544 research outputs found

    A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies

    Get PDF
    Telerehabilitation systems that support physical therapy sessions anywhere can help save healthcare costs while also improving the quality of life of the users that need rehabilitation. The main contribution of this paper is to present, as a whole, all the features supported by the innovative Kinect-based Telerehabilitation System (KiReS). In addition to the functionalities provided by current systems, it handles two new ones that could be incorporated into them, in order to give a step forward towards a new generation of telerehabilitation systems. The knowledge extraction functionality handles knowledge about the physical therapy record of patients and treatment protocols described in an ontology, named TRHONT, to select the adequate exercises for the rehabilitation of patients. The teleimmersion functionality provides a convenient, effective and user-friendly experience when performing the telerehabilitation, through a two-way real-time multimedia communication. The ontology contains about 2300 classes and 100 properties, and the system allows a reliable transmission of Kinect video depth, audio and skeleton data, being able to adapt to various network conditions. Moreover, the system has been tested with patients who suffered from shoulder disorders or total hip replacement.This research was funded by the Spanish Ministry of Economy and Competitiveness grant number FEDER/TIN2016-78011-C4-2R

    Virtuality Supports Reality for e-Health Applications

    Get PDF
    Strictly speaking the word “virtuality” or the expression “virtual reality” refers to an application for things simulated or created by the computer, which not really exist. More and more often such things are becoming equally referred with the adjective “virtual” or “digital” or mentioned with the prefixes “e-” or “cyber-”. So we know, for instance, of virtual or digital or e- or cyber- community, cash, business, greetings, books .. till even pets. The virtuality offers interesting advantages with respect to the “simple” reality, since it can reproduce, augment and even overcome the reality. The reproduction is not intended as it has been so far that a camera films a scenario from a fixed point of view and a player shows it, but today it is possible to reproduce the scene dynamically moving the point of view in practically any directions, and “real” becomes “realistic”. The virtuality can augment the reality in the sense that graphics are pulled out from a television screen (or computer/laptop/palm display) and integrated with the real world environments. In this way useful, and often in somehow essentials, information are added for the user. As an example new apps are now available even for iphone users who can obtain graphical information overlapped on camera played real scene surroundings, so directly reading the height of mountains, names of streets, lined up of satellites .., directly over the real mountains, the real streets, the real sky. But the virtuality can even overcome reality, since it can produce and make visible the hidden or inaccessible or old reality and even provide an alternative not real world. So we can virtually see deeply into the matter till atomic dimensions, realize a virtual tour in a past century or give visibility to hypothetical lands otherwise difficult or impossible to simple describe. These are the fundamental reasons for a naturally growing interest in “producing” virtuality. So here we will discuss about some of the different available methods to “produce” virtuality, in particular pointing out some steps necessary for “crossing” reality “towards” virtuality. But between these two parallel worlds, as the “real” and the “virtual” ones are, interactions can exist and this can lead to some further advantages. We will treat about the “production” and the “interaction” with the aim to focus the attention on how the virtuality can be applied in biomedical fields, since it has been demonstrated that virtual reality can furnish important and relevant benefits in e-health applications. As an example virtual tomography joins together 3D imaging anatomical features from several CT (Computerized axial Tomography) or MRI (Magnetic Resonance Imaging) images overlapped with a computer-generated kinesthetic interface so to obtain a useful tool in diagnosis and healing. With the new endovascular simulation possibilities, a head mounted display superimposes 3D images on the patient’s skin so to furnish a direction for implantable devices inside blood vessels. Among all, we chose to investigate the fields where we believe the virtual applications can furnish the meaningful advantages, i.e. in surgery simulation, in cognitive and neurological rehabilitation, in postural and motor training, in brain computer interface. We will furnish to the reader a necessary partial but at the same time fundamental view on what the virtual reality can do to improve possible medical treatment and so, at the end, resulting a better quality of our life

    A virtual reality-based cognitive telerehabilitation system for use in the covid-19 pandemic

    Get PDF
    The COVID-19 pandemic has changed people’s lives and the way in which certain services are provided. Such changes are not uncommon in healthcare services and they will have to adapt to the new situation by increasing the number of services remotely offered. Limited mobility has resulted in interruption of treatments that traditionally have been administered through face-to-face modalities, especially those related to cognitive impairments. In this telerehabilitation approach, both the patient and the specialist physician enter a virtual reality (VR) environment where they can interact in real time through avatars. A spaced retrieval (SR) task is implemented in the system to analyze cognitive performance. An experimental group (n = 20) performed the SR task in telerehabilitation mode, whereas a control group (n = 20) performed the SR task through a traditional face-to-face mode. The obtained results showed that it is possible to carry out cognitive rehabilitation processes through a telerehabilitation modality in conjunction with VR. The costeffectiveness of the system will also contribute to making healthcare systems more efficient, overcoming both geographical and temporal limitations

    Kires: a data-centric telerehabilitation system based on kinect

    Get PDF
    185 p.It is widely accepted that the worldwide demand for rehabilitation services. To meet these needs, there will have to be developed systems of telerehabilitation that will bring services to even the most remote locations, through Internet and related technologies.This thesis is addressing the area of remote health care delivery, in particular telerehabilitation. We present KiReS; a Kinect based telerehabilitation system which covers the needs of physiotherapists in the process of designing, managing and evaluating physiotherapy protocols and sessions and also covers the needs of the users providing them an intuitive and encouraging interface and giving useful feedback to enhance the rehabilitation process. As required for multi-disciplinary projects, physiotherapists were consulted and feedback from patients was incorporated at different development stages.KiReS aims to outcome limitations of other telerehabilitation systems and bring some novel features: 1) A friendly and helpful interaction with the system using Kinect and motivational interfaces based on avatars. 2) Provision of smart data that supports physiotherapists in the therapy design process by: assuring the maintenance of appropriate constraints and selecting for them a set of exercises that are recommended for the user. 3) Monitoring of rehabilitation sessions through an algorithm that evaluates online performed exercises and sets if they have been properly executed. 4) Extensibility, KiReS is designed to be loaded with a broad spectrum of exercises and protocols

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Technical Contributions to the Quality of Telerehabilitation Platforms: Case Study—ePHoRt Project

    Get PDF
    This chapter proposes three main technical contributions for the development of a telerehabilitation platform, named ePHoRT, for patients recovering from hip surgery. The first contribution is the application of a diffuse 3D model for the detection of rehabilitation exercises after hip surgery. The model applies fuzzy logic, which allows identifying in real time if a patient is performing a right or wrong movement, assisted by an avatar in 3D. The avatar copies the movements of the patient through a Kinect camera. The second contribution involves the proposal of an iterative method to improve the usability of telerehabilitation platforms along the development life cycle. The proposed method involves the use of an inspection method and includes protocols and instruments. This method has been validated in the ePHoRT project. Finally, the chapter describes accessibility guidelines for educational resources. It proposes accessibility standards for the content of educational resources in video and PDF formats in the telerehabilitation platform according to the Web Content Accessibility Guidelines (WCAG)

    The VESPA Project: Virtual Reality Interventions for Neurocognitive and Developmental Disorders

    Get PDF
    VESPA is a financed project supported by the Sicilian Regional Research and Development funds, and it is structured by the development, research and validation of Virtual Reality (VR) based application for the diagnosis and treatment of neurocognitive conditions. In particular, this article presents its characteristics, referred to as the first (2013-2015) and second (2021-ongoing) generations of VESPA, with particular reference to literature regarding the VR technology application and development, the VR treatment of neurocognitive conditions and prior versions of this intervention. Through a comprehensive review of the research conducted over the last 5 years, evidence has emerged supporting VESPA’s aim and scopes, highlighting how the application of VR can be considered to add value to typical rehabilitation/therapeutic paths. VESPA project generations are then presented in detail, including specific session/task battery characteristics, 2.5D, 3D and 5D typologies, system usability and architecture and pathological domain-based dynamics and features. The discussion about VESPA will highlight the current advantages along with limitations and future directions
    corecore