153 research outputs found

    Hand gesture recognition in uncontrolled environments

    Get PDF
    Human Computer Interaction has been relying on mechanical devices to feed information into computers with low efficiency for a long time. With the recent developments in image processing and machine learning methods, the computer vision community is ready to develop the next generation of Human Computer Interaction methods, including Hand Gesture Recognition methods. A comprehensive Hand Gesture Recognition based semantic level Human Computer Interaction framework for uncontrolled environments is proposed in this thesis. The framework contains novel methods for Hand Posture Recognition, Hand Gesture Recognition and Hand Gesture Spotting. The Hand Posture Recognition method in the proposed framework is capable of recognising predefined still hand postures from cluttered backgrounds. Texture features are used in conjunction with Adaptive Boosting to form a novel feature selection scheme, which can effectively detect and select discriminative texture features from the training samples of the posture classes. A novel Hand Tracking method called Adaptive SURF Tracking is proposed in this thesis. Texture key points are used to track multiple hand candidates in the scene. This tracking method matches texture key points of hand candidates within adjacent frames to calculate the movement directions of hand candidates. With the gesture trajectories provided by the Adaptive SURF Tracking method, a novel classi�er called Partition Matrix is introduced to perform gesture classification for uncontrolled environments with multiple hand candidates. The trajectories of all hand candidates extracted from the original video under different frame rates are used to analyse the movements of hand candidates. An alternative gesture classifier based on Convolutional Neural Network is also proposed. The input images of the Neural Network are approximate trajectory images reconstructed from the tracking results of the Adaptive SURF Tracking method. For Hand Gesture Spotting, a forward spotting scheme is introduced to detect the starting and ending points of the prede�ned gestures in the continuously signed gesture videos. A Non-Sign Model is also proposed to simulate meaningless hand movements between the meaningful gestures. The proposed framework can perform well with unconstrained scene settings, including frontal occlusions, background distractions and changing lighting conditions. Moreover, it is invariant to changing scales, speed and locations of the gesture trajectories

    Review of constraints on vision-based gesture recognition for human–computer interaction

    Get PDF
    The ability of computers to recognise hand gestures visually is essential for progress in human-computer interaction. Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recognition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations but also because of the complex non-rigid properties of the hand. This study surveys major constraints on vision-based gesture recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges are explored in detail

    3D hand tracking.

    Get PDF
    The hand is often considered as one of the most natural and intuitive interaction modalities for human-to-human interaction. In human-computer interaction (HCI), proper 3D hand tracking is the first step in developing a more intuitive HCI system which can be used in applications such as gesture recognition, virtual object manipulation and gaming. However, accurate 3D hand tracking, remains a challenging problem due to the hand’s deformation, appearance similarity, high inter-finger occlusion and complex articulated motion. Further, 3D hand tracking is also interesting from a theoretical point of view as it deals with three major areas of computer vision- segmentation (of hand), detection (of hand parts), and tracking (of hand). This thesis proposes a region-based skin color detection technique, a model-based and an appearance-based 3D hand tracking techniques to bring the human-computer interaction applications one step closer. All techniques are briefly described below. Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on individual pixels. This thesis presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection technique on the popular Compaq dataset (Jones & Rehg 2002). The proposed technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images. Hand tracking is not a trivial task as it requires tracking of 27 degreesof- freedom of hand. Hand deformation, self occlusion, appearance similarity and irregular motion are major problems that make 3D hand tracking a very challenging task. This thesis proposes a model-based 3D hand tracking technique, which is improved by using proposed depth-foreground-background ii feature, palm deformation module and context cue. However, the major problem of model-based techniques is, they are computationally expensive. This can be overcome by discriminative techniques as described below. Discriminative techniques (for example random forest) are good for hand part detection, however they fail due to sensor noise and high interfinger occlusion. Additionally, these techniques have difficulties in modelling kinematic or temporal constraints. Although model-based descriptive (for example Markov Random Field) or generative (for example Hidden Markov Model) techniques utilize kinematic and temporal constraints well, they are computationally expensive and hardly recover from tracking failure. This thesis presents a unified framework for 3D hand tracking, using the best of both methodologies, which out performs the current state-of-the-art 3D hand tracking techniques. The proposed 3D hand tracking techniques in this thesis can be used to extract accurate hand movement features and enable complex human machine interaction such as gaming and virtual object manipulation

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier

    Robust and real-time hand detection and tracking in monocular video

    Get PDF
    In recent years, personal computing devices such as laptops, tablets and smartphones have become ubiquitous. Moreover, intelligent sensors are being integrated into many consumer devices such as eyeglasses, wristwatches and smart televisions. With the advent of touchscreen technology, a new human-computer interaction (HCI) paradigm arose that allows users to interface with their device in an intuitive manner. Using simple gestures, such as swipe or pinch movements, a touchscreen can be used to directly interact with a virtual environment. Nevertheless, touchscreens still form a physical barrier between the virtual interface and the real world. An increasingly popular field of research that tries to overcome this limitation, is video based gesture recognition, hand detection and hand tracking. Gesture based interaction allows the user to directly interact with the computer in a natural manner by exploring a virtual reality using nothing but his own body language. In this dissertation, we investigate how robust hand detection and tracking can be accomplished under real-time constraints. In the context of human-computer interaction, real-time is defined as both low latency and low complexity, such that a complete video frame can be processed before the next one becomes available. Furthermore, for practical applications, the algorithms should be robust to illumination changes, camera motion, and cluttered backgrounds in the scene. Finally, the system should be able to initialize automatically, and to detect and recover from tracking failure. We study a wide variety of existing algorithms, and propose significant improvements and novel methods to build a complete detection and tracking system that meets these requirements. Hand detection, hand tracking and hand segmentation are related yet technically different challenges. Whereas detection deals with finding an object in a static image, tracking considers temporal information and is used to track the position of an object over time, throughout a video sequence. Hand segmentation is the task of estimating the hand contour, thereby separating the object from its background. Detection of hands in individual video frames allows us to automatically initialize our tracking algorithm, and to detect and recover from tracking failure. Human hands are highly articulated objects, consisting of finger parts that are connected with joints. As a result, the appearance of a hand can vary greatly, depending on the assumed hand pose. Traditional detection algorithms often assume that the appearance of the object of interest can be described using a rigid model and therefore can not be used to robustly detect human hands. Therefore, we developed an algorithm that detects hands by exploiting their articulated nature. Instead of resorting to a template based approach, we probabilistically model the spatial relations between different hand parts, and the centroid of the hand. Detecting hand parts, such as fingertips, is much easier than detecting a complete hand. Based on our model of the spatial configuration of hand parts, the detected parts can be used to obtain an estimate of the complete hand's position. To comply with the real-time constraints, we developed techniques to speed-up the process by efficiently discarding unimportant information in the image. Experimental results show that our method is competitive with the state-of-the-art in object detection while providing a reduction in computational complexity with a factor 1 000. Furthermore, we showed that our algorithm can also be used to detect other articulated objects such as persons or animals and is therefore not restricted to the task of hand detection. Once a hand has been detected, a tracking algorithm can be used to continuously track its position in time. We developed a probabilistic tracking method that can cope with uncertainty caused by image noise, incorrect detections, changing illumination, and camera motion. Furthermore, our tracking system automatically determines the number of hands in the scene, and can cope with hands entering or leaving the video canvas. We introduced several novel techniques that greatly increase tracking robustness, and that can also be applied in other domains than hand tracking. To achieve real-time processing, we investigated several techniques to reduce the search space of the problem, and deliberately employ methods that are easily parallelized on modern hardware. Experimental results indicate that our methods outperform the state-of-the-art in hand tracking, while providing a much lower computational complexity. One of the methods used by our probabilistic tracking algorithm, is optical flow estimation. Optical flow is defined as a 2D vector field describing the apparent velocities of objects in a 3D scene, projected onto the image plane. Optical flow is known to be used by many insects and birds to visually track objects and to estimate their ego-motion. However, most optical flow estimation methods described in literature are either too slow to be used in real-time applications, or are not robust to illumination changes and fast motion. We therefore developed an optical flow algorithm that can cope with large displacements, and that is illumination independent. Furthermore, we introduce a regularization technique that ensures a smooth flow-field. This regularization scheme effectively reduces the number of noisy and incorrect flow-vector estimates, while maintaining the ability to handle motion discontinuities caused by object boundaries in the scene. The above methods are combined into a hand tracking framework which can be used for interactive applications in unconstrained environments. To demonstrate the possibilities of gesture based human-computer interaction, we developed a new type of computer display. This display is completely transparent, allowing multiple users to perform collaborative tasks while maintaining eye contact. Furthermore, our display produces an image that seems to float in thin air, such that users can touch the virtual image with their hands. This floating imaging display has been showcased on several national and international events and tradeshows. The research that is described in this dissertation has been evaluated thoroughly by comparing detection and tracking results with those obtained by state-of-the-art algorithms. These comparisons show that the proposed methods outperform most algorithms in terms of accuracy, while achieving a much lower computational complexity, resulting in a real-time implementation. Results are discussed in depth at the end of each chapter. This research further resulted in an international journal publication; a second journal paper that has been submitted and is under review at the time of writing this dissertation; nine international conference publications; a national conference publication; a commercial license agreement concerning the research results; two hardware prototypes of a new type of computer display; and a software demonstrator

    Robot skill learning through human demonstration and interaction

    Get PDF
    Nowadays robots are increasingly involved in more complex and less structured tasks. Therefore, it is highly desirable to develop new approaches to fast robot skill acquisition. This research is aimed to develop an overall framework for robot skill learning through human demonstration and interaction. Through low-level demonstration and interaction with humans, the robot can learn basic skills. These basic skills are treated as primitive actions. In high-level learning, the complex skills demonstrated by the human can be automatically translated into skill scripts which are executed by the robot. This dissertation summarizes my major research activities in robot skill learning. First, a framework for Programming by Demonstration (PbD) with reinforcement learning for human-robot collaborative manipulation tasks is described. With this framework, the robot can learn low level skills such as collaborating with a human to lift a table successfully and efficiently. Second, to develop a high-level skill acquisition system, we explore the use of a 3D sensor to recognize human actions. A Kinect based action recognition system is implemented which considers both object/action dependencies and the sequential constraints. Third, we extend the action recognition framework by fusing information from multimodal sensors which can recognize fine assembly actions. Fourth, a Portable Assembly Demonstration (PAD) system is built which can automatically generate skill scripts from human demonstration. The skill script includes the object type, the tool, the action used, and the assembly state. Finally, the generated skill scripts are implemented by a dual-arm robot. The proposed framework was experimentally evaluated

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided
    • …
    corecore