313 research outputs found

    The Determinacy of Context-Free Games

    Get PDF
    We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter B\"uchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter B\"uchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter B\"uchi automaton A and a B\"uchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).Comment: To appear in the Proceedings of the 29 th International Symposium on Theoretical Aspects of Computer Science, STACS 201

    Synthesizing Computable Functions from Rational Specifications over Infinite Words

    Get PDF
    The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis

    Computability of Data-Word Transductions over Different Data Domains

    Full text link
    In this paper, we investigate the problem of synthesizing computable functions of infinite words over an infinite alphabet (data ω\omega-words). The notion of computability is defined through Turing machines with infinite inputs which can produce the corresponding infinite outputs in the limit. We use non-deterministic transducers equipped with registers, an extension of register automata with outputs, to describe specifications. Being non-deterministic, such transducers may not define functions but more generally relations of data ω\omega-words. In order to increase the expressive power of these machines, we even allow guessing of arbitrary data values when updating their registers. For functions over data ω\omega-words, we identify a sufficient condition (the possibility of determining the next letter to be outputted, which we call next letter problem) under which computability (resp. uniform computability) and continuity (resp. uniform continuity) coincide. We focus on two kinds of data domains: first, the general setting of oligomorphic data, which encompasses any data domain with equality, as well as the setting of rational numbers with linear order; and second, the set of natural numbers equipped with linear order. For both settings, we prove that functionality, i.e. determining whether the relation recognized by the transducer is actually a function, is decidable. We also show that the so-called next letter problem is decidable, yielding equivalence between (uniform) continuity and (uniform) computability. Last, we provide characterizations of (uniform) continuity, which allow us to prove that these notions, and thus also (uniform) computability, are decidable. We even show that all these decision problems are PSpace-complete for (N,<) and for a large class of oligomorphic data domains, including for instance (Q,<).Comment: Extended version of arxiv:2002.0820

    How Much Lookahead is Needed to Win Infinite Games?

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. For ω\omega-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient. We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing EXPTIME-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be PSPACE-complete. This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4 published originally on August 26, 2016

    A lower bound on web services composition

    Full text link
    A web service is modeled here as a finite state machine. A composition problem for web services is to decide if a given web service can be constructed from a given set of web services; where the construction is understood as a simulation of the specification by a fully asynchronous product of the given services. We show an EXPTIME-lower bound for this problem, thus matching the known upper bound. Our result also applies to richer models of web services, such as the Roman model

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    IST Austria Technical Report

    Get PDF
    We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. Our results have tight connections with partial-observation stochastic games for which we derive new complexity results
    corecore