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Abstract
We study the outcomes of information aggregation in online social networks. Our main result is
that networks with certain realistic structural properties avoid information cascades and enable a
population to effectively aggregate information. In our model, each individual in a network holds
a private, independent opinion about a product or idea, biased toward a ground truth. Individuals
declare their opinions asynchronously, can observe the stated opinions of their neighbors, and are
free to update their declarations over time. Supposing that individuals conform with the majority
report of their neighbors, we ask whether the population will eventually arrive at consensus on the
ground truth. We show that the answer depends on the network structure: there exist networks
for which consensus is unlikely, or for which declarations converge on the incorrect opinion with
positive probability. On the other hand, we prove that for networks that are sparse and expansive,
the population will converge to the correct opinion with high probability.
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1 Introduction

A community consists of a collection of individuals, each with their own observations and
inferences. Through social interactions, these individuals combine these private reflections
with the public opinions of others to form their personal public opinions regarding matters
of importance. For many such matters, individuals have aligned goals. Thus, there is often
a ground truth, a correct answer, to such questions. When ground truth exists and when
individuals’ observations are more likely to lead to correct inferences than incorrect ones, the
law of large numbers states that a majority of individuals, when reasoning privately, will
reach correct conclusions. This leaves a potentially substantial fraction of society with the
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incorrect conclusion, but it offers hope that the correct majority might influence the society
creating a consensus on the ground truth.

Unfortunately, the outcome of this process of social deliberation can result in egregious
errors in which the potentially small incorrect minority opinion infiltrates the entire community
as individuals copy this opinion. A situation like this, in which individuals copy opinions of
others while ignoring their own observations, is called an information cascade. Information
cascades notoriously block information aggregation. That is, although society has enough
information for everyone to make the right decision with high probability, there is a substantial
chance that everyone makes the wrong decision!

In this work we are motivated by occurrences like the following two real historical events.
In the 1930s, the United States experienced a severe drought, spurring a great innovation
in agriculture: hybrid corn. These new hybrids offered a yield 15–20% greater than the
open-pollinated varieties, and by the early 40s they dominated the corn belt. Interviews
with farmers regarding their adoption practices suggest that the two main factors in the
acceptance or rejection of hybrid corn were personal experimentation and the opinions of
friends. As farmers repeatedly weighed these factors from year to year, the farming society
as a whole gradually began to herd on the highly beneficial decision to plant hybrid corn. In
the late 2000s, the United States experienced another period of economic decline that has
come to be known as the Great Recession. The cause of the recession is commonly attributed
to the collapse of the housing bubble. Economists have argued that, again, a main factor
in investors’ actions in the context of the housing market was the investment decisions of
others. Thus, again the individuals in the community herded on a certain behavior albeit
this time a suboptimal one.

How is it that both communities – farmers in the 30s and 40s, and investors in the 2000s
– reached agreement on the answer to important questions facing them? How is it that the
farmers reached the correct conclusion while the bankers were fooled en masse? A crucial
difference between these two cases is the structure of the network over which information
spreads. Farmers live in local communities and mainly interact with geographically close
neighbors whereas investors observe investment decisions of most others.

In the present day, the proliferation of online social platforms such as Facebook and
Twitter serves to remove friction in the dissemination of information. One might expect that
adoption of new technologies or opinions, in the spirit of hybrid corn or housing investments,
would occur at a more rapid pace as a result and have widespread impact. This leads us to
our main motivating question: does the structure of large, online social networks enable the
efficient aggregation of information, while resisting the proliferation of incorrect beliefs?

An important research question is to understand the factors that influence information
cascades. What networks of social interactions, and what patterns of opinion formation allow
entire societies to converge on the correct decision? There is a long literature on the topic of
social learning, focused on two different barriers for information aggregation: information
suppression and information loss. Some models, like standard rational Bayesian learning
models [3, 5, 13, 2, 1], capture the information suppression problem. Opinions are private
and are only revealed over time. In such a model there might never be, at any time, enough
public information in the society to correctly aggregate information. The typical conclusion
is that this suppression effect is worst for the complete network, and can be avoided if the
network is (in some sense) sparse [2, 1].

In other models, such as repeated synchronous majority dynamics, agents begin by
announcing their opinions publicly, so a central observer would initially be able to deduce
the correct decision. However, since the agents use heuristics that are based on their own
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local view of the network to update their beliefs (e. g., switching to the majority report of
one’s neighbors), the community might diverge from this state, experiencing information loss.
Indeed, there are scenarios in which a very small minority opinion can ultimately dominate
the ground truth [4]. However, social learning does occur in such models if the network is
sufficiently well-connected, and no single individual is too influential [12].

These two lines of work arrive at very different conclusions about the impact of network
topology. Our work considers a setting that exhibits both barriers simultaneously. Our
model thus captures the tension between two requirements: being sparse enough to prevent
information suppression, while being sufficiently connected to prevent information loss.

In our model, the decision at hand is binary, e. g., whether or not to adopt a certain
technology. There is a correct decision, and each individual has a (conditionally independent)
signal regarding this decision which is more likely to be correct than incorrect (i. e. is correct
with probability 1/2 + δ for some δ > 0). Initially, individuals are not stating opinions (as in
standard models of rational learning). Individuals are asked to state an opinion, repeatedly
and asynchronously.1 When stating an opinion, individuals simply copy the majority opinion
among their friends, breaking ties in favor of their private signal. Our model therefore
combines a non-Bayesian update method with the asynchronicity typical of Bayesian models.
This asynchronous model is natural in settings of local communication in a population,
where the sharing of information is not globally coordinated. We ask: do these asynchronous
majority dynamics result in a correct consensus with high probability, for graphs that exhibit
realistic properties of large social networks?

We focus on two key features of large social networks. First, they tend to be expansive,
meaning roughly that they do not contain very sparse cuts. While it has been observed
that small social networks tend to have sparse cuts corresponding to divisions between
sub-communities, this tends not to be the case for empirically-observed large social networks
[10, 11]. Intuitively, expansiveness leads to information diffusion which allows society to
reach consensus. Second, social networks tend to be sparse. Intuitively, sparsity should limit
the rate at which a single individual’s opinion can spread in the network, leading to the
spread of many independent opinions, and independent opinions are good for producing
correct majorities. These two features together thus have some chance of producing a correct
consensus so long as the low sparsity allows enough independent decisions to be reached
before the high expansiveness takes over diffusing these opinions.

As we show in the full version of the paper, it is not always the case that low average
degree is sufficient to build a population to a correct consensus opinion. In fact, it is not
even the case that this property suffices to reach a correct majority opinion. In Appendix A
of the full version, we provide an example of a network with constant average degree, for
which the population will reach a majority on the incorrect opinion with positive probability.
The key issue in this construction is the presence of a large clique; that is, while the network
is sparse in a global sense, it is not “locally sparse” in the sense that it contains a reasonably
large dense subgraph.

Motivated by this example, we turn to stronger notions of sparsity. Specifically, we study
the class of expanders with maximum degree d. Our main result is that for any fixed d > 1
and a growing family of graphs with maximum degree d and sufficiently high expansiveness,
the dynamics described above will reach consensus on the ground truth with high probability.

1 To our knowledge, this is the first paper to study non-Bayesian asynchronous learning.
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I Informal Theorem (Informal) 1. Suppose {Gn}n is a growing family of graphs with
maximum degree d, each with sufficiently large expansion as a function of d and δ. Then the
population will converge to consensus on the ground truth with probability 1− o(1).

We believe that max-degree d can be relaxed to a weaker property of sparsity, such as
bounded arboricity, in this theorem. For example, in Section 3 we show that under the star
topology, the population reaches a consensus on the ground truth with high probability. Yet,
the class of max-degree d is significantly better understood and technically cleaner to work
with. We believe that our analysis of expanders with max-degree d can be leveraged for a
better understanding of convergence to consensus in more general classes of graphs, including
graphs with alternative sparsity conditions.

1.1 Our Techniques
We prove our main result by dividing an execution of the behavior dynamics into two stages,
which we analyze separately. The first stage lasts for a linear (in n, the number of nodes)
number of rounds, until most nodes have updated their opinions at least once. We argue that,
after the first stage ends, significantly more than half of the individuals (weighted by degree)
in the network hold the ground truth as their opinion, with high probability. This argument
has two steps: first, we use results from the theory of boolean functions to establish that
the expected number of nodes (weighted by degree) with the correct opinion is greater than
half of the nodes in the network. Second, to show that the number of correct opinions is
concentrated around its expectation, we use the fact that the network has bounded degree.
This bounded degree implies that (with high probability) no individual will be very influential
after only linearly many steps; indeed, the number of other individuals whose opinions could
depend on the private signal of any given node will be small. Hence most pairs of opinions
will be independent after linearly many steps, and thus the variance of the number of correct
opinions is small.

The second stage begins after most individuals have declared an opinion, and lasts until
the dynamics converges. For this stage, we use properties of expander graphs to show that if
one opinion has a significant majority in the population, then this bias will be magnified as
the process continues, until eventually the entire population reaches consensus. This analysis
makes use of the expander mixing lemma as well as the theory of biased random walks. Since
the second stage begins in a state where a significant majority of the population (weighted
by degree) is reporting the correct opinion (from our analysis of the first stage), we conclude
that the population reaches a correct majority with high probability.

While the second half of our argument shares structural similarity with [12], the first
half requires a novel approach. Specifically, because [12] studied synchronous learning, they
immediately see a correct majority in round one, independent of the graph structure. Due to
the asynchronous nature of our learning, showing that we ever reach a correct majority at
any point during the process is technically challenging, and requires some assumptions on
the graph structure (i. e., sparsity).

Note that we use the two required network properties, expansiveness and sparsity, in
different parts of our analysis. The sparsity condition is used to show that opinions are
largely independent in the initial rounds of the dynamics, and hence a majority will report
correctly. The expansiveness condition is used to show that once the population reaches a
clear majority, it will then quickly reach consensus on that majority opinion.

Motivated by this division of the analysis, we make a stronger conjecture that the
implications of the two network properties should hold separately. That is, we conjecture that
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any network with constant maximum degree leads the population to stabilize in a correct
majority. In Appendix A of the full version of the paper, we establish that this is indeed the
case under the cycle topology. Furthermore, we conjecture that any network with sufficiently
high expansion will stabilize in a consensus (not necessarily a correct consensus).

1.2 Related Work
Our work is related to a line of literature concerning the aggregation of information under
Bayesian learning. In the standard learning model, individuals are fully rational and are
given noisy signals correlated with a ground truth. The individuals sequentially report a
“best guess” at the ground truth. It was first observed by Banerjee [3] and Bikhchandani,
Hirshleifer, and Welch [5] that a population may fail to aggregate information when reports
are publicly observed, due to information cascades. Smith and Sorensen [13] show that such
information cascades can be avoided under the assumption that signals can be arbitrarily
informative; i. e., that the strengths of agents’ beliefs are unbounded. In a spirit closer to our
work, Banerjee and Fudenberg [2] suppose that each agent observes a random subset of the
previous agents’ actions, and show that asymptotic learning occurs whenever no agent is too
influential (i. e., no agent is observed too often). Acemoglu, Dahleh, Lobel, and Ozdaglar [1]
show that learning occurs under significantly more general conditions if agents are aware not
only of which prior agents they observe, but also the entire history of prior agent observations.

An alternative line of work on social learning concerns the performance of non-Bayesian,
heuristic methods of aggregating information. In the classic model of DeGroot [7], each
agent’s signal is a real number in the unit interval. In each round, agents update their reports
by taking a weighted average of their neighbors’ reports. Such a process must necessarily
converge to a consensus with each connected component of a network. Golub and Jackson
[8] consider the question of whether this consensus agrees with the initial ground truth.
They find that this occurs if and only if the most influential (i. e., highest-degree) node is
vanishingly influential as the population grows large. These models assume a continuous
space of opinions and reports. In the case of discrete opinions, where reports are updated
by taking the majority report of one’s neighbors, Berger [4] shows that it is possible for
an initial state with a constant-sized minority to lead ultimately to global adoption of the
minority opinion.

The work most similar in spirit to the present paper is Mossel, Neeman, and Tamuz [12].
They consider repeated simultaneous majority dynamics starting from an initial state in
which each node takes opinion 0 or 1 independently at random, biased toward 1 (the ground
truth). They study conditions under which a majority of the population reports 1 once the
dynamics converges; they show that this occurs if the graph is “almost” vertex transitive (in
the sense that each vertex can be mapped to many other nodes by graph automorphisms).
They also show that if the graph is an expander, then majority dynamics will result in
consensus with high probability. Tamuz and Tessler [14] derive sufficient conditions under
which the ground truth can be reconstructed from the final state of the dynamics by any
means, not necessarily by taking the majority report of the population.

The crucial difference between this line of work and our paper is that they consider
synchronous dynamics while the dynamics we consider are asynchronous. One implication of
being synchronous is that one might as well assume that all agents start by reporting their
signals. (Indeed, if all agents started null, they would switch to reporting their signals on the
next step.) To illustrate the significance of this, consider the complete network as an example.
If agents all begin by declaring their reports then social learning will almost certainly occur,
since the population will immediatley reach consensus on the majority opinion. On the other
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hand, if agents begin with null reports and update asynchronously, then the entire population
will copy the opinion of the first node that reports and hence there is a good chance that
social learning does not occur.

Other lines of work in distributed computation focus on using properties of social networks
to show that information can be aggregated efficiently in an algorithmic matter. For example,
Kempe Dobra and Gehrke [9] show that gossip-based protocols are particularly successful at
aggregating information on networks with good expansion properties.

2 Model and Preliminaries

We consider a social network or graph G = (V,E) with |V | = n individuals. Write d(v) for
the degree of v in G, and V ol(V ) =

∑
v∈V d(v) for the volume of V in G. Individuals live

in a world that is in one of two states, say red or blue. Each individual v has a private
signal X(v) ∈ {red, blue} regarding the state of the world. These X(v) are conditionally
indpendent given the state and are correct with probability 1/2 + δ. It will be convenient to
assume, without loss of generality, that the state of the world is red and think of red = 1
and blue = 0. Thus Pr[X(v) = 1] = 1/2 + δ for all v.

The individuals stochastically form opinions about the state of the world. Let Ct(v) ∈
{red, blue, uncolored} be the opinion of individual v (or, equivalently, the color of node v) at
time t. Initially, individuals hold no opinions and so C0(v) = uncolored. Denote by N t

R(v)
the number of v’s neighbors that are colored red at time t, and similarly denote N t

B(v) the
number of v’s neighbors that are colored blue at time t. At every time t > 0, a node v ∈ V
is chosen uniformly at random. If N t

R(v) > N t
B(v), then v is colored red. If N t

R(v) < N t
B(v),

then v is colored blue. If N t
R(v) = N t

R(v), then v is colored X(v).
We first show that for a any graph G, this process stabilizes. That is, with probability 1

there exists a t < ∞ such that Ct(v) = Ct
′(v) for all t′ ≥ t. We do so in a standard way:

define a potential function that is initially finite, bounded from below, and decreases by a
constant amount in each time step. Intuitively, our potential function counts a combination
of the number of bichromatic edges in the graph and the number of self-disagreements, i. e.,
nodes whose stated opinion differs from their private signal.

I Proposition 1. For all G, with probability 1, there exists a t such that Ct(v) = Ct
′(v)

for all t′ ≥ t. Furthermore, the expected number of steps until stabilization is at most
|V |2 + 2|V ||E|.

Proof. Define a potential function F t(v) that is 1 if and only if Ct(v) 6= X(v), and 0
otherwise. Also define a potential function Gt(e = (u, v)) that is 2 if either u or v is
uncolored, or if Ct(u) 6= Ct(v), and 0 otherwise. Finally, define a potential function
H(t) =

∑
v F

t(v) +
∑
eG

t(e). Then H(0) = |V |+ 2|E|. Furthermore, we claim that if any
node’s color is changed at time t, then H(t) < H(t− 1).

If a node v is the first node in its neighborhood to change from uncolored to colored, then
F t(v) < F t−1(v). Furthermore, Gt−1(e) = 2 for all e containing v since v was uncolored, so
Gt(e) ≤ Gt−1(e) for all e, and H(t) < H(t − 1). If some nodes in v’s neighborhood were
already colored, then v’s color is guaranteed to match the color of at least one neighbor
and so for that edge Gt(e) < Gt−1(e). For all other edges Gt(e) ≤ Gt−1(e), and clearly
F t(v) ≤ F t−1(v) and so H(t) < H(t− 1).

If a node changes colors, then maybe there was a tie among its neighbors. In this case,∑
eG

t(e) =
∑
eG

t−1(e), because we just switch the edges containing v that disagree. But
because the color changed with a tie, it must be the case that F t−1(v) = 1 and F t(v) = 0. So
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again H(t) < H(t− 1). Finally, maybe a node changed colors because of a majority among
its neighbors. In this case, maybe F t(v) = F t−1(v) + 1, but

∑
eG

t(e) ≤
∑
eG

t−1(e) − 2
because at least one more edge switches from disagreement to agreement.

Thus, every time a node changes colors (or becomes colored for the first time), the value
of H decreases by at least 1, and H(0) = |V |+ 2|E|, so the process stabilizes after at most
|V | + 2|E| changes. If the process has not already stabilized, then there is at least one
node that would change colors (or becomes colored for the first time) and it is selected with
probability 1/|V |. So at every step independently there is a color change with probability
at least 1/|V |. Therefore the expected number of steps until a color change is bounded by
|V |. As the total number of color changes is bounded by |V |+ 2|E|, the expected number of
steps until the process converges is at most |V |2 + 2|V ||E|. J

It is important to emphasize the distinction between correct majority and consensus.
The former means that more than half of the nodes in the graph are stating the “correct"
opinion, while the latter means that every node in the graph is stating the same opinion (not
necessarily the correct one).

We conclude this section with formal definitions of sparsity and expansiveness.

I Definition 2. (Sparsity) There are several different ways to state formally that a graph is
sparse. In order from most restrictive to least restrictive, this includes:

Low fixed degree: The graph is d-regular, and d is small.
Low maximum degree: Every node in the graph has degree at most d, and d is small.
Low arboricity: The graph is an edge-union of at most d trees, and d is small.
Low average degree: The number of edges in the graph is at most dn, and d is small.

Our main result considers the maximum degree d notion of sparsity. The example in
Section 5.2 of the full version shows that the low average degree notion of sparsity is not
restrictive enough to guarantee a correct majority. Our main open question asks whether or
not our main result extends to low arboricity as well.

I Definition 3. (Weighted Adjacency Matrix) The weighted adjacency matrix of a graph G,
say M = M(G), is an n× n matrix defined by

M(x, y) =


1√

d(x)d(y)
if x and y are adjacent in G,

0 otherwise.

I Definition 4. (Expansiveness) A graph G is a λ-expander if all but the first eigenvalue of
the weighted adjacency matrix of G lies in [−λ, λ].

3 Examples

To build intuition for our model and motivate our conjectures, we work through a few specific
network topologies in detail before proving our main positive result.

3.1 Complete Graphs
Suppose that G is the complete graph on n vertices. The dynamics proceeds as follows:
the node selected in round 1, say v1, will set C1(v1) = X(v1). That is, v1 reports its
private signal. Every subsequently chosen node will report the majority opinion of the
population, and simple induction shows that this will be X(v1) at all times. The process
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will therefore stabilize in a consensus on report X(v1) with probability 1 for all n. Since
Pr[X(v1) = 1] = 1/2 + δ, this consensus is correct with probability only 1/2 + δ. In other
words, the complete graph reaches consensus surely, but exhibits an extreme information
cascade in which the population exhibits herding on the first reported signal.

3.2 Star Graphs
We next show that under the star topology, the population will reach a correct consensus
with high probability. Suppose G is a star with n leaves. First, we show that the population
will certainly reach consensus on the first opinion reported by the center node, say v.

I Claim 1. Suppose v is selected by the dynamics for the first time in round t1. Then, with
probability 1, the dynamics reaches consensus on opinion Ct1(v).

Proof. Suppose Ct1(v) = R; the case Ct1(v) = B is handled identically. Then N t1
R (v) ≥

N t1
B (v), with equality only if X(v) = R. For any t′ > t1, if a leaf u 6= v is chosen for update,

then Ct′(u) = Ct
′(v). That is, node u will copy the opinion of v. Simple induction then

shows that, if we write t2 > t1 for the random variable indicating the round in which v is
selected for the second time, we must have N t2

R (v)−N t2
B (v) ≥ N t1

R (v)−N t1
B (v), and hence

Ct2(v) = R. Applying this argument inductively, we conclude that Ct′(v) = R for all t′ > t1.
Thus each leaf will adopt opinion R each time it is selected for update after time t, and
hence the population reaches consensus on R with probability 1. J

Write t1 for the random variable representing the first report time of node v. It remains
to show that Ct1(v) = R with high probability. By symmetry, the probability that v chooses
an opinion before at least k leaves have chosen opinions is k/(n+ 1). Conditioning on the
event that at least k leaves have reported before t1, each of their opinions matches their
private signals. Applying the additive Chernoff bound, the probability that at most half of
them report R at time t1 is at most

Pr
[
Ct1R ≤

(
1
2 + δ

)
k − δk

]
< e−2kδ2

Choosing k = 1
2δ2 log(n) and taking a union bound, we conclude that the probability that at

least k leaves are selected before v, and that a majority of those selected leaves take opinion
R, is at least 1− log(n)

2δ2n −
1
n = 1− o(1). We therefore conclude that with probability 1− o(1)

the star topology stabilizes in a correct majority.

4 Majority and Consensus

In this section we give a sufficient condition for reaching a correct consensus. More precisely,
we focus on a family of λ-expanders of max-degree d and prove that they converge to a
correct consensus with high probability.

I Theorem 5. Let G be a λ-expander of max-degree d with λ ≤ δ/6. Then with probability
at least 1−O( 1

(δ ln lnn)2 ), the process will terminate in a red consensus.

Here is a brief outline of our proof. First, we show that in any graph with max-degree d
(not necessarily an expander), the volume of nodes with opinion red after O(n/δ) steps of
the process is at least (1/2 + δ/2)|E| with high probability. We do this by showing that the
expected volume of currently red nodes is at least (1/2 + δ)|E|, and then bounding the total
pairwise correlation among the colors of nodes to be o(|E|). Combining these two facts with
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Chebyshev’s inequality gives us the desired claim. Next, we show that for all sufficiently
expansive graphs, continuing the stochastic process from a point when the volume of red
nodes is at least (1/2 + δ/2)|E| nodes will result in a red consensus with high probability.
Formally, the proof of Theorem 5 follows from Proposition 2 and Corollary 15 after observing
that the probability in Corollary 15 is asymptotically dominated by that in Proposition 2.

4.1 Low Degree and Correctness
We would like to count the expected volume of red nodes after a linear number of steps.
To this end, we define a Boolean function that specifies the color of a node after a finite
sequence of updates. Specifically, let S be any finite sequence of nodes and define a Boolean
function fSv that takes as input the private signals X = {X(u) | ∀u ∈ V } and outputs the
color C |S|(v), when the process chooses nodes in the order specified by S and the private
signals are X . If C |S|(v) is uncolored, we define fSv (X ) to output the private signal X(v); we
will later show that this induces a limited degree of overcounting as most nodes are colored
after a linear number of steps. Define a random variable

fS(X ) =
∑
v

d(v)fSv (X )

that counts the volume of red nodes after sequence S. Now fix a sequence length T and let
fT be the random variable that selects a sequence S of length T and signals X at random
and outputs fS(X ). Then fT is the volume of red nodes after T steps of our process. We
bound the expectation and variance of fT and apply Chebyshev to prove that the volume of
red nodes is a majority with high probability.

4.1.1 Bounding the Expectation
To bound the expectation, note each fSv is monotone for all S, v. That is, switching any set
of input signals from blue to red can only cause fSv to switch from blue to red, but not from
red to blue. In addition, fSv is odd for all S, v. That is, switching all input signals from blue
to red and red to blue will cause the output to flip. The following theorem due to Mossel,
Neeman, and Tamuz [12], which uses Boolean function analysis, states that such functions
on biased random inputs have biased outputs.

I Theorem 6. ([12]) Let f be an odd, monotone Boolean function. Let X1, . . . , Xn be input
bits, each sampled i.i.d. from a distribution that is 1 with probability p ≥ 1/2 and 0 otherwise.
Then E[f(X1, . . . , Xn)] ≥ p.

The following corollary is a direct application of Theorem 6 and the fact that the private
signals Xi(v) are red with probability at least 1/2 + δ.

I Corollary 7. The expected volume of red nodes at time T , for any T , is at least (1/2+δ)|E|.
That is, E[fT ] ≥ (1/2 + δ)|E| for all T .

4.1.2 Bounding the Variance
In light of Corollary 7, if we can also bound the variance of fT , then we can use Chebyshev’s
inequality to argue that fT ≥ (1/2 + δ/2)|E| with high probability. Formally, let’s define
the fS so that there are nT separate copies of G, and the private signals X(v) are sampled
independently for each copy. Then let fT be the random variable that picks one S and its
corresponding G uniformly at random and outputs fS . We first state a lemma that allows
us to analyze the variance of fT .
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I Lemma 8. Let {X1, . . . , Xn} be random variables all with the same expectation E[Xi] = c,
and let X be a random variable that samples from {X1, . . . , Xn} uniformly at random. Then
V ar(X) = 1

n

∑
i V ar(Xi).

Proof. V ar(X) = E[X2]− E[X]2 = E[X2]− c2. E[X2] = 1
n

∑
i E[X2

i ]. So we get:

V ar(X) = 1
n

∑
i

E[X2
i ]− c2

= 1
n

∑
i

E[X2
i ]− E[Xi]2

= 1
n

∑
i

V ar(Xi).

J

To use Lemma 8, we need to modify our random variables slightly so that they all have
the same expectation. To do this, just define gS = fS − (E[fS ]− 1+2δ

2 |E|), and gT to sample
S uniformly at random and then sample gS . By Corollary 7, fS ≥ gS for all S always.
Therefore, showing that gT ≥ (1/2 + δ/2)|E| with high probability suffices to prove that
fT ≥ (1/2 + δ/2)|E| as well.

So now let’s analyze the variance of gT . Lemma 8 tells us that the variance of gT is just
the average of the variances of each V ar(gS). Furthermore, we can write the variance of
each gS as

V ar(gS) =
∑
u,v

d(u)d(v)Cov(fSu , fSv )

and therefore, we can write V ar(gT ) as

V ar(gT ) = 1
nT

∑
S

∑
u,v

d(u)d(v)Cov(fSu , fSv ).

Now we observe that V ar(gT ) is exactly the expected value of the following random process:
sample two nodes u and v uniformly at random (with replacement), sample a sequence of
length T uniformly at random, and compute n2d(u)d(v)Cov(fSu , fSv ). Furthermore, as each
fSv is a 0-1 random variable, Cov(fSu , fSv ) ≤ 1. As Cov(fSu , fSv ) = 0 when fSu and fSv are
independent, we can define GT to be a random variable that is 0 whenever S, u, v are sampled
such that fSu and fSv are independent and 1 otherwise. The reasoning above shows that if we
show that E[GT ] ≤ c, then V ar(gT ) ≤ cd2n2.

So now our aim is to study GT . Let’s first ask what private signals can possibly affect
the color of node v at the end of sequence S. If tv is the last step that v is chosen to update
its color, then fSv is clearly a function of the colors of v’s neighbors at time tv. Furthermore,
if we look at any neighbor u of v, and let tu be the last step that u is chosen to update
its color before tv, then the color of u at time t, is clearly a function of the colors of u’s
neighbors at time tu (as t ≥ tu, and node u does not update its color between t and tu).
Iterating this reasoning out, we can define the set NS(v) to be those nodes u such that there
is a path v, x1, . . . , xk, u from u to v and corresponding times tv > t1 > . . . > tk > tu such
that u announces its color at time tu in S, v announces its color at time tv in S, and each xi
announces its color at time ti in S. We then see that fSv can be written as a function of only
the signals {X(u)}u∈NS(v). Therefore, if NS(v) ∩NS(u) = ∅, it is necessarily the case that
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fSu and fSv are independent, as they are functions on disjoint sets of independent random
variables. So our approach to bounding E[GT ] will be to analyze the probability that when
v and u are chosen uniformly at random (with replacement) and S is a random sequence of
length T that NS(v) ∩NS(u) = ∅.

We do this by studying the random variable |NS(v)| for a random node v and random
sequence S. We can compute NS(v) by initializing NS(v) = ∅ and tracking backwards
through S. Until the first (moving backwards in time) time that v announces its color,
NS(v) = ∅. When v first updates its color, we update NS(v) = {v}. From here, until the
next time that a neighbor of v announces its color, NS(v) remains unchanged. When the first
neighbor u of v updates its color, we update NS(v) = {v, u}. Iterating this reasoning, we
can compute NS(v) by tracking backwards through S, updating NS(v) to {v} the first time
that v announces its color, and then updating NS(v) := NS(v) ∪ {u} any time a neighbor u
of NS(v) announces its color.

So let Ni be the random variable denoting the number of steps between when |NS(v)|
first becomes i− 1 and when |NS(v)| first becomes i over the random choice of S. Recall S is
chosen uniformly at random from all sequences of length T . As each node has degree at most
d, and the neighborhood NS(v) is a connected subgraph, when |NS(v)| = i− 1 ≥ 2, there
are at most (i− 1)(d− 1) ways to grow NS(v) (and for i− 1 = 1, there are at most d ways).
Thus the Ni are independent geometric random variables with mean at least n

1+(i−1)(d−1) .
For ease of analysis, we analyze each Ni as independent random variables of mean exactly n

id

(this is valid because these random variables are stochastically dominated by the actual Ni,
meaning that we are only underestimating the number of steps needed for |NS(v)| to grow).
Now we see that, for any x, if we define Nx to be the number of steps before |NS(v)| = x,
then Nx is exactly

∑x
i=1 Ni. As each Ni is a geometric random variable with parameter

id/n, E[Ni] = n
di , and V ar(Ni) = n2

i2d2 . So because all Ni are independent, we get that:

E[Nx] =
x∑
i=1

n

di
≥ n ln x

d
, V ar(Nx) =

x∑
i=1

n2

i2d2 = π2n2

6d2 ,

σ(Nx) =
√
V ar(Nx) ≤ 2n

d
.

So by Chebyshev’s inequality, we get that Pr[Nx ≤ n ln x
d − t 2n

d ] ≤ 1
t2 , which can be rewritten

as:

Pr

[
Nx ≤ (1− ε)n ln x

d

]
≤ 4

(ε ln x)2 . (1)

From here, we simply observe that if the shortest path from u to v has length > 2x, and
|NS(v)|, |NS(u)| ≤ x, then NS(u) ∩NS(v) = ∅. We also observe that the number of nodes
within distance 2x of v is bounded by d2x for all x. So when u and v are chosen uniformly
at random (with replacement) we have:

Pr[dist(u, v) ≤ 2x] ≤ d2x

n
.

Taking T = n ln x
2d corresponds to setting ε = 1/2 in Equation (1). So for any u, v, the union

bound guarantees that with probability at most 32
(ln x)2 |NS(v)|, |NS(u)| ≥ x. Furthermore, if

u, v, S are chosen uniformly at random, we see that with probability at most d2x

n , dist(u, v) ≤
2x. Again taking a union bound, the probability that either of these events occur is at
most 32

(ln x)2 + d2x

n . And in the event that none of these events occur, we clearly have
NS(u)∩NS(v) = ∅. Therefore, we conclude that for all x, if T = n ln x

2d , E[GT ] ≤ 32
(ln x)2 + d2x

n .
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By the reasoning above, we have now shown that when T = n ln x
2d , we have:

V ar(gT ) ≤ d2n2
(

32
(ln x)2 + d2x

n

)
.

To simplify notation, we observe that whenever x = o(logn) the first term asymptotically
dominates the second. So we will restrict ourselves to setting x = o(logn) and rewrite:

V ar(gT ) ≤ 33d2n2

(ln x)2

So we can apply Chebyshev’s inequality to gT now and see that whenever x = o(logn), we
have:

Pr

[
gT ≤ (1/2 + δ)|E| − t · 8dn

ln x

]
≤ 1
t2
.

And plugging in for t = δ ln(x)/(32d) we get:

Pr[gT ≤ (1/2 + 3δ/4)|E|] ≤ 1024d2

(δ ln x)2 .

And because fT ≥ gT always, we have:

Pr[fT ≤ (1/2 + 3δ/4)|E|] ≤ 1024d2

(δ ln x)2 .

Finally, recall that in order to make fT odd, we had to define fSv to be X(v) in the event
that v does not announce its color at all in S. So fT does not exactly count the number of
red nodes because its getting credit for some nodes with a red private signal who haven’t
actually announced a color at all. But this is easy to cope with: we can just show that with
high probability the volume of nodes that have yet to announce a color after n ln x

2d steps is at
most δ|E|/4. Note that because all nodes have degree at most d, it is sufficient to show that
the number of nodes who have yet to announce a color is at most δn/(4d) ≤ δ|E|/(4d) with
high probability.

For a single node v, the probability that v has not yet announced a color after n ln x
2d is

exactly:
(1− 1/n) n ln x

2d ≤ e− ln x
2d ≤ x− 1

2d .

So if we define Cx(v) to be the indicator random variable that is 1 if v has not yet announced
a color by time n ln x

2d , and 0 otherwise, the collection of random variables {Cx(v)}v are
negatively correlated. So if we define Cx =

∑
v Cx(v), we get E[Cx] = nx−

1
2d . Using the

additive Chernoff bound, we get:

Pr
[
Cx ≥ nx−

1
2d + tn

]
≤ e−2t2n .

And plugging in for t = δ/(4d)− x− 1
2d we get:

Pr[Cx ≥ δn/(4d)] ≤ e−n(δ/(4d)−x−
1

2d )2
.

Because δ and d are constant and x = o(logn),2 this is clearly asymptotically dominated
by 1

(δ ln x)2 . So taking a union bound over the probability that more than δ/4 nodes have
yet to announce a color and the probability that fT ≤ (1/2 + 3δ/4)n, we get the following
proposition:

2 In fact, this would still be true if we took x = O((logn)1−ε) for some ε > 0, 1/δ = O(x), and
d = o( ln x

ln(1/δ) )
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I Proposition 2. For any x = o(logn) and T = n ln x
2d :

Pr[volume of announced reds at time T ≤ (1/2 + δ/2)|E|] ≤ 1025
(δ ln x)2 .

In particular, when x = ln lnn and T = n ln ln lnn
2d , this probability is at most O

(
1

(δ ln lnn)2

)
.

4.2 Expansion and Consensus
In this section, we apply a different argument based on expansion to show that if G is
sufficiently expansive, once the volume of nodes that have announced red exceeds (1/2 +
δ/2)|E|, it is extremely likely that the process will continue to stabilize in a red consensus.
This argument has two steps. First, we apply an argument of [12] to show that, in an
expansive network, the volume of nodes that will switch from blue to red if chosen is a
constant factor larger than those that would switch from red to blue if chosen, conditioned
on the fact that the volume of nodes announcing red is at least (1/2 + δ/4)|E|. Second, we
argue that with very high probability, due to this fact, if the volume of nodes announcing red
starts above (1/2 + δ/2)|E|, then we will reach the point where all nodes have announced red
before we reach a point where the volume of nodes announcing red is only (1/2 + δ/4)|E|.
This second step proceeds by coupling the convergence process to an absorbing random walk,
and applying the theory of biased random walks.

In the following lemmas, let R denote the set of nodes who have currently announced red,
and B the set of nodes who have currently announced blue or nothing. Let also R′ denote
the set of nodes that would announce red if they were chosen, and B′ the set of nodes that
would announce blue if they were chosen.

The following lemma relates the number of edges between two sets of nodes in an expander
with max-degree d to their expected number in a random graph.

I Lemma 9. ([6]) If G is a λ-expander of max-degree d, then for any two subsets S, T ⊆ V ,
let E(S, T ) denote the number of edges between S and T (double-counting edges from S ∩ T
to itself). Then:

|E(S, T )− V ol(S)V ol(T )
|E|

| ≤ λ
√
V ol(S)V ol(T ) .

Using Lemma 9, we can bound the number of “potential" B nodes.

I Corollary 10. If G is a λ-expander of max-degree d with λ ≤ δ
6 and |R| ≥ (1/2 + δ/4)n,

then |B′| ≤ |B|/2.

Proof. We know that every node in B′ has at least half of its neighbors in B (or else they
would choose red). Therefore, E(B′, B) ≥ V ol(B′)/2. In addition, Lemma 9 tells us that
E(B′, B) ≤ V ol(B′)V ol(B)

|E| + λ
√
V ol(B)V ol(B′). Putting these two together, we get:

V ol(B′)/2 ≤ V ol(B′)V ol(B)
|E|

+ λ
√
V ol(B′)V ol(B).

Reorganizing the last inequality we get

V ol(B′) ≤ V ol(B)

 λ
1
2 −

V ol(B)
|E|

2

.
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Applying the fact that V ol(B)/|E| ≤ 1/2− δ/4 we get

V ol(B′) ≤ V ol(B)
(

16λ2

δ2

)
.

Finally, by the fact that λ ≤ δ
6 we get

V ol(B′) ≤ V ol(B)
(

16δ2

36δ2

)
≤ V ol(B)/2,

as desired. J

Now, we make use of Corollary 10 to show that we are very likely to switch more blues
to reds than reds to blues over many announcements.

I Corollary 11. If V ol(B′) ≤ V ol(B)/c, then V ol(B∩R′) ≥ cV ol(R∩B′), and V ol(B∩R′) ≥
1. In other words, the volume of nodes who will switch from blue to red is at least c times the
number of nodes who will switch from red to blue if chosen, and there is at least 1 such node.

Proof. We know that V ol(B ∩ B′) = x, for some x ≥ 0. So we can write V ol(B ∩ R′) =
V ol(B)− x and V ol(B′ ∩R) = V ol(B′)− x. Combining this with the fact that V ol(B) ≥
cV ol(B′) we get:

V ol(B ∩R′)
V ol(R ∩B′) ≥

cV ol(B′)− x
V ol(B′)− x .

Because x ≥ 0, this is always at least c. As V ol(B′) < V ol(B), there must be at least one
node in B ∩R′. J

To complete our analysis, we use the theory of biased random walks.

I Definition 12. For d ≥ 1 and p > 0, a d-bounded, p-biased random walk on the integers
is a sequence (Zt)t≥0 such that:

Z0 = 0,
Zt depends only on (Z0, . . . , Zt−1),
|Zt − Zt−1| ≤ d for each t ≥ 1, and
for all (Zt)t<T , E[ZT | Z0, . . . , ZT−1] ≥ ZT−1 + p.

The following lemma establishes a crucial property of biased random walks, which is then
used in the remainder of this section to show that once the volume of red nodes reaches a
certain threshold, the process will converge to a red consensus with high probability.

I Lemma 13. Let (Zt)t≥0 be a d-bounded p-biased random walk on the integers. Then, for
any x > 0, the probability that the walk reaches a value less than −x before a value greater
than x is at most 2x

p e
−px/4d2 .

Proof. For each t ≥ 1, define Yt = Zt−Zt−1, and letWt = Yt−E[Yt | Y1, . . . , Yt−1]. Note that
the sequence (Wt)t≥1 forms a martingale, whose entries lie in [−d, d]. The Azuma-Hoeffding
inequality then implies that, for any n ≥ 1,

Pr
[

n∑
t=1

Wt < −x

]
≤ e−x

2/2nd2
.

Let An be the event that there exists any prefix of the sequence (Wt)t≤n with sum less than
−x. Taking a union bound over all t between 1 and n, we have that the probability of event
An occurring is at most n · e−x2/2nd2 .
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If we condition on An not occurring, then observe that for each T ≤ n,

ZT =
T∑
t=1

Yt =
T∑
t=1

Wt + E[Yt | (Yk)k<t] > E[ZT ]− x.

In particular, Zn > E[Zn]− x and moreover Zt > −x for all t ≤ n. If we choose n = 2x/p,
then E[Zn] > pn = 2x, and hence A2x/p not occurring implies that Zn > x and Zt > −x for
all t < n, as required. Furthermore, the probability of A2x/p is at most 2x

p · e
−px/4d2 . J

We now apply Lemma 13 to the stochastic process, letting Zt be the volume of red nodes.
The hypotheses of Corollary 14 below (and the fact that G has maximum degree d) guarantee
that the random walk is c−1

c+1 -biased and d-bounded.

I Corollary 14. Let R0 and B0 be such that V ol(R′ ∩ B0) ≥ cV ol(B′ ∩ R0). For any x,
if R and B maintain this property whenever V ol(B0) − x ≤ V ol(B) ≤ V ol(B0) + x (and
therefore V ol(R0)− x ≤ V ol(R) ≤ V ol(R0) + x as well), then the probability that we arrive
at a state with V ol(B) ≥ V ol(B0) + x before one with V ol(R) ≥ V ol(R0) + x is at most
2x( c+1

c−1 )e−(c−1)x/4(c+1)d2 .

Proof. Corollarycor:randomwalk Consider a biased one-dimensional random walk that takes
` steps up whenever a node of degree ` switches from blue to red, and ` steps down whenever
a node of degree ` switches from red to blue. Then the corollary is exactly studying the
probability that this random walk reaches a depth of −x before a height of x.

This walk is d-bounded. We also claim that it is ( c−1
c+1 )-biased. To see this, let W+ be the

expected upward step of the walk on a given round; i. e., the expected step of the walk if we
were to replace any negative movement by 0. Likewise, letW− ≤ 0 be the expected downward
step. Note then that the expected step is W+ +W−. Since V ol(R′ ∩B0) ≥ cV ol(B′ ∩R0),
we have W+ ≥ cW−. Also, W+ −W− ≥ 1, since each step is of distance at least 1. We can
then conclude that W+ +W− ≥ c−1

c+1 (W+−W−) = c−1
c+1 . Now, by Lemma 13, the probability

that this walk reaches depth −x first is at most 2x( c+1
c−1 )e−(c−1)x/4(c+1)d2 . J

Finally, we use Corollary 14 to prove that the stochastic process terminates in a consensus.
The idea is that once we have reached V ol(R) ≥ (1/2 + δ/2)|E|, the expansiveness of G
guarantees that the hypotheses of Corollary 14 are satisfied. We then iteratively apply
Corollary 14 to show that we are extremely likely to reach a state with V ol(R) ≥ (1/2 +
kδ/2)|E| before we reach a state with V ol(R) ≤ |E|/2, for all integers k ∈ [2/δ].

I Corollary 15. If G is a λ-expander with max-degree d and with λ ≤ δ
6 , and the stochastic

process reaches a point where V ol(R) ≥ (1/2 + δ/2)|E|, then with probability at least 1− 4n ·
e−δn/48d2 , the process will terminate in a red consensus.

Proof. Once the process reaches a point where V ol(R) ≥ (1/2 + δ/2)|E|, we will have
V ol(R) ≥ (1/2 + δ/4)|E| until the volume of reds that switch to blue is at least δ|E|/4 more
than the volume of blues that switch to red. Therefore, by Corollaries 10, 11, and 14, the
probability that we reach a point where V ol(R) = (1/2 + δ/4)|E| before we reach a point
where V ol(R) = (1/2 + 3δ/4)|E| is at most

6(δn/4)e−(δn/4)/12d2
< 2δne−δn/48d2

.

Similarly, once we have reached a point where V ol(R) = (1/2 + iδ/4)|E| (2 ≤ i < 2/δ), the
probability that we reach a point where V ol(R) = (1/2 + (i− 1)δ/4)|E| before we reach a
point where V ol(R) = (1/2 + (i+ 1)δ/4)|E| is at most 2δne−δn/48d2 . Therefore, we can take
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a union bound over all 2 ≤ i < 2/δ and say that with probability at least 1− 4ne−δn/48d2 ,
the first time we hit V ol(R) = (1/2 + iδ/4)|E|, we will hit V ol(R) = (1/2 + (i+ 1)δ/4)|E|
before we hit V ol(R) = (1/2 + (i − 1)δ/4)|E|, for all 2 ≤ i < 2/δ. In the event that this
happens, we will hit a red consensus before we hit V ol(R) = (1/2 + δ/4)|E|, and therefore
the process will stabilize in a red consensus. J

5 Conclusion

We study whether information aggregates efficiently under natural dynamics in social networks
with “real-world” properties. We show that if each individual’s signal agrees with the ground
truth with probability at least 1/2 + δ, independently, then the entire society is likely to
agree on the ground truth with high probability (approaching 1 as n→∞) in the class of
λ-expanders with maximum degree d for any fixed d, λ ≤ δ

6 . We also analyze separately the
example of a star on n nodes, and show that it also achieves a consensus on the ground
truth with high probability. This suggests that our results apply to additional notions of
sparsity. An interesting direction for future work would be to show that more general classes
of “sparse” expanders reach consensus on the ground truth with high probability. One
possibility is the set of expanders with arboricity of at most d. Additionally, the use of
sparsity and expansiveness is decoupled in our analysis: sparsity is used to show that a
correct majority is reached at some point during the process, and expansiveness is used to
show that, once this occurred, the process terminates in a correct consensus. These results
suggest two interesting directions for future research. First, we conjecture that sparsity (e. g.,
low arboricity) guarantees that the process stabilizes in a correct majority, as in the ring.
Second, we showed that expansiveness guarantees that once enough of a (possibly incorrect)
majority forms, the process terminates in a consensus with high probability. We conjecture
that all expansive graphs terminate in a (possibly incorrect) consensus with high probability.
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