9 research outputs found

    Reaching Consensus via Non-Bayesian Asynchronous Learning in Social Networks

    Get PDF
    We study the outcomes of information aggregation in online social networks. Our main result is that networks with certain realistic structural properties avoid information cascades and enable a population to effectively aggregate information. In our model, each individual in a network holds a private, independent opinion about a product or idea, biased toward a ground truth. Individuals declare their opinions asynchronously, can observe the stated opinions of their neighbors, and are free to update their declarations over time. Supposing that individuals conform with the majority report of their neighbors, we ask whether the population will eventually arrive at consensus on the ground truth. We show that the answer depends on the network structure: there exist networks for which consensus is unlikely, or for which declarations converge on the incorrect opinion with positive probability. On the other hand, we prove that for networks that are sparse and expansive, the population will converge to the correct opinion with high probability

    Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

    Get PDF
    Inspired by the work of Kempe et al. [Kempe, Kleinberg, Oren, Slivkins, EC 2013], we introduce and analyze a model on opinion formation; the update rule of our dynamics is a simplified version of that of [Kempe, Kleinberg, Oren, Slivkins, EC 2013]. We assume that the population is partitioned into types whose interaction pattern is specified by a graph. Interaction leads to population mass moving from types of smaller mass to those of bigger mass. We show that starting uniformly at random over all population vectors on the simplex, our dynamics converges point-wise with probability one to an independent set. This settles an open problem of [Kempe, Kleinberg, Oren, Slivkins, EC 2013], as applicable to our dynamics. We believe that our techniques can be used to settle the open problem for the Kempe et al. dynamics as well. Next, we extend the model of Kempe et al. by introducing the notion of birth and death of types, with the interaction graph evolving appropriately. Birth of types is determined by a Bernoulli process and types die when their population mass is less than epsilon (a parameter). We show that if the births are infrequent, then there are long periods of "stability" in which there is no population mass that moves. Finally we show that even if births are frequent and "stability" is not attained, the total number of types does not explode: it remains logarithmic in 1/epsilon

    Minority Becomes Majority in Social Networks

    Full text link
    It is often observed that agents tend to imitate the behavior of their neighbors in a social network. This imitating behavior might lead to the strategic decision of adopting a public behavior that differs from what the agent believes is the right one and this can subvert the behavior of the population as a whole. In this paper, we consider the case in which agents express preferences over two alternatives and model social pressure with the majority dynamics: at each step an agent is selected and its preference is replaced by the majority of the preferences of her neighbors. In case of a tie, the agent does not change her current preference. A profile of the agents' preferences is stable if the preference of each agent coincides with the preference of at least half of the neighbors (thus, the system is in equilibrium). We ask whether there are network topologies that are robust to social pressure. That is, we ask if there are graphs in which the majority of preferences in an initial profile always coincides with the majority of the preference in all stable profiles reachable from that profile. We completely characterize the graphs with this robustness property by showing that this is possible only if the graph has no edge or is a clique or very close to a clique. In other words, except for this handful of graphs, every graph admits at least one initial profile of preferences in which the majority dynamics can subvert the initial majority. We also show that deciding whether a graph admits a minority that becomes majority is NP-hard when the minority size is at most 1/4-th of the social network size.Comment: To appear in WINE 201

    Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander

    Get PDF
    As the deployment of Internet of Things and other enabling technologies is still in an initial phase worldwide, few research studies have addressed the associated business models. This paper aims to fill this gap. The main objective of this research is to gain a deeper knowledge about practical business models matching into a real-life smart city ecosystem. Hence, a benchmarking of eight urban services provided in the city of Santander has been carried out: waste management; water supply; traffic management; street lighting; augmented reality and tourism; incidences management, parks and gardens and citizen participation. Among the main results of our study, we highlight that those public services properly managed embedding IoT technology convey cost reductions in the long term. There is also a reduction in energy consumption and environmental impact with the consequent social impact. It should also be highlighted that most data are managed with the same platform. Last but not least, an emerging ecosystem of incentivized citizens has been proved to be arising

    Stabilization Bounds for Influence Propagation from a Random Initial State

    Full text link
    We study the stabilization time of two common types of influence propagation. In majority processes, nodes in a graph want to switch to the most frequent state in their neighborhood, while in minority processes, nodes want to switch to the least frequent state in their neighborhood. We consider the sequential model of these processes, and assume that every node starts out from a uniform random state. We first show that if nodes change their state for any small improvement in the process, then stabilization can last for up to Θ(n2)\Theta(n^2) steps in both cases. Furthermore, we also study the proportional switching case, when nodes only decide to change their state if they are in conflict with a 1+λ2\frac{1+\lambda}{2} fraction of their neighbors, for some parameter λ(0,1)\lambda \in (0,1). In this case, we show that if λ<13\lambda < \frac{1}{3}, then there is a construction where stabilization can indeed last for Ω(n1+c)\Omega(n^{1+c}) steps for some constant c>0c>0. On the other hand, if λ>12\lambda > \frac{1}{2}, we prove that the stabilization time of the processes is upper-bounded by O(nlogn)O(n \cdot \log{n})

    Bayesian collective learning emerges from heuristic social learning

    Full text link
    Researchers across cognitive science, economics, and evolutionary biology have studied the ubiquitous phenomenon of social learning—the use of information about other people's decisions to make your own. Decision-making with the benefit of the accumulated knowledge of a community can result in superior decisions compared to what people can achieve alone. However, groups of people face two coupled challenges in accumulating knowledge to make good decisions: (1) aggregating information and (2) addressing an informational public goods problem known as the exploration-exploitation dilemma. Here, we show how a Bayesian social sampling model can in principle simultaneously optimally aggregate information and nearly optimally solve the exploration-exploitation dilemma. The key idea we explore is that Bayesian rationality at the level of a population can be implemented through a more simplistic heuristic social learning mechanism at the individual level. This simple individual-level behavioral rule in the context of a group of decision-makers functions as a distributed algorithm that tracks a Bayesian posterior in population-level statistics. We test this model using a large-scale dataset from an online financial trading platform

    Rumor spreading: robustness and limiting distributions

    Get PDF
    In this thesis, we study mathematical aspects of information dissemination. The four collected works investigate randomized rumor spreading with regard to its robustness and asymptotic runtime as well as adversarial effects on opinion forming. In the first contribution, Robustness of Randomized Rumor Spreading, we investigate the popular randomized rumor spreading algorithms push, pull and pushpull. These are used to spread information quickly through large networks, typically modelled by graphs. Starting with one informed vertex and depending on the used algorithm the information is spread in a round based manner. Using push, every informed vertex chooses a random neighbour and passes the information forward. With pull, each vertex yet uninformed connects to a randomly chosen neighbor and receives the information, if the vertex it connected to is informed. pushpull is a combination of push and pull. Every vertex chooses a random neighbour, if one of them is informed then the other will be informed as well. Their advantages over deterministic algorithms are, that they are easy to implement, fast and very robust against failures. However, there is only sporadic information available to substantiate the claimed robustness. The aim of this work is to close this gap. To that end, three orthogonal properties and their effects on the speed of the dissemination are studied. First, we show that the density of the graph does not play an important role. For fast dissemination it is not relevant how many edges there are, but how evenly they are distributed in the graph. Thus, a network could have many faulty connections, but as long as the remaining ones are spread evenly the speed of the dissemination is not significantly impacted. This begs the question how evenly the remaining edges need to be spread to guarantee a fast dissemination. Surprisingly, the answer to this question is not the same for all three rumor spreading algorithms. pull and pushpull are very robust. Starting from a graph with evenly distributed edges and thus fast dissemination one may introduce irregularities by deleting up to one half of all edges at each node and the dissemination remains fast. However, for push the dissemination already slows down significantly if only few irregularities are introduced. Lastly, we additionally consider random message transmission failures. From previous works, we know that on "nice" graphs all three algorithms only slow down proportionally to the failure probability. However, when considering the effect of density and irregularities together with transmission failures, the picture changes once more. pull alone retains its fast dissemination. With a suitable choice of parameters, pushpull similar to \push can be slowed down significantly. Thus, we can not unconditionally confirm the claimed robustness for all three rumor spreading algorithms, only pull proved to be robust against all introduced challenges, push and pushpull, however, did not. In the second contribution, Asymptotics for Push on the Complete Graph, we move from the general approach of quantifying the robustness of all three randomized rumor spreading algorithms on a broad range of networks to very precisely describing the runtime of push on complete graphs only. Thereby, the runtime is defined as the time until the information is disseminated to all vertices in the graph. In this work, we completely describe the limiting distribution of the runtime of push on the complete graph in terms of a Gumbel distributed random variable. We made a surprising observation, the asymptotic distribution does not converge everywhere, only on suitable subsequences. This results in the phenomena, that the expected runtime is not constant either but infimum and supremum over all n differ by about 10^-4. After successfully solving push on the complete graph, a natural question is to ask whether the same can be achieved for other rumor spreading algorithms. The third contribution, Asymptotics for Pull on the Complete Graph, answers this question for pull, describing the asymptotic distribution of the runtime of pull on the complete graph in terms of a martingale limit. Again we observed that the limiting distribution only exists on suitable subsequences. We study the expected runtime numerically, finding strong evidence that it is not constant either. The last contribution, The Effect of Iterativity on Adversarial Opinion Forming, deviates from the previously considered model and introduces a second competing piece of information. We interpret them as opinions and assume one to be the truth and the other one to be a falsehood. The opinions are spread through the network by a simple majority rule, i.e. uninformed vertices take the majority opinion of their informed neighbours. Known properties that guarantee robustness are the degree being sufficiently bounded or the edges being evenly distributed. The question considered in this contribution is whether an alternative iterative dissemination process influences robustness. Alon et al. conjecture that iterativity is always beneficial for the adversary. We refute that conjecture by giving a graph where iterativity benefits robustness.In dieser Arbeit beschäftigen wir uns mit mathematischen Aspekten der Informationsverbreitung in Netzwerken. Die vier gesammelten Beiträge untersuchen randomisierte Gerüchteverbreitungsalgorithmen hinsichtlich ihrer Robustheit und asymptotischen Laufzeit, sowie gegnerische Auswirkungen auf die Meinungsbildung. Der erste Beitrag, Robustness of Randomized Rumor Spreading, befasst sich mit den populären randomisierten Gerüchteverbreitungsalgorithmen Push, Pull und Push&Pull. Diese werden dazu verwendet, um Informationen schnell durch große, als Graphen modellierte Netzwerke zu verteilen. Beginnend mit einem informierten Knoten und in Runden verfahrend, werden die Informationen abhängig vom verwendeten Algorithmus verteilt. Wird \push benutzt, so wählt jeder informierte Knoten einen zufälligen Nachbarn und gibt die Information weiter. Mit Pull wählen uninformierte Knoten zufällige Nachbarn und werden informiert, falls der gewählte Nachbar informiert ist. Push&Pull ist eine Kombination aus Push und Pull. Jeder Knoten wählt einen zufälligen Nachbarn aus, ist einer der beiden informiert, so wird auch der andere informiert. Mit einer einfachen Implementierung, hohen Geschwindigkeit und einer starken Robustheit heben sich die randomisierten Gerüchteverbreitungsalgorithmen positiv von deterministischen Algorithmen ab. Bisher liegen jedoch nur sporadische Informationen vor, um die beobachtete Robustheit auch rigoros zu belegen. Ziel dieser Arbeit ist es, diese Lücke zu schließen. Dafür betrachten wir drei verschiedene, strukturelle Eigenschaften der Graphen, um deren Auswirkungen auf die Geschwindigkeit der Verbreitung zu studieren. Als erstes Ergebnis zeigen wir, dass die Dichte des Netzwerks keinen nennenswerten Einfluss hat. Für eine schnelle Verbreitung der Informationen ist nicht die Anzahl der Kanten relevant, sondern deren gleichmäßige Verteilung. Ein Netzwerk könnte folglich viele fehlerhafte Verbindungen haben, aber solange die verbleibenden Verbindungen gleichmäßig verteilt sind, wird die Verbreitung nicht wesentlich verlangsamt. Dies regt die Untersuchung an, wie gleichmäßig die verbleibenden Kanten sein müssen, um eine schnelle Verbreitung zu gewährleisten. Wider Erwarten konnten wir Unterschiede in Abhängigkeit des gewählten Gerüchteverbreitungsalgorithmus aufzeigen. Pull und Push&Pull sind sehr widerstandsfähig. Denn ausgehend von einem „schönen“ Graph mit gleichmäßig verteilten Kanten können durch Löschen von Kanten Unregelmäßigkeiten eingebracht werden durch die sich die Geschwindigkeit der Gerüchteverbreitung nicht nennenswert verändert. Im Gegensatz dazu verlangsamt sich die Verbreitung mit Push bereits erheblich, wenn nur wenige Unregelmäßigkeiten auftreten. Abschließend befassen wir uns ergänzend mit zufällig auftretenden Übertragungsfehlern. Aus früheren Arbeiten wissen wir, dass sich bei „schönen“ Graphen alle drei Algorithmen nur proportional zur Ausfallswahrscheinlichkeit verlangsamen. Betrachten wir hingegen die Auswirkungen der Dichte und der Unregelmäßigkeiten mit Übertragungsfehlern zusammen, entsteht eine neue Sachlage. Dabei behält nur Pull seine schnelle Verbreitung bei, Push&Ppull kann bei einer entsprechenden Wahl der Parameter ähnlich wie Push verlangsamt werden. Somit ist eine Bestätigung der behaupteten Robustheit der drei Gerüchteverbreitungsalgorithmen nicht bedingungslos möglich. Lediglich Pull erwies sich als widerstandsfähig gegenüber allen betrachteten Problemen, Push und Push&Pull jedoch nicht. Im zweiten Beitrag, Asymptotics for Push on the Complete Graph, gehen wir vom allgemeinen Ansatz der Beschreibung der Robustheit aller drei randomisierten Gerüchteverbreitungsalgorithmen auf einem breiten Spektrum von Netzwerken zu einer sehr präzise Beschreibung der Laufzeit von Push auf vollständigen Graphen über. Dabei definiert sich die Laufzeit als die Zeit, in der die Information an alle Knoten im Graph verteilt wird. In dieser Arbeit beschreiben wir die Grenzverteilung der Laufzeit von Push auf dem vollständigen Graph. Dabei haben wir eine überraschende Beobachtung gemacht, denn die asymptotische Verteilung konvergiert nicht überall, sondern nur auf geeigneten Teilfolgen. Dies resultiert in dem Phänomen, dass die erwartete Laufzeit nicht konstant ist, vielmehr unterscheiden sich Supremum und Infimum über alle n um ungefähr 10^-4. Nach dieser erkenntnisreichen Arbeit stellt sich die natürliche Frage, ob dasselbe für die anderen Gerüchteverbreitungsalgorithmen gilt. Die daran anschließende Arbeit Asymptotics for Pull on the Complete Graph bejaht die aufgeworfene Frage für Pull, indem die asymptotische Verteilung der Laufzeit von Pull auf vollständigen Graph mit Hilfe eines Martingalgrenzwertes beschrieben wird. Ferner wird beobachtet, dass die Grenzverteilung nur auf geeigneten Teilfolgen existiert. Die erwartete Laufzeit wird mit Hilfe dieser Beschreibungen empirisch untersucht, wobei es eine starke Evidenz gibt, dass auch diese nicht konstant ist. Der letzte Beitrag, The Effect of Iterativity on Adversarial Opinion Forming, weicht vom bisher betrachteten Modell ab und führt eine zweite, konkurrierende Information ein. Diese interpretieren wir als Meinungen und nehmen eine davon als wahr an. Die Meinungen werden durch eine einfache Mehrheitsregel im Netzwerk verbreitet, d.h. uninformierte Knoten nehmen die Mehrheitsmeinung ihrer informierten Nachbarn an. Dabei sehen wir ein Netzwerk als robust an, wenn selbst ein Kontrahent die anfangs informierten Knoten nur so wählen kann, dass am Ende der Verbreitung stets die Mehrheit der Knoten von der Wahrheit überzeugt ist. Bekannte Beispiele robuster Netzwerke sind solche mit hinreichend beschränkten Knotengraden oder mit ausreichend gleichmäßig verteilten Kanten. In unserem Beitrag betrachten wir die Frage, inwiefern Robustheit durch einen alternativen, iterativen Verbreitungsprozess beeinflusst wird. Alon et al. vermuten eine negative Auswirkung von Iteration auf Robustheit. Wir widerlegen diese Vermutung durch Konstruktion eines Graphen, auf welchem ein iterativer Prozess die Verbreitung der Wahrheit begünstigt
    corecore