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Abstract. Due to increasing energy costs there is a need for accurate 
management and planning of shop floor machine processes. This would entail 
identifying the different operation modes of production machines. The goal for 
industry is to provide energy monitors for all machines in factories. In addition, 
where they have been deployed, analysis is limited to aggregating data for 
subsequent processing later. In this paper, an Autoregressive Hidden Markov 
Model (ARHMM)-based algorithm is introduced, which can determine the 
operation mode of the machine in real-time and find direct application in intrusive 
load monitoring cases. Compared with other load monitoring techniques, such as 
transient analysis, no prior knowledge of the system to be monitored is required.  
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1. Introduction 

In recent years, energy management has become a challenging task for both industrial 
and domestic users, due to the increased number and complexity of appliances and 
machines. The European Union has set targets for improving energy efficiency by at 
least 20% before 2020 [1]. The ability to monitor characteristics such as the operational, 
peak and idle energy consumptions, the duration of the working cycle and influences of 
process errors (e.g. worn tooling) in energy signatures will facilitate the scheduling of 
operations in more efficient ways and result in savings on electricity costs for 
companies and home users alike. 

Research has been published in the area of load monitoring for domestic user 
appliances [2][3][4], but the industrial domain has received less attention. This is 
mainly due to easier access and collection of data from home appliances compared with 
industrial equipment. In domestic environments, the research community has focused 
on Non-Intrusive Load Monitoring (NILM). The goal is to utilise only one single 
energy meter for the whole installation instead of one for each appliance or socket, 
which results in substantial cost-savings for the end-user and adds to the ease of 
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installation [5]. However, load appliance disaggregation from a single source of data is 
complex, especially as the number of appliances rises [6]; as is the detection of devices 
with rapidly changing or a large numbers of states [3]. 

These disadvantages make NILM unsuitable for wider adoption in the industrial 
domain. In addition, although industry is starting to deploy energy meters for 
machinery, the systems are not “smart” enough, in that their sole capability is to collect 
data and transmit it to a database. The intention of the work outlined in this paper is to 
add intelligence to these embedded energy monitors. In this paper, an Autoregressive 
Hidden Markov Model (ARHMM)-based algorithm is proposed that is able to detect 
the different process states of a production machine. Further, the ARHMM solution is 
compared with a standard Hidden Markov Model (HMM) algorithm implementation to 
demonstrate the improvement in accuracy and reduction in the time of training. 

The aim is to develop a Manually Setup Intrusive Load Monitoring (MS-ILM) 
system, in which the training of the models will be based on data acquired in-situ, 
instead of being trained remotely prior to deployment [5]. 

2. Related Work 

Techniques to determine signatures within data streams have been developed, such as 
transient and harmonic analysis [7][8] that can be used in both cases of either NILM or 
ILM. Processing the transients’ profile is not trivial and requires significant 
computational resources, as high-frequency sampling in the order of kHz is a 
prerequisite [9]. Harmonic analysis is complex, as it requires kHz sampling rates too 
and the measured content of the harmonics is often limited by the noisy industrial 
environment or the quality of the local grid resulting in inconsistent results [10]. 

A comprehensive review of widely used techniques for intrusive load monitoring, 
such as Support Vector Machines (SVM) [4], K-Nearest Neighbours (KNNs) [11] and 
Dynamic Time Warping (DTW) [12] is reported in [5]. The accuracy of the reported 
results ranges from about 75% up to 99.9% in many cases, depending on factors such 
as the complexity of the datasets and the training duration. As [13] reports, state-based 
modelling algorithms, such as Markov methods [2] and Gaussian Mixture Models 
(GMM) provide great opportunities, due to the possible interpretation of the power 
signal as a finite number of interconnected states. When machine learning algorithms 
are used, the sampling frequency can be much lower compared with transient or 
harmonic-based methods, even as low as 10−1 Hz [14]. 

3. Autoregressive Hidden Markov Model 

Hidden Markov models (HMMs) are statistical models which represent a doubly 
stochastic process [15]. A HMM consists of an underlying unobservable process 
modelled with a Markov chain (MC) that cannot be directly measured (hidden process) 
and an observable process which is affected by the underlying one. The model 
comprises a set of states {𝑥𝑥𝑖𝑖}1𝑛𝑛 and a set of observation symbols {𝑦𝑦𝑙𝑙}1𝑚𝑚, along with a 
group of probability distributions that determine the behaviour. The distributions 
include the transition probabilities 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2 … 𝑥𝑥0), which are the probabilities of 
moving from a state 𝑥𝑥𝑡𝑡−1 to a state 𝑥𝑥𝑡𝑡, the emission probabilities 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡), which are 



the probabilities of emitting the symbol 𝑦𝑦𝑡𝑡 while being in the state 𝑥𝑥𝑡𝑡 and the initial 
probability 𝑝𝑝(𝑥𝑥0) that is the probability of being in the state 𝑥𝑥0 at the beginning of a 
sequence. 

Standard time-homogeneous, first order, discrete HMMs have several limitations 
that affect their performance to classify power signals [16]. Firstly, the power signal 
needs to be quantized in discrete intervals. The number of intervals and their size tend 
to be difficult to determine automatically and can have a large impact on the overall 
performance of the algorithm. As a result, several algorithms have been proposed 
which use continuous output observation models such as Gaussian, Gaussian mixture 
and exponential. A continuous output HMM does not need to have its output 
discretised, however this comes at the cost of increasing the number of parameters that 
need to be inferred. In addition, all these models suffer from limited dynamic 
expressiveness due to their finite number of states. Each hidden state is associated with 
a static distribution of the output and therefore all the dynamic information is encoded 
in the underlying Markov chain. This means that even for very simple signals, a large 
number of states is needed. 

Autoregressive Hidden Markov Models (ARHMMs) are an extension of the 
standard discrete HMMs that have been developed with the goal of solving their major 
issues. They have been applied in speech recognition and synthesis [17], as well as 
biomedical signal analysis (ECG, EEG) [18][19]. The observation model of an 
ARHMM consists of a linear combination of previous outputs affected by an additive 
Gaussian noise, called multivariate linear autoregressive models (mAR). These have 
been extensively used in many fields such as control theory [20], signal processing and 
stock market forecasting [21] and they have the following mathematical expression: 

 

𝑦𝑦𝑡𝑡 = �𝜙𝜙𝑘𝑘𝑦𝑦𝑡𝑡−𝑘𝑘 + 𝜑𝜑 + 𝑤𝑤
𝑝𝑝

𝑘𝑘=1

, 𝑤𝑤 ~ 𝒩𝒩(0; Σ) 

 
where the coefficients of the linear combination (𝜙𝜙𝑘𝑘,𝜑𝜑), the covariance matrix of the 
Gaussian noise (𝛴𝛴)  and the order of the mAR (𝑝𝑝)  form the parameters of the 
observation model 𝜃𝜃𝑙𝑙𝑌𝑌. Unlike univariate autoregressive models, the coefficients (𝜙𝜙𝑘𝑘) 
are represented by square matrices of the same dimension as that of the model output 
space (𝑑𝑑) and the noise term follows a multivariate normal distribution. 

 

 

Figure 1. Autoregressive Hidden Markov Model (ARHMM) variable dependencies 



In ARHMMs, the Markov independence condition is relaxed because each output 
𝑦𝑦𝑡𝑡  not only depends on the current state 𝑥𝑥𝑡𝑡 , but also on the previous outputs 
𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2 … 𝑦𝑦𝑡𝑡−𝑝𝑝 (Figure 1). As a result, this characteristic adds dynamic 
expressiveness to the observation model, which solves the main problem of static 
distribution observation models and allows for a representation of more complex 
signals with a lower number of states. 

4. Design of Experiments 

A series of experiments was carried out to evaluate the algorithm’s performance, using 
real power consumption data from two different sources. As a first source, a laboratory 
machine was used to generate the sample data by cycling through 3 different states for 
30 minutes. This machine was a VICO Laser manufactured by Hacker Automation 
GmbH. The second set of datasets originated from an operational industrial machining 
centre used for the manufacture of automotive engine components and consisted of 
three different datasets. Two of these included four different machine states, while the 
third one included only two (one of them always being the idle state). Again, the length 
of the datasets equalled 30 minutes of sampling. The sample rate for all the test cases 
was 1Hz. 

The sampled signals were divided into two parts; the first part (40% of the total 
length) was used for training the model, whereas the rest was used as the validation set. 
Once the model was trained, it was used to determine the decoded state sequence 
estimation, by relying on the validation set’s observations. The testing procedure 
followed was the same for both the HMM and the ARHMM algorithms. 

Lastly, two performance indicators were defined in order to compare the ARHMM 
and the HMM algorithms: 

• Total accuracy, representing the one-to-one state matching percentage, i.e. the 
percentage of the sample signal where the decoded states exactly match the 
real states. 

• Idle-running accuracy, representing the percentage of the samples where the 
algorithm managed to classify accurately whether each sample belongs to the 
idle state or not. 

5. Results 

The experimentally derived results are summarised in Figure 2. On the left-hand side, 
the average accuracies for all the cases are presented, whereas on the right bar-chart 
there is an overview of the results for each separate dataset. 

The ARHMM algorithm was able to perform (on average) slightly better (92.2% 
idle-running accuracy) than the standard HMM (89.3% idle-running accuracy) for the 
purpose of detecting only the idle state. However, in the case of distinguishing each 
individual process among the complete dataset, a notably better total accuracy was 
observed when using the ARHMM (i.e. 89.7% against 75.1% of the HMM). In 
addition, it is worth noting that the ARHMM needed considerably less training time to 
achieve the same accuracy as the HMM, resulting in an average training duration of 27 
sec, whereas HMM needed almost double that time (average of 52 sec). 



 

6. Conclusion and Future Work 

In this paper, an ILM algorithm application has been proposed for detecting the 
different processes and states of a shop floor machine. While similar techniques based 
on HMM already exist, the research outlined in this paper has shown that by regarding 
the power signature as an autoregressive model the accuracy of the estimated state 
sequence can be improved. 

Future work will include investigating short-time Viterbi decoding [22], with the 
aim of executing the decoding algorithm on the energy monitor device in real-time. 
Hidden semi-Markov processes is also another way of modelling the energy signatures, 
as the relation of the emission probabilities to the duration of each state can further 
improve the accuracy [23]. 
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