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Multi-device Map-constrained Fingerprint-based
Indoor Positioning using 3D Ray Tracing

Marios Raspopoulos

Abstract—This paper studies the use of deterministic channel
modelling through 3D Ray Tracing (RT) for constructing device-
independent radiomaps for Wi–Fi RSSI–based fingerprinting
indoor positioning, applicable to different devices. Device hetero-
geneity constitutes a limitation in fingerprint–based approaches
and also constructing radiomaps through extensive in-situ mea-
surement campaigns is laborious and time-consuming even with
a single device let alone the need for radiomaps constructed using
multiple different devices. This work tackles both challenges
through the use of 3D RT for radiomap generation in conjunction
with data calibration using a small set of device-specific measure-
ments to make the radiomap device–independent. The efficiency
of this approach is evaluated using simulations and measurements
in terms of the time spent to generate the radiomap, the
amount of device-specific data required for calibration and in
terms of the achievable positioning accuracy. Potential accuracy
improvements in the RT-based indoor positioning processes are
further investigated, by studying the use of map constraints
into the algorithm in the form of a–priori probabilities. In
this approach, a Route Probability Factor (RPF), which reflects
the likelihood of a user being in various locations inside the
environment is used. The outcome of the evaluation process
which includes a study of different RPF distributions, indicates
the validity of the approach, demonstrated by a reduction in
the positioning error for various devices. The versatility of this
approach is also demonstrated for different scenarios, different
devices and by considering different device-handling conditions.

Index Terms—Indoor Positioning, Fingerprinting, Map-
Constrains, Ray Tracing, Wi–Fi, RSSI, Route Probability Factor.

I. INTRODUCTION

THE explosive growth of mobile communications and

the Internet of Things (IoT) has come along with the

emergence of Location-Based Services (LBS) which find

applications in various fields such as social networks, enter-

tainment, security, health and rescue services and many others.

While the positioning problem was solved for outdoor environ-

ments through the use of Global Navigation Satellite Systems

(GNSS), Indoor Positioning Systems (IPS) still remains a big

challenge and an active area of research [1]. OpusResearch in

a 2014 report [2], predict that by 2018, roughly $10 billion

in consumer spending will be influenced by indoor location.

This is also supported by a report by IndoorAtlas [3] which

presents the results of a 2016 market research on the indoor

positioning market indicating that the budget spent on IPS will

be increased by 3.07% in the next five years. The reason for
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this is that it is estimated that today, more than 80-90% of

people’s time is spent indoors. Possibly the most important

finding is that almost all (98%) respondents state that sub-

two-meter accuracy is important for most of these indoor

applications. This means that improving the accuracy using

off-the-shelf technologies is of paramount importance and this

drives our urge to further pursue research in this area.

While various approaches which achieve sub-meter accu-

racy have been proposed in literature, these usually require

technologies which have not yet been integrated in the latest

Wi–Fi standards. Such techniques include Ultra-Wideband

(UWB) [4]–[6] or Magnetic Field Intensity (MFI) [7], [8]

technologies etc. Because of this, fingerprint-based positioning

[9]–[11] which became a popular topic of research over the

last decades, still remains an active area of research mainly

because of its simplicity and its potential to be applicable

using off–the–shelf technologies. Fingerprinting, consists of an

off–line phase where pre-measured location-dependent signal

parameters (e.g. RSSI), known as ”fingerprints” are stored in

a database (radiomap) and an on–line phase where the real-

time measurement is correlated with the fingerprints in the

radiomap to estimate the position.

Generating and maintaining the radiomap is crucial and can

be achieved either through extensive in-situ measurements or

through channel modelling. Measurements may lead to more

accurate fingerprints, but the process is laborious and time-

consuming and a big challenge is that the applicability of the

measured radiomap is reduced if the wireless environment is

altered. Channel modelling techniques, such as Ray Tracing

(RT) have been proposed for the generation of the radiomap

[9], [12]–[14]. Still, RT accuracy is subject to the precise

definition of the geometry [15] and morphology [16] of the

environment and also the accurate definition of the antennas

and other parameters. Such information is usually hard to

obtain and this might necessitate the crude calibration of the

RT tool in order to achieve higher accuracy.

A basic limitation of fingerprinting techniques is that device

heterogeneity may degrade the positioning performance when

the type of device to be positioned is different from the one

that was used to generate the radiomap. This heterogeneity

is based on the differences that may arise due to the different

antenna characteristics of the wireless device which are usually

difficult to know or predict. There is work reported that tries

to address this; mainly by calibrating the RSSI measurements

manually collected using the device to be positioned to better

match the fingerprints contained in the radiomap (possibly

created using another device), either by lineary transforming

the collected measurements [17], [18], or by recording the



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2

signal ratios between pairs of Access Points [19].
This work proposes a process for the generation of a unique

fingerprint radiomap using 3D RT and the estimation of a

set of linear-transformation parameters through data-fitting of

a small set of manually-collected device-specific fingerprints

to this radiomap to make the process device-independent.

The focus is on the amount of fingerprints that need to

be manually collected using each device in order to obtain

appropriate linear transformation parameters that guarantee a

low positioning error.
Many attempts were focused in literature on improving

the accuracy of fingerprinting positioning by imposing and/or

fusing additional (to the radio) context collected by the device

sensors. The accuracy seems to depend on the volume and

quality of this context and it was proven that the more

information included in the process the higher the probability

for producing more accurate position estimates [20]–[22]. This

information may include radio parameters such as Received

Signal Strength Indication (RSSI) [23], Magnetic Field Inten-

sity (MFI) [7] and Channel Impulse Responses (CIR) [24]

which could also be cleverly combined or fused to improve

the performance [25]. However, the sole dependence on radio

parameters imposes various limits that are hard to overcome

therefore attempts where diverted in the use of non-radio

parameters such as inertial, temperature, light/illumination

measurements etc. Even though modern mobile devices are

equipped with a variety of sensors, different devices may

contain different ones, something which makes the process

difficult to generalize or standardize. Therefore this paper

proposes the utilisation of the available environment map

description to aid the localisation process. By doing so, the

expected mobility of the user is expected to be constrained

and different probabilities could be assigned to different areas

of the environment where the user is likely to be.
This paper combines the author’s previous works on cross-

device [26] and map-aided [27] fingerprinting into a unified

solution capable of achieving the sub-two-meter accuracy

requirement reported in [3]. The rest of the paper is organized

as follows: In Section II the related background work is

briefly summarized. Section III describes the test environment

and measurement methodology to generate device-specific

radiomaps and Section IV describes the proposed approach

for the generation of the RT radiomap. The performance

evaluation of the multi-device fingerprint approach and the

further improvements through the use of map-constrains are

presented in sections V and VI respectively. The results are

compared to other methods in literature in section VII.

II. BACKGROUND

A. Propagation Modelling

Ray Tracing (RT) is considered as the dominant deter-

ministic modelling approach for predicting radio propaga-

tion in wireless communications. It is based on Geometrical

Optics (GO) where for a a given detailed geometric and

morphological description of the environment, together with

the specifications of the antennas, identifies all the possible

ray paths and then applies electromagnetic theory to calculate

the total received power.

Channel modeling has been proposed for radiomap creation

for fingerprint-based positioning [9], [12], [28]. The authors

of [14] have used 3D RT and compared its performance and

computational cost against the previously reported methods

for indoor environments achieving a mean positioning error of

2.3m (using the same device) and also examined the sensitivity

on the accuracy due to the inaccurate material parameters

defined in the RT tool. The aforementioned works use RT for

RSSI-based fingerprinting, but the authors of [24] have used

RT to assist the creation of radiomaps for their fingerprint-

based solution which uses a fused combination of RSSI and

the Channel Impulse Response (CIR) as the position signature

(fingerprint). Also, in [29] 3D RT has been used to create

radiomaps for device-based and device-free cases achieving a

mean error of 1.6m and 2.44m respectively, however this has

done for a simple Line of Sight (LoS) scenario which is a

limited case in indoor environments. This work proposes the

use of RT to generate fingerprint-based radiomaps for both

Non-LoS and LoS which can be calibrated, transformed and

accurately be used with different types devices.

B. Fingerprint–based Positioning Algorithms

Fingerprint–based positioning is classified into determin-

istic and probabilistic approaches. Deterministic approaches

estimate the position as a weighted convex combination of

the reference locations [30]. Usually, the K reference loca-

tions with the shortest distance (usually the Euclidean [31])

Di, between the measured fingerprint s and the fingerprints

ri = [ri1, . . . , riN ]T in the radiomap and then estimating the

location ℓ̂ by calculating a weighted average of the locations

that correspond to the K nearest matches:

ℓ̂ =

K∑

i=1

(
wi∑K

j=1 wj

ℓ′i

)
, Di =

√√√√
N∑

j=1

(
rij − sj

)2
(1)

,where rij and sj denote the RSSI values related to the j-th

Access Point (AP) (j = 1, . . . , N ) for the radiomap fingerprint

and the on-line observed measurement respectively. Weights

wi are estimated using the inverse of the Euclidean distance

Di [32]. The K-Nearest Neighbour (KNN) method assumes

equal weights wi for the K candidate reference locations,

while setting K = 1 leads to the simple NN method [31],

[33], [34]. In probabilistic methods, the location is estimated

by maximising a conditional posterior probability p(ℓi|s) given

an observed fingerprint s, a fingerprint database and a prior

probability p(ℓi) which describes the probability of the target

being in a specific loacation [35], [36].
The proposed solution combines the probabilistic with the

deterministic approach by using the prior p(ℓi) into the

WKNN equation. This probability reflects the likelihood of

users being located in specific areas and can be extracted from

the environment map considering the position of the furniture

and the obstructions or statistically by continuously monitoring

the users’ movement and constructing frequent route paths. In

this context, equation 1 becomes:

ℓ̂ =

K∑

i=1

p(ℓi)

(
wi∑K

j=1 wj

ℓ′i

)
. (2)
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C. Device Heterogeneity in Fingerprint Positioning

There is work reported in literature that attempts to tackle

the issue of having different types of devives in the finger-

printing positining process. Haeberlen et al. [17] proposed the

use of linear mapping for transforming signal strength samples

from one device to match the ones of another device, however

Park et al. [18] claim that linear transformation alone does

not solve the problem and therefore they combine it with

a Kernel estimation using a wide Kernel width to further

reduce the positioning error. In [37], Vaupel et al. carry out

anechoic chamber measurements to obtain the signal strength

offsets between different devices and then apply those offsets

to calibrate the radiomap according to the device used. This

assumes the availability of an anechoic chamber and it limits

the applicability of this approach. Kjærgaard in [19] presents

a solution where fingerprints are recorded as signal strength

ratios between pairs of access points, instead of collecting the

absolute readings from each one. The advantage is that this

method does not require any device calibration.

All these methods require the collection of a complete

radiomap that covers the entire area of interest with at least one

device which is used as reference for positioning other devices.

Thus, a considerable time and effort for data collection are still

required and this grows rapidly if the positioning system is to

be deployed in larger–scale setups. The approach in this work

addresses this issue efficiently by exploiting an automatically

generated RT radiomap that covers all target areas and is

applicable for multiple different devices.

D. Map Information Extraction

Information extracted from or with the help of maps has

been utilized in indoor positioning. For instance, Liao et

al. in [38] and Evennou et al. in [39] proposed the use of

particle filters to make use of the inherent structure of indoor

environments. In order to simplify the calculation complexity

of these filters, they suggested the estimation of the locations

of people on the environment Voronoi Graph.

In this work, instead of adopting the Voronoi Graphs and the

particle filter approach, the most frequent –or most probable–

routes are defined, based on observations and by considering

the obstructions in the environment map. It is expected that

this frequent route would constrain the user motion in areas

that (s)he usually resides in. The recording of these routes

are based on simple observations and can be achieved by

supervised or unsupervised learning techniques. In this work, a

supervised approach is adopted as the constrains are manually

set in order to prove the principle.

III. TEST ENVIRONMENT AND METHODOLOGY

To assess the use of RT-generated radiomaps for cross-

device fingerprinting positioning, Wi–Fi RSSI measurements

have been collected in an indoor environment using 3 Android

devices (HTC Desire HD, Samsung Nexus S and Samsung

Galaxy Tab) and 1 laptop computer (Lenovo X100e). Mea-

surements were performed simultaneously with all 4 devices

logging data from 6 D-Link 802.11g APs installed inside the

building at 110 equally-spaced (1m) training locations. At

every location 30 samples were recorded (1 sample/sec) and

the mean value, averaged for each AP, has been computed

in every location to build each device-specific radiomap. The

whole data collection process took 2 hours to complete.

For testing purposes, additional RSSI fingerprints have been

collected with all devices along a route that comprises of 40

distinct locations, while 10 samples were measured at every

test location with no averaging. The test environment is shown

in Figure 1. To enable random selection of data which are

distributed uniformly in the environment, the area is divided

in 7 regions Ai, i = 1, . . . , 7 representing rooms and large

open spaces (see Figure 1), i.e. {A1 : ℓj , j = 1, . . . , 11},

{A2 : ℓj , j = 12, . . . , 30}, {A3 : ℓj, j = 31, . . . , 40},

{A4 : ℓj , j = 41, . . . , 59}, {A5 : ℓj = 60, . . . , 69},

{A6 : ℓj , j = 70, . . . , 89}, {A7 : ℓj , j = 90, . . . , 110} where j
is the training location index. Each of the six regions contains

fingerprints which are in Line of Sight with only one access

point whereas the 7th region (A1) contains fingerprints which

do not have a line of sight to any of the access points.
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Fig. 1. Experimentation Area Floor Plan (Reference Locations and APs)

IV. PROPOSED APPROACH

A. Ray Tracing Radiomap

For the creation of the fingerprint radiomap, TruNET Wire-

less [40] was used. It is a 3D deterministic RT propagation

simulator which utilises the 3D EM formulation of reflection,

refraction and diffraction based on the Uniform Theory of

Diffraction [41]. The environment shown in Figure 1 was

modelled in the RT Simulator including clutter such as desks,

tables etc. and the 3D model is shown in Figure 2. The RT

simulation setup consists of 110 receivers defined at the same

locations where the measurements were performed. As fast

fading effects are typically observed up to half-wavelength

distances and since the wavelength of transmission in this

experiment is 12.5cm, at each receiving location a rectangular

grid of 36 equally-spaced (5cm) isotropic receivers (at 90cm
height) has been defined to remove any fast fading effects by

calculating their local average. The 6 × 6 grid was selected

to ensure a total size of a 30cm × 30cm rectangular area
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which is comparable to the size of the largest device under test.

The 6 APs (at 2.3m heigh) use an omni-directional antenna

but since they are mounted on the walls, their pattern is

most likely distorted. Therefore, time-gated impulse response

measurements have been carried out around a typical omni-

directional antenna placed on the wall, using a Rohde &

Schwarz FSH8 Vector Network Analyser (VNA) in order to

better characterise its pattern. The modified antenna pattern

has then been imported into TruNET Wireless. Typical values

for the electrical parameters [42] were used in order to

characterise the building walls and geometric features. These

parameters have been further tuned in order to better match

the measurements collected with the HTC device. This latter

process is known as crude Ray Tracing calibration [43]. The

Ray Tracing simulations (compared to the measurements) have

achieved a mean error of 5.62dB with a standard deviation of

4.23dB using all the measured locations. This error is mainly

due to the uncertainties about the exact values of the electrical

parameters, the exact radiation pattern of the transmitting

antennas, the environment clutter and the uncertainty about

the receiver antenna pattern which was assumed isotropic.

Since the objective is to devise a methodology where someone

will have to collect as few measurements as possible, the

RT accuracy using part of the measured data was evaluated.

Specifically, 100 combinations of 4 locations were randomly

selected per region as described in Section III and similar

behaviour was achieved (mean error is 5.6 ± 0.3dB and the

standard deviation is 4.3± 0.2dB). This means that with only

few measurements, a reasonably good fine-tuning of the RT

Simulator could be achieved.

Fig. 2. 3D Model of the Indoor Environment for Ray Tracing Simulations

B. Device Calibration

The RT-generated radiomap can be used as a reference

for multi- and cross-device positioning. The problem is that

the devices report the measured RSSI values differently de-

pending on their Wi-Fi adapter hardware and their antenna

characteristics (sensitivity and pattern). Therefore, the range of

RSSI values can greatly vary among devices, thus rendering

the direct use of a single reference radiomap questionable.

Therefore, calibrating the device measurements to match the

fingerprints in the radiomap is necessary to deliver a consistent

level of performance, regardless of the device used. To increase

the applicability of the proposed approach, the use of only a

small set of training data for performing this calibration is

investigated since the objective is to minimise the time and

effort during the off-line phase.

In this work, linear transformation is used in a similar

fashion as in [17] by using the training data for mapping

the RSSI values recorded with each target device to the RT

radiomap, which contains a vector with the mean RSSI values

of each AP at every training location. For this reason, linear

data fitting is performed in a least-squares sense using the

mean RSSI values of each device averaged over multiple

fingerprint samples collected at each location. In this fashion,

the two linear coefficients are estimated and can be used in

a pre-processing step prior to the on-line positioning phase in

order to scale the RT radiomap to better correspond to the

type of the device to be positioned.

The data fitting is plotted for all 4 devices in Figure 3

indicating a strong linear correlation between the mean RSSI

values of each device and the RT radiomap.The linear trans-

formation parameters (α, β) are also indicated. It is observed

that the Lenovo laptop behaves differently compared to the 3

Android devices and exhibits a large number of values ranging

from −50dBm to −45dBm that correspond to values between

−65dBm and −35dBm with respect to the RT data; see

Figure 3d. This is the reason for the hard limit appearing in the

figure. For this specific range of RSSI values a higher order

fitting could be applied to address this non-linearity. As it will

be shown later in the performance evaluation (Section V) this

behaviour leads to larger positioning error if the RT radiomap

is used to localize the X100e device without any calibration.

The linear fitting obtained by using only ∼10% of the

training data (dashed line in Figure 3), (the mean RSSI values

in the fingerprints from 2 randomly selected locations in each

of the 7 regions), is very close to the respective fitting when

all the training data is considered (solid line). This indicates

that only few data could be used for the device calibration and

considerably reduce the measurements time for all devices.

V. MULTI-DEVICE FINGERPRINTING

An evaluation of the effectiveness of the proposed cross-

device approach is performed with regards to the positioning

accuracy compared with the case of using device-specific

radiomaps manually collected with each device using the ex-

perimental data from the four devices as detailed in Section III.

At this point, the focus is on the improvement achieved

solely by combining the RT radiomap with the device cal-

ibration (data fitting and linear transformation), rather than

the fingerprint-based positioning method itself. However, the

results are obtained using the well-known Weighted K-Nearest

Neighbour (WKNN) method for an optimum value of K=4

as shown in Figure 4. This value was optimized using the

device-specific radiomaps and seems to be in agreement with

the values proposed in literature [31], [32].
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Fig. 3. Ray Tracing Radiomap calibration using data-fitting of the device-specific data
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A. No Device Calibration

First, an examination of the performance when the RT

radiomap is utilized without any calibration performed and the

findings are summarized in Table I. The error performance in

the case that manually collected, device-specific radiomaps are

used, is shown in parentheses. Apart from the mean, median

and maximum positioning error pertaining to the dataset,

the 67th and 95th percentiles of the Cumulative Distribution

Function (CDF) are also reported. It is observed that there is

performance degradation of the positioning accuracy when a

RT radiomap is used as opposed to device-specific radiomaps.

This degradation seems to be worse for the Galaxy Tab

and the Lenovo laptop since these two devices have very

different reception characteristics (also the physical structure

and dimensions are very different) than the HTC device, the

measurements from which have been used to fine-tune the

parameters of the RT model (see section IV-A). There seems

to be similar degradation for the Nexus device compared to

the HTC as these two devices appear to have very similar re-

ception characteristics. Overall, the results suggest that there is

room for improving the accuracy by means of data calibration.

TABLE I
POSITIONING ERROR [M] WITH A NON–CALIBRATED RT RADIOMAP1

Lenovo HTC Nexus Galaxy Tab

Mean 4.2 (2.7) 2.1 (1.7) 2.4 (2.0) 2.3 (1.6)
Median 4.0 (2.5) 1.7 (1.5) 2.1 (1.6) 1.9 (1.3)
67% cdf 5.0 (3.1) 2.4 (2.0) 2.7 (2.5) 2.5 (1.8)
95% cdf 7.2 (5.8) 4.5 (3.6) 5.1 (4.7) 5.2 (3.9)
Max 10.9 (11.0) 11.2 (9.8) 14.5 (11.0) 9.0 (6.3)
1 The device-specific radiomaps performance is shown in brackets

B. RT Radiomap Calibration for multiple devices

The two linear transformation equation coefficients (α, β)

extracted by the data fitting process described in section IV-B

are used in a pre-processing step prior to the position esti-

mation to calibrate (scale) the observed on-line measurement

to better map to the fingerprints in the RT radiomap. The

positioning accuracy associated with this process is shown

in Table II (in brackets is the positioning error for the case

where no linear transformation is applied). It becomes evident

that this method improves the positioning accuracy; 0.9m for

the Lenovo device and 0.2–0.3m for the Nexus and Galaxy

devices respectively. There seems to be no improvement for

the HTC device whose data has been used to fine tune the

parameters of the RT model.

TABLE II
POSITIONING ERROR [M] WITH A CALIBRATED RT RADIOMAP 1

Lenovo HTC Nexus Galaxy Tab

Mean 3.1 (4.2) 2.1 (2.1) 2.2 (2.4) 2.0 (2.3)
Median 2.7 (4.0) 1.8 (1.7) 1.9 (2.1) 1.8 (1.9)
67% cdf 3.5 (5.0) 2.5 (2.4) 2.6 (2.7) 2.3 (2.5)
95% cdf 6.4 (7.2) 4.6 (4.5) 4.5 (5.1) 4.3 (5.2)
Max 11.2 (10.9) 11.2 (11.2) 13.2 (14.5) 10.3 (9.0)
1 The non-calibrated RT radiomap performance is shown in brackets

As the requirement is to facilitate the construction of a

device-independent fingerprint-based radiomap and the estima-

tion of the calibration parameters relatively easily and quickly,

the crucial question is how much fingerprint data needs to

be collected using each device in order to estimate the linear

transformation coefficients to ensure a good mapping between

the RSSI values measured during positioning and the ones in

the RT radiomap. In this experimental analysis the device-

specific training data is employed and the effect of using part

of it for calibrating the RT radiomap for various different

devices is studied, as detailed in Section IV-B. In order to

achieve a uniform random distribution of partial data, this data

is elected by randomly selecting a number of fingerprints from

each of the 7 regions defined in the scenario as described in

Section III. The investigation involves the study of the effect

of selecting different number of fingerprint locations from

each region. This random fingerprint selection per region was

repeated 100 times and for each partial data size the average

and standard deviation of the positioning error (mean and 95th

percentile) were estimated and are tabulated in Table III. In
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this case all 30 RSSI samples available at each fingerprint

location are used to calculate the mean RSSI fingerprints.
It seems that using the data from only 1-2 locations per

region, provides the same performance with the case when

using the data from all the 110 training locations. The standard

deviation is also very low, indicating that the mean error is

not affected by the selection of specific locations in each

region. Likewise, the 95th error percentile which provides an

insight about high errors anticipated during positioning, is also

close to the case where all the training data is used. This

demonstrates the effectiveness and efficiency of the partial-

data device calibration process.
Another important issue is the number of samples, contain-

ing raw RSSI values, that need to be collected at each location

in order to calculate the mean RSSI fingerprints and cancel out

any possible fast fading effects. This is directly related to the

time spent at a particular location for recording a sequence

of samples. By varying the number of samples that contribute

to the mean RSSI fingerprint at each location it was found

that using only 5 samples per fingerprint location does not

affect the performance of the proposed approach and provides

the same positioning accuracy, as with the case of using all 30

samples; see Table IV. This means that very little time needs to

be spent for collecting data and the device calibration overhead

can be further reduced.

TABLE III
POSITIONING ERROR [M] USING A VARIABLE NUMBER OF TRAINING

LOCATIONS PER REGION FOR DEVICE CALIBRATION

Lenovo HTC Nexus Galaxy Tab

Mean error
1 location 3.1±0.2 2.1±0.1 2.2±0.2 2.0±0.1
2 locations 3.1±0.1 2.1±0.0 2.2±0.0 2.0±0.0
All locations 3.1 2.1 2.2 2.0

95% CDF error

1 location 6.4±0.3 4.6±0.2 4.6±0.2 4.5±0.2
2 locations 6.4±0.1 4.6±0.1 4.5±0.1 4.4±0.1
All locations 6.4 4.6 4.5 4.3

C. Discussion

Results indicate that for the Lenovo and Galaxy devices,

the proposed approach improves considerably the performance

compared to using the non-calibrated RT radiomap, while

the positioning error comes closer to the one achieved when

device-specific radiomaps are used. For the Nexus device

similar behaviour was observed, while in the case of HTC the

device calibration approach does not lead to significant im-

provements compared to the non-calibrated case since the RT

radiomap was generated based on RT simulation parameters

which have been optimised using measurements from the HTC

device. The results indicate that the traditional fingerprint-

based approach can be replaced by the proposed one. Here

only 5 samples at 2 randomly selected fingerprint locations in

each of the 7 regions inside the whole experimentation area for

device calibration need to be collected. This translates into less

than 5 minutes of data collection for each device, compared to

around 2 hours of RSSI data logging for building each device-

specific radiomap. If we also consider that RT simulations for

TABLE IV
POSITIONING ERROR [M] USING 2 LOCATIONS PER REGION AND

5 SAMPLES PER LOCATION FOR DEVICE CALIBRATION 1

Lenovo HTC Nexus Galaxy Tab

Mean
3.1±0.1 2.1±0.1 2.3±0.1 2.0±0.1

(2.7) (1.7) (2.0) (1.6)

Median
2.7±0.1 1.9±0.1 2.0±0.0 1.7±0.0

(2.5) (1.7) (1.6) (1.3)

67% cdf
3.5±0.1 2.4±0.1 2.6±0.1 2.3±0.1

(3.1) (2.0) (2.7) (1.8)

95% cdf
6.5±0.2 4.6±0.2 4.6±0.2 4.4±0.1

(5.8) (3.6) (4.7) (3.9)

Max
11.1±0.1 10.4±0.4 12.8±0.6 10.3±0.5

(11.0) (9.8) (11.0) (6.3)
1 The device-specific radiomap performance is shown in brackets

this wireless environment took about 40 minutes to generate

the radiomap the total time saving is around 60%. Larger scale

setups would lead to greater savings in time and labour.

VI. MAP-CONSTRAINED FINGERPRINTING

A. Route Probability Factor

Although the approach presented above facilitates the easy

creation and maintenance of device-independent fingerprinting

radiomaps and achieves performance which approaches the

one when using manually-collected device-specific radiomaps,

the achieved accuracy is slightly above 2 meters. To fulfill the

requirement for the sub-two-meter accuracy reported in [3] this

work goes one step ahead and investigates potential accuracy

improvements in the RT-based fingerprinting approach by im-

posing map constrains in the form of a-priori knowledge into

the positioning methodology. This is based on the assumption

that the movement of the users is expected to be constrained

within specific regions and different probabilities could be

assigned to different fingerprints reflecting the likelihood of

the user being there. Therefore, this paper introduces the Route

Probability Factor (RPF) which reflects these probabilities.

This means that along a frequent route (an example is shown

in Figure 5), the RPF will be increased, while in remote

areas it will be decreased. The RPF does not only affect the

probabilities along the specified route, but also the positions at

its proximity. For this purpose, a normally distributed approach

was implemented, at a radius ρ across the route, creating route

tubes. For every location on each frequent route, the algorithm

assigns a decaying probability to all those fingerprints in the

radiomap, which reside within a circle of radius ρ around this

location. This decaying probability is assumed to follow a

Gaussian Normal Distribution which is a traditional method

used in fingerprint database generation [44], [45] given by:

RPFℓi = RPFℓ

(
1

σroute

√
2π

)
e−

1

2
(
‖ℓ−ℓi‖

σroute
)2

(3)

where RPFℓ is the Route Probability Factor at the location ℓ
which lies exactly on the route and ‖ℓ − ℓi‖ is the distance

between location ℓ and any other location ℓi within the range

of ρ. Finally, σroute is given with respect to the selected ρ:

for a 99% confidence level σroute = ρ/3, since statistically

3σ provides this confidence level.
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This iterative process results in a normalised probability

matrix which contains a probability p(ℓi) for every location

along each frequent route tube. All these matrices are then

summed up to result into an accumulated probability matrix

which describes the likelihood of a user being in any location.

This matrix has a one–to–one relation to the fingerprints

database and is then used in conjunction with the positioning

algorithm to improve the localisation accuracy.

Fig. 5. Route Probability Factor - RPF

The same WKNN deterministic algorithm is used for po-

sitioning, extended with the probabilistic part of the RPF.

The proposed approach takes into consideration the a–priori

knowledge of the frequent user routes, as well as the weighted

Euclidean distance of the observed location (see Eq. 2). The

former allows to incorporate map constraints into the position

estimation, by assigning the different likelihoods of each

location in the environment, in the form of a probability

matrix. In this context each fingerprint in the database is

given a prior probability p(ℓi) = RPFi, which is used in

Eq. (2). These prior probabilities can also be combined with

the probabilities explicitly set to a minimum, in areas that are

not accessible by the user. The normalised distribution of the

RPF matrix used in this work is presented in Figure 5.

B. Performance Evaluation

The effectiveness of the RPF approach was evaluated

with respect to the improvement in the positioning accuracy

achieved when imposing map constrains through the extracted

probability matrix which contains the probabilities p(ℓi) (see

Eq. 2). The value of K was, as previously, set to 4.

The results when using the RPF approach are summarized

in Table V for all the devices in consideration (in parentheses

the non-RPF result is indicated) while the respective graphs

showing the Cumulative Distribution Functions (CDF) of the

obtained localisation accuracy are depicted in Figure 7.

It is observed that when the map constraints are used, an

improvement of around 20% occurs on the mean positioning

accuracy for the Android devices whereas less improvement

is observed for the laptop (∼ 6%). There is also a significant

reduction of ∼ 30% on the maximum error for the Android

devices and ∼ 10% for the laptop. The improvement is

sustained in the whole range of the error CDF, as it can be

TABLE V
POSITIONING ERROR [M] USING THE RPF APPROACH 1

Lenovo HTC Nexus Galaxy Tab

Mean 2.9 (3.1) 1.7 (2.1) 1.9 (2.3) 1.6 (2.0)
Median 2.5 (2.8) 1.3 (1.7) 1.5 (1.9) 1.4 (1.8)
67% cdf 3.5 (3.6) 1.9 (2.5) 2.5 (2.6) 1.9 (2.3)
95% cdf 6.5 (6.8) 4.6 (4.9) 4.5 (4.5) 4.2 (4.3)
Max 10.9 (11.2) 7.4 (10.2) 10.9 (13.2) 7.7 (10.3)
1 Non-RPF resuls is shown in brackets.

seen in Figure 7. The position estimates for all points along

the test route in the map-constrained scenario, are presented

in Figure 6 with solid circle markers. It can be observed that,

as a result of the integration of the RPF in the positioning

procedure, the estimated positions were shifted from non-

realistic areas (cross and diamond markers) towards more

reasonable positions, along or near the test route.

Given these accuracy improvements, it is interesting to

investigate the effect of varying the distribution of the RPF as

well as the route radius ρ (see Eq. 3) around the frequent route

used for the generation of the a-priori probability matrix. Sim-

ilar work has been reported in [46]. In this context, different

distributions and different values of ρ for various resolutions

of the fingerprint radiomap were investigated (resolution is

defined as the spacing between fingerprints in the radiomap).

Figure 8 indicates that the normal distribution used in this

work performs equally well as the exponential distribution

but outperforms the other distributions (linear, uniform and

distance-ratio). Also, as it is illustrated in table VI which

tabulates the mean and the 95th percentile of the positioning

error, the value of ρ affects the localisation accuracy. The

results indicate that the value of ρ, should be between 1 or 2

times the fingerprint radiomap resolution. This finding seems

to be consistent for a wide range of values of K; Table VI

tabulates the results for K = 4 and K = 9.

TABLE VI
EFFECT OF RPF RADIUS ρ ON ACCURACY 1

ρ =0.5m ρ =1.0m ρ =2.0m

K=4
Resolution=1.00m 1.70, 4.70 1.65, 4.2 1.64, 4.2

Resolution=0.50m 1.86, 5.30 1.86, 5.13 1.90, 5.17
Resolution=0.25m 1.97, 5.53 2.07, 5.78 2.36, 6.85

K=9

Resolution=1.00m 1.62, 4.34 1.65, 3.99 1.55, 3.89

Resolution=0.50m 1.58, 3.90 1.78, 5.10 1.84, 5.13
Resolution=0.25m 1.95, 5.57 1.97, 5.65 2.10, 5.7
1 The performance 2-tuple includes the mean and the 95th

percentile of the error. The best performance per resolution
is indicated in bold.

C. Performance in realistic device-handling scenarios

The applicability and performance of the proposed approach

has so far been demonstrated through measurements and

simulations in which the user is assumed to have the same

orientation while holding the device the same way at every lo-

cation both during the off-line and the on-line phase. However,

this rarely happens in practice and therefore it is important to
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Fig. 6. Estimates along the test route
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(a) Samsung Galaxy Tab
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(b) HTC Desire HD
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(c) Samsung Nexus S
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(d) Lenovo X100e

Fig. 7. CDF of Location Accuracy for the various devices
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Fig. 8. Comparison of various RPF distributions

investigate how this approach would perform under realistic

device-handling conditions which involve the impact of hands,

the user orientation, the body blockage and the impact of

keeping devices in a pocket. Therefore, additional test data

were collected along the same test route as before with the

user performing a random device-handling behaviour. The

first investigation was carried out using the Galaxy Tab were

at every test location 10 samples were collected with the

user being randomly orientated while holding the tablet in

different random ways (vertically, horizontally, etc.). As shown

in Figure 9, this resulted in an RSSI variation (compared

to the original test data) which follows a zero-mean normal

distribution with a standard deviation of 4.2dB. These error

statistics, which are inline with the findings reported in [47],

resulted in an overall degradation of the positioning accuracy

by roughly 0.5m compared to the original case where the data

were collected under specific orientations and specific device-

handling conditions (compare Tables VII and V). However,

as shown in Figure 11a the proposed RPF approach still

improves the accuracy and makes it comparable to the case

where device-specific radiomaps are used under these realistic

conditions. It is also very common for the user to keep the

smart-phone inside a pocket therefore additional test data were

collected to accommodate this condition. Specifically, like

before, 10 samples were collected at every location along the

test route under different orientations and handling conditions

but every 3rd sample the smart phone was put in the pocket.

The RSSI data collected experiences a variation compared to

the original case, which, as shown in Figure 10, follows a
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bi-normal distribution. The first distribution is a zero-mean

normal one with a standard deviation of 3.6dB which is related

to the different out-of-pocket handling conditions whereas

the second one has a standard deviation of 5.1dB and a

mean of 6.3dB which seems to be related to the additional

attenuation of the signal due the fact that the device is in

the pocket. As shown in Figure 11b and Table VII there

is again a consistent degradation of roughly 0.5m in the

positioning accuracy. Nevertheless, the RPF methods provide

improvements, which, as before, approach the accuracy of the

device-specific radiomaps case.

Similar performance has been observed when the same

handling conditions were applied to the HTC Desire and the

Lenovo Laptop and the results are shown in Figures 11c

and 11d respectively and summarised in Table VII which

demonstrate that even if there is a degradation in the accuracy

due to the random device-handling behaviour of the user, the

proposed approach makes the performance better.
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Fig. 9. Galaxy Tab RSSI variation under realistic device handling conditions

Fig. 10. Nexus RSSI variation under realistic device handling conditions

D. Versatility of the RPF Approach

It was shown that the RPF approach performs relatively

well under realistic user-handling conditions. Although this

could be a sign of versatility, it is also important to investigate

the perfromance in a different environment and for different

devices. In fact, the work presented in this paper is a contin-

uation of the preliminary work reported in [27], the results

of which are shown in Figure 12. In this work, a typical

office environment was tested and the RPF method achieved

an improvement of 28% in the mean positioning accuracy

(from 2.03m to 1.46m) and a radical reduction of 65% on

the maximum error (5.95m instead of 17.09m). These results

are in line with the ones reported in the current work. To

TABLE VII
POSITIONING ERROR [M] USING THE RPF APPROACH UNDER

REALISTIC DEVICE-HANDLING CONDITIONS 1

Lenovo HTC Nexus Galaxy Tab

Mean
3.4 2.2 2.3 2.3

(2.9, 4.1) (2.1, 2.8) (2.4, 3.0) (2.1, 2.6)

Median
2.9 1.6 1.9 1.7

(2.5, 3.9) (1.8, 2.1) (1.9, 2.5) (1.7, 2.1)

67% cdf
4.2 2.6 2.7 2.5

(3.3, 4.8) (2.3, 3.0) (2.7, 3.4) (2.5, 3.0)

95% cdf
7.8 5.8 5.3 6.4

(5.9, 7.4) (5.0, 6.8) (6.0, 6.5) (4.8, 5.7)

Max
10.9 10.4 10.2 10.8

(9.5, 10.9) (11.6, 13.6) (11.0, 12.6) (9.4, 11.1)
1 The first number in the brackets is the error when device-specific
radiomaps are used and the second is the error when neither calibration
nor the RPF are used.

further demonstrate the versatility of the proposed method, test

data were collected along the same test route as before using

another four Android devices; Samsung GT-S7580, Samsung

S8, HTC One M8 and LG G Pad 8.3. The results shown in

Table VIII indicate that the RPF method performs equally well

for a range of devices which proves its versatility.

TABLE VIII
POSITIONING ERROR [M] USING THE RPF APPROACH AND

RT-GENERATED RADIOMAPS 1

GT-S7580 HTC M8 Samsung S8 LG G Pad

Mean 1.9 (2.8) 1.9 (3.1) 1.9 (3.2) 1.9 (2.5)
95% cdf 4.5 (6.1) 5.0 (7.0) 4.6 (6.4) 5.1 (5.2)
Max 10.9 (15.4) 10.3 (14.9) 10.9 (14.4) 9.9 (8.5)
1 Non-RPF resuls is shown in brackets.

VII. DISCUSSION

Results indicate that the proposed methodology which com-

bines radiomap generation using RT, data fitting and linear

transformation and the RPF method could improve the mean

positioning accuracy by 20-30% while reducing the maximum

error by up to 35%. This is comparable to various attempts

reported in literature to improve the fingerprinting accuracy.

For instance, the authors of [48] have theoretically demon-

strated that the temporal correlation of the RSSI could be

exploited to further improve fingerprinting accuracy by 13%-

30%. One of the advantages of the proposed method is its

applicability when heterogeneous clients are used without the

need for time-consuming exhaustive measurements using each

device to populate the radiomap. This is done by using RT

in combination with a calibration to fit the radiomap to the

particular device. Kjrgaard in [19] used Hyperbolic Location

Fingerprinting, which records fingerprints as signal strength

ratios between pairs of transmitter and he reports a room-

size (assumed to be 4m×4m) accuracy of around 50%. The

proposed method in this paper achieves an up–to–4m accuracy

of around 90% for the Android devices and 80% for the laptop.

However, the modern requirement in indoor positioning is in

the sub–2–meter range [3] therefore a 4m accuracy cannot be

considered enough. The results in this paper indicate a mean

error of around 1.6-1.9m could be achieved for the Android
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(b) HTC Desire HD
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Fig. 11. Performance of the proposed approach under realistic device-handling conditions

Fig. 12. PRF method in a different environment

devices which is better than the 2.44m accuracy (LoS only)

reported in [29] which also uses RT to generate the device-

free radiomap. Obviously, works have reported in literature

which achieve fingerprinting accuracy in the sub-meter-range

(e.g. UWB [4]–[6], MFI [7], [8]) however they require non–

off–the-shelf and usually expensive equipment.

VIII. CONCLUSION

Multi-device fingerprint-based positioning is an active re-

search field because of the time-consuming data-collection

process, using several different devices for the construction

of the necessary radiomap. The focus in this work was

on the use of a deterministic 3D Ray Tracing-based radio

propagation model to generate a unique reference radiomap

easily and quickly and subsequently to combine it with a

device calibration process, based on linear data fitting, to

better map the RSSI values observed during positioning to

the reference radiomap irrespectively of the device used.

The proposed approach mitigates the cumbersome task of

recording large datasets of RSSI values throughout the area of

interest using multiple devices. The performance evaluation

indicated that only a small amount of device-specific data

is required to reach the same level of positioning accuracy

attained with a manually collected device-specific radiomap.

The approach is far less laborious compared to traditional

radiomap construction indicating around 60% saving in time

as well as facilitating the possibility of easily re–generating

the radiomap when something in the wireless environment is

changed (e.g. APs added or removed, furniture relocated, etc.).

This can be easily done by running the RT simulator, instead

of collecting the radiomap data from scratch.
The introduction of weight coefficients in the form of a–

priori knowledge that takes the form of map constrains and

reflects the likelihood of users being in particular locations

can result in significant improvements in position estimation in

indoor environments. In this direction this paper proposed the

implementation of RPF as a matrix, which can be either pop-

ulated manually, by observing the human mobility behaviour,

or through the implementation of supervised or unsupervised

learning methods. This could also be done on a personalized-

level (assuming privacy issues are not raised) by keeping one

probability matrix per individual user.

REFERENCES

[1] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning
systems for wireless personal networks,” IEEE Communications Surveys

Tutorials, vol. 11, no. 1, pp. 13–32, First 2009.
[2] D. Sterling, G; Top, “Mapping the indoor marketing opportunity,” Opus

Research Report, 2014.
[3] IndoorAtlas, “A 2016 global research report on the indoor positioning

market.” The Rise of Indoor Positioning, 2016.
[4] M. Kok, J. D. Hol, and T. B. Schn, “Indoor positioning using ultra-

wideband and inertial measurements,” IEEE Transactions on Vehicular

Technology, vol. 64, no. 4, pp. 1293–1303, April 2015.
[5] G. D. Angelis, A. Moschitta, and P. Carbone, “Positioning techniques in

indoor environments based on stochastic modeling of uwb round-trip-
time measurements,” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 8, pp. 2272–2281, Aug 2016.
[6] A. Cazzorla, G. D. Angelis, A. Moschitta, M. Dionigi, F. Alimenti, and

P. Carbone, “A 5.6-ghz uwb position measurement system,” IEEE Trans.

on Instrum. and Meas., vol. 62, no. 3, pp. 675–683, March 2013.
[7] B. Kim and S. H. Kong, “A novel indoor positioning technique using

magnetic fingerprint difference,” IEEE Transactions on Instrumentation

and Measurement, vol. 65, no. 9, pp. 2035–2045, Sept 2016.
[8] V. Pasku, A. D. Angelis, A. Moschitta, P. Carbone, J. O. Nilsson,

S. Dwivedi, and P. Hndel, “A magnetic ranging-aided dead-reckoning
positioning system for pedestrian applications,” IEEE Trans. on Instru-

mentation and Measurement, vol. 66, no. 5, pp. 953–963, May 2017.
[9] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user

location and tracking system,” in IEEE International Conference on

Computer Communications INFOCOM, vol. 2, 2000, pp. 775–784.
[10] M. Kjærgaard, “A taxonomy for radio location fingerprinting,” in 3rd

international conference on Location-and context-awareness. Springer-
Verlag, 2007, pp. 139–156.

[11] S. He and S. H. G. Chan, “Wi-fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys

Tutorials, vol. 18, no. 1, pp. 466–490, Firstquarter 2016.
[12] T. Deasy and W. Scanlon, “Simulation or measurement: The effect

of radio map creation on indoor WLAN-Based localisation accuracy,”
Wireless Personal Communications, vol. 42, no. 4, pp. 563–573, 2007.

[13] A. Hatami and K. Pahlavan, “Comparative statistical analysis of indoor
positioning using empirical data and indoor radio channel models,”
in 3rd IEEE Consumer Communications and Networking Conference

(CCNC), vol. 2. IEEE, 2006, pp. 1018–1022.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 11

[14] K. El-Kafrawy, M. Youssef, A. El-Keyi, and A. Naguib, “Propagation
modeling for accurate indoor WLAN RSS-based localization,” in IEEE

Vehicular Technology Conference Fall (VTC2010-Fall), 2010, pp. 1–5.

[15] V. Mohtashami and A. A. Shishegar, “Effects of geometrical uncertain-
ties on ray tracing results for site-specific indoor propagation modeling,”
in 2013 IEEE-APS Topical Conference on Antennas and Propagation in

Wireless Communications (APWC), Sept 2013, pp. 836–839.
[16] ——, “Effects of inaccuracy of material permittivities on ray tracing

results for site- specific indoor propagation modeling,” in 2013 IEEE-

APS Topical Conference on Antennas and Propagation in Wireless

Communications (APWC), Sept 2013, pp. 1172–1175.
[17] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and

L. E. Kavraki, “Practical robust localization over large-scale 802.11
wireless networks,” in 10th international conference on Mobile com-

puting and networking (MobiCom), 2004, pp. 70–84.
[18] J.-G. Park, D. Curtis, S. Teller, and J. Ledlie, “Implications of device

diversity for organic localization,” in Proc. of IEEE INFOCOM 2011.
[19] M. B. Kjærgaard, “Indoor location fingerprinting with heterogeneous

clients,” Pervasive and Mobile Computing, vol. 7, no. 1, pp. 31–43,
2011.

[20] M. Raspopoulos, B. Denis, M. Laaraiedh, J. Domnguez, L. de Celis,
D. Slock, G. Agapiou, J. Stphan, and S. Stavrou, “Location-dependent
information extraction for positioning,” in 2012 International Confer-

ence on Localization and GNSS, June 2012, pp. 1–6.
[21] N. Paspallis and M. Raspopoulos, An Open Platform for Studying

and Testing Context-Aware Indoor Positioning Algorithms. Cham:
Springer International Publishing, 2017, pp. 39–50. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-52593-8 3

[22] M. D’Souza, B. Schoots, and M. Ros, “Indoor position tracking using
received signal strength-based fingerprint context aware partitioning,”
IET Radar, Sonar Navigation, vol. 10, no. 8, pp. 1347–1355, 2016.

[23] P. Pivato, L. Palopoli, and D. Petri, “Accuracy of rss-based centroid
localization algorithms in an indoor environment,” IEEE Trans. on

Instrum. and Measurement, vol. 60, no. 10, pp. 3451–3460, Oct 2011.
[24] P. H. Tseng, Y. C. Chan, Y. J. Lin, D. B. Lin, N. Wu, and T. M. Wang,

“Ray-tracing-assisted fingerprinting based on channel impulse response
measurement for indoor positioning,” IEEE Trans. on Instrumentation

and Measurement, vol. 66, no. 5, pp. 1032–1045, May 2017.
[25] D. Macii, A. Colombo, P. Pivato, and D. Fontanelli, “A data fusion

technique for wireless ranging performance improvement,” IEEE Trans.

on Instrum. and Measurement, vol. 62, no. 1, pp. 27–37, Jan 2013.
[26] M. Raspopoulos, C. Laoudias, L. Kanaris, A. Kokkinis, C. Panayiotou,

and S. Stavrou, “3d ray tracing for device-independent fingerprint-based
positioning in wlans,” in Positioning Navigation and Communication

(WPNC), 2012 9th Workshop on, March, pp. 109–113.

[27] A. Kokkinis, M. Raspopoulos, L. Kanaris, A. Liotta, and S. Stavrou,
“Map-aided fingerprint-based indoor positioning,” in 2013 IEEE 24th

Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC), Sept 2013, pp. 270–274.
[28] Y. Ji, S. Biaz, S. Pandey, and P. Agrawal, “ARIADNE: a dynamic indoor

signal map construction and localization system,” in 4th ACM Int’l Conf.

on Mobile systems, applications and services, 2006, pp. 151–164.
[29] A. Eleryan, M. Elsabagh, and M. Youssef, “AROMA: Automatic gener-

ation of radio maps for localization systems,” CoRR, vol. abs/1002.1834,
2010.

[30] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche, “A comparative
survey of WLAN location fingerprinting methods,” in 6th Workshop on

Positioning, Navigation and Communication, 2009, pp. 243–251.
[31] R. Bahl and V. N. Padmanabhan, “Radar: An in building rf-based user

location and tracking system,” in INFOCOM, vol. 2, 2000, pp. 775–784.
[32] B. Li, J. Salter, A. Dempster, and C. Rizos, “Indoor positioning tech-

niques based on wireless LAN,” in 1st IEEE Intrnl. Conf. on Wireless

Broadband and Ultra Wideband Communications, 2006, pp. 13–16.
[33] P. Bahl, V. Padmanabhan, and A. Balachandran, “Enhancements to the

RADAR user location and tracking system,” Microsoft Research, Tech.

Rep. MSR-TR-00-12, February 2000.
[34] S. Saha, K. Chaudhuri, D. Sanghi, and P. Bhagwat, “Location determi-

nation of a mobile device using IEEE 802.11b access point signals,”
in IEEE Wireless Communications and Networking, vol. 3, 2003, pp.
1987–1992.

[35] M. Youssef and A. Agrawala, “The Horus WLAN location determination
system,” in 3rd ACM International Conference on Mobile systems,

applications, and services, 2005, pp. 205–218.
[36] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A

probabilistic approach to WLAN user location estimation,” Int’l Jnl of

Wireless Information Networks, vol. 9, no. 3, pp. 155–164, Jul. 2002.

[37] T. Vaupel, J. Seitz, F. Kiefer, S. Haimerl, and J. Thielecke, “Wi-Fi
positioning: System considerations and device calibration,” in Int’l Conf.

on Indoor Positioning and Indoor Navigation (IPIN), 2010, pp. 1–7.
[38] L. Liao, D. Fox, J. Hightower, H. Kautz, and D. Schulz, “Voronoi

tracking: location estimation using sparse and noisy sensor data,” in
Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003

IEEE/RSJ International Conference on, vol. 1, 2003, pp. 723–728 vol.1.
[39] F. Evennou, F. Marx, and E. Novakov, “Map-aided indoor mobile

positioning system using particle filter,” in Proc. IEEE Wireless Com-

munications and Networking Conf, vol. 4, 2005, pp. 2490–2494.
[40] F. N. Ltd. TruNET Wireless. http://www.fractalnetworx.com/.
[41] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of

diffraction for an edge in a perfectly conducting surface,” Proceedings

of the IEEE, vol. 62, no. 11, pp. 1448–1461, Nov 1974.
[42] S. Stavrou and S. Saunders, “Review of constitutive parameters of

building materials,” in 12th Intrnl. Conf. on Antennas and Propagation

ICAP 2003, vol. 1. IET, 2003, pp. 211–215.
[43] J. Jemai, R. Piesiewicz, and T. Kurner, “Calibration of an indoor radio

propagation prediction model at 2.4 GHz by measurements of the IEEE
802.11b preamble,” in IEEE 61st Vehicular Technology Conference (VTC

2005-Spring), vol. 1, 2005, pp. 111–115.
[44] H. Hashemi, “The indoor radio propagation channel,” Proceedings of

the IEEE, vol. 81, no. 7, pp. 943–968, Jul 1993.
[45] L. Chen, B. Li, K. Zhao, C. Rizos, and Z. Zheng, “An improved

algorithm to generate a wi-fi fingerprint database for indoor positioning,”
Sensors, vol. 13, no. 8, pp. 11 085–11 096, 2013. [Online]. Available:
http://www.mdpi.com/1424-8220/13/8/11085

[46] A. Kokkinis, L. Kanaris, M. Raspopoulos, A. Liotta, and S. Stavrou,
“Optimizing route prior knowledge for map-aided fingerprint-based
positioning systems,” in The 8th European Conference on Antennas and

Propagation (EuCAP 2014), April 2014, pp. 2141–2144.
[47] J. Luo and X. Zhan, “Characterization of smart phone received signal

strength indication for wlan indoor positioning accuracy improvement,”
Journal of Networks, vol. 9, no. 3, pp. 739–746, Mar 2014.

[48] X. Tian, M. Wang, W. Li, B. Jiang, D. Xu, X. Wang, and J. Xu, “Improve
accuracy of fingerprinting localization with temporal correlation of the
rss,” IEEE Trans. on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2017.

Marios Raspopoulos received an MEng in Electron-
ics & Mobile Communications (2003) and an MSc
in Communications Networks & Software (2004)
from the University of Surrey, UK. From 2004 to
2008 he has been a Researcher at the Centre for
Communications and Systems Research (CCSR) of
the University of Surrey. In 2008 he has received
his PhD in Telecommunication Engineering from the
University of Surrey. He is currently an Assistant
Professor in Electrical and Electronic Engineering
at the University of Central Lancashire. His research

interests span around the wide spectrum of ICT with special focus in Telecom-
munications and Mobile Wireless Communications & Technologies with focus
on Radio Propagation/Radio Planning, Electromagnetism, RF/Antenna Design
and Wireless Channel Modelling, Localisation and Tracking, Information and
Context-aware technologies, Ubiquitous and Pervasive computing, Cognitive
Radio Technologies, Green and Energy Efficient Communication, Communi-
cation in Sensor Networks, Human Exposure to Electromagnetic Radiation
etc. Dr Raspopoulos has participated in various indoor positioning-related
multi-partner projects both in a national and an international level.

http://dx.doi.org/10.1007/978-3-319-52593-8_3
http://www.fractalnetworx.com/
http://www.mdpi.com/1424-8220/13/8/11085

	Introduction
	Background
	Propagation Modelling
	Fingerprint–based Positioning Algorithms
	Device Heterogeneity in Fingerprint Positioning
	Map Information Extraction

	Test Environment and Methodology
	Proposed Approach
	Ray Tracing Radiomap
	Device Calibration

	Multi-device Fingerprinting
	No Device Calibration
	RT Radiomap Calibration for multiple devices
	Discussion

	Map-Constrained Fingerprinting
	Route Probability Factor
	Performance Evaluation
	Performance in realistic device-handling scenarios
	Versatility of the RPF Approach

	Discussion
	Conclusion
	References
	Biographies
	Marios Raspopoulos


