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Games with a Weak Adversary

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria
2 LSV, ENS Cachan & CNRS, France

Abstract. We consider multi-player graph games with partial-observation and parity
objective. While the decision problem for three-player games with a coalition of the
first and second players against the third player is undecidable, we present a decid-
ability result for partial-observation games where the first and third player are in a
coalition against the second player, thus where the second player is adversarial but
weaker due to partial-observation. We establish tight complexity bounds in the case
where player1 is less informed than player2, namely 2-EXPTIME-completeness
for parity objectives. The symmetric case of player1 more informed than player2
is much more complicated, and we show that already in the casewhere player1
has perfect observation, memory of size non-elementary is necessary in general for
reachability objectives, and the problem is decidable for safety and reachability ob-
jectives. Our results have tight connections with partial-observation stochastic games
for which we derive new complexity results.

1 Introduction

Games on graphs.Games played on graphs are central in several important problems in
computer science, such as reactive synthesis [23, 24], verification of open systems [1], and
many others. The game is played by several players on a finite-state graph, with a set of
angelic (existential) players and a set of demonic (universal) players as follows: the game
starts at an initial state, and given the current state, the successor state is determined by the
choice of moves of the players. The outcome of the game is aplay, which is an infinite
sequence of states in the graph. Astrategyis a transducer to resolve choices in a game for a
player that given a finite prefix of the play specifies the next move. Given an objective (the
desired set of behaviors or plays), the goal of the existential players is to ensure the play
belongs to the objective irrespective of the strategies of the universal players. In verification
and control of reactive systems an objective is typically anω-regular set of paths. The class
of ω-regular languages, that extends classical regular languages to infinite strings, provides
a robust specification language to express all commonly usedspecifications, and parity
objectives are a canonical way to define suchω-regular specifications [29]. Thus games on
graphs with parity objectives provide a general framework for analysis of reactive systems.

Perfect vs partial observation.Many results about games on graphs make the hypothesis
of perfect observation(i.e., players have perfect or complete observation about the state of
the game). In this setting, due to determinacy (or switchingof the strategy quantifiers for
existential and universal players) [18], the questions expressed by an arbitrary alternation
of quantifiers reduce to a single alternation, and thus are equivalent to solving two-player
games (all the existential players against all the universal players). However, the assump-
tion of perfect observation is often not realistic in practice. For example in the control of
physical systems, digital sensors with finite precision provide partial information to the
controller about the system state [11, 14]. Similarly, in a concurrent system the modules



expose partial interfaces and have access to the public variables of the other processes, but
not to their private variables [27, 1]. Such situations are better modeled in the more general
framework ofpartial-observationgames [26–28].

Partial-observation games.Since partial-observation games are not determined, unlike the
perfect-observation setting, the multi-player games problems do not reduce to the case of
two-player games. Typically, multi-player partial-observation games are studied in the fol-
lowing setting: a set of partial-observation existential players, against a perfect-observation
universal player, such as for distributed synthesis [23, 13, 25]. The problem of deciding if
the existential players can ensure a reachability (or a safety) objective is undecidable in gen-
eral, even for two existential players [22, 23]. However, ifthe information of the existential
players form a chain (i.e., existential player 1 more informed than existential player 2, ex-
istential player 2 more informed than existential player 3,and so on), then the problem is
decidable [23, 17, 19].

Games with a weak adversary.One aspect of multi-player games that has been largely
ignored is the presence of weaker universal players that do not have perfect observation.
However, it is natural in the analysis of composite reactivesystems that some universal
players represent components that do not have access to all variables of the system. In this
work we consider games where adversarial players can have partial observation. If there are
two existential (resp., two universal) players with incomparable partial observation, then
the undecidability results follows from [22, 23]; and if theinformation of the existential
(resp., universal) players form a chain, then they can be reduced to one partial-observation
existential (resp., universal) player. We consider the following case of partial-observation
games: one partial-observation existential player (player 1), one partial-observation univer-
sal player (player 2), one perfect-observation existential player (player 3), and one perfect-
observation universal player (player 4); (also see Section9 in the appendix for further
discussion). Roughly, having more partial-observation players leads to undecidability, and
having more perfect-observation players reduces to two perfect-observation players. We
first present our results and then discuss two applications of our model.

Results.Our main results are as follows:
1. Player 1 less informed.We first consider the case when player 1 is less informed than

player 2. We establish the following results:(i) a 2-EXPTIME upper bound for parity
objectives and a 2-EXPTIME lower bound for reachability objectives (i.e., we estab-
lish 2-EXPTIME-completeness);(ii) an EXPSPACE upper bound for parity objectives
when player 1 is blind (has only one observation), and EXPSPACE lower bound for
reachability objectives even when both player 1 and player 2are blind. In all these
cases, if the objective can be ensured then the upper bound onmemory requirement of
winning strategies is at most doubly exponential.

2. Player 1 is more informed.We consider the case when player 1 can be more informed
as compared to player 2, and show that even when player 1 has perfect observation there
is a non-elementary lower bound on the memory required by winning strategies. This
result is also in sharp contrast to distributed games, whereif only one player has partial
observation then the upper bound on memory of winning strategies is exponential.

Applications. We discuss two applications of our results: the sequential synthesis problem,
and new complexity results for partial-observationstochasticgames.
1. The sequential synthesis problem consists of a set of partially implemented modules,

where first a set of modules needs to be refined, followed by a refinement of some
modules by an external source, and then the remaining modules are refined so that the
composite open reactive system satisfies a specification. Given the first two refinements
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Reachability Parity Parity

Player1
Player2 Finite- or infinite-memory strategiesInfinite-memory strategies Finite-memory strategies

Perfect More informed Perfect More informed Perfect More informed
Randomized EXP-c [8] EXP-c [3] Undec. [2, 7] Undec. [2, 7] EXP-c [9] 2EXP
Pure EXP-c [6] 2EXP-c Undec. [2] Undec. [2] EXP-c [9] 2EXP-c

Table 1. Complexity of qualitative analysis (almost-sure winning)for partial-observation stochastic
games with partial observation for player 1 with reachability and parity objectives. Player 2 has either
perfect observation or more information than player 1(new results boldfaced). For positive winning,
all entries other than the first (randomized strategies for player 1 and perfect observation for player 2)
remain the same, and the complexity for the first entry for positive winning is PTIME-complete.

cannot access all private variables, we have a four-player game where the first refine-
ment corresponds to player 1, the second refinement to player2, the third refinement
to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are two partial-observation players (one
existential and one universal) playing in the presence of uncertainty in the transition
function (i.e., stochastic transition function). The qualitative analysis question is to de-
cide the existence of a strategy for the existential player to ensure the parity objective
with probability 1 (or with positive probability) against all strategies of the universal
player. The witness strategy can be randomized or deterministic (pure), and the de-
cision problem for randomized strategies reduces to the pure strategy question [6].
While the qualitative problem is undecidable, the practically relevant restriction to
finite-memory strategies reduces to the four-player game problem, and by the results
we establish in this paper, new decidability and complexityresults are obtained for
the qualitative analysis of partial-observation stochastic games with player2 partially
informed but more informed than player1.
The complexity results for almost-sure winning are summarized in Table 1. Surpris-
ingly for reachability objectives, whether player 2 is perfectly informed or more in-
formed than player 1 does not change the complexity for randomized strategies, but it
results in an exponential increase in the complexity for pure strategies.

Organization of the paper. In Section 2 we present the definitions of three-player games,
and other related models (such as partial-observation stochastic games). In Section 3 we es-
tablish the results for three-player games with player 1 less informed, and in Section 4 we
show hardness of three-player games with perfect observation for player 1 (which is a spe-
cial case of player 1 more informed). Finally, in Section 5 weshow how our upper bounds
for three-player games from Section 3 extend to four-playergames, and we conclude with
the applications in Section 6.

2 Definitions

We first consider three-player games with parity objectivesand we establish new com-
plexity results in Section 3 that we later extend to four-player games in Section 5. In this
section, we also present the related models of alternating tree automata that provide useful
technical results, and two-player stochastic games for which our contribution implies new
complexity results.

2.1 Three-player games

GamesGiven alphabetsAi of actions for playeri (i = 1, 2, 3), a three-player gameis a
tupleG = 〈Q, q0, δ〉 where:
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– Q is a finite set of states withq0 ∈ Q the initial state; and
– δ : Q×A1 ×A2 ×A3 → Q is a deterministic transition function that, given a current

stateq, and actionsa1 ∈ A1, a2 ∈ A2, a3 ∈ A3 of the players, gives the successor
stateq′ = δ(q, a1, a2, a3).

The games we consider are sometimes calledconcurrentbecause all three players need to
choose simultaneously an action to determine a successor state. The special class ofturn-
basedgames corresponds to the case where in every state, one player has the turn and his
sole action determines the successor state. In our framework, a turn-based state for player1
is a stateq ∈ Q such thatδ(q, a1, a2, a3) = δ(q, a1, a

′
2, a

′
3) for all a1 ∈ A1, a2, a′2 ∈ A2,

anda3, a′3 ∈ A3. We define analogously turn-based states for player2 and player3. A game
is turn-based if every state ofG is turn-based (for some player). The class of two-player
games is obtained whenA3 is a singleton. In a gameG, givens ⊆ Q, a1 ∈ A1, a2 ∈ A2,
let postG(s, a1, a2,−) = {q′ ∈ Q | ∃q ∈ s · ∃a3 ∈ A3 : q′ = δ(q, a1, a2, a3)}.

ObservationsFor i = 1, 2, 3, a setOi ⊆ 2Q of observations(for playeri) is a partition of
Q (i.e.,Oi is a set of non-empty and non-overlapping subsets ofQ, and their union covers
Q). Let obsi : Q → Oi be the function that assigns to each stateq ∈ Q the (unique)
observation for playeri that containsq, i.e. such thatq ∈ obsi(q). The functionsobsi
are extended to sequencesρ = q0 . . . qn of states in the natural way, namelyobsi(ρ) =
obsi(q0) . . . obsi(qn). We say that playeri is blind if Oi = {Q}, that is playeri has only
one observation; playeri hasperfect informationif Oi = {{q} | q ∈ Q}, that is playeri
can distinguish each state; and player1 is less informedthan player2 (we also say player 2
is more informed) if for allo2 ∈ O2, there existso1 ∈ O1 such thato2 ⊆ o1.

Strategies For i = 1, 2, 3, let Σi be the set ofstrategiesσi : O+
i → Ai of player i

that, given a sequence of past observations, give an action for playeri. Equivalently, we
sometimes view a strategy of playeri as a functionσi : Q

+ → Ai satisfyingσi(ρ) = σi(ρ
′)

for all ρ, ρ′ ∈ Q+ such thatobsi(ρ) = obsi(ρ
′), and say thatσi is observation-based.

Outcome Given strategiesσi ∈ Σi (i = 1, 2, 3) in G, theoutcome playfrom a stateq0
is the infinite sequenceρσ1,σ2,σ3

q0
= q0q1 . . . such that for allj ≥ 0, we haveqj+1 =

δ(qj , a
j
1, a

j
2, a

j
3) whereaji = σi(q0 . . . qj) (for i = 1, 2, 3).

ObjectivesAn objectiveis a setα ⊆ Qω of infinite sequences of states. A playρ satisfies
the objectiveα if ρ ∈ α. An objectiveα is visiblefor playeri if for all ρ, ρ′ ∈ Qω, if ρ ∈ α
andobsi(ρ) = obsi(ρ

′), thenρ′ ∈ α. We consider the following objectives:
– Reachability. Given a setT ⊆ Q of target states, thereachabilityobjectiveReach(T )

requires that a state inT be visited at least once, that is,Reach(T ) = {ρ = q0q1 · · · |
∃k ≥ 0 : qk ∈ T }.

– Safety. Given a setT ⊆ Q of target states, thesafetyobjectiveSafe(T ) requires that
only states inT be visited, that is,Safe(T ) = {ρ = q0q1 · · · | ∀k ≥ 0 : qk ∈ T }.

– Parity. For a playρ = q0q1 . . . we denote byInf(ρ) the set of states that occur in-
finitely often in ρ, that is, Inf(ρ) = {q ∈ Q | ∀k ≥ 0 · ∃n ≥ k : qn = q}. For
d ∈ N, let p : Q → {0, 1, . . . , d} be a priority function, which maps each state to a
nonnegative integer priority. The parity objectiveParity(p) requires that the minimum
priority occurring infinitely often be even. Formally,Parity(p) = {ρ | min{p(q) |
q ∈ Inf(ρ)} is even}. Parity objectives are a canonical way to expressω-regular objec-
tives [29]. If the priority function is constant over observations of playeri, that is for all
observationsγ ∈ Oi we havep(q) = p(q′) for all q, q′ ∈ γ, then the parity objective
Parity(p) is visible for playeri.
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Decision problemGiven a gameG = 〈Q, q0, δ〉 and an objectiveα ⊆ Qω, thethree-player
decision problemis to decide if∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α.

2.2 Related models

The results for the three-player decision problem have tight connections and implications
for decision problems on alternating tree automata and partial-observation stochastic games
that we formally define below.

Trees An Σ-labeled tree(T, V ) consists of a prefix-closed setT ⊆ N
∗ (i.e., if x · d ∈ T

with x ∈ N
∗ andd ∈ N, thenx ∈ T ), and a mappingV : T → Σ that assigns to each

node ofT a letter inΣ. Givenx ∈ N
∗ andd ∈ N such thatx · d ∈ T , we callx · d the

successorin directiond of x. The nodeε is theroot of the tree. Aninfinite pathin T is an
infinite sequenceπ = d1d2 . . . of directionsdi ∈ N such that every finite prefix ofπ is a
node inT .

Alternating tree automataGiven a parameterk ∈ N \ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mostk successors. Let[k] = {0, . . . , k − 1},
and given a finite setU , letB+(U) be the set of positive Boolean formulas overU , that is
formulas built from elements inU ∪ {true, false} using the Boolean connectives∧ and∨.
An alternating tree automatonover alphabetΣ is a tupleA = 〈S, s0, δA〉 where:

– S is a finite set of states withs0 ∈ S the initial state; and
– δA : S ×Σ → B+(S × [k]) is a transition function.

Intuitively, the automaton is executed from the initial state s0 and reads the input tree in a
top-down fashion starting from the rootε. In states, if a ∈ Σ is the letter that labels the
current nodex of the input tree, the behavior of the automaton is given by the formulas
ϕ = δA(s, a). The automaton chooses asatisfying assignmentof ϕ, i.e. a setZ ⊆ S × [k]
such that the formulaϕ is satisfied when the elements ofZ are replaced bytrue, and
the elements of(S × [k]) \ Z are replaced byfalse. Then, for each〈s1, d1〉 ∈ Z a copy
of the automaton is spawned in states1, and proceeds the nodex · d1 of the input tree.
In particular, it requires thatx · d1 belongs to the input tree. For example, ifδA(s, a) =
(〈s1, 0〉 ∧ 〈s2, 0〉) ∨ (〈s3, 0〉 ∧ 〈s4, 1〉 ∧ 〈s5, 1〉), then the automaton should either spawn
two copies that process the successor ofx in direction0 (i.e., the nodex · 0) and that enter
the statess1 ands2 respectively, or spawn three copies of which one processesx · 0 and
enters states3, and the other two processx · 1 and enter the statess4 ands5 respectively.

Language and emptiness problemA run of A over aΣ-labeled input tree(T, V ) is a tree
(Tr, r) labeled by elements ofT × S, where a node ofTr labeled by(x, s) corresponds to
a copy of the automaton proceeding the nodex of the input tree in states. Formally, arun
of A over an input tree(T, V ) is a (T × S)-labeled tree(Tr, r) such thatr(ε) = (ε, s0)
and for ally ∈ Tr, if r(y) = (x, s), then the set{〈s′, d′〉 | ∃d ∈ N : r(y · d) = (x · d′, s′)}
is a satisfying assignment forδA(s, V (x)). Hence we require that, given a nodey in Tr

labeled by(x, s), there is a satisfying assignmentZ ⊆ S × [k] for the formulaδA(s, a)
wherea = V (x) is the letter labeling the current nodex of the input tree, and for all states
〈s′, d′〉 ∈ Z there is a (successor) nodey · d in Tr labeled by(x · d′, s′).

Given an accepting conditionϕ ⊆ Sω, we say that a run(Tr, r) is acceptingif for all
infinite pathsd1d2 . . . of Tr, the sequences1s2 . . . such thatr(di) = (·, si) for all i ≥ 0
is in ϕ. The languageof A is the setLk(A) of all input trees of rankk over which there
exists an accepting run ofA. The emptiness problem for alternating tree automata is to
decide, givenA and parameterk, whetherLk(A) = ∅. For details related to alternating
tree automata and the emptiness problem see [12, 20].
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Two-player partial-observation stochastic gamesGiven alphabetAi of actions, and setOi

of observations (for playeri ∈ {1, 2}), a two-player partial-observation stochastic game
(for brevity, two-player stochastic game) is a tupleG = 〈Q, q0, δ〉 whereQ is a finite set
of states,q0 ∈ Q is the initial state, andδ : Q × A1 × A2 → D(Q) is a probabilistic
transition whereD(Q) is the set of probability distributionsκ : Q → [0, 1] on Q, such
that

∑

q∈Q κ(q) = 1. Given a current stateq and actionsa, b for the players, the transition
probability to a successor stateq′ is δ(q, a, b)(q′).

Observation-based strategies are defined as for three-player games. Anoutcome play
from a stateq0 under strategiesσ1, σ2 is an infinite sequenceρ = q0 a0b0 q1 . . . such that
ai = σ1(q0 . . . qi), bi = σ2(q0 . . . qi), andδ(qi, ai, bi)(qi+1) > 0 for all i ≥ 0.

Qualitative analysisGiven an objectiveα that is Borel measurable (all Borel sets in the
Cantor topology and all objectives considered in this paperare measurable [15]), a strategy
σ1 for player1 is almost-sure winning(resp.,positive winning) for the objectiveα from
q0 if for all observation-based strategiesσ2 for player2, we havePrσ1,σ2

q0
(α) = 1 (resp.,

Prσ1,σ2

q0
(α) > 0) wherePrσ1,σ2

q0
(·) is the unique probability measure induced by the natural

probability measure on finite prefixes of plays (i.e., the product of the transition probabili-
ties in the prefix).

3 Three-Player Games with Player 1 Less Informed

We show that for reachability and parity objectives the three-player decision problem is
decidable when player1 is less informed than player2. The complexity of this problem
ranges from EXPTIME-complete when player2 has perfect information, to EXPSPACE-
complete when player1 is blind, and 2-EXPTIME-complete in general.

Remark 1.Observe that once the strategies of the first two players are fixed we obtain a
graph, and in graphs perfect-information coincides with blind for construction of a path
(see [5, Lemma 2] that counting strategies that count the number of steps are sufficient
which can be ensured by a player with no information). Hence without loss of generality
we consider that player 3 has perfect observation, and drop the observation for player 3.

Theorem 1 (Upper bounds).Given a three-player gameG = 〈Q, q0, δ〉 with player1
less informed than player2 and a parity objectiveα, the problem of deciding whether
∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α can be solved in 2-EXPTIME. If player1

is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for three-player games to a deci-
sion problem for partial-observation two-player games with the same objective. We present
the reduction for parity objectives that are visible for player2 (defined by priority functions
that are constant over observations of player2). The general case of not necessarily visible
parity objectives can be solved using a reduction to visibleobjectives, as in [5, Section 3].

Given a three-player gameG = 〈Q, q0, δ〉 over alphabet of actionsAi (i = 1, 2, 3),
and observationsO1,O2 ⊆ 2Q for player1 and player2, with player1 less informed than
player2, we construct a two-player gameH = 〈QH , {q0}, δH〉 over alphabet of actions
A′

i (i = 1, 2), and observationsO′
1 ⊆ 2QH and perfect observation for player 2, where

(intuitive explanations follow):
– QH = {s ∈ 2Q | s 6= ∅ ∧ ∃o2 ∈ O2 : s ⊆ o2};
– A′

1 = A1 × (2Q ×A2 → O2), andA′
2 = A2;
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– O′
1 =

{

{s ∈ QH | s ⊆ o1} | o1 ∈ O1

}

, and letobs′1 : QH → O′
1 be the correspond-

ing observation function;
– δH(s, (a1, f), a2) = postG(s, a1, a2,−) ∩ f(s, a2).

Intuitively, the state spaceQH is the set of knowledges of player2 about the current
state inG, i.e., the sets of states compatible with an observation of player2. Along a play
in H , the knowledge of player2 is updated to represent the set of possible current states in
which the gameG can be. InH player2 has perfect observation and the role of player1 in
the gameH is to simulate the actions of both player1 and player3 in G. Since player2 fixes
his strategy before player3 in G, the simulation should not let player2 know player-3’s
action, but only the observation that player2 will actually see while playing the game. The
actions of player1 in H are pairs(a1, f) ∈ A′

1 wherea1 is a simple action of player1 in
G, andf gives the observationf(s, a2) received by player2 after the response of player3
to the actiona2 of player 2 when the knowledge of player2 is s. In H , player1 has
partial observation, as he cannot distinguish knowledges of player2 that belong to the same
observation of player1 in G. The transition relation updates the knowledges of player2 as
expected. Note that|O1| = |O′

1|, and therefore if player1 is blind in G then he is blind
in H as well.

Given a visible parity objectiveα = Parity(p) wherep : Q → {0, 1, . . . , d} is constant
over observations of player2, let α′ = Parity(p′) wherep′(s) = p(q) for all q ∈ s and
s ∈ QH . Note that the functionp′ is well defined sinces is a subset of an observation
of player2 and thusp(q) = p(q′) for all q, q′ ∈ s. However, the parity objectiveα′ =
Parity(p′) may not be visible to player1 in G. We establish that given witness strategies in
G we can construct witness strategies inH and vice-versa, and the details of the strategy
constructions are presented in Section 7 of the appendix. ⊓⊔

Theorem 2 (Lower bounds).Given a three-player gameG = 〈Q, q0, δ〉 with player1
less informed than player2 and a reachability objectiveα, the problem of deciding whether
∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α is 2-EXPTIME-hard. If player1 is blind

(and even when player 2 is also blind), then the problem is EXPSPACE-hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynomial-time reduction of
the membership problem for exponential-spacealternatingTuring machines to the three-
player problem. The same reduction for the special case of exponential-spacenondeter-
ministicTuring machines shows EXPSPACE-hardness when player1 is blind (because our
reduction yields a game in which player1 is blind when we start from a nondeterministic
Turing machine). The membership problem for Turing machines is to decide, given a Tur-
ing machineM and a finite wordw, whetherM acceptsw. The membership problem is 2-
EXPTIME-complete for exponential-space alternating Turing machines, and EXPSPACE-
complete for exponential-space nondeterministic Turing machines [21].

An alternating Turing machine is a tupleM = 〈Q∨, Q∧, Σ, Γ,∆, q0, qacc, qrej〉 where
the state spaceQ = Q∨ ∪ Q∧ consists of the setQ∨ of or-states, and the setQ∧ of and-
states. The input alphabet isΣ, the tape alphabet isΓ = Σ ∪ {#} where# is the blank
symbol. The initial state isq0, the accepting state isqacc, and the rejecting state isqrej . The
transition relation is∆ ⊆ Q×Γ×Q×Γ×{−1, 1}, where a transition(q, γ, q′, γ′, d) ∈ ∆
intuitively means that, given the machine is in stateq, and the symbol under the tape head
is γ, the machine can move to stateq′, replace the symbol under the tape head byγ′,
and move the tape head to the neighbor cell in directiond. A configurationc of M is a
sequencec ∈ (Γ ∪ (Q × Γ ))ω with exactly one symbol inQ × Γ , which indicates the
current state of the machine and the position of the tape head. The initial configuration of
M onw = a0a1 . . . an is c0 = (q0, a0) ·a1 ·a2 · · · · ·an ·#

ω. Given the initial configuration
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of M on w, it is routine to define the execution trees ofM where at least one successor
of each configuration in an or-state, and all successors of the configurations in an and-state
are present (and we assume that all branches reach eitherqacc or qrej), and to say that
M acceptsw if all branches of some execution tree reachqacc. Note thatQ∧ = ∅ for
nondeterministic Turing machines, and in that case the execution tree reduces to a single
path. A Turing machineM uses exponential space if for all wordsw, all configurations in
the execution ofM onw contain at most2O(|w|) non-blank symbols.

We present the key steps of our reduction from alternating Turing machines. Given
a Turing machineM and a wordw, we construct a three-player game with reachability
objective in which player1 and player2 have to simulate the execution ofM on w, and
player1 has to announce the successive configurations and transitions of the machine along
the execution. Player1 announces configurations one symbol at a time, thus the alphabet
of player1 is A1 = Γ ∪ (Q × Γ ) ∪ ∆. In an initialization phase, the transition relation
of the game forces player1 to announce the initial configurationc0 (this can be done with
O(n) states in the game, wheren = |w|). Then, the game proceeds to a loop where player1
keeps announcing symbols of configurations. At all times along the execution, some finite
information is stored in the finite state space of the game: a window of the last three symbols
z1, z2, z3 announced by player1, as well as the last symbolhead ∈ Q × Γ announced by
player1 (that indicates the current machine state and the position of the tape head). After
the initialization phase, we should havez1 = z2 = z3 = # andhead = (q0, a0). When
player1 has announced a full configuration, he moves to a state of the game where either
player1 or player2 has to announce a transition of the machine: forhead = (p, a), if
p ∈ Q∨, then player1 chooses the next transition, and ifp ∈ Q∧, then player2 chooses.
Note that the transitions chosen by player2 are visible to player1 and this is the only
information that player1 observes. Hence player1 is less informed than player2, and
both player1 and player2 are blind when the machine is nondeterministic. If a transition
(q, γ, q′, γ′, d) is chosen by playeri, and eitherp 6= q or a 6= γ, then playeri loses (i.e.,
a sink state is reached to let player1 lose, and the target state of the reachability objective
is reached to let player2 lose). If at some point player1 announces a symbol(p, a) with
p = qacc, then player1 wins the game.

The role of player2 is to check that player1 faithfully simulates the execution of the
Turing machine, and correctly announces the configurations. After every announcement of
a symbol by player1, the game offers the possibility to player2 to compare this symbol
with the symbol at the same position in the next configuration. We say that player2 checks
(and whether player2 checks or not is not visible to player1), and the checked symbol is
stored asz2. Note that player2 can be blind to check because player2 fixes his strategy
after player1. The windowz1, z2, z3 stored in the state space of the game provides enough
information to update the middle cellz2 in the next configuration, and it allows the game to
verify the check of player2. However, the distance (in number of steps) between the same
position in two consecutive configurations is exponential (say2n for simplicity), and the
state space of the game is not large enough to check that such adistance exists between
the two symbols compared by player2. We use player3 to check that player2 makes a
comparison at the correct position. When player2 decides to check, he has to count from0
to 2n by announcing after every symbol of player1 a sequence ofn bits, initially all zeros
(again, this can be enforced by the structure of the game withO(n) states). It is then the
responsibility of player3 to check that player2 counts correctly. To check this, player3 can
at any time choose a bit positionp ∈ {0, . . . , n− 1} and store the bit valuebp announced
by player2 at positionp. The value ofbp andp is not visible to player2. While player2
announces the bitsbp+1, . . . , bn−1 at positionp+ 1, . . . , n− 1, the finite state of the game
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is used to flip the value ofbp if all bits bp+1, . . . , bn−1 are equal to1, hence updatingbp to
the value of thep-th bit in what should be the next announcement of player2. In the next
bit sequence announced by player2, thep-th bit is compared withbp. If they match, then
the game goes to a sink state (as player2 has faithfully counted), and if they differ then
the game goes to the target state (as player2 is caught cheating). It can be shown that this
can be enforced by the structure of the game withO(n2) states, that isO(n) states for each
value ofp. As before, whether player3 checks or not is not visible to player2.

Note that the checks of player2 and player3 are one-shot: the game will be over (either
in a sink or target state) when the check is finished. This is enough to ensure a faithful
simulation by player1, and a faithful counting by player2, because(1) partial observation
allows to hide to a player the time when a check occurs, and(2) player2 fixes his strategy
after player1 (and player3 after player2), thus they can decide to run a check exactly
when player1 (or player2) is not faithful. This ensures that player1 does not win if he
does not simulate the execution ofM onw, and that player2 does not win if he does not
count correctly.

Hence this reduction ensures thatM acceptsw if and only if the answer to the three-
player game problem is YES, where the reachability objective is satisfied if player1 even-
tually announces that the machine has reachedqacc (that is ifM acceptsw), or if player2
cheats in counting, which can be detected by player3. ⊓⊔

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show that three-player games get much
more complicated (even in the special case where player1 has perfect information). We
note that for reachability objectives, the three-player decision problem is equivalent to the
qualitative analysis of positive winning in two-player stochastic games, and we show that
the techniques developed in the analysis of two-player stochastic games can be extended to
solve the three-player decision problem with safety objectives as well.

For reachability objectives, the three-player decision problem is equivalent to the prob-
lem of positive winning in two-player stochastic games where the third player is replaced by
a probabilistic choice over the action set with uniform probability. Intuitively, after player1
and player2 fixes their strategy, the fact that player3 can construct a (finite) path to the
target set is equivalent to the fact that such a path has positive probability when the choices
of player3 are replaced by uniform probabilistic transitions. It follows from this equiv-
alence (of winning in three-player games and positive winning in two-player games) for
reachability objectives that the result of Theorem 1 generalizes the complexity result of [6,
Theorem 1], which established EXPTIME-completeness in stochastic two-player reacha-
bility games with player2 having perfect information. In particular, when both player 1 and
player2 have partial observation, Theorem 1 can be used to show that two-player stochas-
tic games with reachability objective can be solved in 2-EXPTIME when player1 is less
informed than player2, extending the results of [6].

Reachability objectives.Even in the special case where player1 has perfect information,
and for reachability objectives, non-elementary memory isnecessary in general for player1
to win. This result follows from the equivalence of three-player reachability and two-player
stochastic games with positive reachability as discussed above, and from the result of [6,
Example 4.2 Journal version] showing that non-elementary memory is necessary to win
with positive probability in two-player stochastic games.It also follows from the equiva-
lence described above and the result of [6, Corollary 4.9 Journal version] that the three-
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player decision problem for reachability games is decidable in non-elementary time. We
extend the decidability result to safety objectives (see Section 8 in Appendix).

Theorem 3. When player 1 has perfect information, the three-player decision problem is
decidable for both reachability and safety games, and for reachability games memory of
size non-elementary is necessary in general for player1.

5 Four-Player Games

We show that the results presented for three-player games extend to games with four players
(the fourth player is universal and perfectly informed). The definition of four-player games
and related notions is a straightforward extension of Section 2.1.

In a four-player game with player1 less informed than player2, and perfect information
for both player3 and player4, consider thefour-player decision problemwhich is to decide
if ∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 · ∀σ4 ∈ Σ4 : ρσ1,σ2,σ3,σ4

q0
∈ α for a parity objective

α (also see Section 9 in the appendix for further discussion).Since player3 and player4
have perfect information, we assume without loss of generality that the game is turn-based
for them, that is there is a partition of the state spaceQ into two setsQ3 andQ4 (where
Q = Q3∪Q4) such that the transition function is the union ofδ3 : Q3×A1×A2×A3 → Q
andδ4 : Q4 × A1 × A2 × A4 → Q. Strategies and outcomes are defined analogously to
three-player games. A strategy of playeri ∈ {3, 4} is of the formσi : Q

∗ ·Qi → Ai.
By determinacy of perfect-information turn-based games with countable state

space [18], the negation of the four-player decision problem is equivalent to∀σ1 ∈
Σ1 · ∃σ2 ∈ Σ2 · ∃σ4 ∈ Σ4 · ∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α. Once the strategiesσ1 and

σ2 are fixed, the condition∃σ4 ∈ Σ4 · ∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α can be viewed as

the membership problem for a treetσ1,σ2 in the language of an alternating parity tree au-
tomaton [9] with state spaceQ wheretσ1,σ2 is the(A1 × A2)-labeled tree(T, V ) where
T = O+

2 andV (ρ) = (σ1(obs1(ρ)), σ2(ρ)) for all ρ ∈ T .
By the results of [12], if there exists an accepting(O+

2 ×Q)-labeled run tree(Tr, r) for
an input treetσ1,σ2 in an alternating parity tree automaton, then there exists amemoryless
accepting run tree, that is such that for all nodesx, y ∈ Tr such that|x| = |y| andr(x) =
r(y), the subtrees ofTr rooted atx andy are isomorphic. Since the membership problem is
equivalent to a two-player parity game played on the structure of the alternating automaton,
a memoryless accepting run tree can be viewed as a winning strategyσ4 : O+

2 ×Q → A4,
or equivalentlyσ4 : O+

2 → (Q → A4) such that for all strategiesσ3 : Tr → A3, the
resulting infinite branch in the treeTr satisfies the parity objectiveα.

It follows from this that the (negation of the) original question ∀σ1 ∈ Σ1 · ∃σ2 ∈
Σ2 ·∃σ4 ∈ Σ4 ·∀σ3 ∈ Σ3 : ρσ1,σ2,σ3,σ4

q0
∈ α is equivalent to∀σ1 ∈ Σ1 ·∃σ24 ∈ Σ24 ·∀σ3 ∈

Σ3 : ρσ1,σ24,σ3

q0
∈ α whereΣ24 = O+

2 → (A2 × (Q → A4)) is the set of strategies of a
player (call it player 24) with observationsO2 and action setA′

2 = A2 × (Q → A4), and
the outcomeρσ1,σ24,σ3

q0
is defined as expected in a three-player game (played by player 1,

player24, and player3) with transition functionδ′ : Q × A1 ×A′
2 × A3 → Q defined by

δ′(q, a1, (a2, f), a3) = δ(q, a1, a2, a3, f(q)).
Hence the original question (and its negation) for four-player games reduces in polyno-

mial time to solving a three-player game with the first playerless informed than the second
player. Hardness follows from the special case of three-player games.

Theorem 4. The four-player decision problem with player1 less informed than player2,
and perfect information for both player3 and player4 is 2-EXPTIME-complete for parity
objectives.
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6 Applications

We now discuss applications of our results in the context of synthesis and qualitative anal-
ysis of two-player partial-observation stochastic games.

Sequential synthesis.Thesequential synthesisproblem consists of an open system of par-
tially implemented modules (with possible non-determinism or choices)M1,M2, . . . ,Mn

that need to be refined (i.e., the choices determined by strategies) such that the composite
system after refinement satisfy a specification. The system is open in the sense that after the
refinement the composite system is reactive and interact with an environment. Consider the
problem where first a setM1, . . . ,Mk of modules are refined, then a setMk+1, . . . ,Mℓ are
refined by an external implementor, and finally the remainingset of modules are refined. In
other words, the modules are refined sequentially: first a setof modules whose refinement
can be controlled, then a set of modules whose refinement cannot be controlled as they
are implemented externally, and finally the remaining set ofmodules. If the refinements
of modulesM1, . . . ,Mℓ do not have access to private variables of the remaining mod-
ules we obtain a partial-observation game with four players: the first (existential) player
corresponds to the refinement of modulesM1, . . . ,Mk, the second (universal) player cor-
responds to the refinement of modulesMk+1, . . . ,Mℓ, the third (existential) player cor-
responds to the refinement of the remaining modules, and the fourth (adversarial) player
is the environment. If the second player has access to all thevariables visible to the first
player, then player 1 is less informed.

Two-player partial-observation stochastic games.Our results for four-player games im-
ply new complexity results for two-player stochastic games. For qualitative analysis (posi-
tive and almost-sure winning) under finite-memory strategies for the players the following
reduction has been established in [9, Lemma 1] (see Lemma 2.1of the arxiv version):
the probabilistic transition function can be replaced by a turn-based gadget consisting of
two perfect-observation players, one angelic (existential) and one demonic (universal). The
turn-based gadget is the same as used for perfect-observation stochastic games [4, 10].
In [9], only the special case of perfect observation for player 2 was considered, and hence
the problem reduced to three-player games where only player1 has partial observation and
the other two players have perfect observation. In case where player 2 has partial observa-
tion, the reduction of [9] requires two perfect-observation players, and gives the problem
of four-player games (with perfect observation for player 3and player 4). Hence when
player 1 is less informed, we obtain a 2-EXPTIME upper bound from Theorem 4, and
obtain a 2-EXPTIME lower bound from Theorem 2 (since the three-player games prob-
lem with player 1 less informed for reachability objectivescoincides with positive winning
for two-player partial-observation stochastic games; seeSection 10 in appendix for lower
bound for almost-sure winning). Thus we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and positive winning) for two-
player partial-observation stochastic parity games whereplayer 1 is less informed than
player 2, under finite-memory strategies for both players, are 2-EXPTIME-complete.
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Appendix

7 Detailed Proof of Theorem 2

We present the details of the strategy constructions to establish the correctness of the con-
struction for the proof of Theorem 2.

Let Σi be the set of observation-based strategies of playeri (i = 1, 2, 3) in G, and let
Σ′

i be the set of observation-based strategies of playeri (i = 1, 2) in H . We claim that the
following statements are equivalent:

(1) In G, ∃σ1 ∈ Σ1 · ∀σ2 ∈ Σ2 · ∃σ3 ∈ Σ3 : ρσ1,σ2,σ3

q0
∈ α.

(2) In H , ∃σ′
1 ∈ Σ′

1 · ∀σ
′
2 ∈ Σ′

2 : ρ
σ′

1
,σ′

2

{q0}
∈ α′.

The 2-EXPTIME result of the theorem follows from this equivalence because the game
H is at most exponentially larger than the gameG, and two-player partial-observation
games with a parity objective can be solved in EXPTIME, and when player1 is blind they
can be solved in PSPACE [8]. Observe that when player2 has perfect information, his
observations are singletons andH is no bigger thanG, and an EXPTIME bound follows in
that case.

To show that(1) implies(2), letσ1 : O+
1 → A1 be a strategy for player1 such that for

all strategiesσ2 : O+
2 → A2, there is a strategyσ3 : O+

3 → A3 such thatρσ1,σ2,σ3

q0
∈ α.

Fromσ1, we construct an (infinite) DAG over state spaceQH × O+
1 with edges labeled

by elements ofA2 ×O2 defined as follows. The root is({q0}, obs1(q0)). There is an edge
labeled by(b, o2) ∈ A2 × O2 from (s, ρ) to (s′, ρ′) if s′ = postG(s, a, b,−) ∩ o2 6= ∅

wherea = σ1(ρ), andρ′ = ρ · o1 whereo1 ∈ O1 is the (unique) observation of player1
such thato2 ⊆ o1. Note that for every noden = (s, ρ) in the DAG, for all statesq ∈ s,
for all b ∈ A2, c ∈ A3, there is a successorn′ = (s′, ρ′) of n such thatδ(q, a, b, c) ∈ s′

wherea = σ1(ρ). Consider a perfect-information turn-based game played over this DAG,
between player2 choosing actionsb ∈ A2 and player3 choosing observationso2 ∈ O2,
resulting in an infinite path(s0, ρ0)(s1, ρ1) . . . in the DAG as expected, and that is defined
to be winning for player3 if the sequences0s1 . . . satisfiesα′. We show that in this game,
for all strategies of player2 (which naturally define functionsσ2 : O+

2 → A2), there exists
a strategy of player3 (a functionf3 : QH ×O+

1 × A2 → O+
2 ) to ensure that the resulting

play satisfiesα′. The argument is based on(1) saying that given the strategyσ1 is fixed, for
all strategiesσ2 : O+

2 → A2, there is a strategyσ3 : O+
3 → A3 such thatρσ1,σ2,σ3

q0
∈ α.

Given a strategy for player2 in the game over the DAG, we useσ3 to choose observations
o2 ∈ O2 as follows. We define a labelling functionλ : QH × O+

1 → Q over the DAG
in a top-down fashion such thatλ(s, ρ) ∈ s. First, letλ({q0}, obs1(q0)) = q0, and given
λ(s, ρ) = q with an edge labeled by(b, o2) to (s′, ρ′), let λ(s′, ρ′) = δ(q, a, b, c) where
a = σ1(ρ) andc = σ3(ρ). Note that indeedδ(q, a, b, c) ∈ s′. Now we define a strategy for
player3 that, in a node(s, ρ) of the DAG, chooses the observationobs2(δ(q, a, b, c)) where
q = λ(s, ρ), a = σ1(ρ), b is the action chosen by player2 at that node (remember we fixed
a strategy for player2), andc = σ3(ρ). Sinceλ(s, ρ) ∈ s, it follows that the resulting play
satisfiesα′ sinceρσ1,σ2,σ3

q0
satisfiesα.

By determinacy of perfect-information turn-based games [18], in the game over the
DAG there exists a strategyf3 for player3 such that for all player-2 strategies, the outcome
play satisfiesα′. Usingf3, we construct a strategyσ′

1 for player1 in H as follows. First,
by a slight abuse of notation, we identify the observationso′1 ∈ O′

1 with the observation
o1 ∈ O1 such thatu ⊆ o1 for all u ∈ o′1. For all ρ ∈ O+

1 , let σ′
1(ρ) = (a, f) where
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a = σ1(ρ) andf is defined byf(s, a2) = f3(s, ρ, a2). By construction of the DAG and of
the strategyσ′

1, for all strategies of player2 in H the outcome plays0s1 . . . satisfies the
parity objectiveα′, and thusσ′

1 is a winning observation-based strategy inH .
To show that(2) implies (1), let σ′

1 be a winning observation-based strategy for the
objectiveα′ in H . Consider the DAG over state spaceQH × O+

1 with edges labeled by
elements ofA2 defined as follows. The root is({q0}, obs1(q0)). For all nodes(s, ρ), for all
b ∈ A2, there is an edge labeled byb from (s, ρ) to (s′, ρ′) if s′ = postG(s, a, b,−) ∩ o2
andρ′ = ρ · o1 whereo2 = f(s, b) and (a, f) = σ′

1(ρ), ando1 ∈ O1 is the (unique)
observation of player1 such thato2 ⊆ o1. We say that(s′, ρ′) is theb-successor of(s, ρ).
Note that for allq′ ∈ s′, there existsq ∈ s andc ∈ A3 such thatq′ = δ(q, a, b, c).

This DAG mimics the unraveling ofH underσ′
1, and sinceσ′

1 is a winning strategy, for
all infinite paths(s0, ρ0)(s1, ρ1) . . . of the DAG, the sequences0s1 . . . satisfiesα′.

Define the strategyσ1 such thatσ1(ρ) = a if σ′
1(ρ) = (a, f) (again identifying the ob-

servations inO′
1 andO1). To show that(1) holds, fix an arbitrary observation-based strategy

σ2 for player2. The outcome play ofσ1 andσ2 in H is the sequence(s0, ρ0)(s1, ρ1) . . .
where(s0, ρ0) is the root, and such that for alli ≥ 1, the node(si, ρi) is theb-successor
of (si−1, ρi−1) whereb = σ2(obs2(s0s1 . . . si−1)) (whereobs2(si) is naturally defined as
the unique observationo2 ∈ O2 such thatsi ⊆ o2). From this path in the DAG, we con-
struct an infinite pathp0p1 . . . in G using König’s Lemma [16] as follows. First, it is easy
to show by induction (onk) that for every finite prefixs0s1 . . . sk and for everypk ∈ sk
there exists a pathp0p1 . . . pk in G such thatpi ∈ si for all 0 ≤ i ≤ k. Note thatp0 = q0
sinces0 = {q0} and that by definition of the DAG, for eachsi+1 (i = 0, . . . , k − 1), there
exista ∈ A1, b ∈ A2, ando2 ∈ O2 such thatsi+1 = postG(si, a, b,−) ∩ o2. Hence, given
pi+1 ∈ si+1, there existci ∈ A3 andpi ∈ si such thatδ(pi, a, b, ci) = pi+1.

Arranging all these finite paths in a tree, we obtain an infinite finitely-branching tree
which by König’s Lemma [16] contains an infinite branchq0q1 . . . that is a path inG
and such thatqi ∈ si for all i ≥ 0. Now we can construct the strategyσ3 such that
σ3(p0 . . . pi) = ci. Sinces0s1 . . . satisfiesα′, it follows thatρσ1,σ2,σ3

q0
= p0p1 . . . satisfies

α, which completes the proof.

8 Three-player Games with Player 1 Perfect: Safety Objectives

We now discuss the main ideas for the decidability of three-player games with perfect
observation for player 1 and safety objectives.

Safety objectives.We show that the three-player decision problem can be solvedfor games
with a safety objective when player1 has perfect information. The proof is using thecount-
ing abstractionof [6, Section 4.2 Journal version] and shows that the answerto the three-
player decision problem for safety objectiveSafe(T ) is YES if and only if there exists a
winning strategy in the two-player counting-abstraction game with the safety objective to
visit only counting functions (i.e., essentially tuples ofnatural numbers) with support con-
tained in the target statesT . Intuitively, the counting abstraction is as follows: withevery
knowledge of player 2 we store a tuple of counters, one for each state in the knowledge. The
counters denote the number of possible distinct paths to thestates of the knowledge, and
the abstraction treats large enough values as infinite (value ω). The counting-abstraction
game is monotone with regards to the natural partial order over counting functions, and
therefore it is well-structured and can be solved by computing a self-covering unravel-
ing tree, i.e. a tree in which the successors of a node are constructed only if this node
has no greater ancestor. The properties of well-structuredsystems (well-quasi-ordering and
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König’s Lemma) ensure that this tree is finite, and that there exists a strategy to ensure only
supports contained in the target statesT are visited if and only if there exists a winning
strategy in the counting-abstraction game (in a leaf of the tree, one can copy the strategy
played in a greater ancestor). It follows that the three-player decision problem for safety
games is equivalent the problem of solving a safety game overthis finite tree.

9 Remark about Strategy Quantifiers

We discuss the various possibilities of strategy quantifiers and information of the players
in multi-player games. First, if there are two existential (resp., universal) players with in-
comparable information, then the decision question is undecidable [22, 23]; and if there is
a sequence of existential (resp., universal) quantification over strategies players such that
the information of the players form a chain (i.e., in the sequence of quantification over
the players, let the players bei1, i2, . . . , ik such thati1 is more informed thani2, i2 more
informed thani3 and so on), then with repeated subset construction, the sequence can be
reduced to one quantification [23, 17, 19]. Note however thatif there is a quantifier alter-
nation between existential and universal, then even if the information may form a chain,
subset construction might not be sufficient: for example, ifplayer 1 is perfect and player 2
has partial-information, non-elementary memory might be necessary (as shown in Sec-
tion 4). We now discuss the various possibilities of strategy quantification in four-player
games. Without loss of generality we consider that the first strategy quantifier is existential.
The above argument for sequence of quantifiers (either undecidability with incomparable
information or the sequence reduces to one) shows that we only need to consider the fol-
lowing strategy quantification:∃1∀2∃3∀4, where the subscripts denote the quantification
over strategies for the respective player. First, note thatonce the strategies of the first three
players are fixed we obtain a graph, and similar to Remark 1 without loss of generality
we consider that player 4 has perfect observation. We now consider the possible cases for
player 3.
1. Perfect observation.The case when player 3 has perfect observation has been solved

in the main paper (results of Section 5).
2. Partial observation.We now consider the case when player 3 has partial observation. If

player 2 is less informed than player 1, then the problem is atleast as hard as the prob-
lem considered in Section 4. If player 3 is less informed thanplayer 2, then even in the
absence of player 1, the problem is as hard as the negation of the question considered
in Section 4 (where first a more informed player plays, followed by a less informed
player, just the strategy quantifiers are∀2∃3∀4 as compared to∃1∀2∃3 considered in
Section 4). Finally, if player 1 is less informed than player2, and player 2 is less in-
formed than player 3, then we apply our construction of Section 3 twice and obtain a
double exponential size two-player partial-observation game which can be solved in
3-EXPTIME.

10 Remark about Theorem 5

We showed in Section 6 that the 2-EXPTIME lower bound forpositivewinning in two-
player partial-observation stochastic games directly follows from Theorem 2.

The 2-EXPTIME lower bound foralmost-surewinning is obtained by an adaptation
of the proof of Theorem 2. We use the same reduction from exponential-space alternat-
ing Turing machines, with the following changes:(i) the third player is replaced by a uni-
form probability distribution over player-3’s moves, thus the reduction is now to two-player
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partial-observation stochastic games;(ii) instead of reaching a sink state when player2 de-
tects a mistake in the sequence of configurations announced by player1, the game restarts
in the initial state; thus the target state of the reachability objective is not reached, but
player1 gets another chance to faithfully simulate the Turing machine.

It follows that if the Turing machine accepts, then player1 has an almost-sure winning
strategy by faithfully simulating the execution. Indeed, either (a) player2 never checks,
or checks and counts correctly, and then player1 wins since no mistake is detected, or(b)
player2 checks and cheats counting, and then player2 is caught with positive probability
(player1 wins), and with probability smaller than1 the counting cheat is not detected and
thus possibly a (fake) mismatch in the symbol announced by player1 is detected. Then
the game restarts. Hence in all cases after finitely many steps, either player1 wins with
(fixed) positive probability, or the game restarts. It follows that player1 wins the game with
probability1.

If the Turing machine rejects, then player1 cannot win by a faithful simulation of the
execution, and thus he should cheat. The strategy of player2 is then to check and to count
correctly, ensuring that the target state of the reachability objective is not reached, and the
game restarts. Hence for all strategies of player1, there is a strategy of player2 to always
avoid the target state (with probability1), and thus player1 cannot win almost-surely (he
wins with probability0). This completes the proof of the reduction for almost-surewinning.
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