2,117 research outputs found

    Fuzzy Gain Scheduling of PID (FGS-PID) for Speed Control Three Phase Induction Motor Based on Indirect Field Oriented Control (IFOC)

    Get PDF
    This paper propose about using PID control system based on Kp, Ki, and Kd parameter determination with scheduling process from fuzzy logic. Control system is used to arrange speed of three phase induction motor using IFOC method. This method can be minimized the main problem from speed control of induction motor which is a transient condition. The robustness validation from this system use testing process of dynamic speed which is compared with the other control system to know the system performance in transient condition such as (rise time, overshoot, undershoot and settling time). The result shows using the proposed system has better performance responses which is requiring 0.001 seconds time in transient condition up to steady state condition without overshoot and undershoot problem

    Doubly-fed induction generator used in wind energy

    Get PDF
    Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this work, a novel induction machine model is developed. This model includes the saturation in the main and leakage flux paths. It shows that the model which considers the saturation effects gives more realistic results. A new technique, which was developed for synchronous machines, was applied to experimentally measure the stator and rotor leakage inductance saturation characteristics on the induction machine. A vector control scheme is developed to control the rotor side voltage-source converter. Vector control allows decoupled or independent control of both active and reactive power of DFIG. These techniques are based on the theory of controlling the B- and q- axes components of voltage or current in different reference frames. In this work, the stator flux oriented rotor current control, with decoupled control of active and reactive power, is adopted. This scheme allows the independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. Conventionally, the controller type used in vector controllers is of the PI type with a fixed proportional and integral gain. In this work, different intelligent schemes by which the controller can change its behavior are proposed. The first scheme is an adaptive gain scheduler which utilizes different characteristics to generate the variation in the proportional and the integral gains. The second scheme is a fuzzy logic gain scheduler and the third is a neuro-fuzzy controller. The transient responses using the above mentioned schemes are compared analytically and experimentally. It has been found that although the fuzzy logic and neuro-fuzzy schemes are more complicated and have many parameters; this complication provides a higher degree of freedom in tuning the controller which is evident in giving much better system performance. Finally, the simulation results were experimentally verified by building the experimental setup and implementing the developed control schemes

    Adaptive Gain and Order Scheduling of Optimal Fractional Order PI{\lambda}D{\mu} Controllers with Radial Basis Function Neural-Network

    Get PDF
    Gain and order scheduling of fractional order (FO) PI{\lambda}D{\mu} controllers are studied in this paper considering four different classes of higher order processes. The mapping between the optimum PID/FOPID controller parameters and the reduced order process models are done using Radial Basis Function (RBF) type Artificial Neural Network (ANN). Simulation studies have been done to show the effectiveness of the RBFNN for online scheduling of such controllers with random change in set-point and process parameters.Comment: 6 pages, 12 figure

    Evolution of Controllers for the Speed Control in Thyristor Fed Induction Motor Drive

    Get PDF
    Induction Motors (IMs) are now becoming the pillar of almost all the motoring applications related to the industry and household. The practical applications of IMs usually require constant motoring speed. As a result, different types of control systems for IM's speed controlling have been shaped. One of the important techniques is the utilization of thyristor fed drive. Although, the thyristor fed induction motor drive (TFIMD) offers stable speed performance, the practical speed control demand is much more precise. Hence, this drive system utilizes additional controllers to attain precise speed for practical applications. This paper offers a detailed review of the controllers utilized with the thyristor fed IM drive in the past few decades to achieve good speed control performance. The clear intent of the paper is to provide a comprehensible frame of the pros and cons of the existing controllers developed for the TFIMD speed control requirements. Keywords: Thyristor Fed Drives, Induction Motors, Speed Controller, Conventional Controllers, and Soft Computing Techniques

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Development of Fuzzy Applications for High Performance Induction Motor Drive

    Get PDF
    This chapter develops a sliding mode and fuzzy logic-based speed controller, which is named adaptive fuzzy sliding-mode controller (AFSMC) for an indirect field-oriented control (IFOC) of an induction motor (IM) drive. Essentially, the boundary layer approach is the most popular method to reduce the chattering phenomena, which leads to trade-off between control performances, and chattering elimination for uncertain nonlinear systems. For the proposed AFSMC, a fuzzy system is assigned as the reaching control part of the fuzzy sliding-mode controller so that it improves the control performances and eliminates the chattering completely despite large and small uncertainties in the system. A nonlinear adaptive law is also implemented to adjust the control gain with uncertainties of the system. The adaptive law is developed in the sense of Lyapunov stability theorem to minimize the control effort. The applied adaptive fuzzy controller acts like a saturation function in the thin boundary layer near the sliding surface to guarantee the stability of the system. The proposed AFSMC-based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed AFSMC-based IM drive at different operating conditions such as load disturbance, parameter variations, etc

    Robusno neizrazito prilagođavanje pojačanja RST regulatora za WECS dvostruko napajani asinkroni generator

    Get PDF
    This paper proposes a new robust fuzzy gain scheduling of RST controller for a Wind Energy Conversion System (WECS) based on a doubly fed induction generator (DFIG). First, a designed fuzzy gain scheduling of RST controller is investigated, in which fuzzy rules are utilized on-line to adapt the RST controller parameters based on the error and its first time derivative. The aim of the work is to apply and compare the dynamic performances of two types of controllers (namely, Polynomial RST and Fuzzy-RST) for the WECS. A vector control with stator flux orientation of the DFIG is also presented in order to achieve control of active and reactive power of the wind turbine transmitted to the grid and to make the wind turbine adaptable to different constraints. The results obtained by simulation prove the effectiveness of the proposed controller in terms of decoupling, robustness and dynamic performance for different operating conditions.U radu je predloženo novo robusno prilagođavanje pojačanja RST regulatora za sustav za pretvorbu energije vjetra (WECS) s dvostruko napajanim asinkronim generatorom (DFIG). Prije svega istražena je sinteza neizrazitog prilagođavanja pojačanja RST regulatora u kojem su neizrazita pravila iskorištena on-line za adaptaciju parametara RST regulatora koji koristi signal pogreške i njegovu prvu vremensku derivaciju. Cilj rada primjena je i usporedba dinamičkih svojstava dva tipa regulatora (polinomski RST i neizraziti RST) za WECS. Također je prikazano vektorsko upravljanje s orijentacijom statorskog toka DFIG-a za postizanje upravljanja aktivnom i reaktivnom snagom vjetroagregata koja se predaje mreži te za prilagodbu vjetroagregata za različita ograničenja. Rezultati prikupljeni provedenim simulacijama pokazuju efektivnost predloženog regulatora kroz rasrpegnutost, robusnost i dinamičke performanse za različite uvjete rada

    Fuzzy Gain Scheduling PID Control for Position of the AR.Drone

    Get PDF
    This paper describes the design and implementation of fuzzy gain scheduling PID control for position of the AR.Drone. This control scheme uses 3 PID controllers as the main controller of the AR.Drone, in this case to control pitch, roll and throttle. The process of tuning parameters for each PID is done automatically by scheduling determined by Takagi-Sugeno-Kang (TSK) fuzzy logic model. This paper uses five function sets of PID parameters that will be evaluated by fuzzy logic in order to tune PID controllers. Error position (x,y,z), as inputs of controller, enters the PID Signal block yielding the ouputs in term of error, integral error and differential error. These signal become the inputs of the fuzzy scheduler to yield outputs pitch, roll and throttle to the AR.drone. The control scheme is implemented on the AR.Drone to make it fly to forming a square in the room. The experimental results show that the control scheme can follow the desired points, and process scheduling PID parameters can be shown

    Serangga dan mitos suku kaum jakun, Kampung Peta, Mersing Johor

    Get PDF
    This study focuses on seeing insects from the mythical perspective of the Orang Asli tribe of Jakun, Kampung Peta, Mersing Johor. The existence of insects in the life of every ethnic in Malaysia has brought various elements of myths. Therefore, when combining myths and insects, it could be said that myth is a human way of understanding, expressing and linking insects to him/herself as well as a group/culture. The practice of using insects among ethnic groups in daily life is called etnoentomology. In this study, the insects studied are the butterfly (Lepidoptera), the odonates (Odonata) and the cicadas (Homoptera). This is because these insects are very popular in the community and have their own myths that are brought into the local culture of belief

    Intelligent control of induction motors

    Get PDF
    This thesis presents the development and implementation of an integral field oriented intelligent control for an induction motor (IM) drive using Fuzzy Logic Controller (FLC), and an Artificial Neural Network (ANN), employing a finite element controller and making use of a Proportional Integral (PI) adaptive controller as well. An analytical model of an induction motor drive has been developed. In order to prove the superiority of the proposed controller, the performance of this controller is compared with conventional PI-based IM drives. The performance of the proposed IM drive is investigated extensively at different operating conditions in simulation. The proposed adaptive PI-based speed controller’s performance is found to be robust and it is a potential candidate for high performance industrial drive applications. The novel work focuses on using a Finite Element Controller map (FECM) to manipulate adaptive controllers for motor control drives. A digital signal processing (DSP) board DS1104 and laboratory induction motor were used to implement the complete vector control scheme. The test results have been compared with simulated results at different dynamic operating conditions. The effectiveness of this control scheme has been evaluated, and it has been found to be more efficient than the conventional PI controller
    corecore