81 research outputs found

    Energy disaggregation in NIALM using hidden Markov models

    Get PDF
    This work presents an appliance disaggregation technique to handle the fundamental goal of the Non-Intrusive Appliance Load Monitoring (NIALM) problem i.e., a simple breakdown of an appliance level energy consumption of a house. It also presents the modeling of individual appliances as load models using hidden Markov models and combined appliances as a single load model using factorial hidden Markov models. Granularity of the power readings of the disaggregated appliances matches with that of the readings collected at the service entrance. Accuracy of the proposed algorithm is evaluated using publicly released Tracebase data sets and UK-DALE data sets at various sampling intervals. The proposed algorithm achieved a success rate of 95% and above with Tracebase data sets at 5 second sampling resolution and 85% and above with UK-DALE data sets at 6 second sampling resolution --Abstract, page iii

    Hidden Markov Model based non-intrusive load monitoring using active and reactive power consumption

    Get PDF
    This work presents a residential appliance disaggregation technique to help achieve the fundamental goal in Non-Intrusive Load Monitoring (NILM) problem i.e. simple breakdown of energy consumption based on the appliance type in a household. The appliances are modeled using Hidden Markov Model by utilizing both their active and reactive power consumption data. The data was recorded by attaching Power Standards Lab PQube measurement device to the appliances. Granularity of the power readings of the disaggregated appliance matches with that of the reading collected for individual device. The accuracy of the model is compared with other models developed using only active power consumption of the appliances. The results using the proposed method are more effective and are found to predict a better output sequence for the appliances compared to model using only active power for modeling loads --Abstract, page iii

    Low-Power Appliance Monitoring Using Factorial Hidden Markov Models

    Get PDF
    To optimize the energy utilization, intelligent energy management solutions require appliance-specific consumption statistics. One can obtain such information by deploying smart power outlets on every device of interest, however it incurs extra hardware cost and installation complexity. Alternatively, a single sensor can be used to measure total electricity consumption and thereafter disaggregation algorithms can be applied to obtain appliance specific usage information. In such a case, it is quite challenging to discern low-power appliances in the presence of high-power loads. To improve the recognition of low-power appliance states, we propose a solution that makes use of circuit-level power measurements. We examine the use of a specialized variant of Hidden Markov Model (HMM) known as Factorial HMM (FHMM) to recognize appliance specific load patterns from the aggregated power measurements. Further, we demonstrate that feature concatenation can improve the disaggregation performance of the model allowing it to identify device states with an accuracy of 90% for binary and 80% for multi-state appliances. Through experimental evaluations, we show that our solution performs better than the traditional event based approach. In addition, we develop a prototype system that allows real-time monitoring of appliance states

    Unsupervised training methods for non-intrusive appliance load monitoring from smart meter data

    No full text
    Non-intrusive appliance load monitoring (NIALM) is the process of disaggregating a household’s total electricity consumption into its contributing appliances. Smart meters are currently being deployed on national scales, providing a platform to collect aggregate household electricity consumption data. Existing approaches to NIALM require a manual training phase in which either sub-metered appliance data is collected or appliance usage is manually labelled. This training data is used to build models of the house- hold appliances, which are subsequently used to disaggregate the household’s electricity data. Due to the requirement of such a training phase, existing approaches do not scale automatically to the national scales of smart meter data currently being collected.In this thesis we propose an unsupervised training method which, unlike existing approaches, does not require a manual training phase. Instead, our approach combines general appliance knowledge with just aggregate smart meter data from the household to perform disaggregation. To do so, we address the following three problems: (i) how to generalise the behaviour of multiple appliances of the same type, (ii) how to tune general knowledge of appliances to the specific appliances within a single household using only smart meter data, and (iii) how to provide actionable energy saving advice based on the tuned appliance knowledge.First, we propose an approach to the appliance generalisation problem, which uses the Tracebase data set to build probabilistic models of household appliances. We take a Bayesian approach to modelling appliances using hidden Markov models, and empirically evaluate the extent to which they generalise to previously unseen appliances through cross validation. We show that learning using multiple appliances vastly outperforms learning from a single appliance by 61–99% when attempting to generalise to a previously unseen appliance, and furthermore that such general models can be learned from only 2–6 appliances.Second, we propose an unsupervised solution to the model tuning problem, which uses only smart meter data to learn the behaviour of the specific appliances in a given house-hold. Our approach uses general appliance models to extract appliance signatures from ?a household’s smart meter data, which are then used to refine the general appliance models. We evaluate the benefit of this process using the Reference Energy Disaggregation Data set, and show that the tuned appliance models more accurately represent the energy consumption behaviour of a given household’s appliances compared to when general appliance models are used, and furthermore that such general models can per- form comparably to when sub-metered data is used for model training. We also show that our tuning approach outperforms the current state of the art, which uses a factorial hidden Markov model to tune the general appliance models.Third, we apply both of these approaches to infer the energy efficiency of refrigerators and freezers in a data set of 117 households. We evaluate the accuracy of our approach, and show that it is able to successfully infer the energy efficiency of combined fridge freezers. We then propose an extension to our model tuning process using factorial hidden semi-Markov models to model households with a separate fridge and freezer. Finally, we show that through this extension our approach is able to simultaneously tune the appliance models of both appliances.The above contributions provide a solution which satisfies the requirements of a NIALM training method which is both unsupervised (no manual interaction required during training) and uses only smart meter data (no installation of additional hardware is required). When combined, the contributions presented in this thesis represent an advancement in the state of the art in the field of non-intrusive appliance load monitoring, and a step towards increasing the efficiency of energy consumption within households

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Intrusive and Non-Intrusive Load Monitoring (A Survey)

    Get PDF
    There is not discussion about the need of energy conservation, it is well known that energy resources are limited moreover the global energy demands will double by the end of 2030, which certainly will bring implications on the environment and hence to all of us. Non-Intrusive load monitoring (NILM) is the process of recognize electrical devices and its energy consumption based on whole home electric signals, where this aggregated load data is acquired from a single point of measurement outside the household. The aim of this approach is to get optimal energy consumption and avoid energy wastage. Intrusive load monitoring (ILM) is the process of identify and locate single devices through the use of sensing systems to support control, monitor and intervention of such devices. The aim of this approach is to offer a base for the development of important applications for remote and automatic intervention of energy consumption inside buildings and homes as well.  Appliance discerns can be tackled using approaches from data mining and machine learning, finding out the techniques that fit the best this requirements, is a key factor for achieving feasible and suitable appliance load monitoring solutions. This paper presents common and interesting methods used. Privacy concerns have been one of the bigger obstacles for implementing a widespread adoption of these solutions. The implementation of security over these approaches along with fine-grained energy monitoring would lead to a better public agreement of these solutions and hence a faster adoption of such approaches. This paper reveals a lack of security over these approaches with a real scenario. &nbsp

    An application of autoregressive hidden Markov models for identifying machine operations

    Get PDF
    Due to increasing energy costs there is a need for accurate management and planning of shop floor machine processes. This would entail identifying the different operation modes of production machines. The goal for industry is to provide energy monitors for all machines in factories. In addition, where they have been deployed, analysis is limited to aggregating data for subsequent processing later. In this paper, an Autoregressive Hidden Markov Model (ARHMM)-based algorithm is introduced, which can determine the operation mode of the machine in real-time and find direct application in intrusive load monitoring cases. Compared with other load monitoring techniques, such as transient analysis, no prior knowledge of the system to be monitored is required

    Sustainable Energy Consumption Monitoring in Residential Settings

    Get PDF
    The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach

    Analysis of DC microgrids as stochastic hybrid systems

    Get PDF
    A modeling framework for dc microgrids and distribution systems based on the dual active bridge (DAB) topology is presented. The purpose of this framework is to accurately characterize dynamic behavior of multi-converter systems as a function of exogenous load and source inputs. The base model is derived for deterministic inputs and then extended for the case of stochastic load behavior. At the core of the modeling framework is a large-signal DAB model that accurately describes the dynamics of both ac and dc state variables. This model addresses limitations of existing DAB converter models, which are not suitable for system-level analysis due to inaccuracy and poor upward scalability. The converter model acts as a fundamental building block in a general procedure for constructing models of multi-converter systems. System-level model construction is only possible due to structural properties of the converter model that mitigate prohibitive increases in size and complexity. To characterize the impact of randomness in practical loads, stochastic load descriptions are included in the deterministic dynamic model. The combined behavior of distributed loads is represented by a continuous-time stochastic process. Models that govern this load process are generated using a new modeling procedure, which builds incrementally from individual device-level representations. To merge the stochastic load process and deterministic dynamic models, the microgrid is modeled as a stochastic hybrid system. The stochastic hybrid model predicts the evolution of moments of dynamic state variables as a function of load model parameters. Moments of dynamic states provide useful approximations of typical system operating conditions over time. Applications of the deterministic models include system stability analysis and computationally efficient time-domain simulation. The stochastic hybrid models provide a framework for performance assessment and optimization --Abstract, page iv

    Approaches to Non-Intrusive Load Monitoring (NILM) in the Home

    Get PDF
    When designing and implementing an intelligent energy conservation system for the home, it is essential to have insight into the activities and actions of the occupants. In particular, it is important to understand what appliances are being used and when. In the computational sustainability research community this is known as load disaggregation or Non-Intrusive Load Monitoring (NILM). NILM is a foundational algorithm that can disaggregate a home’s power usage into the individual appliances that are running, identify energy conservation opportunities. This depth report will focus on NILM algorithms, their use and evaluation. We will examine and evaluate the anatomy of NILM, looking at techniques using load monitoring, event detection, feature ex- traction, classification, and accuracy measurement.&nbsp
    • …
    corecore