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Abstract

Image Noise Suppression is a highly demanded approach in digital imaging

systems design. Impulsive noise is one such noise, which is frequently encountered

problem in acquistion, transmission and processing of images. In the area of image

restoration, many state-of-the art filters consist of two main processes, classifica-

tion (detection) and reconstruction (filtering). Classification is used to separate

uncorrupted pixels from corrupted pixels. Reconstruction involves replacing the

corrupted pixels by certain approximation technique. In this thesis such schemes

of impulsive noise detection and filtering thereof are proposed.

Impulsive noise can be Salt & Pepper Noise (SPN) or Random Valued Impulsive

Noise (RVIN). Only RVIN model is considered in this thesis because of its realistic

presence. In the RVIN model a corrupted pixel can take any value in the valid

range.

Adaptive threshold selection is emphasized for all the four proposed noise de-

tection schemes. Incorporation of adaptive threshold into the noise detection

process led to more reliable and more efficient detection of noise. Based on the

noisy image characteristics and their statistics, threshold values are selected.

To validate the efficacy of proposed noise filtering schemes, an application to

image sharpening has been investigated under the noise conditions. It has been

observed, if the noisy image passes through the sharpening scheme, the noise

gets amplified and as a result the restored results are distorted. However, the

prefiltering operations using the proposed schemes enhances the result to a greater

extent.

Extensive simulations and comparisons are done with competent schemes. It is

observed, in general, that the proposed schemes are better in suppressing impulsive

noise at different noise ratios than their counterparts.
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Chapter 1

Introduction

Within seconds of entering the world, those who are blessed with the gift of sight

start acquiring images. Human beings are primarily visual creatures who depends

solely on sense of vision. So vision allows humans to perceive and understand the

world surrounding them in a better manner. Hence, processing visual information

by computer has been drawing a very significant attention of the researchers over

the last few decades. The process of receiving and analyzing visual information by

the human species is referred to as sight, perception or understanding. Similarly,

the process of receiving and analyzing visual information by digital computer is

called digital image processing [1]. Before advancing more we should answer one

question  ̏Why do we process images ? ˝

Image Processing has been developed in response to solve three major problems

concerned with pictures [2]:

• Picture digitization and coding to facilitate transmission, printing and stor-

age of pictures.

• Picture enhancement and restoration in order for example, to interpret more

easily pictures of the surface of other planets taken by various probes.

• Picture segmentation and description as an early stage in machine vision.

An image may be described as a two-dimensional function I.

I = f(x, y) (1.1)

where x and y are spatial coordinates. Amplitude of f at any pair of coordinates

(x, y) is called intensity I or gray value of the image. When spatial coordinates
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and amplitude values are all finite, discrete quantities, the image is called digital

image [3]. The digital image I is represented by a single 2- dimensional integer

array for a gray scale image and a series of three 2- dimensional arrays for each

colour bands.

Digital image processing may be classified into various subbranches based on

methods whose [3]:

• input and output are images and

• inputs may be images where as outputs are attributes extracted from those

images.

Following is the list of different image processing functions based on the above

two classes.

• Image Acquisition

• Image Enhancement

• Image Restoration

• Color Image Processing

• Multi-resolution Processing

• Compression

• Morphological Processing

• Segmentation

• Representation and Description

• Object Recognition

For the first seven functions the inputs and outputs are images where as for

the rest three the outputs are attributes from the input images. With the excep-

tion of image acquisition and display most image processing functions are imple-

mented in software. Image processing is characterized by specific solutions, hence
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1.1 Image Enhancement

the technique that works well in one area can be inadequate in another. The

actual solution of a specific problem still requires a significant research and devel-

opment [4]. Among the broad spectrum of applications remote sensing, medical

imaging, image morphing and warping are important. Figure 1.1 [2] depicts a pic-

torial representation of various image processing applications along with different

image processing functions.

Out of the ten sub-branches of digital image processing, cited above, this thesis

deals with image restoration and one of its application to enhancement. To be

precise, the thesis devotes on a part of the image restoration i.e. noise removal

from images, stated in the Problem Definition. Further, this thesis also discusses

how image noise removal can be utilized for high quality image enhancement.

This chapter is organized as follows. Section 1.1 is devoted to convey the basic

concepts of Image Enhancement and its various types, problems associated with

enhancement techniques are presented in Section 1.4. Image Restoration is dis-

cussed in Section 1.2 followed by a broad classification of filters in Section 1.3.

The problem definition associated with noise removal from images is described

in Section 1.4. Different performance measures for comparison are described in

Section 1.5. Review of different existing schemes and their performance analysis

is done in Section 1.6. Motivation behind carrying out the work is stated in Sec-

tion 1.7. Organization of the thesis is outlined in Section 1.8. Finally, Section 1.9

provides the chapter summary.

1.1 Image Enhancement

Images are captured at low contrast in a number of different scenarios. The main

reason for this problem is poor lighting conditions (e.g., pictures taken at night

or against the sun rays). As a result, the image is too dark or too bright, and

is inappropriate for visual inspection or simple observation. Image enhancement

algorithms are used in a variety of image processing applications, primarily to im-

prove or enhance the visual quality of an image by accentuating certain features [5].

Image processing modifies pictures to improve them (enhancement, restoration) to

3



1.1 Image Enhancement

Figure 1.1: Image Processing Tree

prepare suitable images for various applications from raw unprocessed images. Im-

ages can be processed by optical, photographic, and electronic means, but image

processing using digital computers is the most common method because digital

methods are fast, flexible, and precise. Image enhancement improves the quality

(clarity) of images for human viewing. Increasing contrast, and revealing details

are examples of enhancement operations where as removing blurring and noise

comes under the category Image restoration.

Planetary scientists were the first users of enhancement techniques to enhance

images of Mars,Venus and other planets. Radiologists, Doctors use this technology

frequently to manipulate CAT scans, MRI and X-ray images. Areas like foren-

sic science use image sharpening(enhancement) techniques for criminal detection.

Enhancement algorithms are used extensively to enhance biometric (finger print,
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1.1 Image Enhancement

iris) images in airport, banking security systems. Palm print manuscripts contain

religious texts and treaties on a host of subjects such as astronomy, astrology,

architecture, law, medicine and music. Most of these palm-leaves are nearing

the end of their natural lifetime or are facing destruction from elements such as

dampness, fungus, ants and cockroaches. enhancement algorithms are inevitable

members of the preservation projects to protect these valuable historical docu-

ments. Enhancement techniques are used to enhance the degraded documents so

as to enable retrieval of the written text from these documents. Printing tech-

nology also uses extensively the enhancement schemes to produce high quality

photographic prints. Acquisition of information of an object or phenomenon, by

the use of sensing devices that is not in physical or intimate contact with the object

i.e forest, vegetation, land utilization, sea changes etc. Various image processing

techniques are involved in analyzing the acquired data. Image enhancement is

one of the important image processing functions primarily done to improve the

appearance of the imagery to assist in visual interpretation and analysis. Image

restoration and enhancement are used usually in synchronization rather than as

an individual.

This class of image processing algorithms include image sharpening, contrast

and edge enhancement. Among the enhancement algorithms contrast enhance-

ment is most important because it plays a fundamental role in the overall appear-

ance of an image to human being. A human being’s perception is sensitive to

contrast rather than the absolute values themselves. So it is justified to increase

the contrast of an image for better perception. Section 1.1.1 provides a detail

classification for conventional enhancement schemes under the heading contrast

enhancement. This thesis devotes on image sharpening under impulse noise con-

ditions. We concentrate on those noise removal algorithms which preserve edge

details as well remove noise using selective filtering technique. This helps the en-

hancement schemes to be cascaded along with noise removal algorithm to produce

better quality images with more edge details.
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1.1 Image Enhancement

1.1.1 Contrast Enhancement

Image enhancement usually employs various contrast enhancement schemes to in-

crease the amount of visual perception. Different enhancement schemes emphasize

different properties or components of images [1, 3]. Contrast enhancement tech-

niques can be broadly classified into two categories. For the first category, the

gray value of each pixel is modified based on the statistical information of the im-

age. Power law transform [6], log transform [6], histogram equalization belong to

this category. In the second category the contrast is enhanced by first separating

the high and/or low frequency components of the image, manipulating them sep-

arately and then recombining them together with the different weights. Unsharp

Masking (UM) which emphasizes high frequency components of an image belongs

to this category. The pitfalls associated with unsharp masking is presented in

problem definition ( 1.4). One possible solution for this problem is narrated in

chapter 5. Some of the contrast enhancement methodologies are described below.

• Image Negative

The negative of an image with gray levels in the range [0, L-1] is obtained

by using the negative transformation, which is given by the equation 1.2.

s = L − 1 − r (1.2)

where r & s denote the values of pixels before and after the processing and

L is the maximum Gray level intensity of the input image. Reversing the

intensity level of an image in this manner produces the equivalent of a photo-

graphic negative. This type of processing is particularly suited for enhancing

white or gray detail embedded in dark regions of an image.

• Logarthimic law

This is one of the simplest enhancement technique. It uses a log transform

to convert the input gray level to an output gray level to expand the values
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1.1 Image Enhancement

of dark pixels in an image while compressing higher level values. The general

form of the log transformation can be represented using the relation:

s = c. log(1 + r) (1.3)

where c is a constant and it is assumed that r ≤ 0. Where r and s are input

and output gray levels respectively.

• Power Law

Devices used for image capture, printing, and display respond according to

a power law given as:

s = c.rγ (1.4)

By convention, the exponent in the power law equation is referred to as

gamma. The process used to correct this power law response is called gamma

correction. Images not corrected properly can look bleached out or dark. So

proper gamma adjustment must be done to produce the gray levels accu-

rately and produce appropriate brightness.

• Histogram Equalization

The luminance histogram of a typical natural scene that has been linearly

quantized is usually highly skewed toward the darker levels; a majority of

the pixels possess a luminance less than the average. In such images, de-

tail in the darker regions is often not perceptible. One means of enhancing

these types of images is a technique called histogram modification, in which

the original image is rescaled so that the histogram of the enhanced image

follows some desired form [6]. This method also assumes the information

carried by an image is related to the probability of occurrence of each gray

level. To maximize the information, the transformation should redistribute

the probabilities of occurrence of the gray level to make it uniform. In this

way, the contrast at each gray level is proportional to the height of the

image histogram [7]. Various modifications of histogram equalization are

7



1.2 Image Restoration

also available which increases its potential of contrast enhancement. Adap-

tive histogram equalization (AHE) [8], Contrast limited adaptive histogram

equalization (CLAHE) [9] belong to that category which apply histogram

equalization locally on the image and provides better contrast.

• Unsharp Masking

Unsharp masking (UM) is an image manipulation technique which was first

used in Germany in the 1930s as a way of increasing the acutance, or appar-

ent sharpness, of photographic images. In Unsharp masking scheme, a high

pass filtered scaled version of an image is added to the image itself. It is de-

sired when a particular application requires the high frequency components

of an image. One of its principal application is dark room photography [3].

The process can be represented with the help of the following equation.

I ′
x,y = Ix,y + λI ′′

x,y (1.5)

where Ix,y , I ′
x,y are original and enhanced images respectively. I ′′

x,y is the high

pass component of the original image which is scaled with an amplification

factor λ as per requirement to obtain the enhanced image I ′
x,y.

1.2 Image Restoration

The field of digital image restoration had its first encounter with the starting of

space program by the scientists involved of United States of America and the for-

mer Soviet Union in the 1950s and early 1960s. The first images of the Earth, Moon

(mainly of the opposite side), and planet Mars were, at that time, of unimaginable

resolution which were obtained under big technical difficulties. These programs

were responsible for producing many incredible images of our solar system, which

were at that time unimaginable. However, the images obtained from the various

planetary missions of the time were subject to many photographic degradations.

The need to retrieve as much information as possible from such degraded images

was the aim of the early efforts to adapt the one-dimensional signal processing

algorithms to images, creating a new field that is today known as digital image
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1.2 Image Restoration

restoration. The 22 pictures produced during the Mariner IV flight to Mars in

1964 were later estimated to cost almost $10 million just in terms of the number

of bits transmitted alone [10].

In astronomical imaging the ultimate goal is to recover the original celestial

image from the degraded one. The degradations were as a result of relative motion

between camera and the original scene, defocusing of the lens system because of

vibration in machinery and spinning and tumbling of the spacecraft or because of

substandard imaging environment. In addition to blurring the space images are

also corrupted with additive random noise. Rapidly changing refractive index of

the atmosphere was also one of the reasons for the degradation. Pictures from

the manned space mission were also blurred due to the inability of the astronaut

to steady himself in a gravitation less environment while taking photographs.

Extraterrestrial observations were degraded by motion blur as a result of slow

camera shutter speed, relative to rapid spacecraft motions. The degradation of

images was no small problem. Any loss of information due to image degradation is

devastating as it reduces the scientific value of these images. There is no surprise

that astronomical imaging is still one of the primary applications of digital image

restoration today.

The rapid growth of medical imaging equipment which capture, record, and

redisplay in a non-invasive manner the internal structure of living matter or pa-

tients, has composed a great challenge and opportunity to image processing tasks.

Providing better diagnosis facility would have been a tedious job without image

restoration. X-rays, mammograms, and digital angiographic images [11] with-

out filtering would have been of no use since the acquiring methods are usually

associated with various degradation phenomenon like noise. Sophisticated imag-

ing techniques like PET (Positron Emission Tomography) and SPECT (Single

Photon Emission Computed Tomography) are two methods to obtain images non-

invasively from the interior of a patient which extensively use restoration schemes

to improve resolution in order to perform better diagnosis. Other than this it

also finds its utility in Magnetic Resonance Imaging (MRI) [12]. Digital image
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1.2 Image Restoration

restoration techniques can contribute significantly for this [13].

Films reflects the culture from which it is stemmed and records our history,

represent contemporary culture and have great artistic value. Thus, they are pre-

cious cultural assets which must be preserved. Unfortunately, because of aging,

improper storage conditions and other reasons, old films are threaten with de-

fects caused by decaying, dust, dirt, scratch and mold [14]. Consequently, digital

film restoration, repairing defects in films, has been recognized as an important

issue by archives, content owners and film companies. Motion picture restoration

is not limited to eliminate scratches and dust from old movies, but also to col-

orize black-and-white films like Mughal-e-Azam. Only a small subset of the vast

amount of work being done in this area can be classified under the category of

image restoration. Much of this work belongs to the field of computer graphics

and enhancement. Nonetheless, some very important work has been done re-

cently in the area of digital restoration of films. Digital restoration of the film

 ̏Snow White˝and the  ̏Seven Dwarfs˝by Walt Disney, which originally premiered

in 1937 [15] are few to cite.

Image restoration has also received some notoriety in the media, and particu-

larly in the movies of the last decades. The climax of the 1987 movie  ̏No Way

Out˝was based on the digital restoration of a blurry Polaroid negative image [16].

The 1991 movie  ̏JFK˝made substantial use of a version of the famous Zapruder

8mm film of the assassination of the US President John F. Kennedy. It is no sur-

prise that digital image restoration has been used in law enforcement and forensic

science for a number of years. Complex problems like solving a crime often requires

security video tapes, blurry photographs of license plates and crime scenes to be

properly visualized for proper investigation. Image restoration helps in improving

the quality of such images which are often needed when such photographs can

provide the only link for solving a crime. Clearly, law enforcement agencies all

over the world have made, and continue to make use of digital image restoration

ideas in many forms.

Image and video coding is one of the exciting applications of image restora-
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1.2 Image Restoration

tion. Even though coding efficiency has improved and bit rates of coded images

have reduced, there is another problem of blocking artifacts which needs signifi-

cant improvement. These are as a result of the coarse quantization of transform

coefficients used in typical image and video compression techniques. Usually, a

Discrete Cosine Transform (DCT) will be applied to prediction errors on blocks

of 8× 8 pixels. Intensity transitions between these blocks become more and more

apparent when the high-frequency data is eliminated due to heavy quantization.

Already, much has been accomplished to model these types of artifacts, and de-

velop ways of restoring coded images as a post-processing step to be performed

after decompression [17–19].

Digital image restoration is being used in many other applications as well. Just

to name a few, restoration has been used to restore blurry X-ray images of aircraft

wings to improve aviation inspection procedures. It is used for restoring the motion

induced effects present in still composite frames, and, more generally, for restoring

uniformly blurred television pictures. Printing applications often require the use

of restoration to ensure that halftone reproductions of continuous images are of

high quality. In addition, restoration can improve the quality of continuous images

generated from halftone images. Digital restoration is also used to restore images

of electronic piece parts taken in assembly-line manufacturing environments. Many

defense-oriented applications require restoration, such as that of guided missiles,

which may obtained distorted images due to the effects of pressure differences

around a camera mounted on the missile. All in all, it is clear that there is a very

real and important place for image restoration technology today.

Image restoration is distinct from image enhancement techniques, which are

designed to manipulate an image in order to produce results more pleasing to

an observer, without making use of any particular degradation models. Image

enhancement refers to the techniques by which we try to improve an image such

that it looks subjectively better by improving the visual appearance of the image.

On the other hand restoration emphasizes on getting back the original image as

far as possible from the degraded one. Thus the goal of image enhancement is
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very different from that of restoration. Better representation of image is obtained

through image enhancement techniques, however, it would not be possible to define

what enhancement exactly means, as an enhancement to one may be a noise to

another [20]. Applying image enhancement scheme is of no use if the image which

we want to enhance is of low quality or is degraded due to presence of noise

or is an blurred image. So cascading schemes combining image noise removal

followed by enhancement is among one of the solution for better visual perception.

In this thesis we use such restoration techniques such that it can be used as a

preprocessing step for enhancement producing better quality images.

Image reconstruction techniques operate on a set of image projections and not

on a full image. Restoration and reconstruction techniques do share the same

objective, however, which is that of recovering the original image, and they end

up solving the same mathematical problem, which is that of finding a solution to

a set of linear or nonlinear equations.

Digital image restoration is a field of engineering that studies methods used

to recover an original scene from degraded observations. Developing techniques

to perform the image restoration task requires the use of models not only for

the degradations, but also for the images themselves. Image restoration problem

is a subset of Inverse Problem. In general, in inverse problems, the values of a

certain set of functions are estimated from the known properties of other functions.

Consider the following relationship

L({fi}, {gj}) = 0 (1.6)

where L is an operator, the function, {fi}, are sought, and the values of the func-

tions, {gj}, are known. When the problem is well posed, the existence of solution

is assured. Also there exists a unique solution for a given problem. However, in

the presence of noise, the uniqueness of solution is not assured.

The image degradation and subsequent restoration may be depicted as in Fig-

ure 1.2(a). In this thesis, however, only noise part of entire degradation is dealt

with, which is shown in Figure 1.2(b). We consider such noise removal schemes

such that the output can be useful for further image enhancement while preserv-
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ing image details during noise removal process. The following section provides a

broad classification of restoration filters.

Function H

Degradation

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
f ( x, y)

True

Image

Noise

( x, y)f̂

(a)

η( x, y)

Restoration

Filter (s)

g( x, y)
Restored

Image
True

Image
f ( x, y)

Noise

(b)

Figure 1.2: (a) Model of the image degradation/restoration process, (b) Model of
the Noise Removal Process.

1.3 Filters

Image restoration, usually, employs different filtering techniques. Filtering may

be done either in spatial domain or in frequency domain. In this thesis different

spatial domain filtering techniques have been studied and proposed. Broadly,

filters may be classified into two categories: Linear and Nonlinear. The filtering

methodologies are described below.

1.3.1 Linear Filters

In the early development of image processing, linear filters were the primary tools.

Their mathematical simplicity with satisfactory performance in many applications

made them easy to design and implement. However, in the presence of noise the

performance of linear filters is poor. In image processing applications they tend

to blur edges, do not remove impulsive noise effectively, and do not perform well

in the presence of signal dependent noise [21].

Mathematically, a filter may be defined as an operator L(· ), which maps a

signal x into a signal y:

y = L(x) (1.7)

When the operator L(· ) satisfies both the superposition and proportionality prin-

ciples, the filter is said to be linear. Two-dimensional and m-dimensional linear

13



1.3 Filters

filtering is concerned with the extension of one-dimensional filtering techniques

to two and more dimensions. If impulse response of a filter has only finite num-

ber of non-zero values, the filter is called a finite impulse response (FIR) filter.

Otherwise, it is an infinite impulse response (IIR) filter [22].

If the filter evaluates the output image only with the input image, the filter

is called non-recursive. On the other hand, if the evaluation process requires

input image samples together with output image samples, it is called recursive

filter [4, 21, 23]. Following are the few main types of filters:

• Low-pass filter: Smooths the image, reducing high spatial frequency noise

components.

• High-pass filter: Enhances very low contrast features, when superimposed

on a very dark or very light background.

• Band-pass filter: Tends to sharpen the edges and enhance the small details

of the image.

1.3.2 Nonlinear Filters

Nonlinear filters also follow the same mathematical formulation as in (1.7). How-

ever, the operator L(· ) is not linear in this case. Convolution of the input with

its impulse response does not generate the output of a nonlinear filter. This is

because of the non-satisfaction of the superposition or proportionality principles

or both [21–23].

Gray scale transformations [1, 3, 6] are the simplest possible nonlinear trans-

formations of the form (1.7). This corresponds to a memory less nonlinearity that

maps the signal x to y. The transformation

y = t(x) (1.8)

may be used to transform one gray scale x to another y. This type of gray level

transform are extensively used for enhancing the subjective quality of the images

as per the need of the application. Histogram modification is another form of
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intensity mapping where the relative frequency of gray level occurrence in the im-

age is depicted. An image may be given a specified histogram by transforming the

gray level of the image into another. Histogram equalization is one such methods

that is used for this purpose. The need for it arises when comparing two images

taken under different lighting conditions. The two images must be referred to the

same base, if meaningful comparisons are to be made. The base that is used as

standard has a uniformly distributed histogram [1,3,6]. Of course, a uniform his-

togram signifies maximum information content of the image [24]. Histogram based

approaches as discussed above are used as simple image enhancement techniques

in various applications. Figure 1.3 gives a graphical representation of the various

families of nonlinear filters [21].

Homomorphic
Filters

Quadratic
Filters

Filters
Polynomial

Filters
Morphological

Nonlinear
Mean
Filters

Order Statistics Filters

FILTERS

Median
Filters

NONLINEAR FILTERS

Figure 1.3: Nonlinear Filter Family

Order statistic filters [21,23] for noise removal are the most popular class non-

linear filters. A number of filters belongs to this class of filters, e.g., the median

filter, the stack filter, the median hybrid filter etc. Nonlinear filters based on order

statistics have excellent robustness properties in the presence of impulsive noise.

They tend to preserve edge information, which is very important for human per-

ception. Even there computation is relatively easy and fast as compared to some
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linear filters. Such properties of those filters have created numerous applications

in digital image processing.

There exists some approaches that utilizes geometric features of signals rather

than analytic features of signals. Their origin is basic set operations for image

processing. These filters are called morphological filters and find applications in

image processing and analysis. Biomedical image processing, shape recognition,

edge detection, image enhancement are few other areas, where it is used extensively

[1, 3, 6, 21, 23].

One of the oldest class of nonlinear filters, which have been used extensively

in digital signal and image processing, are homomorphic filters and their exten-

sions. These filter class find its applications in image enhancement, multiplicative

and signal dependent noise removal, speech processing and also in seismic signal

processing [1, 3, 6, 21, 23].

Adaptive filtering has also taken advantage of nonlinear filtering techniques.

Non-adaptive nonlinear filters are usually optimized for a specific type of noise

and signal. When, however, the filter is required to operate in an environment of

unknown statistics or a non stationary environment, an adaptive filter provides

an elegant solution to this more difficult problem. Images can be modeled as

two-dimensional stochastic processes, whose statistics vary in the various image

regions and also from applications to applications. In such situations, adaptive

filters become the natural choice and their performance depends on the accuracy

of estimation of certain signal and noise statistics [1, 3, 6, 21, 23]. The filter starts

from an arbitrary initial condition, knowing nothing about the environment, and

proceeds gradually towards an optimal solution.

Considerable attenuation has been given nonlinear estimation of signals cor-

rupted with noise. Despite impressive growth in last few decades, nonlinear fil-

tering techniques still lack a unifying theory that encompasses existing nonlinear

processing techniques.
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1.4 Problem Definition

Different types of noise frequently contaminate images. Impulsive noise is one

such noise, which may affect images at the time of acquisition due to noisy sensors

or at the time of transmission due to channel errors or in storage media due to

faulty hardware. Two types of impulsive noise models are described below.

Let Yi,j be the gray level of an original image Y at pixel location (i, j) and

[nmin, nmax] be the dynamic range of Y . Let Xi,j be the gray level of the noisy

image X at pixel (i, j) location. Impulsive Noise may then be defined as:

Xi,j =

⎧⎨
⎩

Yi,j with 1 − p

Ri,j with p
(1.9)

where, Ri,j is the substitute for the original gray scale value at the pixel location

(i, j). When Ri,j ∈ [nmin, nmax], the image is said to be corrupted with Random

Valued Impulsive Noise (RVIN) and when Ri,j ∈ {nmin, nmax}, it is known as Fixed

Valued Impulsive Noise or Salt & Pepper Noise (SPN).

The difference between SPN and RVIN may be best described by Figure 1.4. In

the case of SPN the pixel substitute in the form of noise may be either nmin(0) or

nmax(255). Where as in RVIN situation it may range from nmin to nmax. Cleaning

such noise is far more difficult than cleaning fixed-valued impulse noise since for

the latter, the differences in gray levels between a noisy pixel and its noise-free

neighbors are significant most of the times. In this thesis, we focus only on random

valued impulse noise (RVIN) and schemes are proposed to suppress RVIN.

One common drawback of typical image sharpening (enhancement) methods

is that they tend to boost noise while amplifying the image details making the

image more noisy. This undesirable amplification limits the real time applications

of sharpening algorithms. Typical solution to deal with noise amplification when

performing enhancement is perform noise reduction prior to enhancement. How-

ever, noise filters not only suppress noise but also tend to blur the image details

producing low quality images [25]. This is because noise reduction is commonly a

low pass filtering operation, whereas sharpening is a high-pass operation. Hence,

there is a conflicting spectral demand on both filters, and generally, the optimiza-
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0 255{0,255}
(a)

0 255[0,255]
(b)

Figure 1.4: Representation of (a) Salt & Pepper Noise with Ri,j ∈ {nmin, nmax},
(b) Random Valued Impulsive Noise with Ri,j ∈ [nmin, nmax]

tion of one leads to deterioration of the other [26].

1.5 Performance Measures

The metrics used for performance comparison of different filters (exists and pro-

posed) are defined below.

a. Peak Signal to Noise Ratio (PSNR)

PSNR analysis uses a standard mathematical model to measure an objective

difference between two images. It estimates the quality of a reconstructed

image with respect to an original image. The basic idea is to compute a single

number that reflects the quality of the reconstructed image. Reconstructed

images with higher PSNR are judged better. Given an original image Y of

size (M ×N) pixels and a reconstructed image Ŷ , the PSNR(dB) is defined

as:

PSNR(dB) = 10 log10

⎛
⎜⎝ 2552

1
M×N

∑M
i=1

∑N
j=1

(
Yi,j − Ŷi,j

)2

⎞
⎟⎠ (1.10)

b. Percentage of Spoiled Pixels (PSP )

PSP is a measure of percentage of non-noisy pixels change their gray scale

values in the reconstructed image. In other words it measures the efficiency
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of noise detectors. Hence, lower the PSP value better is the detection, in

turn better is the filter performance.

PSP =
number of non-noisy pixels changed their gray value

total number of non-noisy pixels
× 100 (1.11)

c. Subjective or Qualitative measure

Along with the above performance measure subjective assessment is also

required to measure the image quality. Unavailability of quantitative per-

formance measure in case of image enhancement (sharpening) subjective

or qualitative measure is the only option left for measurement [27]. In a

subjective assessment measures characteristics of human perception become

paramount, and image quality is correlated with the preference of an ob-

server or the performance of an operator for some specific task. Hence as

an usual case of image enhancement there is no quantitative performance

evaluation measure because no ideal image can be used as reference. Any

reasonable measure should be tuned to the human visual system. However

perceptual quality evaluation is not a deterministic process. So subjective

evaluation is the only way to prove the performance. Hence human observer

is the only way by which enhanced image quality can be measured. All the

proposed schemes are hence compared with the subjective results of well

accepted schemes.

In the thesis, Chapter 5 deals with image sharpening (enhancement) under

noisy conditions and no reference ideal image is available for comparison

of objective indices. In such a situation the subjective measure is the only

alternative to be used.

1.6 Literature Survey

In this section literature survey is presented under two heads noise removal and

prevention of noise boosting in contrast enhancement. Noise removal from a con-

taminated image signal is still a challenging problem for researchers. Many re-

searchers have suggested a large number of algorithms and compared their results.
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The main thrust on all such algorithms is to remove impulsive noise while preserv-

ing image details. These schemes differ in their basic methodologies applied to

suppress noise. Some schemes utilize detection of impulsive noise followed by fil-

tering whereas others filter all the pixels irrespective of corruption. In this section

an attempt has been made for a detail literature review on the reported articles

and study their performances through computer simulation. We have classified the

schemes based on the characteristics of the filtering schemes and described are be-

low. We also describe some of the conventional contrast enhancement techniques

in this section, boosting in images can be prevented with proper

1.6.1 Impulsive Noise Removal

A. Filtering without Detection

In this type of filtering a window mask is moved across the observed image.

The mask is usually of size (2N+1)2, where N is a positive integer. Generally

the center element is the pixel of interest. When the mask is moved starting

from the left-top corner of the image to the right-bottom corner, it performs

some arithmetical operations without discriminating any pixel.

B. Detection followed by Filtering

This type of filtering involves two steps. In first step it identifies noisy pixels

and in second step it filters those pixels. Here also a mask is moved across

the image and some arithmetical operations is carried out to detect the noisy

pixels. Then filtering operation is performed only on those pixels which are

found to be noisy in the previous step, keeping the non-noisy intact.

C. Hybrid Filtering

In such filtering schemes, two or more filters are suggested to filter a cor-

rupted location. The decision to apply a particular filter is based on the

noise level at the test pixel location or performance of the filter on a filtering

mask.
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All those filtering schemes that are reviewed are described in this section under

their respective head.

A. Filtering without Detection

As discussed in the previous section, this technique does not detect contaminated

pixels. It applies the filtering mechanism through out the subject without dis-

criminating any pixel.

A1. Moving Average [3]

This is a simple linear filter. Average of all pixels of a sliding window is replaced

with the pixel of interest.

Ŷi,j =
1

m × n

∑
(u,v)∈Smn

Xu,v (1.12)

where, X is the noisy image, Ŷ is the restored image and Smn is the sliding window

of size m× n centered around (i, j). Its performance both in subjective as well as

objective way is very poor.

A2. Median (3 × 3) A3. Median (5 × 5) [3]

The median filter (1.13) is one of the most popular nonlinear filters. It is very

simple to implement and much efficient as well. But the cost is that it blurs the

image and edges are not preserved. It acts like a low pass filter which blocks all

high frequency components of the image like edges and noise, thus blurs the image.

Ŷi,j = MEDIAN(u,v)∈Smn (Xu,v) (1.13)

Depending upon the sliding window mask there may be many variations of

median filter. Here we have reviewed two such variations. Median (3 × 3) filter

makes use of a 3×3 sliding window, whose center pixel is replaced with the median

value of all the 9 pixels of the window. This kind of filter is helpful when noise is

scattered throughout the image. Whereas median (5 × 5) filter replaces the pixel

of interest i.e. the center pixel with the median value of all the 25 pixels of the

sliding window. When noise appears in blotch, this type of filter works better.

But for other situations it produces disappointing results.
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A4. WM1 k = 1 A5. WM k = 2 [28–31]

This is another nonlinear median filter, which favors the center pixel than others.

Let the window size be (2n + 1)2 and L = 2n(n + 1). The filter is defined as:

Ŷ 2k
i,j = MEDIAN{Xi−u,j−v, (2k)�Xi,j| − h ≤ u, v ≤ h} (1.14)

where 2k is the weight given to pixel (i, j), and � represents the repetition opera-

tion. Hence in a 3× 3 window Ŷ 2k
i,j is the median of (9 + 2k) gray values with the

center value of the window repeated (2k + 1) times. Ŷ 0
i,j is the standard median

filter, where as Ŷ 2k
i,j becomes identity filter when k ≥ L. Two variations of WM

(with k = 1 and k = 2) have been simulated. When the noise percentage is low,

both the filters work better but beyond 10% of noise the performance starts dete-

riorating. If noise appears as blotch in a window, it leaves the blotch as it is as if

no filtering has been done.

B. Detection followed by Filtering

Such filtering schemes differentiate between noisy and non-noisy pixels. These

filters, in general, consist of two steps. Detection of noisy pixels is followed by

filtering. Filtering mechanism is applied only to the noisy pixels.

B1. Rank-Ordered Mean [32]

This is an adaptive approach to solve the restoration problem in which filtering

is conditioned on the current state of the algorithm. The state variable is defined

as the output of a classifier that acts on the differences between the current pixel

value and the remaining ordered pixel values inside a window centered around the

pixel of interest.

This scheme is undoubtedly one of the robust and simple scheme but it fails

in preserving the finer details of the image.

B2. Progressive-Switching Median [33]

It is a median based filter, which works in two stages. In the first stage an impulse

detection algorithm is used to generate a sequence of binary flag images. This

1WM: Weighted Median
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binary flag image predicts the location of noise in the observed image. In the

second stage noise filtering is applied progressively through several iterations.

This filter is a very good filter for fixed valued impulsive noise but for random

values the performance is abysmal.

B3. Adaptive Center Weighted Median Filter [29]

This work is an improvement of previously described Center Weighted Median

(CWM) filter. It works on the estimates based on the differences between the

current pixel and the outputs of the CWM filters with varied center weights.

These estimates decide the switching between the current pixel and median of the

window.

This is a good filter and is robust for a wide variety of images. But it is

inefficient in recovering the exact values of the corrupted pixels.

As the name suggests it employs median filter on the noisy image twice. This

adaptive system tries to correct for false replacements generated by the first round

of median filtering operation. Based on the estimated distribution of the noise,

some pixels changed by first median filter are replaced by their original values and

kept unchanged in the second median filtering. And in the second round it filters

out the remaining impulses.

Even though the filter gives some good results in terms of noise suppression

but spoiling of good pixels is more and it results in overall poor performance.

B5. Accurate Noise Detector [34]

This filter justifies its name by detecting noise to the perfection. Based on Pro-

gressive Switching Median Filter, it generates an edge flag image to classify the

pixels of noisy image into ones in the flat regions and edge regions. The two types

of pixels are processed by different noise detector. When noise is very high pre-

vention of false-detection and non-detection becomes difficult. Therefore, another

iteration is dedicated for verification of the noise flag image.

This scheme exhibits good performance on images not only with low noise

density but also with high percentage of corruption. But all these come at the
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cost of computational complexity which is very high and not at all suitable for

real time applications.

B6. SM2 (5 × 5) B7. SM (7 × 7) B8. SM (9 × 9) [35]

This is also a two stage process, where in the first stage noise detection is carried

out and in the second stage filtering is done. The noisy image is convolved with a

set of convolution kernels. Each of the kernels are sensitive to edges in a different

orientation. The minimum absolute value of these four convolutions is used for

impulse detection by comparing with a threshold. By varying the size of kernel

different variations of SM may be obtained. Three such variations of SM are

reviewed here in this paper.

Because of its four kernels it detects noise effectively even in those images

where the edge density is more. But when the kernel size increases to 7 × 7 and

9 × 9 it fails in doing so. Also it fails in preserving finer details.

B9. Differential Ranked Impulse Detector [36]

This is another nonlinear technique which also works in two stages. It aims at

filtering only corrupted pixels. Identification of such pixels is done by comparing

signal samples within a narrow rank window by both rank and absolute value.

The first estimate is based on the comparison between the rank of the pixel of

interest and rank of the median. The second estimate is based on the brightness

value which is analyzed using the median.

It is a good filter in low noise conditions but the performance slightly degrades

in beyond 20% of noise. It also leaves noise blotch without correcting.

B10. Enhanced Ranked Impulse Detector [36]

This scheme is an alteration of the scheme described above. Here the brightness is

analyzed by calculating the difference of pixel of interest with its closest neighbors

in the variational series.

Its performance is very good at low noise but fails miserably at noise density

more than 20%.

2SM: Switching Median
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B11. Advanced Impulse Detection Based on Pixel-Wise MAD [37]

This scheme is based on modified median of absolute deviation from median

(MAD). MAD is used to estimate the presence of image details. An iterative

pixel wise modification of MAD is used here that provides a reliable removal of

impulses. Its performance is more than average and fails when the edge density is

more.

B12. Minimum-Maximum Exclusive Mean [38]

This is a simple nonlinear, robust filter that centers around two windows of size

3×3 and 5×5. It checks for a particular range of gray level in the 3×3 windows. If

it fails it goes to 5× 5 window. If average of all the pixels of that particular range

is more than certain value then that pixel is replaced with the average, otherwise

it is left intact. This is one of the good schemes because of its simplicity and easy

implementation.

B13. Peak and Valley [39]

This recursive nonlinear filter is composed of two conditional rules. It compares the

test pixel with surrounding neighbor pixels for some conditions. It then replaces

the pixel of interest with the most conservative surrounding pixel. This scheme

is computationally efficient over others but at the same time it spoils non-noisy

pixels to a greater extent.

B14. Detail preserving impulsive noise removal [40]

Unlike thresholding techniques, it detects noisy pixels non-iteratively using the

surrounding pixel values. It is based on a recursive minimum maximum method

of Peak and Vally scheme. When the image contains numerous edges like Bab-

bon,Clown etc. this technique totally fails.

B15. Signal-Dependent Rank Ordered Mean [41]

This is one of the most efficient nonlinear algorithms to suppress impulsive noise

from highly corrupted images. Based on detection-estimation strategy, this algo-

rithm replaces the identified noisy pixel with rank ordered mean of it surroundings.
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C. Combined Filtering

Two or more filters are employed in this type of filtering mechanism. In addition

to this a switch is used whose logic helps in switching among the employed filters.

The switch may take output of individual filter into consideration or by some other

means to decide which filter should be employed for a particular window such that

the final output would be the best.

C1. Tri-State Median Filtering [42]

This combined filter comprises of standard median filter, identity filter, center

weighted median filter and a switching logic. Noise detection is realized by an

impulse detector, which takes the outputs from the standard median and center

weighted median filters and compares them with the center pixel value in order to

make a tri-state decision. The switching logic is controlled by a threshold value.

Depending on this threshold value, the center pixel value is replaced by the output

of either SM filter or CWM filter or identity filter. This is one of the good schemes

reviewed in this paper.

C2. Two-Output Filter [43]

The two-output nonlinear filter is based on the subsequent activation of two re-

cursive filtering algorithms that operates on different subsets of input data. One

subset is the right-bottom 3×3 sub-window and the other one is left-top 3×3 sub-

windows of a 4×4 sliding window. Two center pixels of both 3×3 sub-windows are

updated at each step. Rank ordered filtering is used to remove impulsive noise.

This is a good scheme and gives very good result under fixed valued impulsive

noise conditions. But under random valued impulsive noise it fails miserably.

C3. MRHF3-1 C4. MRHF-2 C5. MRHF-3 [44]

This is a class of non-linear filters called Median Rational Hybrid Filters based on

a rational function. The filter output is the result of a rational operation taking

into account three sub function. In all the three operations the central operation

3MRHF: Median Rational Hybrid Filter
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is CWM.

In MRHF-1 the CWM gives φ2 and two FIR sub filters give φ1 and φ3. The

rational function on φ1, φ2 and φ3 decides which of the filter is most suitable.

In MRHF-2 the sub-filters are four unidirectional median filters. Mean of two

median filters gives φ1 and mean of other two gives φ3. And the CWM gives φ2.

The rational function decides based on these three φ values.

In MRHF-3 two bidirectional median filter give φ1 and φ3. Together with φ2 from

CWM the rational function takes the decision.

Spoiling of non-noisy pixels is high in all the three filters. When compared among

the three, the MRHF-2 outperforms other two.

1.6.2 Prevention of Noise Amplification in Image Sharp-
ening

Loss of sharpness can be caused by poor resolution of the imaging device, lim-

ited transmission bandwidth, reflections or echoes in the channel, or poor display.

These anomalies can be improved upon by applying image enhancement tech-

niques. The techniques to achieve enhancement usually separate the high and/

or low frequency components of the image, manipulating them separately and

recombine them together with desired weights. The UM or the high frequency

emphasizing methods which belongs to this category faces a severe drawback that

is noise amplification. Applying those schemes to low contrast noisy images pro-

duces undesirable artifacts resulting low quality images. These artifacts become

too strong in particularly in dark regions resulting visually less pleasing enhanced

images. Performance of UM is improved using non linear filters like quadratic

filters [45], Volterra filters [45], morphology based nonlinear filters [46] instead of

linear high pass filters. In an alternate approach the amplification factor is esti-

mated recursively by considering the statistics of neighboring pixel values. Adap-

tive Unsharp Masking [47] controls the contributions of the amplification factor

in such a way that image enhancement occurs in high detail areas and little or

no image sharpening occurs in smooth areas. Another solution for noise amplifi-

cation is cascading of noise filters with UM. This scheme does not gives the best
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performance always. Since noise filters tend to blur image details, while UM tend

to increase noise so spectrally this arrangement cannot produce an optimal result.

There is a conflicting spectral demand on both hence optimization of one leads to

deterioration of the other. Little variation of this approach is noise filtering after

UM, this is seldom preferred because the noise filter will remove the sharpness

enhancement created by UM [5]. So noise filtering followed by UM is a simple

enhancement method, but proper filter must be chosen so that it preserves image

details while filtering noise. Hence, proper compromise between image smooth-

ing (noise removal) and sharpening must be done to obtain an image for better

perception.

Procedures for sharpening images under noisy conditions can be classified un-

der two heads:

α. Integrated Noise Reduction and Sharpness Enhancement

β. Cascaded Noise Reduction and Sharpness Enhancement

α. Integrated Noise Reduction and Sharpness Enhance-
ment

Under this category no specialized filter or method is applied to remove noise

before UM. In this approach importance is given to noise sensitivity or to avoid

such image regions which may be noisy.

α1. Quadratic Filter [25]

Quadratic filters are the simplest non linear time-invariant systems and correspond

to the second term of the Volterra expansion [48]. Such filters are completely

defined by their kernel which is a symmetric finite of infinite square matrix. Inspite

of their nonlinear properties they behave like linear high pass filter. One of them

can be formulated as [49]:

Hi,j = 4 ˆIi,j − ˆIi−1,j − ˆIi+1,j − ˆYi,j−1 − ˆIi,j+1 (1.15)

Using these filters in UM may still introduce some visible noise, depending on the

amplification factor. To have better performance the output of high pass filter can

be multiplied by a control signal obtained from an edge sensor.
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α2. Normalized Nonlinear UM [50]

This is an alternate approach to reduce the noise effects and to modify the UM

structure by replacing the sharpening components of simple linear UM scheme by

an enhancement fraction derived from quadratic filters.

α3. Adaptive UM [51]

In this new approach sharpening action is performed only in locations where the

image exhibits significant dynamics. Hence, the amplification of noise in smooth

areas is reduced. All this is achieved by proper tuning of amplification factor λ. In

the previous schemes the factor λ was fixed for the whole image. In adaptive UM,

the factor λ is controlled by values of the pixels in a neighborhood. Low contrast

details are much more enhanced than the high contrast details in adaptive UM.

β.Cascaded Noise Reduction and Sharpness Enhancement

Cascaded noise reduction and sharpness enhancement algorithms have been im-

plemented to have images of high quality for human as well as machine perception.

This combination of smoothing and sharpening is achieved by using noise filters

along with UM [11,52]. The type of filter to be used depends on the allowed noise

level of the output image. The complete cascaded scheme can be narrated as filter-

ing out impulse noise (smoothing) and sharpening image details. Noise smoothing

and edge enhancement are inherently conflicting processes, since smoothing a re-

gion might destroy an edge and sharpening may lead to unnecessary noise amplifi-

cation. A plethora of such techniques have been proposed in the literature [53,54].

Common filters used here to reduce impulse noise belongs to the category filtering

without detection, because of there simplicity. It can be easily realized from the

previous schemes that noise removal is very important before image enhancement.

Slight amount of noise can even degrade the quality of an image drastically after

enhancement. In this section, we discuss those techniques which uses a particular

filter to remove noise followed by UM. The performance of cascading algorithms

depend mostly on the filtering scheme. The objective is to preserve the image de-

tails while filtering noise so that enhancement algorithms can enhance the images
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properly. As per the review under the section impulse noise removal it is observed

that detection followed by filtering scheme is the best. So as per this we can have

different combination of filters with well known unsharp masking. The quality of

enhancement will depend upon the amount of noise removed by the filter. Few

combinations of simple filtering schemes along with UM is discussed below.

β1. Median Filtering followed by Unsharp Masking [45]

All the steps of unsharp masking remains same except a non linear median filter [3]

output is used as the input to the unsharp masking stage. This filter is able to

remove noise up to some extent but it also blurs the edges since filtering is applied

to all the pixels. Since the image details are lost while filtering the enhanced

images are not satisfactory and it only works under low noise condition.

β2. Weighted Median Filtering followed by Unsharp Masking [55]

There have been several variations on the median filter, for example the weighted

median filter [30, 56] selectively gives the neighboring pixels multiple entries to

the ordered list, usually with the center pixels of the neighborhood contributing

more entries. this performance is better in higher noise conditions. The higher the

weighting given to the central pixel, the better the filter is at preserving corners,

but the less the smoothing effect is. So its output can be used for getting enhanced

images using UM but not in high noise conditions.

β3. PWMAD Filtering followed by Unsharp Masking

As an alternate to median filtering and its variations an advanced selective filtering

scheme is applied along with UM. PWMAD [37] is based on modified median of

absolute deviation from median (MAD). Its performance in filtering and hence

with UM is more than average and the filtering fails when the edge density is

more.
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1.6.3 Simulation of Existing schemes, Results and Discus-
sion

Lena image corrupted with RVIN (1% to 30% of noise) is subjected to the different

filtering schemes discussed above and their performance is measured using metrics

(1.10) and (1.11). Table-1.1 lists the PSNR where as Table-1.2 lists the PSP of

different filters. Figures 1.5– 1.7 depict the performance of each scheme in their

respective groups.

The performance in PSNR of Group-A schemes is depicted in Figure 1.5.

The performance of A1 is very poor in comparison to others. A3’s performance

is steady, which is around 30dB. A5 is in commanding position at very low noise

density but flunks at other situations. A2 is better in the upper half where as A4

is better in the lower half of noise density.

Group-B performance is depicted in Figure 1.6. B15 is one of the filters that

outperforms rest all. When comparing other schemes it can be seen that, in the

very low noise density (around 1%) B6 and B9 outperforms all others. When the

density increases (low noise, 5%–15%) B3, B4, B10 and B11 performs equally good

but B6 and B9 decline drastically. When the density further increases (medium

noise, 20%–30%), all the schemes perform more or less same. But B3 and B4 are

slightly better than others in this range of noise.

Figure 1.7 unequivocally depicts that C1 is not only the winner in Group-C

but also outperforms all other schemes in the same group. Performances of C3,

C4 and C5 are almost same where as C2 produces very poor results.

Some of the schemes, whose performance is better in SPN model of noise are

also compared. Figure 1.11 shows the PSNR (dB) variations and Figure 1.12 PSPs

of such schemes.

However, an inherent difficulty in image sharpening or enhancement is unavail-

ability of mathematical criterion for visual quality. As a result final assessment

can only be performed by human observer. Subjective evaluation of Image Sharp-

ening is depicted in Figure 1.13. Subjective evaluation of the images in Figure 1.13

shows that β3 has better performance in comparison to α1, α2, β1 and β2 under

noisy conditions.
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1.7 Motivation

In the literature, for suppression of impulsive noise mostly the filtering schemes

fall under two categories. First, filtering without detection of noise, where as the

second category filters apply detection mechanism [29,34–37,40,41,43,44,57,58].

The later schemes are superior to former ones in terms of noise rejection as well

as retention of edges in restored images. It is also observed the performance of

any filtering scheme is dependent on the detection mechanism. The better is the

detector, the superior is the filtering performance. Hence the performance of a

detector plays a vital role. In turn, the detector performance is solely dependent on

a threshold value which is compared with aprecomputed numerical value. Mostly

the reported schemes use a fixed threshold which do not serve the purpose at

various noise conditions as well as in different images. Hence to improve the

detector performance need for an adaptive threshold is an utmost necessity which

can be automatically determined from the charecterstics of an image and the noise

present in it. In this thesis, attemts have been made to determine an threshold

from an observed noisy image. This problem has been formulated as an prediction

problem and various neural network models have been chosen as tools based on

statistical parameters derived from the input noisy images.

In summary, the thesis objectives is listed as:

• to use better image statistics for identifying contaminated pixels and de-

crease computational complexity.

• to work towards improved and efficient detectors for identifying contami-

nated pixels using different neural detectors.

• to devise adaptive thresholding techniques so that noise detection would be

more reliable.

• to explore the utilities of selective filtering to image sharpening to produce

high quality images with preserved image details.
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1.8 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 proposes restoration schemes for images contaminated with Ran-

dom Valued Impulsive Noise. The proposed schemes are based on second or-

der difference of pixels. An adaptive threshold value is used to determine the

noise status of each pixel. Mean and variance are used to train the neural de-

tectors. Three different ways of selecting the threshold value are presented.

The first approach uses an Multilayer Perceptron network trained with back

propagation algorithm to detect noisy pixels. The second approach uses an

Functional Link Artificial Neural Network to determine the noise threshold.

And the last scheme uses a Radial Basis Functional Network to estimate the

sanctity of a test pixel. Comparative analysis with most recent techniques

reveal that the proposed techniques are better in terms of noise suppression.

In Chapter 3 again we use a Functional Link Artificial Neural Network to

determine the threshold with reduced input parameters. Emphasis is given

on the use of better image statistics for training the neural detector. A

single parameter coefficient of variance (CV) of the noisy image is used in this

scheme, which reduces the training time considerably and the noise detection

becomes more accurate. Exhaustive simulations on different standard images

and subsequent comparisons reveal that this proposed scheme outperforms

existing schemes both qualitatively as well as quantitatively.

The objective of Chapter 4 is to critically study the comparative filtering

performance amongst the various methods proposed in this thesis. A con-

clusion has also been drawn to choose a method for impulse noise filtering

under a particular noise situation.

Chapter 5 covers the topic image sharpening under impulsive noise con-

dition. Prevention of noise amplification and image detail preservation in

image sharpening schemes i.e. Unsharp Masking is achieved using selective
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filtering. Subjective comparison of the proposed scheme resulted with well

accepted result in comparison to existing schemes.

Finally Chapter 6 presents the concluding remark, with scope for further

research work.

1.9 Summary

The fundamentals of digital image processing, sources of noise and types of noise

in an image, the existing filtering schemes and their merits and demerits and

the various image metrics are studied in this chapter. Applications of neural

architectures have been underutilized in the surveyed schemes. To derive the

benefits of this paradigm, investigation has been made in this thesis to develop

some novel schemes in the area of image restoration. Further applications of

selective filtering to image enhancement is also been explored in this thesis.
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Table 1.1: Comparative Results in PSNR (dB) of different filters for Lena image
corrupted with RVIN of varying strengths

Noise ⇒ 1% 5% 10% 15% 20% 25% 30%

Filters ⇓
A1 28.16 26.76 24.19 22.44 21.07 20.01 19.11

A2 35.04 33.96 32.81 31.65 30.25 28.94 27.39

A3 30.95 30.4 29.82 29.22 28.48 27.96 27.32

A4 38.19 36.11 33.99 31.76 29.32 27.30 25.25

A5 41.16 36.05 31.26 27.73 24.87 22.70 20.88

B1 31.64 31.01 30.25 29.60 28.86 28.15 27.39

B2 31.95 31.28 30.81 30.05 29.27 28.54 27.84

B3 36.08 34.77 33.37 32.21 31.12 29.02 28.02

B4 35.32 34.15 32.94 31.88 30.59 29.40 28.19

B5 31.51 30.33 29.03 28.23 27.18 26.59 25.84

B6 40.55 35.01 31.84 29.71 27.97 26.66 25.43

B7 33.9 31.86 30.3 29.01 27.57 26.59 25.60

B8 30.48 29.31 28.09 27.11 26.03 25.18 24.22

B9 42.08 36.01 32.12 28.89 26.40 24.35 22.68

B10 39.21 36.06 33.85 31.64 30.80 28.91 27.22

B11 37.10 35.47 33.55 31.72 29.52 27.34 25.39

B12 38.93 33.47 30.06 27.63 25.67 24.13 22.73

B13 35.99 34.68 32.89 30.93 28.36 26.48 24.35

B14 36.87 33.34 29.53 26.62 24.37 22.64 21.07

B15 42.90 38.68 35.80 33.95 32.24 30.90 29.63

C1 39.49 36.06 34.01 31.61 29.09 28.46 27.88

C2 31.92 24.92 21.97 20.21 18.91 17.95 17.06

C3 30.97 29.38 27.03 24.89 23.02 21.46 20.13

C4 32.01 30.24 27.73 25.47 23.50 21.84 20.42

C5 31.59 30.02 27.73 25.56 23.62 22.02 20.60
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Table 1.2: Comparative Results in PSP of different filters for Lena image corrupted
with RVIN of varying strengths

Noise ⇒ 1% 5% 10% 15% 20% 25% 30%

Filters ⇓
A1 98.99 99.08 99.13 99.18 99.32 99.45 99.56

A2 66.71 67.4 68.12 68.45 69.14 69.63 69.97

A3 78.23 78.84 79.43 79.73 80.34 80.77 80.98

A4 40.58 40.28 39.7 39.34 38.99 38.67 38.27

A5 22.84 21.77 20.60 19.52 18.40 17.61 16.92

B1 96.85 97.03 97.25 97.39 97.53 97.78 97.96

B2 00.00 00.05 00.09 00.05 00.11 00.00 00.22

B3 06.36 06.70 07.06 07.55 07.89 08.57 09.38

B4 59.01 59.52 60.05 60.56 61.14 61.74 62.29

B5 00.00 00.00 00.02 00.05 00.08 00.06 00.00

B6 00.13 00.17 00.21 00.26 00.32 00.44 00.58

B7 01.27 01.49 01.62 01.96 02.29 02.88 03.37

B8 03.63 04.06 04.49 05.22 06.03 07.13 08.47

B9 00.09 00.09 00.1 00.12 00.12 00.16 00.17

B10 01.17 01.21 01.33 01.49 01.79 02.21 02.75

B11 08.70 08.81 08.90 09.05 09.20 09.50 10.08

B12 00.33 00.60 01.24 02.21 03.62 05.37 07.68

B13 51.46 51.86 52.31 52.71 53.43 53.85 54.41

B14 25.63 23.87 21.98 19.93 18.25 17.13 15.63

B15 0.28 0.28 0.33 0.32 0.34 0.40 0.47

C1 00.74 00.79 00.89 00.99 01.16 01.14 01.59

C2 00.01 00.03 00.05 00.06 00.09 00.09 00.13

C3 99.12 99.15 99.18 99.19 99.2 99.21 99.22

C4 92.79 93.34 93.87 94.39 94.99 95.34 95.87

C5 92.28 92.72 93.16 93.62 94.14 94.45 94.91
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Figure 1.5: PSNR (dB) variations of Lena image corrupted with RVIN by Group-A
schemes
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Figure 1.6: PSNR (dB) variations of Lena image corrupted with RVIN by Group-B
schemes
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Figure 1.7: PSNR (dB) variations of Lena image corrupted with RVIN by Group-C
schemes
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Figure 1.8: PSP variations of Lena image corrupted with RVIN by Group-A
schemes
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Figure 1.9: PSP variations of Lena image corrupted with RVIN by Group-B
schemes
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Figure 1.10: PSP variations of Lena image corrupted with RVIN by Group-C
schemes
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Figure 1.11: PSNR (dB) variations of Lena image corrupted with SPN
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Figure 1.12: PSP variations of Lena image corrupted with SPN
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(a) α1 (b) α2 (c) α3
—

(d) β1 (e) β2 (f) β3

Figure 1.13: Subjective Evaluation of Lena image subjected to Cascaded Noise
Reduction and Sharpness Enhancement schemes
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Chapter 2

Adaptive Threshold for Impulsive
Noise Detection

The pending problem that research in Random Valued Impulsive Noise (RVIN)

filtering has been facing is the inability to distinguish noisy values that do not

occur as extreme outliers in comparison with surrounding pixels. Salt and Pepper

(SPN) handling is easy whereas RVIN noise cases are difficult to deal with and

most research directions triala are towards removal of RVIN noise from images.

we have observed few contribution in this directions which has been discussed in

this chapter and the following chapter. The proposed detection scheme involves

second order difference of pixels, which is described in Section 2.1. Threshold val-

ues are selected for impulse detection using different image statistics and neural

models. The need for adaptive threshold is described in Section 2.2. Multilayer

Perceptron based Adaptive Thresholding (MLPAT) for impulse detection is dis-

cussed in Section 2.3. In Section 2.4, a Functional Link Artificial neural Network

is used to determine the adaptive threshold named, Image Statistics based Adaptive

Thresholding (ISAT) is presented. Radial Basis Functional Network based adap-

tive thresholding (RBFNAT) for impulse detection is the second noise detection

scheme presented in Section 2.5. Section 2.6 presents a comparative analysis of

the proposed schemes with some of the well accepted schemes. Finally, Section 2.7

provides a complete summary of the chapter.
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2.1 Second Order Difference of Pixels

First and second order derivative must be considered in a digital context before

using it for impulse detection. The behavior of these derivatives in the areas

of constant gray level, at the onset and end of discontinuities, and along gray

level ramps of an image is required to be studied. On the basis of this study we

can say the discontinuities in an image can be used to model noise points, lines

and edges. The behavior of derivatives during transitions into and out of these

image features also is of interest. So for the sake of simplified explanation, one-

dimensional derivative is focused initially in a digital context. The derivatives of

a digital function are defined in terms of differences. Any definition we use for

first derivative that must be:

i. zero in the areas of constant gray level values i.e. flat segment,

ii. nonzero at the onset of a gray level step or ramp and along the ramp.

Similarly in that context, the second difference must be:

i. zero in the flat areas and along ramps of constant slopes,

ii. nonzero at the onset and end of a gray level step or ramp.

Since derivatives are found for digital quantities whose values are finite, the max-

imum possible gray level change is also is finite, and the shortest distance over

which that change can occur is between adjacent pixels. First-order derivative of

a one-dimensional function f(x) may be defined as:

∂f

∂x
= f(x + 1) − f(x) (2.1)

Similarly, second-order derivative may be defined as:

∂2f

∂x2
= f(x + 1) + f(x − 1) − 2f(x) (2.2)

Figure 2.1 shows a horizontal gray level profile of the edge between two regions.

Also the first and second difference of the gray level profile are shown in the figure.

From left to right along the profile, the first difference is positive at the points of
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First−Order Derivative

Second−Order Derivative

Gray Level Profile

Figure 2.1: Gray level profile, first-order and second-order derivative of an image

transition into and out of the ramp; and is zero in the flat segment. The second

derivative is zero except at the transition points [3].

This behavior of second difference is exploited in the proposed schemes to

determine the sanctity of a pixel. An impulse is nothing but the change in gray

level profile of an image. The second difference of an impulse will result in a spike.

Also there will be a spike for an edge. In order to differentiate between these two

spikes a second order difference based impulse detection mechanism is employed

at location of the test pixel. Once a test pixel is identified as an impulse it is

immediately filtered by replacing it with the median of the surrounding pixels.

This filtered pixel also takes part in the noise detection phase of the next test

pixel and subsequent filtering, if needed. The detection (and filtration)is done

twice, once in the horizontal direction and again in the vertical direction, thus

each test pixel is compared with its neighbors in both directions. Hence selective

filtering helps in achieving superb visual quality and remove the noise completely

at all noise conditions.
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The noise detection algorithm is applied in both horizontal and vertical passes

as described in Section 2.1.1 in detail.

Selection of noise threshold is an important task in the noise detection algo-

rithm and is described in Section 2.2. It should be noticed that the threshold used

in both the directions are different and is obtained using a neural detector.

2.1.1 Algorithm

The proposed algorithm consists of two passes and is described below:

Pass One

i. Choose a window X(t) of size 3 × 5 located at the top-left corner of the

observed image X.

X(t) =

⎛
⎜⎜⎜⎝

Xi−1,j−2 Xi−1,j−1 Xi−1,j Xi−1,j+1 Xi−1,j+2

Xi,j−2 Xi,j−1 Xi,j Xi,j+1 Xi,j+2

Xi+1,j−2 Xi+1,j−1 Xi+1,j Xi+1,j+1 Xi+1,j+2

⎞
⎟⎟⎟⎠ (2.3)

Consider a 3 × 3 sub-window X(w) from X as:

X(w) =

⎛
⎜⎜⎜⎝

Xi−1,j−1 Xi−1,j Xi−1,j+1

Xi,j−1 Xi,j Xi,j+1

Xi+1,j−1 Xi+1,j Xi+1,j+1

⎞
⎟⎟⎟⎠ (2.4)

ii. Compute the first order 3 × 4 difference matrix f (d) from X(t) as:

f (d) =

⎛
⎜⎜⎜⎝

f
(d)
i−1,j−1 f

(d)
i−1,j f

(d)
i−1,j+1 f

(d)
i−1,j+2

f
(d)
i,j−1 f

(d)
i,j f

(d)
i,j+1 f

(d)
i,j+2

f
(d)
i+1,j−1 f

(d)
i+1,j f

(d)
i+1,j+1 f

(d)
i+1,j+2

⎞
⎟⎟⎟⎠ (2.5)

where f
(d)
i+k,j+l = X

(t)
i+k,j+l − X

(t)
i+k,j+l−1, k = −1, 0, 1 and l = −1, 0, 1, 2.

iii. Compute the second order 3 × 3 difference matrix s(d) from f (d) as:

s(d) =

⎛
⎜⎜⎜⎝

s
(d)
i−1,j−1 s

(d)
i−1,j s

(d)
i−1,j+1

s
(d)
i,j−1 s

(d)
i,j s

(d)
i,j+1

s
(d)
i+1,j−1 s

(d)
i+1,j s

(d)
i+1,j+1

⎞
⎟⎟⎟⎠ (2.6)
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where s
(d)
i+p,j+q = f

(d)
i+p,j+q+1 − f

(d)
i+p,j+q, p = −1, 0, 1 and q = −1, 0, 1.

iv. The decision index di,j at (i, j) is then computed as:

di,j =

⎧⎨
⎩

0 if
∣∣∣s(d)

i,j

∣∣∣ > θ1

1 otherwise
(2.7)

Select threshold θ1 as described in Sections 2.2– 2.5.

v. Use median filter on the noisy pixels only to remove noise from the pixel

(i, j) with the sub-window as in (2.4).

vi. Shift the window X(t) one by one column from left to right and top to bottom

(as shown in Figure 2.2(a)) and for all windows repeat the steps (ii) through

(vi).

Pass Two

i. Repeat steps (i) through (vi) of Pass One (as shown in Figure 2.2(b)) with

X(t) order as 5×3, f (d) order as 4×3, and the threshold value as θ2 in place

of θ1.

2.2 Adaptive Threshold Selection

The sanctity of a pixel is decided solely by the threshold. If a predefined pa-

rameter of a test pixel exceeds the threshold value, it is termed as contaminated.

Solution to image restoration problem depends very much on the type of image,

characteristics and density of noise. It is observed from the following experiment

that a single threshold value does not serve the purpose as well as in different

noise conditions. The steps are described as follows:

i. An image (say Lena) is corrupted with impulsive noise of densities 1%, 5%,

10%, 15%, 20%, 25%, and 30%.

ii. The first noisy image Lena1 (the subscript is for 1% of noise) is subjected

to the proposed algorithm outlined in Section 2.1.1 by varying the threshold

value θ between 0 and 1.
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Figure 2.2: Window Selection for an M × N Image

iii. The MSE(dB) for each threshold is computed and plotted as shown in Fig-

ure 2.3. The plot shows that the image achieves minimum MSE for 1% noise,

denoted as MSE
(1)
min at θ = 0.29 and let this threshold be denoted as θ

(1)
opt.

iv. Similarly, θ
(i)
opt are obtained by recording the minimum MSE MSE

(i)
min for

i ∈ {5, 10, 15, 20, 25, 30} percentage of noise densities.

v. The relationship between optimum threshold versus the noise densities is

shown in Figure ??. This clearly reveals that threshold needs to be different

at different at different noise densities to minimise the error and hence to

maximise the PSNR (dB) in restored images.

vi. The overall relationshipsbetween MSE(dB) and its corresponding optimum

threshold for different noise conditions for Lena image is shown in Figure 2.4.
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2.2 Adaptive Threshold Selection

vi. Similar steps are repeated for other standard images like Lisa, House, Pep-

pers etc. The observations are plotted in Figures 2.5(a), 2.5(b), 2.5(c)

and 2.5(d).
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Figure 2.3: Variation of MSE for different threshold values for 1% RVIN noise for
Lena image.

It is in general observed that, there exists an optimum threshold for every

image and for a particular noise density. Even these values differ from image to

image for the same noise density. In addition, the plots reveals clearly that there

exists nonlinear relationship between optimum threshold and noise densities as

well as MSE.

1 5 10 15 20 25 30

0.2

0.25

0.3

0.35

0.4

Noise Density 

O
pt

im
um

 T
hr

es
ho

ld

Figure 2.4: Variation of Optimum threshold for different noise % for Lena image.

The experimental results gives a direction that if an optimum threshold can be

derived adaptively from a given noisy image, the noise detection becomes efficient
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2.2 Adaptive Threshold Selection
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Figure 2.5: Variation of Minimum MSE at different Threshold values
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2.3 Adaptive Thresholding for Impulse Detection using MLP

and in turn will affect the filtering performance. But to predict the threshold,

neither the parameters like the noise percentage nor MSE will be a help in real

time image processing as both need the knowledge of original image which is not

available. Hence, a parameter which can be derived from the given noisy image

will be of great help to handle real life situations. For the purpose, a statistical

parameter called Coefficient of Variance (CV) for a noisy image is defined as:

CV =
σ

µ
(2.8)

where, σ and µ are the standard deviation and mean of the noisy image respec-

tively. To further extend the experiment we compute the CVs for all noisy images

for Lena i.e CV(i), for i ∈ {5, 10, 15, 20, 25, 30}. The relation between CVs and the

optimum threshold is shown in Figure 2.6. This figure also gives the additional

information regarding the existence of a non linear relationship between these two

parameters. Hence, it is decided to utilise the computable parameters, µ, σ2, CV

from a noisy image to predict optimum threshold. Neural network being the can-

didate for a non linear predictor, various neural architectures have been exploited

for the purpose.
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Figure 2.6: Variation of Optimum threshold with CV at different noise density for
Lena image.

2.3 Adaptive Thresholding for Impulse Detec-
tion using MLP

Over the past few years, a view has emerged that computing based on the structure

and function of the biological neural networks may hold the key to the success
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2.3 Adaptive Thresholding for Impulse Detection using MLP

of solving intelligent tasks. The new field is called Artificial Neural Networks

(ANN), although it is more appropriate to describe it as parallel and distributed

processing [59]. An ANN consists of interconnected processing units and has a

natural tendency to store knowledge for further use. ANN serves as a potential tool

for numerous nonlinear problems. The ANN based signal detection and filtering

schemes are robust, accurate and work well under nonlinear situations [4].

An ANN consists of interconnected processing units. Typically each processing

unit consists of a summing part followed by an output part. Each summing part

receives a number of input values from a group of other neurons or from external

stimulus. It weights each value, and computes a weighted sum. This weighted sum

is called activation value and constitutes the arguments to a nonlinear activation

function. The resulting value of the activation function is the output of the neuron.

This output gets distributed along weighted connections to other neurons. The

actual manner in which these connections are made defines the flow of information

in the network and called architecture of the ANN.

A neural network has to be configured such that the application of a set of

inputs produces the desired set of outputs. This is achieved by updating the

weights and the process of training the network are called learning paradigms. The

learning paradigms may be supervised, unsupervised or reinforced [11]. Typically

neural networks consists of at least two layers of neurons—a hidden layer and an

output layer. The hidden layer neurons should have nonlinear and differentiable

activation functions. The nonlinear activation functions enable a neural network

to be a universal approximator. The problem of representation is solved by the

nonlinear activation functions [60].

Multilayer perceptron (MLP) networks is an important class of neural net-

works. MLP network consists of a set of simple sensory units called perceptrons.

These sensory unit constitute the input layer and one or more hidden layer of the

network. The input signal passes through the network in the forward direction

making it a feed forward neural network. MLP is the most widely used neural

classifier for which many learning paradigms have been developed and it belongs to
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2.3 Adaptive Thresholding for Impulse Detection using MLP
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Figure 2.7: Multi-Layer Perceptron Structure of Threshold (θ1) Estimator.

the class of supervised neural networks [11]. In MLP networks there exists a non-

linear activation function. The hidden layers along with the connected synaptic

weights make the MLP network active for highly complex tasks.

Here in this section a simple 2–3–1 multi layer perceptron (MLP) (Figure 2.7) is

used to adapt the image environment and to provide an optimal threshold value for

impulsive noise detection. Both the noisy image characteristics (Section 2.2) mean

(µ) and variance (σ2) of Lisa, House, Gatlin and Peppers images are obtained.

These two statistical parameters along with corresponding θopt of these four images

are used here to prepare the training dataset. The suggested neural network is

trained with the available training dataset using the conventional back propagation

algorithm [61]. The Back propagation Algorithm trains the MLP for a given set of

input patterns with known classifications. µ and σ2 of the noisy image are used as

the two inputs parameters to the perceptron network and θopt is used as the target

output of the network. The training convergence characteristics of the network is

obtained and is shown in Figure 2.8.

The neural network with trained weights are used to obtained threshold sub-

sequently. It is observed that the neural network can predict accurate threshold

for images that are not at all used for training.

First pass of the noise detection algorithm( 2.1.1) uses the threshold value
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2.4 Image Statistics based Adaptive Thresholding using FLANN
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Figure 2.8: Convergence Characteristics of Multilayer Perceptron Network

obtained using the MLP. The output image of the first pass is then subjected to

second pass of the algorithm. In the second pass a different θ is used. Mean and

variance of the output image of the first pass is fed to the network to get the new

threshold value to be used in the second pass.

2.4 Image Statistics based Adaptive Threshold-
ing using FLANN

The Functional Link Artificial Neural Network (FLANN) has been developed as

an alternative architecture to the well–known Multi-Layer Perceptron (MLP) net

with application to both function approximation and pattern recognition [62]. The

main advantage of using FLANN is reduced computational cost in the training

stage, while maintaining the approximation performance of the MLP network. It

is basically a flat net and the need of the hidden layer is removed. The functional

expansion effectively increases the dimensionality of the input vector and hence the

hyperplanes generated by the FLANN provides greater discrimination capability

in the input pattern space [62, 63].

A Functional Link Artificial Neural Network has a feedforward architecture

with a number of non-linear enhancement hidden nodes, referred to as functional

53



2.4 Image Statistics based Adaptive Thresholding using FLANN

links. This proposed detector (FLANN) is shown in Figure 2.9. It is a two layers

structure. The parameters used in the training are same as that of previous

section and are derived from the input noisy image. Mean and variance are the

two statistical inputs which are functionally expanded in the input layer with the

trigonometric polynomial basis functions given by:

{1, µ, sin(πµ), · · · , sin(Nπµ), cos(πµ), · · · , cos(Nπµ),

σ2, sin(πσ2), · · · , sin(Nπσ2), cos(πσ2), · · · , cos(Nπσ2)}

In order to calculate the error, the actual output on the output layer is compared

with the desired output. Depending on this error value, the weight matrix between

the input–output layers is updated using back propagation learning algorithm.

The training convergence characteristics of the network is shown in Fig. 2.10.
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Figure 2.9: Functional Link Artificial Neural Network (FLANN) Structure for
Threshold Estimation

This threshold value is used in the first pass of the algorithm to detect impulses

in the horizontal direction. The filtered image obtained after the first pass is then

subjected to second pass of the algorithm, where impulses are detected in vertical

fashion. In the second pass a different θ is used. Using the mean and variance

of the output image of the first pass new threshold value for the second pass is

computed.
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2.5 RBFN based Adaptive Threshold Selection
for Detecting Impulsive Noise in Images
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Figure 2.10: Convergence Characteristics of FLANN structure

2.5 RBFN based Adaptive Threshold Selection
for Detecting Impulsive Noise in Images

Radial Basis Functional Network (RBFN) have gained considerable attention as

an alternate to multilayer perceptrons trained by the back propagation algorithm.

The basis function are embedded in a two layer neural network, where each hidden

unit implements a radial activated function. There are no weights connected

between the input layer and hidden layer. The output units implement a weighted

sum of hidden unit outputs. The input into an RBF network is nonlinear while the

output is linear. The RBF’s are characterized by there localization (center) and

by an activation hyperspace(activation function). The activation function used in

a RBFN is usually a localized Gaussian basis function. In this detection scheme

we use the standard Gaussian nonlinearity basis function as defined in ( 2.9).

φi(x) = exp(−(x − ci)
2

2σ2
) (2.9)

Each gaussian basis function consists of a center (ci) and a variance σ2 as its input

parameters. The spread σ of all the Gaussian basis function has been taken fixed
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2.5 RBFN based Adaptive Threshold Selection
for Detecting Impulsive Noise in Images

and a standard value of 0.1 is used. Basis function centers can be randomly sam-

pled among the input instances or obtained by Orthogonal Least Square Learning

Algorithm or found by clustering the samples and choosing the cluster means as

the centers. Since our training data set is limited so the centers are randomly se-

lected from the training sample and are used to compute φi. The distance metric

employed to calculate the distance of the inputs from the basis center is Euclidean

distance.

The proposed neural detector is a two layers structure and is shown in Fig-

ure 2.11. Finding the appropriate RBF weights is called network training and
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Figure 2.11: Radial Basis Functional Network (RBFN) Structure for Threshold
Estimation

Least Mean Square(LMS) learning algorithm is applied. The parameters used for

training are same as that of previous section ( 2.3). Mean and variance of the

noisy image are the two input parameters to the input layer of the network used

to obtain the noise threshold. Using a set of input–output pair (training data

set) we optimize the network parameters using LMS. In order to determine the

error, the actual output on the output layer is compared with the desired output.

Depending on this error value, the weight matrix between the input–output layers

is updated. The training convergence characteristics of the network is shown in

Figure 2.12.

The threshold value obtained using RBFN is used in the first pass of the algo-
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Figure 2.12: Convergence Characteristics of Radial Basis Functional Network

rithm to detect impulses in the horizontal direction. The filtered image obtained

after the first pass is then subjected to second pass of the algorithm, where im-

pulses are detected in vertical fashion. In the second pass a different threshold

is used. Using the mean and variance of the output image of the first pass new

threshold value for the second pass is computed. All the steps of first iteration is

repeated in the second iteration with the new threshold.

2.6 Simulations and Results

The three proposed schemes (MLPAT, ISAT, RBFNAT) are simulated with some

of the best performing schemes reviewed in Section 1.6. Adaptive Two-Pass Me-

dian filter (2-Pass) [57], Adaptive Center Weighted Median Filter (ACWMF) [29],

Signal Dependent-Rank Ordered Mean (SD-ROM) [41], Tri-State Median (TSM) [42],

Pixel Wise MAD (PWMAD) [37] and Second Order Differential Impulse Detector

(SODID) [64] are used for comparison. Lena image is corrupted with Random

Valued Impulsive Noise of 1% to 30% noise densities. These noisy images are

subjected to filtering by the proposed schemes (MLPAT, ISAT, RBFNAT) along
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2.6 Simulations and Results

with the above six existing schemes. The PSNR (in dB) and PSP (in percentage)

thus obtained are plotted in Figures 2.13 and 2.14 respectively.

Similarly, simulations are conducted with other standard images like Lisa,Girl,

Clown, Gatlin, Bridge, Boat and Peppers. Table 2.1 lists the PSNR obtained at

15% and 20% of RVIN. Another listing is shown in Table 2.2 for PSP at the same

noise densities.

Two subjective comparisons are also made in Figures 2.15 and 2.16. The former

figure shows the restored images of Lena corrupted with 15% of noise density and

the later one shows restored images of Peppers corrupted with 20% noise density.

The performance of the proposed schemes in terms of PSNR(dB) are better

than most of the schemes except SDROM and TSM. However, both the pro-

posed schemes are computationally better than the above two techniques (listed

in Table 2.3). This is verified by simulating the schemes in Matlab 7.0, Microsoft

Windows XP (SP2) Operating System and Intel Pentium D–2.80 GHz with 1GB

of RAM.
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Figure 2.13: PSNR (dB) variations of Restored Lena image corrupted with RVIN
of varying strengths by different adaptive threshold schemes
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2.7 Summary

Table 2.1: PSNR (dB) of different adaptive schemes at 15% and 20% of noise on
different images

Lisa Girl Clown Gatlin Bridge Boat Peppers

2Pass 31.34 29.62 22.84 31.59 25.77 29.33 31.55

ACWMF 31.78 30.04 22.56 31.62 25.36 28.87 32.98

PWMAD 30.50 29.28 23.02 30.66 26.07 29.25 31.29

15% SD-ROM 31.98 31.31 24.33 32.77 27.48 30.75 32.00

RVIN TSM 32.05 31.05 23.88 32.46 27.08 30.51 33.04

SODID 30.71 30.19 24.52 31.71 26.76 29.59 31.87

MLPAT 29.86 30.20 22.97 31.67 26.68 29.98 32.04

ISAT 31.79 30.17 23.59 31.83 17.42 28.93 32.15

RBFNAT 32.46 29.39 26.20 32.77 26.13 29.67 34.34

2Pass 30.46 28.41 22.25 30.45 25.09 28.32 30.14

ACWMF 30.97 29.92 23.56 31.34 24.82 28.10 31.50

PWMAD 28.26 27.73 22.16 28.77 24.99 27.57 29.04

20% SD-ROM 30.86 29.92 23.59 31.51 26.55 29.50 31.40

RVIN TSM 30.95 29.69 23.28 31.30 26.28 29.35 31.41

SODID 28.89 28.66 22.82 30.14 25.82 28.41 30.24

MLPAT 29.90 29.11 22.38 30.67 25.83 28.81 30.55

ISAT 30.37 28.14 21.69 29.49 16.64 28.18 30.48

RBFNAT 31.73 28.47 26.16 31.34 25.55 28.88 33.16

2.7 Summary

This chapter proposes an improved filtering scheme for suppressing impulsive noise

of varying strengths from corrupted images. The threshold value used for detection

of impulsive noise is suggested to be an adaptive one. This leads to reliable

detection of corrupted pixels. The filtration is thus performed selectively only on

the detected noisy pixels. Hence undue distortion is eliminated in the restored

images. In this chapter two different ways of determining the threshold values are

presented. Along with MLP, various neural architecture i.e FLANN, RBFN was

used to determine the threshold. The proposed scheme’s performances are poor

for some images when compared with existing schemes. However, computationally

the proposed schemes are well off.
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2.7 Summary

Table 2.2: PSP of different adaptive schemes at 15% and 20% of noise on different
images

Lisa Girl Clown Gatlin Bridge Boat Peppers

2Pass 35.23 51.76 51.95 31.75 54.73 67.30 67.41

ACWMF 6.93 13.29 38.68 5.57 27.98 15.27 0.55

PWMAD 7.35 11.05 24.85 4.00 15.83 13.95 10.53

15% SD-ROM 0.14 0.93 10.29 0.39 3.06 1.04 0.34

RVIN TSM 0.22 2.62 17.51 0.98 7.94 2.55 0.57

SODID 4.84 11.56 19.94 8.34 15.54 13.00 12.16

MLPAT 4.65 11.16 36.87 8.11 15.36 11.16 10.55

ISAT 11.82 62.63 54.04 13.11 0.01 73.98 23.65

RBFNAT 3.69 6.29 13.88 11.68 27.80 28.87 17.54

2Pass 35.67 58.10 52.98 33.24 55.71 67.50 67.45

ACWMF 0.60 0.43 12.60 0.41 28.69 15.80 0.57

PWMAD 7.06 7.82 22.78 5.03 15.10 13.18 10.05

20% SD-ROM 0.18 0.40 9.86 0.33 3.10 1.11 0.37

RVIN TSM 0.31 1.21 21.07 1.00 8.30 2.82 0.73

SODID 6.52 16.74 24.37 10.10 18.75 16.85 15.92

MLPAT 6.25 17.84 42.46 10.10 18.50 14.70 14.11

ISAT 40.17 65.59 56.85 12.38 0.06 74.21 55.98

RBFNAT 11.82 62.63 54.04 13.11 0.01 73.98 23.65

Table 2.3: Computational time for different Schemes for removing impulsive noise
from Lena image corrupted with 15% of RVIN

Scheme Time (sec)

2-PASS 149.19

ACWMF 413.03

PWMAD 234.68

SDROM 11.60

TSM 74.34

SODID 10.72

MLPAT 11.97

ISAT 11.16

RBFNAT 4.09
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Figure 2.14: PSP variations of Restored Lena image corrupted with RVIN of
varying strengths by different adaptive threshold schemes
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2.7 Summary

(a) True Image (b) 15% Noisy

(c) 2-Pass (d) ACWMF (e) PWMAD

(f) SDROM (g) TSM (h) SODID

(i) MLPAT (j) ISAT (k) RBFNAT

Figure 2.15: Impulsive Noise filtering of Lena image corrupted with 15% of RVIN
by different adaptive threshold schemes
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(a) True Image (b) 20% Noisy

(c) 2-Pass (d) ACWMF (e) PWMAD

(f) SDROM (g) TSM (h) SODID

(i) MLPAT (j) ISAT (k) RBFNAT

Figure 2.16: Impulsive Noise filtering of Peppers image corrupted with 20% of
RVIN by different adaptive threshold schemes
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Chapter 3

CV based Adaptive Threshold for
Impulsive Noise Detection

In this chapter an improved threshold selection strategy to detect random valued

impulsive noise of varying strengths is proposed. The proposed method utilizes

another variation of neural network architecture. The method is adaptive in the

sense that, the threshold obtained is adaptable to different type of images and

noise conditions. The network tuned for one image works for other images as well

at different noise conditions. Emphasis is on the use of right kind of statistical

parameter to be used as input training pattern. Comparative analysis with other

standard techniques reveals that the proposed scheme outperforms its counterparts

in terms of noise suppression.

3.1 Methodology

Using the concepts and assumptions in Section 2.1 and 2.2 it can be visualized

that the performance of the detection scheme depends upon the threshold value.

Successively, threshold value determination depends upon the training parame-

ters. In Chapter 2 two adaptive threshold detection scheme is discussed using

two statistical parameters (mean and variance) as the inputs to the neural de-

tectors (MLP, FLANN and RBFN). This chapter introduces a single parameter

Coefficient of Variance(CV) which can replace the two input parameters (mean

and variance) as used in Chapter 2 as an input to the neural detector. Using CV

as the input training parameter is explained in the next section. A Functional

Link Artificial neural network is used for impulse detection using reduced training
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3.2 CV based Adaptive Threshold Detection Algorithm (CVAT)

parameters in this chapter. The adaptive threshold detection using FLANN and

CV as input is described in Section 3.3. Decreasing the training parameters and

using an efficient detector i.e. FLANN makes the algorithm work much faster and

the network converges faster.

3.2 CV based Adaptive Threshold Detection Al-
gorithm (CVAT)

Many different techniques are used to determine whether a given pixel is affected

with impulses or not. Some of these techniques are relatively simple, on other hand

some others are complex. Whatever may be the technique, they first determine a

threshold and on that basis apply some filtering mechanism. In Chapter 2 three

such threshold detection schemes based on neural network have been presented.

In this chapter a variation of the previous detection schemes (2.3, 2.5) is being

proposed with improved training parameters.

Second order difference ( 2.1) is utilized here to determine the sanctity of a

pixel. Each test pixel is compared with its neighbors in both horizontal and vertical

directions. The detected noisy pixel is replaced by the median of the neighboring

pixels. The noise detection algorithm of Section 2.1.1 is used here and the adaptive

noise threshold is determined as explained in Section 3.3. Since, there cannot be

one threshold value, which will be a panacea for different types of images. Hence

the threshold should be an adaptive one rather than fixed. Threshold for an image

depends on an image environment. Where environment of an image means, the

type of image, characteristic of noise and its density. For obtaining a correct

threshold some of the image parameters are required. Proper investigation must

be carried out to determine the image parameters which can represent it aptly.

Steps for selecting the parameters is described below.

Suppose for any image and at a particular noise condition the threshold value

θ is varied in a wide range to obtain a set of mean squared error (MSE) values

such that a relation can be established. For example:

i. An image (say Peppers) is corrupted with impulsive noise of densities 1%,
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3.2 CV based Adaptive Threshold Detection Algorithm (CVAT)

5%, 10%, 15%, 20%, 25%, and 30%.

ii. The first noisy image Peppers1 (the subscript is for 1% of noise) is subjected

to the proposed algorithm outlined in Section 2.1.1 by varying the threshold

value θ between 0 and 1.

iii. Corresponding to each θ one mean squared error (MSE) is obtained. The

minimum among those MSEs is recorded as MSE
(Peppers1)
min . Also the corre-

sponding threshold value is recorded as optimal threshold value θopt.

iv. Steps (ii) and (iii) are repeated for other noisy Peppers, i.e. Peppersi, i ∈
{5, 10, 15, 20, 25, 30}.

v. Repeat steps (i) to (iv) for other standard images like Lena, Lisa, House,

etc.
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Figure 3.1: Variation of Minimum MSE at different Threshold values
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3.2 CV based Adaptive Threshold Detection Algorithm (CVAT)

Figures 3.1(a), 3.1(b), 3.1(c) and 3.1(d), show the relation between θopt and

MSEmin for Peppers, Lena, Lisa and House images respectively.

From these plots (Figure 3.1) it is, in general, observed that the minimum MSE

and the corresponding threshold bear an exponentially decaying relation. This is

true for all other images. In a practical situation, the use of MSE or noise ratio

to predict the threshold is ruled out as they need knowledge of the original image

for computation. However, to alleviate this problem analysis have been made as

follows. The minimum MSE is inversely proportional to optimal threshold value

i.e.

MSEmin ∝ 1

θopt

f (3.1)

also the noise percentage is inversely proportional to optimal threshold value, given

as:

η ∝ 1

θopt
(3.2)

where, η is the noise percentage. Also it is known that:

η ∝ CV (3.3)

where,

CV =
σ

µ
(3.4)

where, σ and µ are the standard deviation and mean of the noisy image re-

spectively. It should be noticed here that we have used CV instead of mean and

variance. Hence the number of input to the neural detector is reduced. The reason

of using CV is it is a more useful measure of dispersion in contrast to mean and

variance as used in MLPAT, ISAT, RBFNAT as explained in Chapter 2.

From the above four equations( 3.1, 3.2, 3.3, 3.4) it may be established that

the CV of a noisy image are proportional to the MSEmin and hence it can be

concluded that CV can be used as an input parameter for threshold selection.
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3.3 Improved Adaptive Threshold Selection using FLANN

3.3 Improved Adaptive Threshold Selection us-
ing FLANN

The proposed improved adaptive threshold selection scheme is based on using ef-

ficient input parameters to the neural detector. Functional link Artificial neural

Network (FLANN) is a single layer network in which the need of hidden layers is

removed and is used here for determining the adaptive threshold. In contrast to

the linear weighting of the input pattern produced by the linear links of an MLP,

the functional link acts on an element of a pattern or on the entire pattern itself

by generating a set of linearly independent functions, and then evaluating these

functions with the pattern as the argument [62]. Further, the FLANN structure

offers less computational complexity and higher convergence speed than those of

an MLP because of its single layer structure. The functional expansion effectively

increases the dimensionality of the input vector and hence the hyperplanes gener-

ated by the FLANN provides greater discrimination capability in the input pattern

space [62,63]. Hence FLANN is used for applications like function approximation

and pattern recognition. The back propagation algorithm, which is used to train

the network, becomes very simple because of absence of any hidden layer.

From section 3.2 it was established that the CV can be used as an input

training parameter. Hence CV is used as an input to the FLANN in the proposed

scheme (CVAT). The proposed neural detector is shown in Figure 3.2. The input

CV is functionally expanded in the input layer of FLANN with the trigonometric

polynomial basis functions given by:

{1, µ, sin(πCV), · · · , sin(Nπµ), CV, cos(πCV), · · · , cos(NπCV)}

The actual output on the output layer is compared with the desired output to de-

termine the error. The weight matrix between the input–output layers is updated

using back propagation learning algorithm on the basis of this error. The neural

network with trained weights are used to obtain the threshold subsequently. It is

observed that FLANN can predict an accurate threshold for images that are not

used for training as well.

The threshold value thus obtained is used in the first pass of the algorithm.
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3.3 Improved Adaptive Threshold Selection using FLANN
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Threshold Estimation using CV
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Figure 3.3: Convergence Characteristics of the CV based FLANN

Image output of the first pass is subjected to second pass of the algorithm. A

different threshold θ is used in the second pass of the noise detection algorithm.

Coefficient of variance (CV) of the output image of the first pass is calculated. This
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3.5 Summary

new CV is again used as input to fed the FLANN to obtain the new threshold

value.

3.4 Simulations and Results

The proposed scheme CVAT is simulated on some standard images like Lena,

Lisa, Girl, Clown, Gatlin, Bridge, Boat and Peppers etc. Lena image is corrupted

with Random Valued Impulsive Noise of 1–30% noise densities. It is observed

that using a single parameter CV results with faster convergence along with much

less computational complexity. This smaller network size because of single input

parameter provides better options for easier implementations without hampering

noise suppressing capabilities.

The seven noisy images thus generated are passed through the proposed scheme

CVAT along with Signal Dependent-Rank Ordered Mean (SD-ROM) [41], Tri-

State Median (TSM) [42] and Pixel Wise MAD (PWMAD) [37]. These are the

few best performer in terms of noise suppression as discussed in Chapter 1. The

simulated result of PSNR (in dB) is plotted in Figure 3.4 and that of PSP (in

Percentage) in Figure 3.5.

The computational time required for restoring Lena image with each scheme

cited above are recorded and is shown in Table 3.3. It is observed that the proposed

scheme is computationally much faster with respect to all other few best noise

suppression schemes.

Few more comparisons are listed in the form of tables. Table 2.1 lists the PSNR

of various images corrupted with 15% and 20% of noise. Similar observations of

PSP are listed in Table 3.2.

The figures in 3.6 and 3.7 shows the images of restored Lena and restored

Peppers corrupted with 15% and 20% of noise densities respectively.

3.5 Summary

The proposed scheme is an improved filtering scheme for suppressing impulsive

noise of varying strengths from corrupted images. A variation of neural net-

work and with a single parameter adaptive threshold is obtained. The proposed
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3.5 Summary

Table 3.1: PSNR (dB) of different schemes at 15% and 20% of noise on different
images

Lisa Girl Clown Gatlin Bridge Boat Peppers

PWMAD 30.50 29.28 23.02 30.66 26.07 29.25 31.29

15% SD-ROM 31.98 31.31 24.33 32.77 27.48 30.75 32.00

RVIN TSM 32.05 31.05 23.88 32.46 27.08 30.51 33.04

CVAT 36.45 33.87 23.59 33.16 25.89 28.93 33.11

PWMAD 28.26 27.73 22.16 28.77 24.99 27.57 29.04

20% SD-ROM 30.86 29.92 23.59 31.51 26.55 29.50 31.40

RVIN TSM 30.95 29.69 23.28 31.30 26.28 29.35 31.41

CVAT 34.68 31.72 22.53 31.60 25.91 28.28 32.57

Table 3.2: PSP of different schemes at 15% and 20% of noise on different images

Lisa Girl Clown Gatlin Bridge Boat Peppers

PWMAD 7.35 11.05 24.85 4.00 15.83 13.95 10.53

15% SD-ROM 0.14 0.93 10.29 0.39 3.06 1.04 0.34

RVIN TSM 0.22 2.62 17.51 0.98 7.94 2.55 0.57

CVAT 10.5 16.15 57.82 9.05 36.37 73.61 35.08

PWMAD 7.06 7.82 22.77 5.03 15.10 13.18 10.05

20% SD-ROM 0.18 0.40 9.86 0.33 3.10 1.12 0.37

RVIN TSM 0.31 1.21 21.07 1.00 8.30 2.82 0.73

CVAT 10.50 16.15 57.82 9.05 0.06 74.21 55.98

Table 3.3: Computational time consumed by different Schemes for removing im-
pulsive noise from Lena image corrupted with 15% of RVIN

Scheme Time (sec)

PWMAD 244.68

SDROM 11.20

TSM 77.14

CVAT 9.32
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Figure 3.4: PSNR (dB) plot of Restored Lena image corrupted with RVIN of
varying strengths

schemes’ performances are poor when compared with some of the schemes. How-

ever, computationally the proposed schemes are well off.
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Figure 3.5: PSP plot of Restored Lena image corrupted with RVIN of varying
strengths

(a) True Image (b) 15% Noisy (c) PWMAD

(d) SDROM (e) TSM (f) CVAT

Figure 3.6: Subjective comparison of impulsive noise removal of Lena image cor-
rupted with 15% of RVIN by different filters
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(a) True Image (b) 20% Noisy (c) PWMAD

(d) SDROM (e) TSM (f) CVAT

Figure 3.7: Subjective comparison of impulsive noise removal of Peppers image
corrupted with 20% of RVIN by different filters
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Chapter 4

Comparative Study of Impulsive
Noise Suppression Schemes

To combat impulsive noise from images, several schemes have been suggested in the

literature as well as in this thesis. In each chapter of this thesis the performance of

the proposed method has been compared isolatedly with relevant standard tech-

niques. However the relative performance comparison has not been made amongst

the different proposed methods vis-a-vis with the standard methods. The objec-

tive of this chapter is to critically study the comparative filtering performance

amongst the various methods proposed in this thesis. A conclusion has also been

drawn to choose a method for impulsive noise filtering under a particular noise

situation. Impulsive noise can be classified into three categories i.e. low, medium

and high according to Table 4.1. Studies have been made at different noise con-

ditions. For comparison, all the methods in a particular chapter is selected here

and Table 4.2 shows the different filtering scheme chosen from different chapters.

Table 4.1: Noise classification as per noise ratio

Noise Level Noise Classification

0–15% Low

15%–30% Medium

30% and above High
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4.1 Performance Evaluation based on detector capability

Table 4.2: Noise removal scheme chosen for comparison

Scheme Neural Structure Noise Condition

MLPAT MLP Low & Medium

ISAT FLANN High

RBFNAT RBFN High

CVAT FLANN High

In sequel the following analysis is made with regard to the performance eval-

uation as presented,

• Detector Capability

• Average Filtering performance

• Computational Overhead

4.1 Performance Evaluation based on detector
capability

Four different noise detectors i.e. MLPAT, FLANNAT, RBFNAT and CVAT

detector have been proposed to detect impulsive noise at a test pixel location

based on the gray level information of its neighbor pixels in a 3 × 3 window.

The detector capability for noise classification is performed on the basis of certain

performance metrics i.e. False Positive % (FP) and False Negative (FN%) as

defined below.

FP% =
number of False Positives

Total number of noise free pixels
× 100 (4.1)

FN% =
number of False Negatives

Total number of noisy pixels
× 100 (4.2)

Where, classification of noise free pixels as noisy is termed as False Positive and

classification of noisy pixels as noise free is termed as False Negative. The reported

detectors are subjected to this test to determine their noise classification efficiency.

The proposed detectors performance in terms of FP% and FN% is compared with

PWMAD [37] the best scheme of the literature. The present study has been made
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4.2 Comparison of Filtering Performance

for low and medium noise conditions (less than 30 %). Simulation has been carried

out using standard image i.e. Lena at 15% noise condition and the computed

results are presented in Table 4.3. Comparative analysis of the proposed detectors

reveals that CVAT detector yields the best performance in terms of the defined

parameter i.e FP% and FN%.

Table 4.3: False Positive Percentage(FP%) and False Negative Percentage (FN%)
of proposed schemes for Lena (512 × 512) with 15% RVIN.

FP% FN%
PWMAD 1.69 4.51
MLPAT 1.60 2.18
ISAT 1.64 2.14
RBFNAT 1.42 1.69
CVAT 0.88 1.22

4.2 Comparison of Filtering Performance

Filtering performance of the proposed schemes is measured here with a suitable

restoration parameter i.e. PSNR (Section 1.5). The suggested schemes are simu-

lated on standard Lena image with noise levels varied between 1 to 30%. Com-

puted results are compared on the basis of an certain criteria as presented in Table

4.4.PSNR values are computed and used as performance indices for the proposed

schemes. The basis of comparison is provided in Table 4.4.

Table 4.4: Basis of comparison among the filtering schemes

Parameter Range Remarks

0–15 Satisfactory (S)

PSNR (dB) 15–30 Good (G)

30 and above Excellent (E)

Based on the aforesaid criteria, comparison has been made in two groups:

(a) Low and medium noise conditions and (b) high noise conditions. Computed

PSNR results obtained from the simulation of different schemes are shown in

Table 4.5 and 4.6. The plot in Figure 4.1 shows the PSNR variations of the

proposed schemes.
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4.3 Computational Overhead

Table 4.5: Comparison of schemes under low and medium noise conditions

Filters PSNR Remarks

MLPAT E G

ISAT E E

RBFNAT E E

CVAT E E

Table 4.6: Comparison of different schemes under high noise conditions

Filters PSNR Remarks

MLPAT G S

ISAT E E

RBFNAT E E

CVAT E E

4.3 Computational Overhead

In this section the computational overhead associated with each proposed filter

to restore a corrupted pixel is compared. It is evident from the Table 4.7 that

the CVAT filtering scheme is the most computationally efficient scheme. The

computational time required for restoring Lena image with each proposed scheme
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Figure 4.1: Variation of PSNR (dB) at different RVIN percentage on Lena image.
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4.3 Computational Overhead

along with PWMAD [37] is shown in Figure 4.2. All the results were obtained by

simulating the schemes in Matlab 7.0, Microsoft Windows XP (SP2) Operating

System and Intel Pentium D–2.80 GHz with 1GB of RAM.

Table 4.7: Computational overhead per pixel associated in filtering schemes

Filters Addition Multiplication

MLPAT 7 8

ISAT 4 207

RBFNAT 10 12

CVAT 4 57
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Figure 4.2: Computational time of proposed schemes for Lena (512 × 512) with
15% RVIN.
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4.4 Summary

From the results obtained (Table 4.5, 4.6), it is observed that CVAT, RBFNAT,

ISAT filtering schemes perform better than MLPAT. But since the CV based

FLANN detector used in CVAT filtering scheme outperforms the other schemes,

CVAT scheme is chosen to be the best among these methods at all the noise

conditions.

In the next chapter, CVAT and RBFNAT filtering schemes are used for image

sharpening under impulsive noise condition.
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Chapter 5

Image Sharpening under
Impulsive Noise Conditions

One of the problems of a image sharpening in practice is the noise boost-up, which

limits the applications of the enhancement schemes in low contrast images under

noisy conditions. To resolve this issue, a novel approach is presented, which ef-

fectively prevents the visual amplification of a noise while the image details are

being enhanced. The proposed scheme incorporates noise reduction algorithm be-

fore applying contrast enhancement to achieve the objective. Only low contrast

images under impulsive noise condition is considered here. RBFNAT(Chapter 2)

and CVAT(Chapter 3) are used for reducing noise before enhancement. Image

Enhancement scheme used here is based on a technique called Unsharp Mask-

ing(UM), which is described in Section 5.1. Noise amplification in low contrast

noisy images is the major drawback of linear unsharp masking. Since sharpening

(enhancement) and smoothing (noise removal) are contradicting in nature proper

care must be taken to obtain high quality images. This chapter tries to express

how selective filtering (Chapter 2, 3) can be applied along with UM to improve

the quality of low contrast noisy images. With appropriate choice of impulse noise

removal schemes the noise amplification can be prevented, to be employed for UM.

Linear Unsharp Masking (UM) is presented in Section 5.1. Section 5.2 reports

an improved image sharpening scheme under impulsive noise condition. Last, the

proposed sharpening scheme is compared with some of the existing schemes and is

presented in Section 5.3. Finally, Section 5.4 provides the summary of the chapter.
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5.2 Improved Image sharpening under Impulsive Noise Condition

5.1 Image Enhancement using Unsharp masking

Image enhancement seeks to improve the visual quality of images. However, an

inherent difficulty is to define a mathematical criterion for visual quality. As a

result, many algorithms remain to a large extent empirical and a final assessment

can only be performed by the human observer. Unsharp Masking (UM) [1] is

a classical simple enhancement scheme which yields pleasant results utilizing an

effect called simultaneous contrast. Simultaneous contrast describes the visual

phenomenon that the difference in the perceived brightness of neighboring regions

depends on the sharpness of the transition. Unsharp Masking is implemented by

adding a scaled version of the input image to the image itself to form the enhanced

image. The block diagram of Linear Unsharp Masking is illustrated in Figure 5.1.

High Pass
Filter

i,jH

i,jX

Input
Image

i,jY’

Enhanced
Output
Image

λ

X

Figure 5.1: Linear Unsharp Masking scheme

5.2 Improved Image sharpening under Impul-
sive Noise Condition

The proposed image sharpening scheme under noise condition consists of impulse

detection followed by simple unsharp masking as described in Section 5.1. The

schematic diagram of Improved Unsharp Masking (IUM) scheme is illustrated

in Figure 5.2 . To enhance a low contrast noisy image adaptive noise detection

schemes (Chapter 2) is used. Initially the noisy pixels are detected followed by

median filtering. This type of selective filtering prevents unnecessary blurring of

image details and hence image details are preserved even after noise removal. The

output of the selective filter is fed to an high pass filter to separate the high and
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Figure 5.2: Improved Unsharp Masking scheme

low frequency components. Output after selective filtering followed by UM can be

expressed using the following relation:

Y ′
i,j = Ŷi,j + λHi,j (5.1)

λ is the positive gain factor that controls the level of enhancement. Where Hi,j is

the output of a linear high pass filter which is obtained using equation 5.2.

Hi,j = 4Ŷi,j − Ŷi−1,j − Ŷi+1,j − Ŷi,j−1 − Ŷi,j+1 (5.2)

Adaptive Histogram Equalization (AHE) [65] is further applied to redistribute the

gray level intensity values of the image uniformly at local level to provide a more

sensible image.

5.3 Simulations and Results

The two proposed threshold selection (Chapter 2) schemes were used indepen-

dently for noise removal before enhancement. The resulting images of noise re-

moval schemes were simulated independently applying UM followed by AHE. En-

hanced results were compared with some of the best performing schemes reviewed

in Section 1.6.

Since there is no standard quantitative measure because of unavailability of an

ideal image, subjective comparison for Lena and Peppers is presented in Figures 5.3

and 5.4.
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5.4 Summary

Problem of noise amplification in image enhancement process is discussed and suit-

able solution scheme is presented. Use of selective filtering before unsharp masking

gives visually accepted results with preserved image details. Two different ways

of filtering are used along with unsharp masking to compare the enhanced images.

The experimental results demonstrate that the proposed approach can enhance

low contrast images under impulse noise condition. Further improvement in the

overall enhancement scheme can be achieved by making the amplification fac-

tor adaptive.However proposed scheme is not computationally efficient and some

parallel processing schemes must be used for real time applications.

(a) Low Contrast Noisy (b) Linear Unsharp Masking

(c) Median Filtering fol-
lowed by UM

(d) FLANN followed by UM (e) RBFN followed by UM

Figure 5.3: Comparison among different enhancement approaches for Lena image
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5.4 Summary

(a) Low Contrast Noisy (b) Linear Unsharp Masking

(c) Median Filtering fol-
lowed by UM

(d) FLANN followed by UM (e) RBFN followed by UM

Figure 5.4: Comparison among different enhancement approaches for Pepper im-
age
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Chapter 6

Conclusions

The work in this thesis, primarily focuses on impulsive noise suppression from

images. Schemes for adaptive threshold selection for noise detection have also

been devised. Along with the above work image sharpening under impulsive noisy

condition is also a part of this work.The work reported in this thesis is summarized

in this chapter. Section 6.1 lists the pros and cons of the work. Section 6.2 provides

some scope for further development.

6.1 Achievements and Limitations of the work

Random Valued Impulsive Noise (RVIN) model is considered in the thesis. Then

in subsequent chapters (Chapter 2–3) some novel schemes are proposed. Salient

points of the thesis, highlighting the contribution at each stage, are presented

below.

The four proposed schemes deal with RVIN removal and are based on second

order difference of pixels. These schemes primarily proposes different techniques

to select threshold in order to make noise detection process more reliable.

MLP based Adaptive Thresholding for Impulse Detection (MLPAT) is the first

contribution that uses a simple Multilayer Perceptron Network (MLP) to deter-

mine the threshold value. A variation of ANN i.e. Functional Link ANN (FLANN)

is used in another contribution namely Image Statiscs based Adaptive Threshold

Selection for Detecting Impulsive Noise in Images (ISAT). Radial basis Functional

Network (RBFN) is used in another contribution namely RBFN based Adaptive

Threshold Selection for Detecting Impulsive Noise in Images (RBFNAT). All the
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6.2 Further Developments

three neural network approach use mean and variance of noisy image as input pa-

rameters to the network. Comparisons reveal that there are some better techniques

in terms of PSNR. However, the proposed schemes computationally efficient.

In Chapter 3, again the same Functional Link Artificial Neural Network (FLANN)

is used in another contribution for detecting impulsive Noise in Images (CVAT).

This contribution also deals with removal of RVIN from images. This technique

utilizes a more efficient statistical parameter called called coefficient of variance

(CV) for training the neural network and to predict the threshold value. In terms

of PSNR as well as computational time this scheme outperforms its counterparts.

The last contribution Image Sharpening under Impulse Noise Condition sug-

gests an enhancement scheme under noisy conditions. The proposed scheme uti-

lizes selective filtering in improving the pitfalls of an well accepted enhancement

allgorithm Unsharp Masking. Prevention of noise amplification along with im-

age details preservation while sharpening the proposed scheme outperforms its

counterparts in terms of image quality.

6.2 Further Developments

To conclude this thesis, following are some points that may lead to some better

and interesting results.

In this thesis, noise detection is mostly covered and for noise filtration median

filter is used. Research may be undertaken to devise better filtration techniques.

This technique together with a best detection technique can result in optimal

restoration of degraded image.

As it has been stated that the existing as well as proposed techniques are com-

putationally expensive, investigation may be carried out in this direction. Devel-

opment of parallel algorithms can also be done to counter attack the computational

overhead.
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