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Abstract—The continuous growth of energy needs and the
fact that unpredictable energy demand is mostly served by
unsustainable (i.e. fossil-fuel) power generators have given rise
to the development of Demand Response (DR) mechanisms for
flattening energy demand. Building effective DR mechanisms
and user awareness on power consumption can significantly
benefit from fine-grained monitoring of user consumption at
the appliance level. However, installing and maintaining such
a monitoring infrastructure in residential settings can be quite
expensive. In this paper, we study the problem of fine-grained
appliance power-consumption monitoring based on one house-
level meter and few plug-level meters. We explore the trade-off
between monitoring accuracy and cost, and exhaustively find the
minimum subset of plug-level meters that maximize accuracy. As
exhaustive search is time- and resource-consuming, we define a
heuristic approach that finds the optimal set of plug-level meters
without utilizing any other sets of plug-level meters. Based on
experiments with real data, we found that few plug-level meters -
when appropriately placed - can very accurately disaggregate the
total real power consumption of a residential setting and verified
the effectiveness of our heuristic approach.

Keywords-Energy disaggregation; Hidden Markov Models;
FHMM; NILM; plug-level meter

I. INTRODUCTION

Demand Response (DR) mechanisms aim to provide price-
based or other incentives to the users to shift their energy loads
and flatten their daily energy consumption. The effectiveness
of DR mechanisms in turn depends on how much fine-
grained information is available about users. For instance, if
we knew appliance-level usage of residential users, it can be
used for selection of the pricing or incentive mechanism that
maximizes the effectiveness of DR policies. According to [1],
there are 4 different consumption types of appliances, namely
i) Permanent consumer devices, (ii) On-off appliances, (iii)
Multistate appliances, (iv) Continuously variable consumer
devices, where price-based incentive mechanisms can be ef-
fective only for types i) and ii). Based on appliance-level
consumption profiling, the DR mechanism designer knows
the highest energy consuming appliances (subject to power
consumption reduction) and time of appliance usage (for de-
riving load shiftability during peak hours). Moreover, accurate
consumption profiling is essential for the calculation of the
consumption baseline, based on which the effectiveness of
any DR mechanism is measured. Fine-grained monitoring and

modeling energy consumption in houses can be achieved by
a) an intrusive method, where each appliance in the house
is monitored separately, b) a non-intrusive load monitoring
(NILM) [2], where a single residential energy meter is used for
estimating the individual appliance usage information based on
appliance consumption signatures (i.e. consumption states, e.g.
on/stand-by/off, real power, reactive power, voltage and current
waveforms, etc.), historical data or user annotations. While
NILM has been investigated extensively [1], the accuracy of
achievable disaggregation is limited, while the generalization
of the models trained from certain houses for the energy con-
sumption disaggregation of others is ineffective. On the other
hand, intrusive methods involve installing plug-level meters
for each appliance in the house and have high investment
and maintenance cost. This paper explores an approach to
minimize the intrusion, while maximizing the disaggregation
performance. It is based on the intuition that a few selected
appliances, if monitored can help to disaggregate the total
load quite efficiently. In order to achieve sustainability of our
monitoring approach, we try to minimize intrusion and associ-
ated capital and operational expenses of plug-level monitoring
by selectively installing the minimum number of plug-level
meters per house, so as to achieve very high disaggregation
accuracy. The optimal locations of plug-level meters are found
based on exhaustive search. For avoiding time-consumption
and resource-expenses, we propose a heuristic approach that
is experimentally proved to always find the optimal set of
plug-level meters. Based on experiments with real power
consumption data, we find that our approach can achieve
very accurate load disaggregation with few plug-level meters
installed in residential settings.

The remainder of this paper is organized as follows: In
Section II, we overview the related work. In Section III, we
set the goals of our monitoring approach. In Section IV, we
describe the model for appliance-level energy consumption in
houses. In Section V, we describe our approach for sustainable
appliance monitoring based on exhaustive search and based on
a heuristic. In Section VI, we experimentally verify the high
accuracy of our monitoring approach and the effectiveness of
the proposed heuristic. Finally, in Section VII, we conclude
our work.
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II. RELATED WORK

Several research efforts are been carried out in order to
design smart home environment and energy management sys-
tems for increasing user power consumption awareness [3]. In
these systems, individual appliances in the house form a home
area network. Also, various research efforts are in process
to develop low-cost, reliable sensors and energy meters [4].
NILM techniques [1] employ machine learning methods to
develop models for disaggregating residential power consump-
tion at the appliance level. Hart et al. [2] describes a NILM
technique to detect the appliances from the aggregated signal
using “edges”, in order to determine whether a appliance was
turned on or off. Other works look at the steady-state power
consumption for learning appliance signatures. In [5], transient
noise of an electrical signal occurred during turning on or off
of an appliance is used to determine the appliances and their
signatures from the aggregated signal. In [6], plug-level energy
readings are used to disaggregate the energy consumption
of each appliance from the aggregated signal. In [7], they
propose a novel algorithm using sparse coding dictionaries
for disaggregating energy. All these works have the burden of
installing and maintaining energy meters for each appliance.

Also, pattern recognition approaches for disaggregating the
combined energy signal is employed in [8]. In [9], the authors
try to disaggregate the energy information using sensors like
acoustic, magnetic and light placed near to the appliances.
Several features of the electrical signal from the energy meter
to disaggregate energy information are employed in [10]. On
the other hand, in [11], the authors propose to disaggregate
the energy consumption from a single smart meter by using
some prior knowledge of appliances with the help of a domain
expert. An unsupervised technique to disaggregate energy
consumption using factorial hidden markov models (FHMMs)
is proposed in [12]. In [13], a Markovian model is proposed
for home energy consumption, storage sizing and transformer
sizing in the distributed network. In [14], a Communication
and Energy Care Unit (CECU) models the energy consumption
of a house based on pre-stored appliance signatures to de-
termine the appliances from the aggregated signal. However,
these techniques need either users to manually identify the
appliances or assume full knowledge on the appliances in the
house and their consumption signatures.

To summarize, none of the prior approaches have investi-
gated sustainable approaches for reducing metering instrumen-
tation, while achieving maximum disaggregation effectiveness.
In this paper, we propose a sustainable approach to monitor
energy usage of appliances using the aggregated signal: we
select the minimum subset of appliances that need to be
individually monitored, in order to achieve high disaggregation
accuracy based on a heuristic algorithm.

III. THE OBJECTIVES

In this work, our objective is to develop a methodology
for sustainable energy monitoring in houses. We try to maxi-
mize the accuracy of appliance-level energy monitoring using
aggregated power signal, while minimizing the number of

additional plug-level meters required to achieve this accuracy.
Our optimization problem OPT can be summarized as follows:

OPT : max P : maximize energy monitoring accuracy
min N : minimize the number of plug-level meters

where P represents the accuracy of disaggregation achieved
and N indicates the number of sensors required for achieving
this accuracy.

IV. MODELING ENERGY CONSUMPTION OF HOUSES

In this section, we describe the probabilistic models that
we employ to model the total per-house energy consumption
and that of individual appliances. We employ Hidden Markov
Models (HMM) to model the time series of aggregated power
readings of a house. HMMs has the ability to capture complex
aggregate signals via a compact structure, such models have
been used in areas such as speech recognition, audio separation
and computational biology.

A. Hidden Markov Models (HMMs)

A discrete-time HMM can be viewed as a Markov model
with hidden states characterized by a probability distribution
function. A HMM can be described as follows: N - Number

Fig. 1. Simple Hidden Markov Model (HMM).

of hidden states (e.g. on, stand-by, power-save, off etc.) of
an appliance. Each state s can be reached by any other state,
s = {s1, s2, ..., sN}. M - Number of distinct symbols (i.e.
energy consumption) observed in each state. A - Transition
matrix representing the probability of moving from state si
to sj . B - Emission matrix representing the probability of
emission of a symbol in the current state. π - Initial state
probability distribution.
A graphical representation of HMM model is as shown
in Fig. 1. Given a sequential consumption data y =
{y1, y2, y3, ..., yT }, each yt is generated by hidden state st.

B. Factorial Hidden Markov Models (FHMMs)

An extension of simple HMM is a Factorial HMM [15]
to model multiple independent hidden state sequences, as
shown in the Fig 2. Let us consider the sequential data
Y = {y1, y2, y3, ..., yT } representing the aggregated power
signal of a house. Then, s = {s(1), s(2), ..., s(M)} represents
the underlying state sequences, where si = {s(i)1 , s

(i)
2 , ..., s

(i)
T }

is the set of hidden states of chain i in the FHMM model.
In this work, we consider the states of the appliances in the
house as the hidden states and the aggregated power readings
as the observed symbol.



Fig. 2. Graphical representation of Factorial Hidden Markov Model.

C. Estimation of Parameters and Hidden States

The parameters for the HMM model are estimated using
Expectation Maximization (EM) algorithm, which iteratively
estimates the parameters value based on a auxiliary function
until convergence to a local maximum occurs. The parameters
estimated using EM are the number of chains, the number of
states in each chain, the transition matrix of moving from one
state to another and the initial state probability distribution.
The goal of energy disaggregation is to identify accurately
the states of the appliances in the aggregated signal. To
identify the hidden states, the joint probability of the entire
sequence of hidden states that generated a particular sequence
of observations is calculated. We use Viterbi algorithm to
estimate the hidden states of the HMMs. Viterbi algorithm uses
dynamic programming to identify the most likely sequence of
hidden states by finding a maximum over all possible state
sequences.

V. OUR APPROACH FOR SUSTAINABLE MONITORING

Contrary to prior work, we employ a semi-intrusive tech-
nique for identifying the minimal subset of appliances that
needs to be individually monitored, in order to achieve high
disaggregation accuracy. We propose an algorithm to model
the total power consumption of the house accurately, as
follows:
Step-1: We train the FHMM model using the aggregated signal
(obtained using a single smart meter) and derive the possible
number of chains, their states and transition matrix using EM
clustering. Each chain derived is assumed to correspond to an
appliance.
Step-2: We select a subset of appliances to be monitored
individually (using plug-level meters), in order to improve the
accuracy of disaggregation. Appliances monitored individually
are modeled using HMMs to derive the number of states,
transition matrix and initial state probabilities.
Step-3: We employ the derived HMM chains of individual
appliances to the FHMM model and we retrain it using the
aggregate power consumption. Thus, new chains may be added
or existing ones modified. If the disaggregation accuracy is not
high enough, then we go to Step-2.

There can be different approaches to select the subset of
appliances that are individually monitored at Step-2. Here, we
first describe a naive exhaustive search to identify the optimal
subset by exploring all different combinations of appliances

that belong to a house and select the one that provides the
highest disaggregation accuracy (Subsection V-A). Then, we
build upon this technique to derive a heuristic algorithm to
identify the subset of appliances in a smarter way (Subsection
V-B). Fig. 3 shows the complete model used to identify the
usage of each appliances from the aggregated signal.

Fig. 3. Proposed Methodology using FHMM.

A. Exhaustive search to find appliance subset

A plug-level meter is employed to train the HMM model
for an appliance. The trained model is employed in Step-
3 of the algorithm described above to update the FHMM
model and the achievable disaggregation accuracy is measured.
This is repeated for all combinations of appliances and the
optimal subset of appliances that maximizes the energy disag-
gregation accuracy is found. There are several drawbacks of
this approach: (a) All appliance plug-level monitoring data is
required and thus plug-level meters need to be installed for
all appliances in the house. (b) The installation and removal
cost of plug-level meters are tedious and expensive. (c) The
search time is exponential to the number of appliances in the
house. This motivates us to develop a novel, smarter heuristic
algorithm for identifying the optimal subset of appliances that
maximizes the energy disaggregation accuracy.

B. Heuristic to find subset of appliance to be monitored

Let C1, C2, ..., Cn be the set of chains derived from
the FHMM model in Step-1 of Section V and let
(w1, a1), (w2, a2), ..., (wn, an) be the pairs of weight (i.e.
fraction of aggregate power consumption from an appliance)
and individual accuracy for each chain derived. The goal of
the heuristic, at each step, is to identify the pair (wi, ai) that
maximally improves the disaggregation accuracy α, i.e.

α = w1.a1 + w2.a2 + ...+ wn.an
argi max wi.ai

(1)

It is intuitive to see that the appliance, which needs to be
monitored, should be the one that has the highest power
consumption; this appliance is expected to improve the overall
disaggregation accuracy. In case of conflict in the weights,
we select the pair which has the lowest ai value, as this is



the chain that can improve the accuracy of disaggregation, if
monitored. In our heuristic, we assume to know the number
of appliances at each house and their states, their average
and peak power consumption, as shown in Table I. We
believe that this is trivial prior knowledge, which can be
retrieved by the house residents by a questionnaire and by
the appliance manuals. Algorithm 1 describes the procedure

TABLE I
AVERAGE, PEAK POWER CONSUMPTION & NUMBER OF STATES FOR EACH

APPLIANCE

Appliance Average (%) Peak (%) Number of
consumption consumption states

Refrigerator 200 kWh 400 W 3
Microwave 60 kWh 1400 W 3

Dish washer 280 kWh 1000 W 4
Washer Dryer 512 kWh 2500 W 4

Algorithm 1 Heuristic algorithm to find the subset of appli-
ances to be monitored

1: Input: The FHMM model derived from the Step-1, the numbers
of appliances and states, the average and peak consumption per
appliance.

2: Identify the chain, which is contributing the maximum to the
total energy consumption of the house. This is the chain that
needs to be monitored individually, in order to improve the
accuracy, as described in Eq. (1).

3: Map the chain identified to one of the appliances. We foresee
three cases of mapping:
(a) Only one appliance has the same power consumption as the
chain derived. Then, select that appliance for monitoring.
(b) There is a combination of appliances whose power sum
matches the chain derived, i.e (A + B) = X , or, there are
multiple combinations of appliances whose power sum matches
the chain derived, i.e (A+B) = (C+D) = X . Then, select the
highest energy-consuming appliance from the combination(s). In
case of conflict in energy consumption, choose the appliance
with the larger number of states or the one with the lowest
accuracy (if ground truth is available).
(c) If there are multiple appliances having same power consump-
tion with the chain derived, then select the appliance with the
larger number of states.

4: The FHMM model is re-calculated with updated chains and
transition matrix.

5: Repeat 2-4 until no new chains are obtained (under no ground
truth) or until there is no significant percentage improvement in
the total energy correctly classified (given ground truth).

to find the subset of appliances. The heuristic considers the
highest energy-consuming chain and tries to match it with one
of the appliances from Table I using the steps (a), (b), (c), as
described in Algorithm 1. Mapping the chain to an appliance
is the core of the algorithm. There, we define three cases: (a)
When there is an appliance that consumes the same average
power with the chain derived, then we select that appliance
for monitoring. In (b), we explore the possibility where the
aggregate power consumption of one or multiple combinations
of appliances matches to the highest power-consuming chain.
In case that one appliance set matches the chain, we select
the appliance from the set(s) that consumes the higher energy
according to Table I. If multiple appliances consume the same

energy, then the one with the more states should be selected,
because of its higher complexity to be accurately estimated by
the FHMM. The same way for appliance selection is employed
in case (c), where multiple appliances have the same power
consumption as the highest power-consuming chain. Once, the
appliance to be monitored is selected, we use HMMs to model
this appliance and derive the states, transition matrix and initial
state distributions. We utilize this information to update the
chains obtained from Step-1 and re-iterate the FHMM model
to identify new chains.

This process is iterated until the number of chains equals the
number of appliances or no new chains are found. This ensures
that we select the minimum number of sensors to monitor,
so that additional plug-level meters do not offer any drastic
improvement in disaggregation accuracy. When historical data
on each appliance power consumption is available (referred
to as ground truth), then we can stop finding appliances
when there is not significant improvement in disaggregation
accuracy based on the ground truth. Using our heuristic, one
can achieve very high disaggregation accuracy by installing
only a small number of plug-meters for the appliances to be
individually monitored. Note that, we do not consider any
prior information in the initial step of modeling the FHMM.
However, during the mapping of the appliances to chains we
do use the information in Table I.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed
semi-intrusive power-consumption disaggregation approach
and our heuristic based on a real dataset. The implementation
has been done in Matlab. Below, we discuss the dataset
employed, the performance metrics and present our results.

A. Dataset

To evaluate our proposed methodology, we use the publicly
available Reference Energy Disaggregation Dataset (REDD)
[6]. This dataset consists of power consumption information
of six houses. For each house both aggregate and appliance
level power readings were measured. Appliance-level con-
sumption data were collected every 3 seconds using off-the-
shelf wireless plug monitor by Enmetric, while the house-
level consumption data was sampled every second using
the eMonitor, developed by Powerhouse Dynamics. Both the
aggregate and the appliance-level data were down sampled to
one measurement every 20 seconds using a median filter. The
dataset contains continuous data for at most 2 weeks per house.

B. Evaluation Metrics

We employ several accuracy metrics for the proposed energy
disaggregation methodology. For the accuracy of the proposed
approach, we use the ratio of the amount of energy that is
correctly classified to the total energy consumed by the house.
Also, we use precision, recall and F-measure to evaluate
the classification accuracy of the energy usage per appliance.
Given some energy estimated by the model to have been
consumed by an appliance, precision refers to the amount of



the assigned energy that was truly consumed by that appliance.
Recall indicates the fraction of a given appliance energy that
is correctly classified. F-measure is a combined measure of
test accuracy and is defined as follows:

F −measure =
2.P recision.Recall

Precision+Recall

We believe that evaluating based on the event detections may
not be an accurate metric as, for most of the appliances,
OFF instances are more prominent than ON ones. Hence,
high accuracy based on the event detections may not indicate
accurate classification of the ON instances, as opposed to our
employed metrics.

C. Modeling aggregated power using FHMM

We discuss the results obtained from Step-1 of our proposed
methodology, where we consider the aggregated power signal
of a house and use EM clustering mechanism to derive the
possible number of chains and their states, transition matrix
and initial state probabilities. We use 2 weeks of continuous
days data of house 1 of the REDD dataset as our training set
and evaluate our technique on 4 random days of the month for
the same house. We trained the FHMM on the training dataset
and derived 4 chains with their corresponding mean power
values at each state and transition matrix. Only the refrigerator
appliance average power consumption was matching to one of
the chain derived; the FHMM model was not able to correctly
distinguish other appliances. We used the Viterbi algorithm
to determine the possible set of states traversed for the test
data. Table II shows the comparison of real energy consumed
for each appliance and the estimated energy obtained from the
FHMM model. From the table, we can infer that only 84 % of
energy estimated was correctly classified, however the model
was not able to distinguish between set of appliances due to
their same power consumption or their multiple states. Fig. 4
shows the real and estimated power using this approach.

TABLE II
REAL AND ESTIMATED POWER OBTAINED USING FHMM MODEL

Appliance Real power consumed (%) Estimated power (%)
Refrigerator 25 34

GFI 3 11
Microwave 6

Washer Dryer 2 10
Dish washer 3

Lighting 40 45
Kitchen outlets 20

D. Heuristic and Exhaustive Search Based Results

As mentioned previously, the exhaustive search considers
consumption data of each and every appliance in the house
and iteratively finds out the best set that maximizes the energy
disaggregation accuracy. Table III shows the improvement in
energy classified correctly as number of appliances monitored
increases. As seen in the table III, the percentage of energy
correctly classified when one, two, three and four appliances
were monitored in the house are 89.5 %, 92.5 %, 95 %
and 95.6 % respectively. Fig. 5, shows the percentage of

Fig. 4. Real and estimated power usage when no appliance is monitored.

energy correctly classified and the number of appliances that
were identified. It can be clearly seen, as the number of
appliances monitored increases, appliances identified in the
house also increases. However, the total energy correctly
classified and number of appliances identified does not have
a high improvement after monitoring a certain number of
appliances. This number is the minimum set of appliances
that have to be monitored, in order to maximize the total
energy correctly classified. We use this insight obtained (i.e.
accuracy of the model does not increase beyond a threshold by
adding more plug-level meters) in our heuristic as a stopping
condition under no ground truth. We then use the heuristic

TABLE III
ENERGY DISAGGREGATION ACHIEVED BY MONITORING MULTIPLE

APPLIANCES USING EXHAUSTIVE SEARCH

Monitored Appliances None One Two Three Four
Refrigerator 34 30.4 29.7 27.5 26.9

GFI 11 13.8 3.3 4 3.5
Microwave 8.8 5.5 6

Washer Dryer 10 5.7 5.7 3 2
Dish washer 3.5 3

Lighting 45 50.1 52.5 30.5 33.6
Kitchen outlets 26.5 23

% Energy correctly 84 89.5 92.5 95 95.6
classified

Fig. 5. Accuracy and number of appliances identified by the model.

metric described in Subsection V-B to identify the appliances
to be individually monitored in a house. We apply our heuristic
on the four chains of the FHMM derived from the test data
when no appliance is monitored. We first identify Light-
ing and Kitchen outlets chain as having the highest energy
consumption and hence we select this chain to be modeled



TABLE IV
PRECISION, RECALL AND F-MEASURE PER IDENTIFIED APPLIANCE

Appliance Precision (%) Recall (%) F-measure
Refrigerator 92 85.2 0.88

GFI 75 60 0.66
Microwave 91.6 78.5 0.84

Washer Dryer 83.3 66 0.73
Dish washer 89.8 85.7 0.87

Lighting 85 80 0.82
Kitchen outlets 86 86.9 0.86

individually. As this chain is a combination of appliances,
we select the appliance in the combination that is the most
energy-consuming one, i.e. Lighting (case (b) in Algorithm
1). The appliance selected is monitored individually and is
modeled using HMM. Then, the appliance selection process
is re-iterated with the updated FHMM. In the next iteration,
the highest energy consuming chain identified is Refrigerator
and hence we monitor and model it using HMM. The FHMM
model is updated and the selection process is re-iterated until
one of the stopping conditions in the heuristic algorithm is
met. Finally, we derive {Lighting, Refrigerator, Microwave}
as the subset of appliances to be individually monitored for
house 1 of the REDD dataset. When these appliance set is
individually monitored, the precision, recall and F-measure for
each appliance achieved by the energy disaggregation process
are shown in Table IV. Also, the total amount of energy
correctly classified is 95 %. Fig. 6 shows the real and estimated
power consumption on the test data. As compared to Fig. 4,
using the subset of appliances derived from our heuristic, the
system was able to identify all the appliances and correctly
classify the energy. Any other subset of appliances would
result in less disaggregation accuracy, as this is the same
subset of appliances that the exhaustive search also obtained!
Agreement between the exhaustive search and the heuristic
was experimentally found for all houses of the REDD dataset.
Thus, our heuristic saves computational, installation and main-
tenance costs, while performing similarly to the exhaustive
search. Note that the set of appliances derived above is house-
specific and depend on the appliances in the house and the
consumption profiles of the residents. For instance, the sets
of appliances {Washer Dryer, Refrigerator} and {Bathroom
GFI, Microwave, Refrigerator} were found to be monitored in
house 2 and 3 of the REDD dataset respectively, in order to
accurately disaggregate energy. It might also be the case that
the set of appliances monitored in a house need to change for
different seasons (e.g. winter, summer). We could not validate
this claim due to lack of data.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a semi-intrusive approach for maximizing
the accuracy of energy disaggregation per appliance in a
sustainable way, i.e. using the minimum number of plug-
level meters that maximally improves disaggregation accuracy.
Our approach employs FHMM and it was experimentally
proved to achieve very high (i.e. 95%) energy classification
per appliance, while all appliances were discovered. Moreover,

Fig. 6. Real and estimated power usage when 3 appliances are monitored.

we proposed a heuristic algorithm for the optimal selection
of appliances to be individually monitored in a practical
setting that saves computational, investment and maintenance
costs. We believe that our approach is generic and can be
employed for any residential setting to accurately disaggregate
per appliance energy consumption in the most economic and
least-intrusive way. As a future work, we plan to extend our
approach for considering the installation of additional sensors
(e.g. temperature, motion, etc.) apart from plug-level meters,
in order to maximize energy disaggregation accuracy in a
sustainable way.
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