330 research outputs found

    Potentials of Deterministic Radio Propagation Simulation for AI-Enabled Localization and Sensing

    Full text link
    Machine leaning (ML) and artificial intelligence (AI) enable new methods for localization and sensing in next-generation networks to fulfill a wide range of use cases. These approaches rely on learning approaches that require large amounts of training and validation data. This paper addresses the data generation bottleneck to develop and validate such methods by proposing an integrated toolchain based on deterministic channel modeling and radio propagation simulation. The toolchain is demonstrated exemplary for scenario classification to obtain localization-related channel parameters within an aircraft cabin environment

    Multidevice Map-Constrained Fingerprint-Based Indoor Positioning Using 3-D Ray Tracing

    Get PDF
    This paper studies the use of deterministic channel modelling through 3D Ray Tracing (RT) for constructing deviceindependent radiomaps for Wi–Fi RSSI–based fingerprinting indoor positioning, applicable to different devices. Device heterogeneity constitutes a limitation in fingerprint–based approaches and also constructing radiomaps through extensive in-situ measurement campaigns is laborious and time-consuming even with a single device let alone the need for radiomaps constructed using multiple different devices. This work tackles both challenges through the use of 3D RT for radiomap generation in conjunction with data calibration using a small set of device-specific measurements to make the radiomap device–independent. The efficiency of this approach is evaluated using simulations and measurements in terms of the time spent to generate the radiomap, the amount of device-specific data required for calibration and in terms of the achievable positioning accuracy. Potential accuracy improvements in the RT-based indoor positioning processes are further investigated, by studying the use of map constraints into the algorithm in the form of a–priori probabilities. In this approach, a Route Probability Factor (RPF), which reflects the likelihood of a user being in various locations inside the environment is used. The outcome of the evaluation process which includes a study of different RPF distributions, indicates the validity of the approach, demonstrated by a reduction in the positioning error for various devices. The versatility of this approach is also demonstrated for different scenarios, different devices and by considering different device-handling conditions

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Indoor positioning model based on people effect and ray tracing propagation

    Get PDF
    WLAN-fingerprinting has been highlighted as the preferred technology in an Indoor Positioning System (IPS) due to its accurate positioning results and minimal infrastructure cost. However, the accuracy of IPS fingerprinting is highly influenced by the fluctuation in signal strength as a result of encountering obstacles. Many researchers have modelled static obstacles such as walls and ceilings, but hardly any have modelled the effect of people presence as an obstacle although the human body significantly impacts signal strength. Hence, the people presence effect must be considered to obtain highly accurate positioning results. Previous research proposed a model that only considered the direct path between the transmitter and the receiver. However, for indoor propagation, multipath effects such as reflection can also have a significant influence, but were not considered in past work. Therefore, this research proposes an accurate indoor positioning model that considers people presence using a ray tracing (AIRY) model in a dynamic environment which relies on existing infrastructure. Three solutions were proposed to construct AIRY: an automatic radio map using ray tracing (ARM-RT), a new human model in ray tracing (HUMORY), and a people effect constant for received signal strength indicator (RSSI) adaptation. At the offline stage, 30 RSSIs were recorded at each point using a smartphone to create a radio map database (523 points). The real-time RSSI was then compared to the radio map database at the online stage using MATLAB software to determine the user position (65 test points). The proposed model was tested at Level 3 of Razak Tower, UTM Kuala Lumpur (80 Ă— 16 m). To test the influence of people presence, the number, position, and distance of the people around the mobile device (MD) were varied. The results showed that the closer the people were to the MD in both the Line of Sight (LOS) and Non-LOS position, the greater the decrease in RSSI, in which the increment number of people will increase the amount of reflection signals to be blocked. The signal strength reduction started from 0.5 dBm with two people and reached 0.9 dBm with seven people. In addition, the ray tracing model produced smaller errors on RSSI prediction than the multi-wall model when considering the effect of people presence. The k-nearest neighbour (KNN) algorithm was used to define the position. The initial accuracy was improved from 2.04 m to 0.57 m after people presence and multipath effects were considered. In conclusion, the proposed model successfully increased indoor positioning accuracy in a dynamic environment by overcoming the people presence effect
    • …
    corecore