135 research outputs found

    Directional Unsharp Masking-Based Approach for Color Image Enhancement

    Full text link

    Piecewise Linear Model-Based Image Enhancement

    Get PDF
    A novel technique for the sharpening of noisy images is presented. The proposed enhancement system adopts a simple piecewise linear (PWL) function in order to sharpen the image edges and to reduce the noise. Such effects can easily be controlled by varying two parameters only. The noise sensitivity of the operator is further decreased by means of an additional filtering step, which resorts to a nonlinear model too. Results of computer simulations show that the proposed sharpening system is simple and effective. The application of the method to contrast enhancement of color images is also discussed

    Automatic intensity windowing of mammographic images based on a perceptual metric

    Full text link
    [EN] Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is the most commonly performed task in daily screening and has a direct impact on diagnosis and the time involved in the process. Methods: The authors present a human visual system and perception-based algorithm named GRAIL (Gabor-relying adjustment of image levels). GRAIL initially measures a mammogram's quality based on the MI between the original instance and its Gabor-filtered derivations. From this point on, the algorithm performs an automatic intensity windowing process that outputs the WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They comprise correlations and an ANOVA analysis with the manual IW levels established by a group of radiologists. A complete MATLAB implementation of GRAIL is available at . Results: Auto-leveled images show superior quality both perceptually and objectively compared to their full intensity range and compared to the application of other common methods like global contrast stretching (GCS). The correlations between the human determined intensity values and the ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5 s per image. Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the WL/WW of mammographic images. This correction seeks the representation that maximizes the amount of graphical information contained in each image. The presented technique can contribute to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the beginning, an optimal and customized windowing setting for each mammogram. (C) 2017 American Association of Physicists in MedicineThis work has the support of IST S.L., University of Valencia (CPI15170), Consolider (CPAN13TR01), MINETUR (TSI1001012013019) and IFIC (Severo Ochoa Centre of Excellence SEV20140398). The authors would also like to thank C. Bellot M.D., M. Brouzet M.D., C. Calabuig M.D., J. Camps M.D., J. Coloma M.D., D. Erades M.D., Mr. V. Gutierrez, J. Herrero M.D., Dr. I. Maestre, Dr. A. Neco M.D., C. Ortola M.D., A. Rubio M.D., Dr. R. Sanchez, Dr. F. Sellers, A. Segura M.D., and the Spanish Cancer Association (AECC) for their effort, participation, counseling, and commitment in this research study. The authors report no conflicts of interest in conducting the research.Albiol Colomer, A.; Corbi, A.; Albiol Colomer, F. (2017). Automatic intensity windowing of mammographic images based on a perceptual metric. Medical Physics. 44(4):1369-1378. https://doi.org/10.1002/mp.12144S13691378444Maidment, A. D. A., Fahrig, R., & Yaffe, M. J. (1993). Dynamic range requirements in digital mammography. Medical Physics, 20(6), 1621-1633. doi:10.1118/1.596949Kimpe, T., & Tuytschaever, T. (2006). Increasing the Number of Gray Shades in Medical Display Systems—How Much is Enough? Journal of Digital Imaging, 20(4), 422-432. doi:10.1007/s10278-006-1052-3ACR, AAPM, and SIIM Practice parameter for determinants of image quality in digital mammography 2014Committee DS PS3.3 information object definitions 2015Pisano, E. D., Chandramouli, J., Hemminger, B. M., Glueck, D., Johnston, R. E., Muller, K., … Pizer, S. (1997). The effect of intensity windowing on the detection of simulated masses embedded in dense portions of digitized mammograms in a laboratory setting. Journal of Digital Imaging, 10(4), 174-182. doi:10.1007/bf03168840Börjesson, S., Håkansson, M., Båth, M., Kheddache, S., Svensson, S., Tingberg, A., … Månsson, L. G. (2005). A software tool for increased efficiency in observer performance studies in radiology. Radiation Protection Dosimetry, 114(1-3), 45-52. doi:10.1093/rpd/nch550Sahidan, S. I., Mashor, M. Y., Wahab, A. S. W., Salleh, Z., & Ja’afar, H. (s. f.). Local and Global Contrast Stretching For Color Contrast Enhancement on Ziehl-Neelsen Tissue Section Slide Images. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, 583-586. doi:10.1007/978-3-540-69139-6_146Ganesan, K., Acharya, U. R., Chua, C. K., Min, L. C., Abraham, K. T., & Ng, K.-H. (2013). Computer-Aided Breast Cancer Detection Using Mammograms: A Review. IEEE Reviews in Biomedical Engineering, 6, 77-98. doi:10.1109/rbme.2012.2232289Papadopoulos, A., Fotiadis, D. I., & Costaridou, L. (2008). Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Computers in Biology and Medicine, 38(10), 1045-1055. doi:10.1016/j.compbiomed.2008.07.006Panetta, K., Yicong Zhou, Agaian, S., & Hongwei Jia. (2011). Nonlinear Unsharp Masking for Mammogram Enhancement. IEEE Transactions on Information Technology in Biomedicine, 15(6), 918-928. doi:10.1109/titb.2011.2164259Rogowska, J., Preston, K., & Sashin, D. (1988). Evaluation of digital unsharp masking and local contrast stretching as applied to chest radiographs. IEEE Transactions on Biomedical Engineering, 35(10), 817-827. doi:10.1109/10.7288Ramponi, G. (1998). Rational unsharp masking technique. Journal of Electronic Imaging, 7(2), 333. doi:10.1117/1.482649Rangayyan, R. M., Liang Shen, Yiping Shen, Desautels, J. E. L., Bryant, H., Terry, T. J., … Rose, M. S. (1997). Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Transactions on Information Technology in Biomedicine, 1(3), 161-170. doi:10.1109/4233.654859Tang, J., Liu, X., & Sun, Q. (2009). A Direct Image Contrast Enhancement Algorithm in the Wavelet Domain for Screening Mammograms. IEEE Journal of Selected Topics in Signal Processing, 3(1), 74-80. doi:10.1109/jstsp.2008.2011108LINGURARU, M., MARIAS, K., ENGLISH, R., & BRADY, M. (2006). A biologically inspired algorithm for microcalcification cluster detection. Medical Image Analysis, 10(6), 850-862. doi:10.1016/j.media.2006.07.004Tsai, D.-Y., Lee, Y., & Matsuyama, E. (2007). Information Entropy Measure for Evaluation of Image Quality. Journal of Digital Imaging, 21(3), 338-347. doi:10.1007/s10278-007-9044-5Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430-444. doi:10.1109/tip.2005.859378Tourassi, G. D., Vargas-Voracek, R., Catarious, D. M., & Floyd, C. E. (2003). Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Medical Physics, 30(8), 2123-2130. doi:10.1118/1.1589494Tourassi, G. D., Harrawood, B., Singh, S., Lo, J. Y., & Floyd, C. E. (2006). Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Medical Physics, 34(1), 140-150. doi:10.1118/1.2401667Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861Choi LK Goodall T Bovik AC Perceptual Image Enhancement. Encyclopedia of Image ProcessingFogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61(2). doi:10.1007/bf00204594Jain, A. K., Ratha, N. K., & Lakshmanan, S. (1997). Object detection using gabor filters. Pattern Recognition, 30(2), 295-309. doi:10.1016/s0031-3203(96)00068-4Vazquez-Fernandez, E., Dacal-Nieto, A., Martin, F., & Torres-Guijarro, S. (2010). Entropy of Gabor Filtering for Image Quality Assessment. Image Analysis and Recognition, 52-61. doi:10.1007/978-3-642-13772-3_6Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., … Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-1057. doi:10.1007/s10278-013-9622-7Task Group 18 Imaging Informatics Subcommittee Assessment of display performance for medical imaging systems 2005A. C. of Radiology Committee Bi-rads atlas 5th edition 2014Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine, 9(7), 811-818. doi:10.1002/sim.4780090710Keselman, H. J., & Keselman, J. C. (1984). The analysis of repeated measures designs in medical research. Statistics in Medicine, 3(2), 185-195. doi:10.1002/sim.4780030211Mauchly, J. W. (1940). Significance Test for Sphericity of a Normal nn-Variate Distribution. The Annals of Mathematical Statistics, 11(2), 204-209. doi:10.1214/aoms/1177731915Samei, E., Badano, A., Chakraborty, D., Compton, K., Cornelius, C., Corrigan, K., … Willis, C. E. (2005). Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report. Medical Physics, 32(4), 1205-1225. doi:10.1118/1.1861159Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Systems with Applications, 42(21), 7905-7916. doi:10.1016/j.eswa.2015.06.02

    Hybrid Method Of Image Processing Based On Convolutional Neural Networks

    Get PDF
    The article describes the model of a convolutional neural network designed to improve the resolution of images on mobile devices. The structure of the network differs from the classical approaches by using a combination of neural network processing and one of the more traditional image processing algorithms. The article lists the advantages of using the aforementioned system

    Development of Impulsive Noise Detection Schemes for Selective Filtering in Images

    Get PDF
    Image Noise Suppression is a highly demanded approach in digital imaging systems design. Impulsive noise is one such noise, which is frequently encountered problem in acquistion, transmission and processing of images. In the area of image restoration, many state-of-the art filters consist of two main processes, classification (detection) and reconstruction (filtering). Classification is used to separate uncorrupted pixels from corrupted pixels. Reconstruction involves replacing the corrupted pixels by certain approximation technique. In this thesis such schemes of impulsive noise detection and filtering thereof are proposed. Impulsive noise can be Salt & Pepper Noise (SPN) or Random Valued Impulsive Noise (RVIN). Only RVIN model is considered in this thesis because of its realistic presence. In the RVIN model a corrupted pixel can take any value in the valid range. Adaptive threshold selection is emphasized for all the four proposed noise detection schemes. Incorporation of adaptive threshold into the noise detection process led to more reliable and more efficient detection of noise. Based on the noisy image characteristics and their statistics, threshold values are selected. To validate the efficacy of proposed noise filtering schemes, an application to image sharpening has been investigated under the noise conditions. It has been observed, if the noisy image passes through the sharpening scheme, the noise gets amplified and as a result the restored results are distorted. However, the prefiltering operations using the proposed schemes enhances the result to a greater extent. Extensive simulations and comparisons are done with competent schemes. It is observed, in general, that the proposed schemes are better in suppressing impulsive noise at different noise ratios than their counterparts

    Perception and Mitigation of Artifacts in a Flat Panel Tiled Display System

    Get PDF
    Flat panel displays continue to dominate the display market. Larger, higher resolution flat panel displays are now in demand for scientific, business, and entertainment purposes. Manufacturing such large displays is currently difficult and expensive. Alternately, larger displays can be constructed by tiling smaller flat panel displays. While this approach may prove to be more cost effective, appropriate measures must be taken to achieve visual seamlessness and uniformity. In this project we conducted a set of experiments to study the perception and mitigation of image artifacts in tiled display systems. In the first experiment we used a prototype tiled display to investigate its current viability and to understand what critical perceptible visual artifacts exist in this system. Based on word frequencies of the survey responses, the most disruptive artifacts perceived were ranked. On the basis of these findings, we conducted a second experiment to test the effectiveness of image processing algorithms designed to mitigate some of the most distracting artifacts without changing the physical properties of the display system. Still images were processed using several algorithms and evaluated by observers using magnitude scaling. Participants in the experiment noticed statistically significant improvement in image quality from one of the two algorithms. Similar testing should be conducted to evaluate the effectiveness of the algorithms on video content. While much work still needs to be done, the contributions of this project should enable the development of an image processing pipeline to mitigate perceived artifacts in flat panel display systems and provide the groundwork for extending such a pipeline to realtime applications

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin
    corecore