, whenever the problem instance at hand admits a
robustly optimal solution (infinite horizon path), say (o-*, a*), there exists a se-
quence {(o,n, Us,n)}nEN of paths, all with the same trace as (o*, o*), and converges to
(o,*, o-*). We have presented a similar result for the optimal path planning problem in
Lemma 5.47, which must be extended to the optimal path planning with determinis-
tic p-calculus specifications. The extension is trivial, except that we need to ensure
convergence towards two paths, o-* and o-, at the same time, instead of only one.

Secondly, we shall define a suitable sequence {Bn}nCN of balls that cover the path
(o-,n, uo-,,), in a such a way that, whenever each ball in Bn contains a sample and
samples in subsequent balls are connected, we obtain a path, say (ou, o'), that has
the same trace with (o-,,i o-,,), thus with (o , o-). In the context of optimal path
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planning problem, i. e., for the simple task specification of "reaching the goal region
while avoiding the obstacles," it is trivial to show that this property holds when the
balls are naively placed to cover o,. However, in the case of arbitrary deterministic
i-calculus specifications, the balls must be carefully placed. Such a placement follows
that we have considered in the proof of Theorem 5.24, except at the boundaries of Ri
the balls must be placed so that (i) in any given ball, all configurations satisfy the
same atomic propositions, and (ii) all points in adjacent balls can be connected by
an edge in the i-RRT* algorithm.

Aside from these technical difficulties, the proof follows that of Theorem 5.24.

5.4 Proofs on Computational Complexity

5.4.1 Collision-checking Complexity of PRM

In this section we provide a proof for Lemma 5.28 by providing a problem instance that
admits robustly optimal solution; However, the PRM algorithm calls the CollisionFree
procedure at least order n2 times in this particular problem instance, where n is the
number of samples that the algorithm is run with.

Proof of Theorem 5.28 Consider a problem instance (Xree, Xijit, Xgoai), where Xfree
is composed of two openly-disjoint sets X1 and X2 (see Figure 5-13). The set X 2 is
a hyperrectangle-shaped set such that one of its sides has length r/2, where r is the
connection radius of the PRM algorithm.

2

Figure 5-13: An illustration of Xfree = Xi U A2 .

Any r-ball centered at a point in X2 will certainly contain some part of X2 with
measure bounded away from zero. Define ft as the volume of the smallest region in
X 2 that can be intersected by an r-ball centered at X 2 , i.e., f: infx 2 p(Bx,r n XI).
Clearly, ft > 0.

Thus, for any sample X, that falls into X2 , the PRM algorithm will attempt
to connect X, to a certain number of vertices that lies in a subset X1' of X1 such
that p(X') > p. The expected number of vertices in X1' is at least p n. Moreover,
none of these vertices can be in the same connected component with X,. Thus, the
algorithm attempts at least 'ft n connections at each iterations, which implies that
E [MPRMn2 > ft. The result is obtained by taking the limit inferior of both sides. *
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5.4.2 Collision-checking Complexity of sPRM

In this section, we prove a stronger result than claimed in Lemma 5.29. We show
that for all problem instances P (Xree, init, Xgoai), lim info E[MsPRM/n] > 0.

Proof of Lemma 5.29 Clearly, Mn, the number of calls to the CollisionFree pro-
cedure in iteration n, is equal to the number of nodes inside the ball of radius r
centered at the last sample point X,.

The number of calls to the CollisionFree procedure for each sample is precisely
the number of (undirected) edges connected to that sample. Thus, the number of
edges in the graph returned by the sPRM algorithm is precisely equal to twice the
number of calls to the CollisionFree procedure (see Lines 5 and 6 in Algorithm 2).

Recall that G'PRM (sPRM, EPRM) denotes the graph returned by the sPRM
algorithm when it is run with n samples. In the reminder of the proof, we find a lower
bound for E[card (ESPRM)

Recall that we denote the connection radius of Algorithm 2 by r. Let P denote
the volume of the smallest region that can be formed by intersecting Xfree with an
r-ball centered at a point inside Xfree, i.e., p infXfree p( 3 , n Xfree). Since Xree is
the closure of an open set, p > 0.

In sPRM, the edges are created by connecting each sample to other samples within
a ball of radius r. The volume of the Xree that lies inside this ball is at least pt. Then,
the number of edges connected to each sample is lower bounded by the value of a
binomial random variable with parameters p/p(Xree) and n, since the underlying
point process is binomial. Since this is true for each sample, E[card (ESPRM) >

A( nf2. Then, E[Mn/n] ;> 2) n for all large n E N. Taking the limit inferior of
both sides gives the result. U

5.4.3 Collision-checking Complexity of PRM*, RRG, and RRT*

In this section, we provide a proof of Lemma 5.30, which establishes that the number
of calls to the CollisionFree procedure in all the proposed algorithms is at most
O(n log n), where n is the number of samples that the algorithm is run with.

Proof of Lemma 5.30 First, consider PRM*. Recall that rn denotes the connec-
tion radius of the PRM* algorithm. Recall that the rn interior of Xree, denoted by
intr, (Xree), is defined as the set of all points x, for which the rn-ball centered at x
lies entirely inside Xfree. Let A denote the event that the sample Xn drawn at the
last iteration falls into the rn interior of Xfree. Then,

E [M RM* =Em RM* M* A] IP(A) + E [M RM* Ac] I c(AC)

Let no E N be the smallest number such that p(intr(Xree)) > 0. Clearly, such
no exists, since limo rn = 0 and Xfree has non-empty interior. Recall that (d is the
volume of the unit ball in the d-dimensional Euclidean space and that the connection
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radius of the PRM* algorithm is rn = YPRM(log n/n)l/. Then, for all n > no

E [MPRM* dA] P n log n.
"p(intr, (Xfree)) "

On the other hand, given that Xn intr, (Xree), the rn-ball centered at X inter-
sects a fragment of Xree that has volume less than the volume of an rn-ball in the d-
dimensional Euclidean space. Then, for all n > no, E [M RM* Ac] E [MnRM* A]

Hence, for all n 2 no,

E [M RM*] < d YPRM < d YPRM

n log n ~u(intr, (Xfree)) - A (intr, (Xree))

Next, consider the RRG. Recall that n is the parameter provided in the Steer
procedure (see Section 4.1). Let D denote the diameter of the set Xfree, i.e., D :=

supXXCXfree ix - X'l, where I - I denotes the usual Euclidean norm. Clearly, whenever

77 > D, VPRM* - VRRG = RRT* surely, and the claim holds.
To prove the claim when 97 < D, let C, denote the event that for any point

X E Xfree the RRG algorithm has a vertex x' E VRRG such that x - < ij. As
shown in the proof of Theorem 5.22 (see Lemma 5.60), there exists a, b > 0 such that
P(Cn) < a e-bn. Then,

E [M RG] = E [M RG I Cn] P(Cn) + E [M RGI n]pCnj

Clearly, E [MRG Cn] < n 2 , since it is bounded by the maximum number of edges.

Hence, the second term of the sum on the right hand side converges to zero as n

approaches infinity. On the other hand, given that Cn holds, the new vertex that

will be added to the graph at iteration n, if such a vertex is added at all, will be the

same as the last sample, Xn. To complete the argument, given any set of n points

placed inside A(Xfree), let Nn denote the number of points that are inside a ball of

radius r, that is centered at a point Xn sampled uniformly at random from p(Xree).

The expected number of points inside this ball is no more than '((rl) log n. Hence,A(Xfree)

E[MRG I C] < ( )n log n, which implies the existence of a constant #1 E R>0

such that lim sup_,, E[MnRG
Since MRT* = MRG holds surely, lim supo E[MRG/(n log n) < q1 also. U

5.4.4 Time Complexity of Incremental Model Checking

In this section, we prove Lemma 5.31, which characterizes the computational com-

plexity of the incremental model checking algorithm proposed in Section 4.3.4.

Before providing the proof, we establish a number of intermediate results.

Lemma 5.70 Let # be a deterministic pa-calculus formula. Then, the number of

subformulas of # is at most order 1#1, i.e., card ({4 E Li : @ < #}) c O(l#|).
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Proof Consider the parse tree of #. Each subformula V) corresponds to a sub-tree,
rooted at the final operator in *. The number of such sub-trees in the parse tree of #
is at most order the total number of appearances of operators, atomic propositions,
and variables in #. Thus, the result follows. U

Lemma 5.71 The size of the game arena A = (V1, V2, 8) of the L1 game of k=
(S, sinit,7R, L) satisfies card (V1 U V2) E O(card (S) 1#|) and card (8) E O(card(R) |).

Proof Let V = V1 U V2. Let SF(#) denote the set of subformulas of #. By definition,
V C S x SF(#). Hence, by Lemma 5.70, we have card (V1 U V2) E O(card (S) 1#|).

We have that 8 C V x V = (S x SF(#)) x (S x SF(#)). However, we have
(v,v') E 8, where v = (s, @) and v' = (s', 4'), only if (s, s') E 1Z. Thus, card (8) E
O(card (R) 1#|). U

Lemma 5.72 Suppose the incremental model checking algorithm is run, with input
# as the formula, to generate the Kripke structure IC = (S, sinit, 7R, L). Then, the
number of v-vertices stored in the global data structure Nv (see the paragraph on
global data structures in Section 4.3.4) satisfies card (Nv) G O(log(card (S))).

Proof Consider the incremental process generating C. Initially, Nv = 0. The only
place that the set Nv is altered is in Lines 9-10 in Algorithm 9. Notice that these lines
are executed at most once for any vertex (s, V)) E V U V2 of the arena A = (V1 , V2, 8)
of the L1 game of IC and #. By Lemma 5.71, card (V1 U V2) E O(card (S)). However,
not every vertex in V1 U V2 is added to Nv. Only those that are v-vertices and
those that pass the test of AcceptVertex(A, (s, 4))) procedure are inserted. Recall
that AcceptVertex is a randomized procedure that returns True with probability
1/k, independent for each call, where k is the number of times that the procedure
is called. Then, the expected number of times that it returns True is the Harmonic
number, which is upper bounded by log(k). Since k < card (S) card (SF,(#)), the
result follows. U

Proof of Lemma 5.31 The AddState procedure (see Algorithm 7) only executes a
single line and returns. Hence, NAs c O(card (S)).

The argument for characterizing the complexity of NAD is more involved. Each
time it is called, the procedure runs the UpdateArena and UpdateGlobalDataStructures
a number of times. Let us analyze the computational complexity induced by these
procedures separately.

Firstly, the UpdateArena procedure updates the arena A = (V1 , V2, 8) and the
global data structures Nv and Lv. Note that, any line executed by this algorithm
is executed at most a constant number of times for each edge in 8, which satisfies
8 E O(card (R) |#)) by by Lemma 5.71. Thus, in the process of building the Kripke
structure C, the number of total simple computational operations performed by the
UpdateArena procedure is O(card (R) 1#|).

Secondly, the UpdateGlobalDataStructures is also run for each edge at most a
constant number of times, thus O(card (R) 1#|) times. However, the number of times
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its for loop is run depends on the size of RV(s, @), which is at most the number of v-
vertices in Nv, which in turn is bounded by O(log(card (S))) by Lemma 5.72. Hence,
the number of total simple computational operations performed by the procedure
UpdateGlobalDataStructures is O(log(card (S) card (SF,(#))) card (R) 1#|). M

5.4.5 Time Complexity of the Algorithms

In the section, the proofs of Theorems 5.32, 5.33, and 5.34 are provided. Collec-
tively, these theorems characterize the computational complexity of all algorithms
introduced in Chapter 4, in terms of the number of simple computational operations
performed when the algorithm is run with n samples. In this context, a simple compu-
tational operation is one that takes a constant number of clock ticks (independent of
n) on the central processing unit, such as additions, multiplications, or comparisons.

The proofs follow easily from the lemmas and the discussions given in Section 5.4.
Nevertheless, they are provided below for completeness.

Proof of Theorem 5.32 By Lemmas 5.28 and 5.29, both the PRM and the sPRM
algorithms spend at least order of n2 expected time in executing the CollisionFree
procedure. Thus, the result follows. U

Proof of Theorem 5.33 The result follows directly from the fact that both algo-
rithms take at least order n log n time to execute nearest neighbor queries. U

Proof of Theorem 5.34 Since we would like to provide an upper bound on com-
putational complexity, we have to take into account all the steps executed by the
algorithm. By Lemma 5.30, the expected number of calls to CollisionFree proce-
dure is at most n log n. Since execution time of the CollisionFree procedure is a
constant that is independent of n, the expected number of simple operations executed
for collision checking is at most order n log n.

The Nearest and Near procedures are called only a constant number of times for
each sample. Thus, they are called at most n times, and the procedure takes at most
log n expected time to execute in each such call. Thus, the expected number of simple
operations executed for Nearest and Near procedures is at most order n log n.

It is easy to see that any other intermediate operation requires no more than order
n log n expected number of simple operations to be executed.

This argument establishes that the asymptotic computational complexity of the
PRM*, RRG, and the RRT* algorithms is O(n log n). The p-RRT and the p-RRT*
algorithms, on the other hand, also call the AddState and AddTransition proce-
dures of the incremental model checking and synthesis algorithm for the determinis-
tic t-calculus. The asymptotic computational complexity added by these procedures
depends on the AcceptVertex procedure. Since we accept the kth vertex with prob-
ability 1/k, an expected number of O(log n) vertices are accepted. This renders the
total complexity of the p-RRT and the p-tRRT* algorithms becomes O(n log 2 n). M
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Chapter 6

Conclusions and Remarks

6.1 Summary

Sampling-based motion planning have received increasing attention during the last
decade. A number of algorithmic approaches were developed and rigorously analyzed.
In particular, some of the leading paradigms, such as the Probabilistic RoadMaps
(PRMs) and the Rapidly-exploring Random Trees (RRTs), have been demonstrated
on several robotic platforms, and found applications in diverse fields well outside the
robotics domain, ranging from computational geometry to drug discovery. However,
a large portion of this intense research effort has been limited to the classical feasible
path planning problem, which asks for a path that starts from an initial configuration
and reaches a goal configuration while avoiding collision with obstacles.

In this dissertation, we have presented a new class of algorithms that extend the
application domain of sampling-based algorithms to two novel directions: optimal
path planning and path planning with complex task specifications. Moreover, we
have analyzed some of the widely-used existing sampling-based algorithms in terms
of probabilistic completeness, computational complexity, and asymptotic optimality.

The optimal path planning problem asks for a path that solves the feasible path
planning problem while minimizing a cost function. Algorithms tailored to solve
the optimal path planning problem can provide high quality solutions, which may
be invaluable in a number of applications in robotics and beyond. In this text, we
have first shown that naive extensions of the existing algorithms fail to properly
address the optimal path planning problem. More precisely, we have shown that the
existing algorithms either lack asymptotic optimality, i.e., almost-sure convergence
to optimal solutions, or they lack computational efficiency: on one hand, neither
the RRT nor the k-nearest PRM (for any fixed k) is asymptotically optimal; on the
other hand, the simple PRM algorithm, where the connections are sought within fixed
radius balls, is not computationally as efficient as the RRT or other PRM variants.
Subsequently, we have proposed two novel algorithms, called PRM* and RRT*, that
guarantee asymptotic optimality, without sacrificing computational efficiency. In fact,
we have shown that the proposed algorithms have the same asymptotic computational
complexity when compared to the most efficient existing algorithms, such as the RRT.
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The feasible path planning problem asks for a path that satisfies a simple spec-
ification: "reach the goal region while avoiding collision with obstacles." We have
considered an extension of this problem with complex task specifications given in the
form of deterministic p-calculus. Example specifications include reachability, safety,
ordering, liveness, as well as a logical and temporal combination of there off. To ad-
dress this problem, we have proposed an incremental sampling-based algorithm that
is provably correct and probabilistically complete. That is, roughly speaking, the
proposed algorithm generates a correct-by-design path that satisfies the given spec-
ification, when such a path exists, with probability approaching one as the number
of samples increases to infinity. This algorithm is composed of two key ingredients,
which may be of independent interest. First is a novel incremental sampling-based
algorithm, called the RRG, that generates a representative set of paths in the form of
a graph, with guaranteed convergence to feasible paths. Second is a novel incremental
local model-checking algorithm for the deterministic y-calculus. Moreover, with the
help of these tools and the ideas behind the RRT* algorithm we have constructed a
sampling-based algorithm that also guarantees asymptotic optimality.

6.2 Current and Future Work
During the past couple of years, PRM*, RRT*, and their variants have spurred a grow-
ing interest. Recent research has combined the RRT*-like connection strategy, i.e.,
connection to O(log n) neighbors, with other, often novel, algorithmic components to
address a variety of problems. Just to name a few, an efficient sampling-based al-
gorithm that guarantees convergence to a constant-factor-optimal solution has been
proposed by Marble and Bekris (2012). A class of planning problems that involve
sensor noise have been addressed by Bry and Roy (2011). RRT* variants that can
trade off rapid exploration and fast convergence towards optimality were proposed
by Altorevitz et al. (2011). Massively parallel versions of the RRT* algorithm was
proposed by Bialkowski et al. (2011). The RRT* algorithm was extended to handle a
class of planning problem on manifolds by Jaillet and Porta (2012) and to deal with
a certain class of differential constraints by Webb and van den Berg (2012).

In the this section, we review some of our recent work in sampling-based algo-
rithms that are inspired by those presented in this dissertation. First, we discuss the
asymptotically-optimal sampling-based planning under differential constraints. Sec-
ond, we review some of our recent work on extending the domain of sampling-based
algorithms to control and estimation problems, including differential games, stochas-
tic optimal control, and optimal filtering. In both cases, we point a number of open
problems and directions for future work.

6.2.1 Sampling-based Planning on sub-Riemannian Manifolds
So far, we have only considered path planning problems, where we ignored the con-
straints implied by the dynamics governing the robot. The introduction of dynamics,
often represented by a set of differential constraints, changes the nature of a motion
planning problem significantly. In fact, in most cases, the algorithms proposed in this
dissertation can not be directly applied to problems involving differential constraints.
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Although important advances were made in addressing optimal motion planning
problems with (non-trivial) differential constraints, many important problems remain
open. In this section, we discuss two important variations of the optimal path plan-
ning problem. The first variation, discussed in Section 6.2.1, relaxes the implicit
requirement that the free space has non-empty interior. The second variant, pre-
sented in Section 6.2.1, introduces differential constraints into the problem definition.
In both cases, we outline the necessary modifications for the proposed algorithms
proposed to address the said extensions, and point out some of the open problems.

Path Planning on Riemannian Manifolds

In this section, we generalize the path planning problem. In the generalized version,
the configuration space is a Riemannian manifold rather than the unit cube. First, we
introduce some fundamental concepts from Riemannian geometry. Subsequently, we
define the problem of path planning on Riemannian manifolds. Finally, we discuss a
number of modifications to the proposed algorithms in order to address this problem.
This section mainly serves as a precursor to the next section, where we extend the
planning problems considered in Chapter 3 with differential constraints.

Riemannian Geometry: Below we introduce some fundamental concepts in Rie-
mannian geometry. Our presentation is brief; the interested reader is referred to the
standard texts, such as (Boothby, 1975; do Carmo, 1992), for a detailed exposition.
Our notation is fairly standard and closely follows that of Boothby (1975).

Let n, m E N. Let V C Rn and W C R' be two open sets. A function f : V -+ W
is said to be smooth if all its partial derivatives exist and are continuous. The function
f is said to be a diffeomorphism if f is a bijection and both f and its inverse f -1 are
smooth functions, in which case V and W are said to be diffeomorphic.

A set M C R"n is said to be a smooth d-dimensional manifold, if, for all p c M,
there exists an open set V C Rn such that V n M is diffeomorphic to an open set
V' c Rd.1 An interval, often denoted by I, is a convex subset of R. A smooth curve
on M is a smooth function -y : I -4 M for some interval I that includes the origin.

Given a point p E M, a vector v E R" is said to be a tangent vector of M at p, if
there exists a smooth curve - : R - M such that -y(O) = p and -(O) = v. The tangent
space of M at p is defined as TpM := {(0) -y is a smooth curve on M and -y(0) = p}.

A smooth function Y : M -± R' is called a smooth vector field on M, if Y(p) E
TpM for all p E M. The set of all smooth vector fields on M is denoted by VF(M).

A Riemannian metric on M is a family of positive-definite inner products, denoted
by g, := TpM x TM - R, parametrized by p E M, such that, for any two smooth
vector fields Y, Y' E VF(M), the function p -+ gp(Y(p), Y'(p)) is smooth as a function
from M to R. A smooth manifold M endowed with a Riemannian metric g is called
a Riemannian manifold. The pair (M, g) is called a Riemannian geometry.

'In general, a smooth manifold is a Hausdorff space with a countable basis such that any point on
the manifold has a neighborhood that is diffeomorphic to an open subset of the Euclidean space (see
Munkres, 2000). For all practical purposes, however, in this text we are only interested in manifolds
that can be embedded into an Euclidean space.
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Let denote the norm induced by the Riemannian metric g, i.e., vl = gp(v, v)
for all v E TpM and all p E M. Then, the length of a curve y : I - M is defined as

L(-y) : = |, 1(t) I dt.

The Riemannian distance between p, p' E M is defined as

d(p, p') := inf {L(-y) : 7 is a smooth curve with -y(0) = p and -y(1) = p'}.

Define the Riemannian ball of radius E as

B(p, e) := {p E M: d(p,p') < 6}.

Path Planning Problems on Riemannian Manifolds: In what follows, we
extend the path planning problems defined in Chapter 3 with a configuration space
that is represented by a Riemannian manifold. Let M C Rn be a d-dimensional
Riemannian manifold. Let Xosb, Xgoal c M be the goal set and the obstacle set,
respectively. Suppose that both sets are open relative to M. Define the free space as

Xfree := M \ X. Let xinit E M denote the initial configuration. Then, the feasible path
planning problem on a Riemannian manifold M is to find a finite-length Riemannian
curve that (i) starts from the initial configuration, (ii) reaches a final configuration,
and (iii) stays entirely within the free space.

Other path planning problems extend similarly. The new class of problems have
two major differences when compared to those we presented in Chapter 3. Firstly,
the configuration space is a d-dimensional Riemannian manifold, instead of (0, i)d.

Second, we seek a finite-length Riemannian curve on the configuration space manifold,
rather than a path, i.e., a continuous function with bounded variation.

Example Clearly, R" is an n-dimensional manifold since it is diffeomorphic to itself.
One of the most basic examples of a non-trivial manifold is the unit circle defined
as S' {(x 1 , x 2 ) E R x| + X2 2 . The configuration space of an n-

link planar manipulator can be represented by its n joint angles, hence the manifold

formed by the Cartesian product of n unit circles, i.e., M = S x S x ... x S'. A

more compact representation is M' = [0, 27r]". Note that, although M and M' are

embedded in R2' and R" , respectively, both manifolds are of the same dimension.

Examples that are more complex include closed kinematic chains. Consider, for

example, the n-link closed planar chain with both of the end effectors pinned down to

the origin of the Euclidean plane. In that case, the manifold M that represents the

configuration space is a subset of S' x S1 x ... x S' such that any point p E M respects

the constraint that the end effector is at the origin. That is, M := {(ai, a 2 , . . , an) E

[0, 2r]n : sin(ai) = 0 and En", cos(ai) = 0}. Clearly, the manifold M is a
measure-zero subset of R , the Euclidean space with smallest dimensionality that M

can be embedded into. The interested reader is referred to (Trinkle and Milgram,
2002; Milgram and Trinkle, 2004; Cortes and Simeon, 2005) for similar examples. U

126



Extensions of Algorithms: The novel asymptotically-optimal algorithms pre-
sented in Chapter 4 can not be used directly solve path planning problems on ar-
bitrary Riemannian manifolds. Below, we discuss the necessary modifications that
enable them to address the new class of problems. The modifications occur only in the
primitive procedures presented in Section 4.1. We redefine the primitive procedures
Sample, SampleFree, Nearest, Near, and Steer defined in Section 4.1 as follows.

The Sample and the SampleFree procedures draw independent identically dis-
tributed samples from M and M \ XebS, respectively. Given a configuration x E M
and a finite set V C M of configurations, the Nearest procedure returns the configu-
ration that is closes to x among those in V, with respect to the Riemannian distance
function, i. e., Nearest(V, x) := arg minv d(x, v), where d(., -) denotes the Rieman-
nian distance function. Hence, the only difference is that the distances are evaluated
in terms of the Riemannian distance function, rather than the Euclidean distance. All
the remaining procedures, namely Near and Steer, are modified in the same manner.

Finally, the CollisionFree procedure is implemented such that, instead of the
straight path, it checks whether the minimum-length Riemannian curve connecting
the two given configurations lies entirely in the free space.

Given these modifications for the primitive procedures, it can be shown that the
proposed algorithms achieve asymptotic optimality, while preserving computational
efficiency, for the optimal path planning problem on a Riemannian manifold.

Arguably, however, sampling from arbitrary Riemannian manifolds and computing
Riemannian distances, in a computationally efficient manner, is not a trivial task. In
fact, the importance of the problem of computing nearest neighbors with respect
to the Riemannian distance has not gone unnoticed: Yershova and LaValle (2007)
have proposed an algorithm based on kd-trees. Technical difficulties also arise when
computing minimum-length curves on a Riemannian manifold. Yet, it is relatively
easier to compute feasible curves on the manifolds studied in (Yershova and LaValle,
2007). Similarly, the task of drawing independent samples, for example, according
to the uniform distribution, is an easy task in many examples that arise in robotics,
e.g., in all examples discussed in (Yershova and LaValle, 2007), although technical
challenges may arise in a number of other examples.

This discussion may be considered an outline of a program to design asymptotically-
optimal and computationally-efficient sampling-based algorithms for path planning
problems on Riemannian manifolds. As we have outlined above, many challenges
remain. It is worth noting at this point that the modifications we propose are by no
means necessary, but they are sufficient. In fact, one may be able to relax a number
of these requirements, and still guarantee both asymptotic optimality and computa-
tional efficiency. For instance, a suitable approximation of the Riemannian distance
may suffice, rather than exact computations.

Let us note that, very recently, Jaillet and Porta (2012) discussed the extension
of the RRT* algorithm for the optimal path planning problem on a large class of
Riemannian manifolds. Their work considers a certain class of manifolds represented
by a set of inequalities. The proposed algorithm, called the AtlasRRT*, constructs a
family of local parametrizations, also called an atlas, currently with the RRT* tree.
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Trajectory Planning and Sub-Riemannian Geometry

In this section, we introduce a problem that extends the classical path planning
problem with differential constraints. Next, we introduce a number of fundamental
concepts in sub-Riemannian geometry. Subsequently, we point out an important
connection between the trajectory planning problem and a certain motion planning
problem on sub-Riemannian manifolds. The latter problem leads us to a number of
modifications to the proposed algorithms necessary to maintain asymptotic optimality
and computational efficiency. Finally, we review some of the open problems.

Trajectory Planning Problems: Consider the following dynamical system:

±(t) = f(X(t), U(t)), x(0) Xo (6.1)

where x(t) E X c R", u(t) E U C Rm , f : X x U --+ R is Lipschitz continuous
in both of its arguments. The dynamical system is said to be smooth if f(., -) is
a smooth function, i.e., all partial derivatives of f exists and are continuous. A
trajectory x : [0, T] -+ X is said to be dynamically feasible, if there exists a Lebesgue-
measurable input signal u : [0, T] -+ U such that u and x satisfy Equation (6.1).

The state xO E X (see Equation (6.1)) is called the initial state. Let XObs C X
and Xgoai C X, called the obstacle set and the goal set, be open relative to X. Let
Cost : E -> R>o be a cost function that assigns each non-trivial trajectory a non-
zero cost. Then, the trajectory planning problem is to find a dynamically-feasible
trajectory x : [0, T] -- X that (i) starts from the initial state, i.e., X(0) = xo, (ii)
avoids collision with obstacles, i.e., x(t) Xobs for all t E [0, T], and (iii) reaches
the goal region, i.e., x(T) C Xgoai. The optimal trajectory planning problem is to
find a trajectory x* : [0, T] -+ X that solves the trajectory planning problem while
minimizing the cost function c. The feasible and optimal trajectory problems extend
the feasible and optimal path planning problems, given in Problems 3.1 and 3.2, with
dynamics. Similarly, trajectory planning problems with complex task specifications
can also be defined as extensions of Problems 3.3 and 3.4.

We use the term motion planning collectively for trajectory planning and path
planning problems. In the literature, trajectory planning problems are often called
planning problems with differential constraints (e.g., in LaValle, 2006); in this case,
the differential constraint is the constraint imposed by Equation (6.1).

Note that trajectory planning is a generalization of path planning. With the
(trivial) differential constraint i = u, where x E X, u E U, and X = U = [0, 1 ]d,

we recover the path planning problems described in Chapter 3. In fact, a larger class
of trajectory planning problems are equivalent planning problems on Riemannian
manifolds, in which case the algorithms we have proposed in Chapter 4 can be applied
with minimal changes (see the discussion in Section 6.2.1).

A more interesting class of trajectory planning problems are those that can not
be directly reduced to a planning problem on a Riemannian manifold. These are
exactly those problems in which the degree of non-holonomy of the underlying sys-
tem, defined in the differential-geometric sense, is greater than unity. Such systems
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can be fully characterized using sub-Riemannian geometry. Below, we define the de-
gree of non-holonomy of a system, after introducing a number of preliminaries from
sub-Riemannian geometry. Subsequently, we outline a number of modifications to
the proposed algorithms in order to address a certain class of trajectory planning
problems. Along the way, we provide a number of examples to illustrate some of the
important connections between sub-Riemannian geometry and planning under differ-
ential constraints. These connections were partially uncovered in seminal publications
on non-holonomic planning, such as (Laumond et al., 1998).

Sub-Riemannian Geometry: In Section 6.2.1, we briefly introduced a number
of fundamental notions in Riemannian geometry, including the definitions of smooth
manifolds, smooth curves, tangent spaces, smooth vector fields, and Riemannian met-
rics, which lead to the definition of Riemannian geometry. In this section, we build
upon those definitions by introducing a number of new concepts, which help us define
a sub-Riemannian geometry. Along the way, we point out the links between sub-
Riemannian geometry and trajectory planning problems. For a thorough exposition
to sub-Riemannian geometry, the reader is referred to the monographs by Strichartz
(1986); Bellaiche (1996); Gromov (1996); Montgomery (2002). Our notation closely
follows that of Montgomery (2002).

Let k, 1 C N. A set E C M x R1 is said to be a smooth vector bundle of rank k
over the manifold M, if the set E, := {v E R I (p, v) c E} is a k-dimensional linear
subspace of R'. The set E, is also called the fiber of E over p. In particular, the
vector bundle TM := {(p, v) p c M, v E TM} is called the tangent bundle of M.
Note that its fiber, TM, is an m-dimensional linear subspace of Rn. A subbundle of
a vector bundle is a subset that is a vector bundle on its own right.

A distribution on a manifold M is a subbundle N of the tangent bundle TM. A
sub-Riemannian geometry on a manifold M is a distribution N on M together with
an inner product g(-,-) :-W x N - R>o. The set W is also called the horizontal
distribution. The fiber of N at a point p e M is denoted by W,. A curve 7 : I -+ M
defined on the manifold M is said to be a horizontal curve, if it is tangent to N, i.e.,

(t) = N-(t) for all t E I.
The length of a smooth horizontal curve 7 I -4 M is defined as in the case of

Riemannian geometry, i.e., L() := f, li(t)| dt. The sub-Riemannian distance between
two points p, p' E M is defined as

d8 (p, p') : inf {L(y) : 7 is a smooth horizontal curve with -y(0) = p and 7 (1) = p'}

Define the sub-Riemannian ball of radius e as B,(p, e) := {p E M : d,(p, p') < e}.
Contrast these definitions with the definition of the Riemannian distance and the

Riemannian ball given in Section 6.2.1. In the computation of the sub-Riemannian
distance, the curve connecting the two points is forced to be horizontal, thus forced
to respect the constraints in the tangent space posed by the horizontal distribution.

Example Suppose the configuration space of a robot is represented by a manifold
M. Then, the dynamics governing this robot, i.e., constraints on its velocities while
moving within its configuration space, can be represented by a distribution.
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Consider, for instance, the Reeds-Shepp vehicle (see Reeds and Shepp, 1990). Its
configuration space can be represented by the manifold M = R2 x S encoding its
planar position and its orientation. To succinctly describe its dynamics, define the
state variables (x, y, 0), where (x, y) C R2 describes the position and 0 E [-7r, 7r]
describes the orientation of the vehicle. Then, its dynamics satisfies

( (t) X(t) / (t) u (t) cos(0(t))
(t) f y (t) 2 = u1(t) sin(0(t))
bi) y(t ) ( t ) tU) ' u1(t) u2 (t)

where lui(t)|, u 2 (t)| < 1. The input signals u1 and U2 denote the forward velocity
and the steering angle, respectively.

The right hand side of the equation above induces a distribution W on the manifold
M. More precisely, -, is the family of vector fields Y(p) = {f(p, u) : u c U}, for all
p E M. At the origin, i.e., at (zI, y, 0) = (0, 0, 0), this distribution is spanned by the
vectors (1, 0, 0) and (0, 0, 1). These vectors span a two dimensional plane along the
coordinates x and 0. This merely indicates that the car can move in the longitudinal
direction and it can change its orientation; but it can not move sideways, as the vector
(0, 1, 0) is not included in the span of the distribution at the origin. U

Two important results in sub-Riemannian geometry are the Chow's theorem and
the Ball-Box theorem (Gromov, 1996). In what follows, we state these theorems,
after introducing a number of new definitions. Along the way, we define the degree
of non-holonomy for a horizontal distribution.

Let Y, Z be two vector fields defined on a smooth manifold M. The Lie bracket
of Y, Z is a vector field defined as

[Y, Z](p) := Z(p)Y(p) - Y(p)Z(p),

for all p E M, where f(p) : TM -+ R" denotes the derivative of the Y at point
p E M. More formally, the derivative of Y at point p E M in the direction v E T,M,
denoted by Y(p) v, is defined as follows. Let y : R -+ M be a smooth curve such
that -y(O) = p and y(0) = v, and define f (p)v j =Y(y(t)) = lim8 _0 Y(y(s))-Y(p)

It can be shown that this limit does exist; moreover, the limit is independent of the
particular curve chosen to evaluate it.

For a Riemannian geometry, let Lie(F) denote the set of all vector fields formed
by F along with all iterated Lie brackets of vector fields from F, i.e., Lie(F) :=
F U {[Y1 , [Y2 , . -- [Yn- 1, Yn] ... ]| Y E F, n E N}. It can be shown that Lie(F), also
called the Lie hull of F, is a Lie algebra (see, e.g., Montgomery, 2002).

The definition of a Lie hull extends naturally to sub-Riemannian geometry. Given
a distribution W on M, recall that l, denotes its fiber at the point p E M. Define
W1 := {Y E VF(M)|Y(p) E W,}. For all k c N and k > 1, define Wk+1 .=
fk U [W1, Wk], where [Nl,Nk] = Span{[Y, Z] Y E W1 1,Z E Wk}. Define the fiber of
Wk at point p E M as Wk1 := {Y(p) Y E Wk}. Then, the Lie hull of W is simply
Lie(N) := Uk>La1k. Its fiber over p E M is Lie(-), := {Y(p) Y E Lie(N)}. The
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distribution N is said to be bracket generating, if the Lie hull of N spans the whole
tangent space of M, i.e., Lie(N), = TpM for all p c M.

A central result in sub-Riemannian geometry is stated in the following theorem.

Theorem 6.1 (Chow's Theorem (Chow, 1970; Montgomery, 2002)) Let N
be a bracket generating distribution on a connected manifold M. Then, any two points
of M can be joined with a horizontal path.

The condition that the distribution is bracket generating, is called Chow's condition in
sub-Riemannian geometry (Montgomery, 2002), the linear algebra rank condition in
control theory (Bullo and Lewis, 2004; Jurdevic, 1997; Isidori, 1994), and H6rmander's
condition in the context of partial differential equations (Hormander, 1967).

Example We continue the previous example. Given any configuration (X, y, 0) of
the Reeds-Shepp car, the vector fields Y1 = (cos 0, sin 0, 0) and Y2 = (0, 0, 1) span the
distribution induced by its dynamics. The Lie bracket of these two vector fields can be
calculated as [Y1, Y2] = (- sin 0, cos 0, 0). Notice that the vector fields {Y, Y2, [Y1, Y2]}
span the whole tangent space, satisfying Chow's condition. Then, Chow's theorem
merely tells us that, given two configurations of the Reeds-Shepp car, there exists a
dynamically-feasible trajectory, i.e., a horizontal curve, that joins the two. In fact,
even though the car can not move sideways directly, it can travel to a position that
lies to its side by moving forward and backward while steering suitably. U

Let N be a bracket generating distribution. Then, for any p E N, there exists
an integer r(p) such that R, C N C ... C cN ) = TpM. The smallest such integer
is also called the degree of nonholonomy of the distribution N at point p (Bellaiche
et al., 1998; Montgomery, 2002). When the degree of non-holonomy is equal to one,
N already spans TM; thus, no effective constraint is imposed on the tangent space.
In other words, using a linear combination of the vector fields in N, we can recover
the whole tangent space. However, when R, $ TM, the distribution N imposes a
non-trivial constraint in the tangent space. As a consequence, no horizontal curve
can move in the direction of TM \ N, directly. Yet, it is possible to move in the
directions spanned by Nj \ R,, by switching between two vector fields Y, Z E N
for which [Y, Z] E N 2 \ N. The movement in the directions spanned by N2 \ N ,
however, occurs more "slowly" than the movement in the directions spanned by N,.
How slowly this movement occurs is described by the ball-box theorem. Below, we
provide a number of preliminary definitions and state the ball-box theorem.

Let nk(p) denote the dimensionality of the space spanned by N. The list (ni(p),
n 2 (p),. . . , nr() (p)) of integers is called the growth vector of N at p. When N is bracket

generating, the dimensionality of 'H4p) equals to that of TpM, i.e., nr(r = n. The
point p is said to be a regular point, if there exists an open neighborhood of M around
p such that the growth vector is constant; otherwise, p is said to be a singular point.

Given a vector field Y, let exp tY denote its flow. That is, (exp tY) : M -± M
is such that (exptY)(p) is equal to y(t) where y : [0, t] --+ M is a solution to the
following differential equation: jy(r) = Y(y(r)) and y(O) = p. In other words,
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(exp tY) (p) denotes the point that a system evolving on the manifold M reaches
under the influence of the vector field Y for t time units starting from the point p.

Suppose that p is a regular point, and denote the growth vector at this point simply
by (ni, n2,... , nr.), where n, = n. Define the vector fields Y, Y2, ... , Yn as follows:
the set {Y, Y2 , ... , Y 1 } of vector fields spans W; the set {Y1, Y2 ,. ... , Yn2 } spans H 2;

and so on. Define the joint flow of all these vector fields as b(ti, t 2 ,. . . , tn; p) :=

((exp t1Y1)o(exp t2Y2)o .. o(exp tnYn)) (p), where o denotes the functional composition
operator. Hence, <D(ti, t 2 , .. . , tn; p) denotes the point reached, starting from p, under
the influence of vector field Y for tn time units, then Y_ 1 for tn_1 time units, and
so on. Since p is a regular point, such a map can be defined in some neighborhood
of p. For notational convenience, define the weights wi := k if Y(p) E 7- and
Y;(p) ( Hk+1 for all i E {1,2, ... , n}, and define w := (wI, w2 , ... , wn). Finally,
define the w-weighted box of size e > 0 centered at p E M as

Boxw (p, e) := {<b(ti, t 2 ,... ,tn;p) | tkJ l Ewk}.

Recall that the sub-Riemannian ball of radius E is defined as

B,(p, e) := {p E M : d,(p, p') < 6}.

The following theorem, attributed to Mitchell, Gershkovich, and Nagel-Stein-
Wainger by Gromov (1996), is an important result in sub-Riemannian geometry.

Theorem 6.2 (Ball-Box Theorem (see Montgomery (2002))) Suppose that H
satisfies Chow's condition. Then, there exists positive constants 60, c, C with c < C
such that for all E < 60 and for all p E M,

Box' (p, ce) C B,(p, c) c Box' (p, Ce) .

Informally speaking, the ball-box theorem estimates the size of a small sub-

Riemannian ball up to a constant factor. It states that the set of states that can

be reached by a horizontal path starting from p contains a weighted box of radius c 6

and is contained in a box of radius C e. The orientation of these boxes at a particular

point is determined by the vector fields {Y 1 , Y 2 ,. .. , Yn} evaluated at that point. Note

that Chow's theorem can be deduced from the ball-box theorem (Montgomery, 2002).

Example Denote by H the distribution induced by the dynamics of the Reeds-

Shepp car. From the previous example, R c W 2 = TM, and the vector fields Y =

(cos9, sinO,0), Y2 = (0, 0, 1), Y3  (-sinO,cosO,0) are such that Span{Yi, Y2} = W
while Span{Yi, Y2 , Y =} H 2 . Since the dimensionality of the space spanned by H

and H 2 are equal to two and three, respectively, the growth vector is (2, 3) for all

points on the manifold describing the configuration space of the Reeds-Shepp car.
The weight vector, on the other hand, can be computed as w = (1, 2, 1).

Suppose that the car is at the origin, i.e., (x, y, 0) = 0 := (0, 0, 0). Then, we
calculate Y1 (0) = (1, 0, 0), Y2 (0) = (0, 0, 1), and Y3 (0) = (0, 1, 0). In this case, the
ball-box theorem implies that the set of states reachable from 0 within t time units
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Figure 6-1: Figure (a) shows the resulting trajectory of the vehicle when it moves

forward while turning right. Figure (b) shows the resulting trajectory after four

maneuvers. The x- and y-axes are also shown in the figures. Note that Figure (b) is

rotated 90 degrees when compared to Figure (a).

contains a box of size [-c t, c t] x [-c t 2 , c t 2 ] x [-c t, c t] for all small enough t > 0,
where c > 0 is a constant. In other words, the car can move a distance of ct in
the longitudinal direction within t time units, and it can turn with a constant speed,
both of which are apparent from the equations describing its dynamics. However,
the ball-box theorem also states that the car can move a distance of c t2 sideways by
combining its maneuvers, which is not immediately obvious.

Let us explicitly provide a sequence of maneuvers that translates the car sideways

for at least a distance of c t 2 within time t. Consider the following four maneuvers

applied sequentially in this order: (i) forward and right, i.e., ui(t) = u 2 (t) -1,
(ii) forward and left, i.e., ui(t) = 1, U2 (t) = 1, (iii) backward and right, i.e., ui(t)
-1, u 2 (t) -1, and (iv) backward and left, i.e., ui(t) -1, u(t) = 1, with each set
of controls applied for T/4 time units. As seen in Figure 6-1, with each move the car

moves a distance of 1 = cos(a) = 1 - cos((7/2) t) along the y-axis. Using the Taylor

expansion of the cosine function, cos a =1 - -+ we conclude that total

distance traveled by the car along the y-axis satisfies 4 (1 - cos((7r/2) t)) = c t 2 +o(t 2 ),
where o(t 2 ) denotes terms that are smaller than t2 asymptotically and c is a constant.

Hence, after the aforementioned four moves, the car ends up roughly at the point

(0, c t 2, 0), confirming the result of the ball-box theorem.
Note that the ball-box theorem also predicts that no move executed within t time

units can move a distance more than C t 2 , for all small enough t. U

Links between sub-Riemannian Geometry, Control Theory, and Motion
Planning: We define the motion planning problem on sub-Riemannian manifolds as
follows. Let M c R"n be a d-dimensional Riemannian manifold. Let Xobs, Xgoal C M
denote the obstacle set and the goal set, respectively, both open relative to M, and

define the free space as Xree := M\Xebs. Let zinit denote the initial state. Let W be a
distribution defined on M. Then, the motion planning problem on a sub-Riemannian
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manifold is to find a finite-length sub-Riemannian curve -y on (M, W), such that Y (i)
starts from the initial state, (ii) reaches a final state in Xgosa, and (iii) stays entirely
within the free space. Clearly, by construction, any sub-Riemannian curve respects
the distribution 'W, i.e., tangent vectors along the curve are in W.

The trajectory planning problem and the motion planning problem on a sub-
Riemannian manifold are tightly linked. The state space X in the former is repre-
sented by the manifold M in the latter. The dynamics is represented by the differential
constraint z = f(x, u), where u E U, in the former, and by the distribution W in the
latter. In fact, the 'H is merely the set {f(p, u) : u E U} for all p E M.

Extensions of Algorithms: A set of modifications is necessary for the proposed
algorithms to address trajectory planning problems, or equivalently planning prob-
lems on sub-Riemannian manifolds. As in previous section, the modifications only
occur in the primitive procedures introduced in Section 4.1.

We modify the primitive procedures as follows. The Sample procedure returns
independent and identically distributed samples from M. Thus, the Sample procedure
is implemented as in Section 6.2.1.

The primitive procedures that run proximity queries, namely Nearest and Near
procedures, are modified such that the distance metric is the sub-Riemannian metric.
That is, Nearest(V, x) := arg min,,v d(x, v), where d,(., -) is the sub-Riemannian
distance function, and the Near procedure is defined similarly. Note that precise
computation of the sub-Riemannian distance is by no means trivial. However, the
ball-box theorem provides us with an approximation in terms of Euclidean distances:

Near(V,x) := V Box" z, (logcard(T) 11D
(card (V))

where w is the associated weight vector as defined above, Boxw (x, r) is the weighted
box of size r, with weight vector w, centered at the point x, and D := E w'i.
Incidentally, the integer D coincides with the Hausdorff dimension of the distribution
'W (see Montgomery, 2002). It can be shown, using the ball-box theorem, that this
implementation of the Near procedure, in fact, leads to asymptotic optimality. More-
over, the expected number of vertices contained in this box is O(log card (V)), which
in turn implies that, for example, the number of times CollisionFree procedure is
called is no more than O(n log n), when the algorithm is run with n samples.

Finally, the CollisionFree procedure is implemented such that it checks for col-
lision the minimum-length horizontal curve connecting the two given configurations.
The minimum length horizontal curve, i. e., the optimal trajectory between two states,
can be computed exactly for a class of dynamical systems, such as a double integra-
tor, Dubins' car (Dubins, 1957), or the Reeds-Shepp car (Reeds and Shepp, 1990).
However, computing even a feasible trajectory between two states amounts to solving
a boundary value problem, which may be analytically and computationally challeng-
ing. Designing algorithms that can get around solving boundary value problems, for
example, using suitable approximations instead, remains largely an open problem.
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6.2.2 Anytime Sampling-based Algorithms for Control Prob-
lems

One of the defining properties of the RRT* algorithm is its anytime flavor: the algo-
rithm finds a feasible solution quickly, e.g., almost as fast as the RRT, and improves
this solution towards an optimal one when it is provided with more computation time.
In other words, the RRT* algorithm constructs an approximation to the solution of
the optimal path planning problem in an anytime manner. The approximation, ini-
tially, is crude; However, when more computation time is allowed, the approximation
is refined towards an exact solution to the problem (of optimal motion planning).

Arguably, anytime algorithms may be especially valuable in robotics applications,
where the computation time that can be devoted to planning is rarely known a priori.
In fact, in many robotics applications, the end of the planning phase is triggered by
an uncontrolled event. Once the computation time for planning is up, the robot is
forced to implement a feasible plan to make progress towards the goal. Furthermore,
in some cases, the planning is an online process, where the robot can improve its plan
even during execution time, i.e., as parts of the plan is being executed, other parts
of it are improved on the fly (see, e.g., Karaman et al., 2011). Arguably, anytime
sampling-based algorithms, like the RRT*, may be invaluable planning tools for such
applications of robotics and similar problems arising in many other domains.

Anytime sampling-based algorithms like the RRT* have inspired a class of novel
algorithms tailored to solve, in an anytime manner, fundamental problems that fre-
quently arise in optimal control and estimation. In this section, we survey recent
progress in extending the application domain of sampling-based algorithms to some
of these problems. Along the way, we point out a number of open problems.

Differential Games

Broadly speaking, a (non-cooperative) differential game involves multiple players,
each of which seeks to maximize her own payoff, subject to differential constraints. Ini-
tial applications of differential games have mainly been in the military domain (Isaacs,
1965). However, it was quickly realized that this class of problems have vast civilian
applications, such as air traffic control (see, e.g., Tomlin et al., 1998).

In the rest of this section, we first extend the motion planning problem with
adversarial agents, where the robot tries to avoid capture by the adversarial agents in a
complex environment populated with obstacles. Subsequently, we outline a sampling-
based algorithm that solves this problem with probabilistic guarantees on soundness
and completeness. This problem and the algorithm were presented in (Karaman and
Frazzoli, 2010b). We close this section with a brief overview of the open problems.

A Class of Pursuit-Evasion Games: Below, we describe a two-player zero-sum
differential game in which one of the players, called the evader, tries to escape in
minimum time to a goal set, while the second player, called the pursuer, tries to
capture the evader, before doing so. More formally, consider a time-invariant dynam-
ical system described by the differential equation i(t) = f(x(t), Ue(t), up(t)), where
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x : t 4 x(t) E X c Rd is the state trajectory, ue : t H- Ue(t) C Ue C R"Me is the
evader's control input, up : t '-+ up(t) E Up C Rm is the pursuer's control input.
The sets X, Ue, and Up are assumed to be compact, the control signals Ue and up
are bounded and measurable, and f(z, we, wp) is locally Lipschitz in z and piecewise
continuous in We and wp. Let Xobs, Xgoal, and Xcapt denote the obstacle set, goal set,
and capture set, which we assume to be open.

Given an initial condition x(0) E X \ Xobs and the control inputs of the evader and
the pursuer, a unique state trajectory can be computed. The final time of the game
is given by T = inf{t C R>o : x(t) C cl (Xgoai U Xcapt)}, i.e., the time at which either
the evader escapes to the escape set or the pursuer captures the evader. Since this
is a zero-sum game, only one objective function will be considered, which is defined
as follows: L(ue, up) = T, if x(T) E cl(Xgoai); and L(ue, up) = +00, otherwise. The
evader tries to minimize this objective function by escaping to the goal region in
minimum time, while the pursuer tries to maximize it by capturing the evader before
she reaches the goal.

Let BR : Ue -+ Up denote the transformation that maps each evader trajectory
to the best response of the pursuer, i.e., BR(ue) := arg maxup L(ue, up). In the game
described above, the evader picks her strategy so that L* = L(u*, BR(u*)) < L(Ue, ep)
for all Ue and all up. Let u* := BR(u*). Then, the pair (U*, u*) is called the (open-
loop) Stackelberg equilibrium of this differential game (Bagar and Olsder, 1982).

As common in pursuit-evasion games, the dynamics of the agents in the problem
considered in this section further possesses a separable structure, in the following
sense. It is assumed that the state can be partitioned as x = (Xe, xp) C Xe X Xp = X
the obstacle set can be similarly partitioned as Xobs = (Xbs,e X Xp) U (Xe X XObs,p),
where Xobs,e C Xe and Xobs,p C Xp, the goal set is such that Xgoal = (Xe,goal x XP) \
Xcapt, where Xe,goai c Xe, and the dynamics are decoupled as follows:

d d Xe(t) fe (Xe(t), Ue(t))
_X(t) =f (X (t), u(t)) = , for all t E R>o,

dt dt xp(t) fp ((t), uP(t))

It is also assumed that the initial condition is an equilibrium state for the pursuer,
i.e., there exists u' c UP such that fp (Xt,p ') 0.

The algorithmic question in this problem is to compute T, the final time of the

game, and compute u*, the Stackelberg strategy for the evader, whenever T is finite.

The pursuit-evasion game described above generalizes the (minimum-time) op-

timal motion planning problem with an adversarial agent, namely the pursuer. In

addition to reaching the goal region (in minimum time) while avoiding collision with

obstacles, the evader must also avoid capture by the pursuer. Arguably, the prob-

lem we describe above is the simplest extension of optimal motion planning with

adversarial agents. We discuss a number of other extensions later in this section.

Sampling-based Algorithm: In (Karaman and Frazzoli, 2010b), we propose a
sampling-based algorithm that solves the pursuit-evasion game described above, with

probabilistic guarantees. The algorithm computes the set of all states that the evader
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can reach without being captured by the pursuer, in an anytime manner. For this
purpose, two instances of the RRT* algorithm is employed, one rooted at the initial
configuration of the evader and another rooted at that of the pursuer. The two RRT*
instances are run independently with the following exception. The vertices of the tree
that belongs to the evader's RRT* are deleted, when it is ensured that the evader can
be captured via a path in the tree that belongs to the pursuer's RRT*. If the evader's
RRT* tree is rich enough to include a trajectory that reaches the goal region while
avoiding collision with obstacles, the algorithm returns this trajectory. The details of
the algorithm can be found in (Karaman and Frazzoli, 2010b).

The output of the algorithm is a trajectory for the evader, which converges to a
Stackelberg strategy (as defined above) in some suitable sense. The nature of this
convergence can be made precise through a number of formal properties that the
algorithm is equipped with. Below, we describe these properties, after introducing
some preliminary definitions.

An algorithm is said to be sound for the pursuit-evasion problem, if the trajectory
it returns, whenever it returns one, is feasible, i.e., the trajectory (i) starts from
evader's initial state, (ii) reaches the goal region, (iii) avoids collision with obstacles,
and (iv) avoids capture by the pursuer. The trajectory returned by the algorithm
described above, when the algorithm returns one, reaches the goal region and avoids
collision with obstacles, by construction, since it is generated by an RRT* rooted
However, the returned trajectory avoids capture by the pursuer, if the pursuer's RRT*
is dense enough, which occurs, roughly speaking, with probability converging to one
as the number of samples approaches infinity. Hence, the algorithm we describe above
is probabilistically sound, i.e., given that the algorithm returns a trajectory infinitely
often, lim infa,. P({o-, is feasible}) = 1, where o, is the trajectory returned by the
algorithm by the end of iteration n. In comparison, the solution returned by all of
the sampling-based algorithms we presented in Chapter 4 are sound, i.e., the solution
returned by the algorithm, if it returns one, is feasible.

The algorithm we present in this section is probabilistically complete, like many
other sampling-based algorithms, i.e., lim inf,,. P({the algorithm returns a feasible
solution in iteration n}) = 1, whenever there exists a feasible solution to the problem.

Finally, the algorithm is asymptotically optimal, in the sense that the trajectory
returned by the algorithm converges to a minimum-time solution, almost surely.

Extensions and Open Problems: The pursuit-evasion problem introduced above
is a relatively simple differential game. In fact, arguably, it is the simplest extension
of the optimal path planning problem with adversarial agents. Many open problems
remain on the path to designing general-purpose anytime sampling-based algorithms
for differential games.

In particular, the case when the evader's and the pursuer's dynamics are coupled
may captures a class of planning under uncertainty problems, where the actions of
the pursuer represents the disturbance. Then, the objective is to plan a trajectory
that is feasible no matter what disturbance is observed during execution.

Another direction with a vast potential for impact is to relax the relax the re-
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quirements on the information structure. In the problem discussed in this section,
the evader does not observe at all the actions of the pursuer, as the game progresses.
In some practical cases, the pursuer may, in fact, not be visible to the evader during
execution, although the initial state of the pursuer is known. However, in many other
cases, the evader may be able to observe the state of the pursuer in execution time. In
that case, the solution provided by the algorithm presented in this section is sound.
However, it is conservative. Thus, the algorithm is not complete for this problem.
Designing anytime sampling-based algorithms that return feedback control strategies
that converge to, for example, Nash equilibrium solutions under feedback information
structure (see Bagar and Olsder, 1982), remains an open problem.

Stochastic Optimal Control

In the optimal trajectory problem introduced in Section 6.2.1, we assumed that the
dynamics is deterministic. In this section, we extend this problem with noisy dynam-
ics. In what follows, we define the continuous-time and continuous-space stochastic
optimal control problem. Subsequently, we describe the key ideas behind an anytime
sampling-based algorithm tailored to solve this problem. We end this section with
a list of open problems in this direction. The material we present in this section is
largely taken from (Huynh et al., 2012), which the interested reader is referred to.

Problem Description: Let n, m, k E N, and let R'xk denote the set of all n by
k real matrices. We denote the k-dimensional Brownian motion by {w(t) : t > 0}.
Let S C R and U C R' be compact sets with non-empty interior. Consider the
stochastic dynamical system

dx (t) = f (x (t),u (t ))dt + F (x (t), u(t)) dw (t),

where f : S x U -4 R" and F : S x U -+ Rnxk. A policy is a function of the form
p : S -4 U. Under policy p, the state of the system is a stochastic process, denoted
by {x,1(t) : t > 0}, that a solution to the following integral equation:

x1(t) = x(0) +1 f (xp(T), A(x,(T))) dr + j F(x,(T), P (xt(T))) dw(T)

for all t < T,1 , where T, is the first exit time of the system defined as T, := inf{t
xj(t) ( int(S)}. Define the cost rate function and the terminal cost function as
# : S x U -+ R and V/ : S -- R, respectively. Then, the cos-to-go function under
policy y starting from state z is defined as

J(z) = E #(x(t), p(x,(t)))dt + 4$(x,(t)) x0 = z.

The optimal cost-to-go function is defined as J*(z) = infEn, J(z), where 1 denotes
the set of all (admissible) policies. The policy p*, for which J,-(z) = J*(z) for all
z E X, is called the optimal policy.
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The algorithmic question in stochastic optimal control is to compute the optimal
cost-to-go function and the optimal policy, for a given problem instance described by
the tuple (S, U, f, F, g, h). The stochastic optimal control problem as described above
extends the optimal motion planning problem with stochastic dynamics. By suitably
choosing the terminal cost function 0(.), the optimal policy can be encouraged to
stay away from the obstacle set and eventually reach the goal set. That is, O(x) = v
for all x E OXobs U ([0, 1 ]d and 4'(x) = e for all x E &Xgoal, where XbS and Xgoai
are the obstacle set and the goal set, [0, 1]d is the configuration space, and the 8
operator denotes the boundary of a set. The particular values of C and v can be
tuned in order to discourage the controller from taking risk, by steering away from
the obstacle boundary, thus decreasing the chances of a collision; or vice verse.

Sampling-based Algorithms: A sampling-based algorithm that solves the prob-
lem presented above, with probabilistic guarantees, is presented in (Huynh et al.,
2012). The key idea behind this algorithm is to generate a sequence of discrete-time
finite-state Markov decision processes, the trajectories of which converges in distri-
bution to the trajectories of the original stochastic dynamical system. To compute
the optimal value function, the algorithm also employs an incremental value iteration
algorithm, based on the asynchronous parallel value iteration algorithm presented
by Bertsekas and Tsitsiklis (1997). The resulting sampling-based algorithm guaran-
tees convergence in some suitable sense to the optimal value function, almost surely,
as the number of samples approaches infinity. Moreover, the algorithm has attrac-
tive computational properties that allow real-time implementations in online settings.
The reader is referred to (Huynh et al., 2012) for details.

Extensions and Open Problems: The stochastic optimal control problem dis-
cussed in this section is fairly general, aside from the assumption that the state is fully
observed. Yet, a number of practical generalizations have not yet been addressed.

First, only Brownian noise model is used in the formulation above. In this model,
the perturbation due to noise is a topologically continuous trajectory, almost surely.
Using sampling-based algorithms to address continuous-time continuous-space prob-
lems involving other noise models remains open.

Second, we have considered a relatively simple objective function: the expected
value of the line integral of a cost rate function with respect to the trajectory and a
terminal cost function. Algorithms that minimize, for example, the variance of the
same cost function may be valuable in applications, where high risk is prohibited.

Optimal State Estimation

Throughout the thesis, we focused on problems that assumed perfect observation
of the state of the robot as well as that of its surroundings. In many applications,
however, only noisy observations of the state are available, in which case estimating
the current state of the system becomes an important problem (Thrun et al., 2005).

In this section, we introduce a continuous-time continuous-space state estimation
problem, for which an anytime sampling-based algorithm was recently proposed. This
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material is presented in detail in (Chaudhari et al., 2012), which the interested reader
is referred to. We also point out a number of open problems on the path to truly
anytime sampling-based algorithms for planning problems under uncertainty, in par-
ticular an extension of the stochastic optimal control problem with noisy observations.

Problem Description: Let {w(t) : t > 0} be a k-dimensional standard Brownian
motion, and let {v(t) : t > 0} be an i-dimensional standard Brownian motion inde-
pendent of w(t). Consider the following autonomous stochastic dynamical system:

dx(t) = f (x(t)) dt + F(x(t)) dw(t),

dy(t) = g(x(t)) dt + G(x(t)) dv(t),

where x(t) E X C R' denotes the state and y(t) E Y C R4q denotes the observation,
at time t, and f(-), F(.), g(.), G(.) are Lipschitz-continuous functions with suitable
domain and range.

A widely studied state estimation problems is filtering, where one seeks to estimate
the state {x(t) : t > 0} from observations. More precisely, given a set {y(s) : 0 < s <
t} of observations, the filtering problem is to find a square-integrable and measurable
estimate {Is(t) : 0 < s < t} such that E [li (t) - x(t) ] is minimized. It is well known
that this estimate satisfies f(t) = E[x(t) {y(s) : 0 < s < t}].

Sampling-based Algorithms: Recently, Chaudhari et al. (2012) proposed a sampling-
based algorithm to address the filtering problem described above. The key idea behind
the algorithm is to construct a discrete approximation of the dynamics, incrementally,
in conjunction with an incremental algorithm that computes the optimal estimate on
this approximation. The approximation, in this case, is a discrete Hidden Markov
Model (HMM) generated via sampling in such a way that the trajectories of the
HMM converges, in distribution, to the trajectories of the original continuous-time
stochastic dynamical system, as the number of samples approaches infinity. Some
other estimation problems, such as the maximum a posteriori (MAP) estimation, are
also addressed using sampling-based algorithms in (Chaudhari et al., 2012).

Extensions and Open Problems: In many applications of robotics, state esti-
mators are used in conjunction with a controller, which often aims to optimize a cost
function similar to the one presented in Section 6.2.2, subject to stochastic dynamics
and noisy observations (see, e.g., Thrun et al., 2005). The design of such controllers
has received a growing attention; in particular, a number of algorithms have been
proposed to address the discrete-time, finite-state versions of the problem (see, e.g.,
Pineau et al., 2003; Smith and Simmons, 2005; Kurniawati et al., 2008). However,
much progress is needed to address fairly general continuous-time continuous-space
formulations of the problem using anytime sampling-based algorithms.
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