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ABSTRACT 

WLAN-fingerprinting has been highlighted as the preferred technology in an 

Indoor Positioning System (IPS) due to its accurate positioning results and minimal 

infrastructure cost. However, the accuracy of IPS fingerprinting is highly influenced 

by the fluctuation in signal strength as a result of encountering obstacles. Many 

researchers have modelled static obstacles such as walls and ceilings, but hardly any 

have modelled the effect of people presence as an obstacle although the human body 

significantly impacts signal strength. Hence, the people presence effect must be 

considered to obtain highly accurate positioning results. Previous research proposed 

a model that only considered the direct path between the transmitter and the receiver. 

However, for indoor propagation, multipath effects such as reflection can also have a 

significant influence, but were not considered in past work. Therefore, this research 

proposes an accurate indoor positioning model that considers people presence using a 

ray tracing (AIRY) model in a dynamic environment which relies on existing 

infrastructure. Three solutions were proposed to construct AIRY: an automatic radio 

map using ray tracing (ARM-RT), a new human model in ray tracing (HUMORY), 

and a people effect constant for received signal strength indicator (RSSI) adaptation. 

At the offline stage, 30 RSSIs were recorded at each point using a smartphone to 

create a radio map database (523 points). The real-time RSSI was then compared to 

the radio map database at the online stage using MATLAB software to determine the 

user position (65 test points). The proposed model was tested at Level 3 of Razak 

Tower, UTM Kuala Lumpur (80 × 16 m). To test the influence of people presence, 

the number, position, and distance of the people around the mobile device (MD) 

were varied. The results showed that the closer the people were to the MD in both the 

Line of Sight (LOS) and Non-LOS  position, the greater the decrease in RSSI, in 

which the increment number of people will increase the amount of reflection signals 

to be blocked. The signal strength reduction started from 0.5 dBm with two people 

and reached 0.9 dBm with seven people. In addition, the ray tracing model produced 

smaller errors on RSSI prediction than the multi-wall model when considering the 

effect of people presence. The k-nearest neighbour (KNN) algorithm was used to 

define the position. The initial accuracy was improved from 2.04 m to 0.57 m after 

people presence and multipath effects were considered. In conclusion, the proposed 

model successfully increased indoor positioning accuracy in a dynamic environment 

by overcoming the people presence effect.  
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ABSTRAK 

WLAN-cap jari telah diserlahkan sebagai teknologi pilihan dalam Sistem 

Kedudukan Dalam Bangunan (IPS) kerana hasil penentuan kedudukan yang tepat 

dan kos infrastruktur yang minimum. Walau bagaimanapun, ketepatan pengecapan 

jari IPS sangat dipengaruhi oleh turun naik kekuatan isyarat akibat merentasi 

halangan. Ramai penyelidik telah menggunakan model halangan statik seperti 

dinding dan siling, tetapi hampir tidak ada yang memodelkan kesan kehadiran 

manusia sebagai halangan walaupun tubuh manusia secara signifikan mempengaruhi 

kekuatan isyarat. Oleh itu, kesan kehadiran manusia mesti dipertimbangkan untuk 

mendapatkan hasil kedudukan yang lebih tepat. Penyelidikan sebelum ini 

mencadangkan model yang hanya mempertimbangkan laluan lurus antara penghantar 

dan penerima. Walau bagaimanapun, untuk penyebaran dalam bangunan, kesan 

berbilang laluan seperti refleksi juga mempunyai pengaruh, tetapi tidak 

dipertimbangkan dalam kajian lepas. Oleh itu, penyelidikan ini mencadangkan model 

penentuan kedudukan dalam bangunan yang tepat yang menganggap kehadiran 

manusia menggunakan Model Surihan Sinar (AIRY), dalam persekitaran dinamik 

yang bergantung pada infrastruktur sedia ada. Tiga penyelesaian dicadangkan untuk 

membina AIRY: peta radio automatik menggunakan surihan sinar (ARM-RT), model 

manusia baru dalam penyurihan sinar (HUMORY), dan pemalar kesan manusia 

untuk penyesuaian penunjuk kekuatan isyarat yang diterima (RSSI). Pada peringkat 

luar talian, 30 RSSI direkodkan pada setiap titik menggunakan telefon pintar untuk 

membuat pangkalan data peta radio (523 titik). RSSI masa nyata kemudian 

dibandingkan dengan pangkalan data peta radio di peringkat dalam talian 

menggunakan perisian MATLAB untuk menentukan kedudukan pengguna (65 titik 

ujian). Model yang dicadangkan diuji di Tingkat 3, Menara Razak, UTM Kuala 

Lumpur (80m x 16m). Untuk menguji pengaruh kehadiran manusia, jumlah, 

kedudukan, serta jarak manusia di sekitar peranti mudah alih (MD) diubah. Hasil 

kajian menunjukkan bahawa semakin dekat seseorang itu dengan MD di kedua 

kedudukan garis nampak (LOS) dan bukan garis nampak (Non-LOS), semakin besar 

pengurangan RSSI di mana peningkatan bilangan manusia akan meningkatkan 

jumlah isyarat pantulan yang disekat. Pengurangan kekuatan isyarat bermula dari 0.5 

dBm dengan dua orang dan mencapai 0.9 dBm dengan tujuh orang. Di samping itu, 

model surihan sinar menghasilkan ralat yang lebih kecil pada ramalan RSSI 

berbanding model berbilang dinding. Hal ini menunjukkan bahawa model 

penyurihan sinar meramalkan RSSI lebih baik daripada model berbilang dinding, 

terutama apabila memandang kesan kehadiran manusia. Algoritma KNN digunakan 

untuk menentukan kedudukan. Ketepatan awal ditingkatkan dari 2.04 m kepada 0.57 

m setelah kehadiran manusia dan kesan berbagai laluan dipertimbangkan. Sebagai 

kesimpulan, model yang dicadangkan bejaya meningkatkan ketepatan kedudukan 

dalam bangunan dalam persekitaran yang dinamik dengan mengatasi kesan 

kehadiran manusia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview and Motivation 

Location-based services (LBSs) are a significant permissive technology with 

a wide range of applications in human life (Horsmanheimo et al., 2019). LBS are 

services that combine geographic location with other information to give more 

helpful services (Huang and Gartner, 2018). The LBS market is growing rapidly 

(Basiri et al., 2015), with a market report estimating the LBS market to generate up 

to USD 77.84 billion revenue by 2021 (Markets and markets, 2016). 

One of the main components of LBS is its positioning system—either indoor 

or outdoor. For outdoor positioning, Global Navigation Satellite Systems (GNSS) 

such as the Global Positioning System (GPS) and Globalnaya Navigazionnaya 

Sputnikovaya Sistema (GLONASS) have been used over a wide range of 

applications. GNNS is a worldwide position and time determination system that 

includes one or more satellite constellations, aircraft receivers, and system integrity 

monitoring, augmented as necessary to support the required navigation performance 

for the intended operation (Zhu et al., 2018). GPS is a satellite navigation system 

operated by the United States whereas GLONASS is operated by the Russian 

Federation. 

However, GPS cannot be used for indoor positioning because its signals 

cannot penetrate buildings. Due to GPS failure to work indoors, many researchers 

have attempted to build an alternative to GPS that can work indoors called the Indoor 

Positioning System (IPS) (Dardari et al., 2015). When visiting a building for the first 

time such as an airport, an office building, an exhibition hall or a hypermarket, 

orientation may be difficult. Direction signs and static plans often do not provide the 

help one needs to find a specific location in time, resulting in stressful situations and 
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delays. According to ABI Research in 2015, IPS-based services have great economic 

potential, and are estimated to reach a market value of US$ 10 billion in 2020. 

Another report in 2016 by Markets and Markets estimated the global indoor location 

market to grow to $4,424.1 million by 2019, as shown in Figure 1.1 (Dasgupta and 

Singh, 2016). According to a Research and Markets report, the Global Indoor 

Positioning and Navigation market is expected to reach $54.60 billion by 2026. 

 

Figure 1.1  Infographic about the future of indoor location technologies 

An IPS is any system that gives a precise position inside of buildings, such as 

a smart building (Turgut et al., 2016), a hospital (Calderoni et al., 2015), an airport, 

(Molina et al., 2018), a subway (Stockx et al., 2014), a construction site (Ma et al., 

2018), industrial sites (Cheng et al., 2018), and university campuses (Golenbiewski 

et al., 2018). 

IPS uses many existing technologies such as radio frequencies (RFs) (Mier et 

al., 2019), magnetic fields (Shu et al., 2015), acoustic signals (Moutinho et al., 

2016), thermal sensors (Lu et al., 2016), optical sensors (Mautz and Tilch, 2011) or 

other sensory information collected using a mobile device (MD) (Han et al., 2016). 

Some examples of RF technology used in IPS, among others, are WLAN/Wi-Fi 
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(Zourmand et al., 2018; Hsieh et al., 2018), Bluetooth (Faragher and Harle, 2015), 

Zig Bee (Dong et al., 2019), RFID (Tsirmpas et al., 2015), frequency modulation 

(FM) (Popleteev, 2019), and Ultra-wideband (UWB) (Witrisal et al., 2016). WLAN 

technology is commonly used in IPS because of its advantages, for example, radio 

waves can pass through obstacles like floors, walls, ceilings, and human bodies. 

Meanwhile, WLAN positioning systems can be implemented over a wide coverage 

area because it does not need any additional device.  

One of the performance indicators of IPS is accuracy, which is the difference 

between the actual location and the estimated location (Rezazadeh et al., 2018). 

There are many applications that require precise IPS, such as for emergency cases 

and patient monitoring. For example, it is essential for 911 to know the location of a 

caller as precisely as possible to control delays in emergency response. Delays in 

response can lead to a loss of lives. The emergency service has even defined a new 

standard called the “next-generation 911 (NG911)” (The National 911 Program, 

2015; Sedlar et al., 2019). In 2016, the United States (U.S.) National Aeronautics and 

Space Administration Jet Propulsion Laboratory (NASA JPL) cooperated with the 

Department of Homeland Security Science and Technology Directorate (S&T) to 

develop a high precision outdoor and indoor navigation and tracking system for 

emergency responders (U.S. Department of Homeland Security, 2016). An indoor 

navigation system that can track firefighters to within a meter is also in the works (Li 

et al., 2018).  

WLAN IPS has been highlighted as a preferred technology due to its accurate 

positioning results and minimal infrastructure cost (Yang and Shao, 2015). WLAN is 

a wireless local network standard (IEEE 802.11), a communication standard that is 

supported in most mobile phones. However, the WLAN signal is greatly influenced 

by environmental conditions, especially inside indoor areas because of the multipath 

effect, which can decrease signal accuracy. An example of a signal propagation 

model that considers multipath effects is the ray tracing model. This model requires 

an adaptive IPS that can adapt to the multipath effect and environmental changes, 

mainly the effect of people presence, to provide high-accuracy IPS. 
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1.2 Problem Background 

Location detection techniques are categorised into three: proximity, 

triangulation, and fingerprint (Farid et al., 2013). Proximity detection or 

connectivity-based techniques are simple to implement. The location of MD is 

defined based on the cell of origin (CoO) method with a known position and limited 

distance. Although this method is easy to implement, it has a large distance error, 

meaning that it cannot be adopted for WLAN-based IPS because the Access Point 

(AP) has a wide coverage (up to 100 m). Proximity techniques can be applied using 

RFID or Bluetooth, but which also have a limited range or coverage. 

The triangulation technique uses the geometric properties of triangles to find 

the location of a target. The technique can be divided into two: lateration and 

angulation. The lateration technique is based on the measurement of the received 

radio signal strength (RSS), the signal phase, and the propagation-time such as the 

time of arrival (TOA), the time difference of arrival (TDOA), and the roundtrip time 

(RTT)(Makki et al., 2015).  

Fingerprinting is based on a pattern recognition technique that combines 

radio frequency (RF) with location information e.g. a label from the environment, to 

show the position of the MD. WLAN fingerprinting is usually conducted in two 

phases: offline and online. In the offline phase, a site survey is conducted to collect 

the value of the received signal strength indicator (RSSI) at many reference points 

(RPs) from all the detected access points (APs). In the online phase, a user samples 

or measures an RSSI vector at his/her position. Then, the system compares the 

received vector of the RSSI with the stored fingerprints in the radio map (RM) 

database. The position is then estimated based on the most similar “neighbours”, 

which are the set of RPs with RSSI vectors that closely match the RSSI of the target 

(He and Chan, 2016).    

WLAN-based RSSI Fingerprinting can provide highly accurate position 

estimates (Wang et al., 2019). It also requires a low-cost investment, as shown in 

Table 1.1 (Potgantwar et al., 2015; Basri and El Khadimi, 2016). On the other hand, 
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the large bandwidth makes the ultra-wideband (UWB) signal resistant to multipath 

problems and interference (Gao and Li, 2019), making UWB less influenced by the 

people presence effect, but it also requires a higher cost of investment. 

Table 1.1  Comparison of indoor positioning technology, accuracy, cost, and 

people effect  

Technology Accuracy  Cost Channel Bandwidth Interference 

caused by 

People Effect 

UWB 1 m–2 m High 500 MHz–7.5 GHz Low 

RFID 1 m–2 m Low 200 KHz; 500 KHz High  

Bluetooth 2 m–5 m Low 1 MHz High  

WLAN 2 m–5 m Low 22 MHz High  

Zigbee 1 m–3 m High 0.3 MHz/0.6 MHz;  

2 MHz 

High 

Manual radio map (RM) construction is labour intensive and time-

consuming. Hence, automatic radio map generation was developed to reduce the time 

required to construct RM (Alshami, et al., 2015; Du et al., 2015; Lin et al., 2015). 

An automatic radio map construction method is proposed using multi-sensors 

including inertial information, video data, and WIFI signals (Liu et al., 2016). Then, 

a visual-based approach was proposed to construct a radio map in anonymous indoor 

environments (Liu et al., 2017). On the other hand, Yu et al. (2016) and Li et al. 

(2018) constructed a system based on crowdsourcing. In Li et al.'s (2018) project, the 

users walked through a building to generate parts of road paths and then merging the 

PDR traces based on the similarity of the Wi-Fi fingerprints. These techniques did 

not need any prior knowledge of floor plans. These construction techniques were 

able to reduce the time required to construct RMs. However, it still required the user 

to exert significant effort to collect data using various sensors. New techniques have 

therefore been proposed based on indoor RF propagation models. This technique 

only requires information on the room layout and AP location as the system input. 

Alshami et al. (2015) and Caso and De Nardis (2017) used a Multi-wall signal path 

loss model to automatically generate a radio map. This technique quickly generated a 

radio map, but the model only considered the direct signal from the transmitter (AP) 

to the receiver (MD), whereas indirect signals such as reflection, which have a 

significant influence on indoor propagation, were not included.  
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The current research proposes a ray tracing model that considers multipath 

effects to obtain a more accurate radio map. The ray tracing technique obtains 

channel characteristics by identifying the contributions of individual multipath 

components (reflection, diffraction, and scattering) and calculates the composition of 

these components at the receiver. If we use all the multipath components, it will 

require high computational time (Hossain et al., 2019). Thus, in this research, we will 

only consider reflection in order to get low computational time and high accuracy. 

Another problem faced in past studies is that the RSSI of WLAN is highly 

affected by environmental changes such as the effect of people presence, which will 

decrease position accuracy. Hence, environmental changes are still one of the main 

problems affecting WLAN positioning accuracy. Obstacles that could cause 

fluctuations in RSSI include walls, ceilings, and people (Farid et al., 2013; He and 

Chan, 2016). Walls and ceilings have been discussed in Ubom et al. (2019), Saito 

and Omiya (2018), and Santana et al. (2016). The effect of people on signal strength 

was investigated in Slezak et al. (2018) for 60 GHz, in Alabish et al. (2018) for 18–

22 GHz, and in Alshami et al. (2014) for 2.4 GHz. The result showed that people’s 

presence in the Line of Sight (LOS) between the AP and the Mobile Device (MD) 

decreased the RSSI by 2 dBm to 5 dBm. This decline in the RSSI could result in a 

position error of more than 2 m. People holding a MD (user orientation problem) and 

people around the user could also block the WLAN signal from the APs depending 

on their position, in turn, reducing the RSSI value. Meanwhile, for Zig Bee, people’s 

presence in the Line of Sight (LOS) decreased the RSSI by 3.97 dBm (Shukri et al., 

2016). 

One of the main problems related to PPE is the position of the user holding a 

MD. This problem is known as the user orientation problem. To solve the user 

orientation problem, Liu and Wang (2015) collected four orientations of RM in the 

offline phase and used a KNN positioning algorithm in the online phase. Deng et al. 

(2018) also built a multi-orientation RM in the offline phase and employed a 

Rotation Matrix and the Principal Component Analysis (RMPCA) method. Their 

solution proved time-consuming because of the manual process involved, and the 

RSSI multi-vectors had to be collected at each node. The systems developed in the 
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study focused on the development of a multi-orientation RM database such that the 

system required a long time for collecting data for the database. Therefore, it is 

necessary to develop an adaptive system with a more efficient RM database to 

overcome the user orientation problem. 

In addition to users who hold MDs, people around the users also affect the 

RSSI. People presence has the same effect as obstacles that block WLAN signals. 

The movement of humans in wireless networks is one of the major effects that cause 

significant variations in the received signal strength indicator (RSSI) (Booranawong 

et al., 2019; Booranawong et al., 2018). Alshami et al. (2015) presented 

experimental results showing that people’s presence between the AP and the MD 

reduced the received signal strength by 2 dBm to 5 dBm. However, the study only 

discussed the effect of one or two people on the RSSI and only a single path signal 

propagation model was used to analyse the RSSI (Alshami et al., 2017). However, 

multipath signals such as reflection also have a significant effect on indoor 

propagation, but these were not discussed. In fact, human tissues have a variety of 

relative permittivity values that influence the reflection signal (Zhekov et al., 2019). 

The Foundation for Research on Information Technologies in Society in 2011 

released the selected relative permittivity of main human tissues  as shown in Table 

1.2. 

Table 1.2  Selected relative permittivity of some main human tissues 

Tissue  Relative permittivity 

Air                1 

Blood              58.4 

Fat                5.29 

Muscle             52.8 

Dry Skin  38.1 

Wet Skin  42.9 

 

Hence, this current research should consider the effect of many people around 

the user with different positions to improve the accuracy of the proposed IPS. In 

addition, this research should also consider modelling the human body in the ray 
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tracing multipath signal propagation model to analyse the effect of people presence 

on RSSI. 

1.3 Problem Statement 

One of the most popular methods in IPS is the WLAN Fingerprint because 

this technology has been widely installed inside buildings and provides a high level 

of accuracy (Yang and Shao, 2015). Although WLAN RSS fingerprinting is the most 

accurate positioning method, it still has a weakness, for example, constructing the 

RM is labour intensive and time-consuming, and the multipath signal is vulnerable to 

obstacle presence, such as walls, furniture, and people.  

Many studies have modelled static obstacles such as walls and ceilings, but it 

is hard to find any research that has modelled the people presence effect. Human 

bodies absorb, reflect, and diffract WLAN signals, which, in turn, affect the value of 

RSSI. Thus, if offline mapping is performed when there are no people (or a few 

people) whereas positioning is performed when there are many people, the system 

can lose its reliability. The results have shown that, on average, the presence of 

human bodies increases the positioning error by 11% regardless of the algorithm 

used (Garcia-Villalonga and Perez-Navarro, 2015). Meanwhile, Alshami et al.'s 

(2015) experimental works showed that people’s presence between a mobile device 

and the access point reduced the RSSI by 2 dBm to 5 dBm. This decline in RSSI 

could lead to a position error of more than 2 m. 

Hence, there is a need to overcome the people presence effect to obtained 

highly accurate positioning results. In previous researches, as mentioned in Section 

1.2, a propagation model was proposed that considered people presence based on a 

multi-wall model. However, only the direct path between the transmitter and the 

receiver was considered in the model, and every wall that crossed by this path was 

assumed to attenuate the passing ray by a constant amount. However, for indoor 

propagation, multipath effects (reflection, diffraction, and scattering), which were not 

considered in these studies, have a very significant influence. Therefore, there is a 
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need to develop a new indoor propagation model that considers multipath effects, 

such as the Ray Tracing model, to model the people presence effect and improve the 

accuracy of the Indoor Positioning System. 

In this research, a new indoor positioning model that considers the people 

presence effect and multipath propagation based on a ray tracing model was 

proposed to improve the accuracy of WLAN fingerprinting IPS without the need to 

install a new device in the existing infrastructure.  

1.4 Research Question 

Based on the problem statement, the following research questions were 

derived: 

i. What is the best way to develop and validate an accurate automatic radio map 

construction that considers ray tracing? 

ii. How to develop and validate a human model that considered people presence 

effect on the received signal strength to enhance WLAN-fingerprinting Indoor 

Positioning based on ray tracing? 

iii. How to develop and validate the proposed accurate indoor positioning model 

in a dynamic environment that also considers people presence effect and ray 

tracing? 

 

1.5 Aim of the Study 

This research proposes a new accurate indoor positioning model based on 

WLAN Fingerprinting using existing common devices that are already installed in a 

building (i.e. the Access Point). The proposed model has to adapt to the effect of 

environmental changes, especially the effect of people presence. The proposed model 

adopted a modified ray tracing radio propagation model to overcome the multipath 

effect. 
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1.6 Objective 

The objectives of this research are as follows: 

i. To develop and validate an accurate automatic radio map construction 

technique that considers ray tracing propagation 

ii. To develop and validate a human model that considers the people presence 

effect on the received signal strength to enhance the proposed WLAN-

fingerprinting Indoor Positioning System based on ray tracing propagation 

iii. To develop and validate the proposed accurate indoor positioning model in a 

dynamic environment, which considers the effect of people presence effect 

and ray tracing. 

 

1.7 Scope of Study 

This research proposes a novel, accurate WLAN Fingerprinting indoor 

positioning model that considers the people presence effect and multipath 

propagation to improve positioning accuracy without adding any extra device. This 

model can determine the location of a MD accurately in a dynamic environment. 

Hence, this research is bounded by the following scope. 

This research focused on indoor positioning while navigation, tracking, and 

other LBS fall out of the scope of study. WLAN fingerprinting was adopted as an 

indoor positioning method and the radio map was constructed using RSS from the 

available AP beacon. 

The users carried the MD in their hand and used the Android Operating 

System with an internal WLAN adapter. Meanwhile, the access points (APs) were 

installed in a fixed and known position. 

This research used the ray tracing propagation model to estimate the received 

signal strength. Accuracy and position errors were adopted as performance metrics to 

validate the proposed model. This research did not investigate human detection or 

any security or privacy issues. 



 

11 

1.8 Significance of the Study 

Recently, LBS has proven to be a significant permissive technology with a 

wide range of applications. The performance of LBS is significantly affected by its 

IPS. By building an accurate IPS using existing devices (APs), the performance and 

coverage of LBS can be improved. The proposed system could be applied in an 

economic context (shopping centres, train stations, airports), as well as military, 

health (hospital, healthcare), and social aspects (people traffic management for 

emergency situations inside buildings). 

Many applications require precise IPS such as emergency cases and patient 

monitoring. For example, 911 has defined a new standard called the “next generation 

911 (NG911)” that includes a technique that recognises the precise position of the 

caller, while the U.S. Department of Homeland Security has developed a high 

precision outdoor and indoor navigation and tracking system for emergency 

responders. The U.S. Government is also developing an indoor navigation system 

that can track firefighters to within a meter. 

IPS also plays an important role in the Internet of Things (IoT) (Ali et al., 

2019). One of the largest European Union projects on IoT (FP-7 Butler project) 

stated that location information is one of the key enabling technology in IoT. In the 

health sector, IoT manages numerous sensors mounted on a patient's body to monitor 

health conditions. If the patient's health condition deteriorates and he/she needs help 

immediately, then, the location of the patient would be vital to monitor. Hence, in 

cases such as these, an IPS with high accuracy is required. 

1.9 Thesis Organisation 

This thesis consists of six chapters that are organised as follows: Chapter 1 

explains the overview and the motivation of this research such as the research 

questions, the objectives, the scope, and the limitations. The statement of the 

problem was formulated by highlighting the need for a new, accurate indoor 
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positioning model based on RSSI-WLAN Fingerprinting that could adapt to the 

people presence effect to improve the accuracy of the IPS without installing any 

extra devices in a dynamic environment. 

Chapter 2 provides fundamental information about WLAN Fingerprinting, 

the path loss or radio propagation models, and related works on PPE in IPS. Chapter 

3 presents the research methodology. It explains the research plan that contains three 

phases to achieve the desired objectives: 1) the Knowledge Building Phase, which 

aims to investigate the literature to develop the baseline; 2) the Development Phase 

in which an Accurate Indoor Positioning Model is designed and developed based on 

WLAN fingerprinting to improve the accuracy of IPS; and 3) the Validation Phase, 

which aims to validate the developed AIRY model.  The development and validation 

phases are carried out to in parallel since AIRY has different components and the 

developed component must be validated before going to the next step.   

Chapter 4 discusses the effects of people around the user on the RSSI and the 

proposed human model and the signal propagation model that consider people 

presence based on the ray tracing propagation model. Chapter 5 discusses the 

development of a highly accurate IPS that considers the people effect and was 

adopted from the ray tracing propagation model. Finally, Chapter 6 presents the 

conclusions to this study. 
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