EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Prediction and Improvement of the Outcomes of Image Recognition Algorithms
Applied to an Automated Invoice Processor

Artsyman, I.

Award date:
2020

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/5583967f-a4e2-42a0-aacc-c7c5defac558

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Prediction and Improvement of the Outcomes
of Image Recognition Algorithms — Applied
to an Automated Invoice Processor

Master Thesis

Ilya Artsyman

Supervisors:
Thesis supervisor: P. J. De Andrade Serra
Company supervisor: D. Mocking
Committee members: R. Pires da Silva Castro, V. Menkovski

Eindhoven, August 2020



Contents

[Contents 1
(1 __Introductionl 3
|2 Data description| 5
|3 Current algorithm discussion| 7
4__Literature reviewl 10
4.1 Image features extraction methods| . . . . . . . ... ... ... ... ... .. 10
4.1.1 Image statistics| . . . . . . . . . ... 10

[4.1.2  Image quality assessment (IQA)l . . . . . ... .. ... ... .. ... 11

4.2 OCR methods and pre-processing|. . . . . . . . .. .. ... ... ....... 19
4.3 Text images features| . . . . . . . . . .. 20
4.3.1  Text skew and orientation detectionl . . . . ... ... ... ... ... 21

[4.3.2  Text regions localization| . . . . . . . ... ... . oL, 23

4.4 Image enhancement techniques| . . . . . . ... ... ... ... ... ..., 23
4.4.1  General image enhancement techniques| . . . . ... .. ... ... .. 24

4.4.2  Image enhancement for text images| . . . ... .. ... ... ..... 27

4.4.3  Skew correction techniques| . . . . . . . . ... ... 28

[ Data preparation and labelling] 30
|6  Approaches| 32
[7__Features extractionl 34
7.1 Image characteristics| . . . . . . . . . . . .. .. 34
7.2 General image quality measures| . . . . . . . . ... .. ... ... ... .. 41
7.3 Document-specific image quality features|. . . . . . . . . . ... ... ... .. 46
Prediction and Improvement of the Outcomes of Image Recognition Algorithms 1



CONTENTS

[(.3.1 Skew evaluation] . . ... .. . .. . . ... ... 46

[(.3.2 Other text features . . . . . . . ... .. ... ... ... ... ... 49

[t.4 PCA features . . . . . . . . . . . 51
[7.5 Computational complexity analysis of feature extraction| . . . . . . . ... .. 52

I8  Recognition prediction| 54
[8.1  Classification algorithms description| . . . . . ... ... ... ... ... ... 54
[8.2  Evaluation and comparison of the models| . . . . . ... ... ... ... ... 56
8.2.1  Fvaluation methods| . . . .. .. ... ... .. .. oL, 56

[8.2.2  Classification algorithms comparison and evaluation| . . . .. ... .. 58

8.2.3 Feature selectionl . . . . . . .. ... .. ... 61

18.2.4  Evaluation of the models with features extracted from downscaled 1mages| 69

18.2.5  Changing the order of feature inclusion| . . . .. ... ... ...... 72

[8.2.6  Incorrectly classified images analysis| . . . . . . .. ... ... ... .. 76

[8.2.7 Dataset enlargement| . . . . . . . . ... 0 o 0oL 79

9 Enhancement techniques| 81
9.1 Implemented enhancement techniques| . . . . . ... ... ... ... ..... 81
9.2 Impact of enhancement techniques| . . . . . .. ... ... ... ... ... .. 82
[9.2.1 Impact of single enhancement techniques . .. .. ... ... ... .. 82

[9.2.2  Impact of combinations of enhancement techniques|. . . . . . . .. .. 85

9.3 Computational complexity of enhancement techniques| . . . . . . . ... ... 88
9.4 Classification algorithms for choosing relevant enhancement techniquel . . . . 89
9.5 Ewvaluation of classification algorithms| . . . . . . . ... ... ... ... ... 89
9.6 Other possible approaches to image enhancement| . . . . . . . ... ... ... 90
(10 Future research| 92
(11 Conclusions| 94
[Appendix A Use of downscaled images for features extraction| 96
|Appendix B Comparison of enhancement techniques combinations| 102
[Bibliography]| 104

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 2



Chapter 1

Introduction

Insurance companies nowadays are aiming for digitalization of reimbursement process for
medical treatments. This makes reimbursement faster. For this purpose an insurance com-
pany has decided to contact ORTEC in order to work on a digital solution. ORTEC is
a consultancy company which specializes in applying mathematical knowledge to industrial
and business problems.

Before collaboration with ORTEC, in this insurance company the reimbursement process re-
quired a lot of manual work. Clients sent photos or scans of invoices for their treatments and
they were checked by employees in order to retrieve information. ORTEC worked on automat-
ization solutions for the dental care sector and came up with an algorithm for this problem.
This algorithm analyzes an image and extracts relevant information from it. However, this
algorithm not always provides with complete information. Moreover, it takes roughly 10
seconds to analyze an image and return either extracted information or a message saying that
the required elements of an invoice were not recognized. The latter situation contains cases
like “there was no total amount detected” and “there was no text detected” which are often
caused by low image quality. In these cases, a user is requested to take another photo of the
invoice. Thus, in the cases when the required elements of an invoice were not recognized due
to insufficient image quality, the long run time of 10 seconds, which is actually waiting time
for the user, is not affordable.

The graduation project is aimed at improving the existing procedure, suggested by ORTEC,
by development of new algorithms for image processing. The first goal is to develop an
algorithm which will promptly tell clients if their image is good for further recognition or if it
should be taken again. Second goal is to come up with image pre-processing techniques which
will improve recognition percentage of images and will be chosen depending on an image.

In order to approach the first goal, the research on image characteristics evaluation and
image quality assessment is performed to select and implement features extraction methods
relevant to this project. Afterwards, machine learning algorithm is chosen and applied to
these features in order to predict the existing algorithm outcome. For the second goal, current
research on image enhancement methods is studied and the relevant methods are combined
with feature extraction part in order to construct an algorithm for the choice of relevant image
enhancement techniques for a specific image.

The report is structured as following: in the Chapter [2] structure of the data is described
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CHAPTER 1. INTRODUCTION

as well as its availability. In the Chapter [3] the existing algorithm developed by ORTEC
is described and the project problem is discussed in more details. It is followed by the
Chapter [4] with literature review. In the Chapter [6] possible approaches to the problem are
discussed. Then, in the Chapter [5| a process of data labelling and preparation for the project
is described. Afterwards, in the Chapters [7] and [§] the first goal of the project is approached
split into features extraction part and classification part. Finally, in the Chapter [9] the second
goal of the project is approached.
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Chapter 2

Data description

The images dataset consists of images of invoices from dental care. The images can represent
photos of paper invoices, photos of laptop or phone screens with invoices, or scans of invoices.
The photos vary in orientation, illumination, paper condition, and image quality and may
include handwritten text alongside with printed. The images are usually rectangular and
their typical size is 2500 x 3200.

In this project, only anonymized images can be used for the analysis due to privacy. There are
529 distinct anonymized images available. Actual invoices that are analyzed by the ORTEC
algorithm are not anonymized as client details are important for reimbursement. Thus, the
performance of the developed algorithm on practice might differ from the performance on the
anonymized dataset.

(a) Anonymization with pieces of the (b) Anonymization with white boxes. (¢) Anonymization with white boxes
invoice. with fake personal details.

Figure 2.1: Examples of anonymized invoices images.

Anonymization is done by covering personal information of clients in invoices (such as name,
BSN and birth date) with blank pieces of an invoice copied from an image of this invoice
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CHAPTER 2. DATA DESCRIPTION

(Fig. , with empty white boxes (Fig. , or with white boxes which contain fake
personal details (Fig. . This introduces some distortions into images and, hence, might
cause a difference in the performance on the anonymized dataset and on the actual images
which are analyzed by the ORTEC algorithm.

The invoices consist of so-called fields. They include client details, dentist details, number
(ID) of the invoice, total amount to be paid, and fields related to treatments. Treatments
are usually represented as a table with a treatment description, code, amount, date, and
price. Some treatments also include an indication of the jaw (top or bottom) and the element
number (tooth number) for which the treatment was made as this information can influence
the price of treatments. The structure of the table can be clearly seen in Fig. where
the columns are present for a treatment date (“beh. datum”), a treatment code (“code”), an
element number (“elem.”), amount of treatments (“aantal”), a treatment name (“prestatie”)
and a price (“bedrag”). Indication of the jaw is not necessary for any of the treatments in
this example and, hence, it is not present in the invoice. An invoice may also include other
information (e.g., contact details of a medical center) which is not relevant for reimbursement.
Thus, the invoices usually have similar fields but their location and structure of the invoice
might be different. All of the invoices are in Dutch language but for convenience, we refer to
fields and information in an invoice in English.

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 6



Chapter 3

Current algorithm discussion

In this chapter, we will discuss the existing ORTEC algorithm and how it works.

ORTEC has developed an application, which a client uses to take a photo of an invoice and
send it to the insurance company. It is implemented using Python programming language.
In this application, the photo is resized to the pre-specified size and after that, the image is
analyzed with the help of the Microsoft’s OCR (Optical Character Recognition) APT ([2]). It
returns a .json file with coordinates of each text box on the image and recognized text in this
box. For example, for a piece of an invoice as in Figure [3.1] part of an output of OCR looks
like the following;:

e Word: “Betreft:” [101,1533,131,33];
e Word: “behandeling” [247,1533,221,40];

e Word: “van:” [482,1541,75,24],

where the first two numbers are x- and y-coordinates of the top-left corner of the box and
the last two are the width and the height of the box.

Factuurnumme
Betref . behandeling var
aeborer

Figure 3.1: An example of text boxes recognized by OCR

The information extracted by OCR is used by the algorithm in order to extract necessary fields
from the image. The words are combined into horizontal lines and vertical columns based
on coordinates and sizes of text boxes. The pre-specified thresholds are used for uniting the
boxes into the blocks. For example, the boxes are united into a horizontal line if the difference
between their top edges or bottom edges is less than the threshold. The same methodology is
used for vertical blocks with a difference that the distance is measured between the left and
right edges of the boxes. The thresholds equal half of the text height for horizontal blocks
and the height of the text for vertical blocks. After constructing the blocks, all the fields are
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CHAPTER 3. CURRENT ALGORITHM DISCUSSION

located based on keywords (such as “Invoice number”, “Price” etc.). Then, the extracted
information is searched for in a database to perform checks, for example: if the person exists
or if the treatment has the specified price. If some fields are lacking from OCR, the database
is also used: for example, the treatment code can be used to find the full treatment name
and the price or other way round. Moreover, the total amount is also checked to be the sum
of all the stated amounts.

There are mandatory fields that have to be recognized (such as client name, date of treatment,
code of treatment and its price) and optional fields (for example, invoice number, and full name
of treatment). There are also two fields which are mandatory only for certain treatments: jaw
indication and element number. Based on this analysis, an image is assigned to a category
“fully recognized” if all of the mandatory fields are recognized, “partially recognized” if 1-3
of the mandatory fields are not recognized, and “rejected” if more than 3 of the mandatory
fields are not recognized.

Moreover, there are other reasons for the image to be rejected. The complete list of them is
the following:

e There is no text on the image;

e The image is not recognized as an invoice;

e Too many fields (more than 3) are not recognized in the invoice;

e The total amount does not equal to the sum of all costs;

e The invoice is cropped, so not all information is visible;

e The invoice is already paid by the insurance company;

e The client is not insured in this insurance company;

e Several invoice IDs are found (which is not allowed by application);

e Only one page of a multiple-page invoice is found.

In case the image is not fully recognized, a tesseract algorithm is applied to boxes with
unrecognized text in order to see if it can provide better extraction quality.

In the case of a partially recognized invoice, the client is asked to fill in the missing fields
manually.

In case of rejection, the application also returns the reason for rejection from the list above.
It can be seen that rejections might happen correctly and incorrectly. For example, when an
image is not recognized as an invoice due to bad quality of the image, it is considered as an
incorrect rejection and the respective image is categorized as “not recognized”. On the other
hand, rejection due to being already paid by the insurance company is a correct rejection as it
is supposed to be rejected. The same distinction is present between correctly and incorrectly
partially recognized images. For example, an image is correctly partially recognized, when
the date of one of the treatments is absent on the invoice. It is important to distinguish these
cases when labelling the data.
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In the ORTEC algorithm, Microsoft’s OCR, engine is preferred to Google’s OCR due to some
privacy issues even though Google OCR is considered to be more accurate by some sources as
discussed in [I]. However, the algorithm which is used in Microsoft OCR is not public, hence,
it is unknown, which parameters of an image have the largest influence on its performance.

The tesseract algorithm, on the other hand, is public. In the beginning, it used traditional
computer vision algorithms for text recognition as discussed in [96] and later LSTM (long
short-term memory) network was added in order to increase the accuracy of words recognition.
It is a neural network that reads character by character in discovered text boxes and uses
as input both new character and information obtained on the previous steps of the neural
network. This way, it can learn, for example, language rules in order to distinguish the text.

The average running time of the ORTEC algorithm is around 11-12 seconds. This is unac-
ceptable in the case the output of the algorithm is that invoice is not recognized. That is
why in the project we are working on a classification algorithm that can be run before the
ORTEC algorithm and will promptly tell a user that his photo will not be recognized. We
aim at the algorithm which will work in 1 second.

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 9



Chapter 4

Literature review

In this project, we are developing two algorithms: one for prediction of the outcome of the
ORTEC image recognition algorithm and another for image enhancement. In this chapter,
we will provide a literature review of the relevant research for both algorithms.

For the prediction algorithm, we will use various image features. They can be split into two
groups: features that can be extracted from any type of images and features which are specific
for images of documents. These two groups are discussed in Sections [4.1] and [4.3| respectively.

Furthermore, OCR methods can be investigated in order to understand which characteristics
of an image might influence OCR performance and which pre-processing techniques can be
used. They are discussed in Section

Finally, we review the image enhancement techniques in Section

4.1 Image features extraction methods

Image recognition is closely related to image quality: the better the quality the higher is the
chance the image will be correctly recognized. Besides this, some other image statistics which
do not represent quality can be also used as features. Thus, in this section, we start with
a discussion of image statistics that are not related to quality and then review the features
related to image quality assessment (IQA).

4.1.1 Image statistics

Various image statistics that do not represent any qualitative feature of an image are proposed
in the survey [86]. They are split into the following categories: color-related statistics, first-
order, second-order, and higher-order statistics of an image. First-order statistics take into
account properties of single pixels, second-order statistics incorporate dependencies between
neighbouring pixels, and higher-order statistics account for larger dependency structures.

Histograms and statistical moments of the original or log-transformed images are suggested
as first-order statistics. Gradients are proposed as second-order statistics. To obtain higher-
order statistics, it is suggested to apply wavelet transforms, discrete Fourier transform (DFT)
or principal component analysis (PCA). For instance, phase spectra variance can be obtained
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after whitening an image by means of PCA. Finally, several color schemes apart from RGB
are suggested to capture color statistics.

4.1.2 Image quality assessment (IQA)

Image quality can be defined in different ways. For example, as a value of a single characteristic
of an image, such as brightness or sharpness. On the other hand, an image quality metric
might combine different image features to obtain a single quality score. Thus, in this section
research in specific image features as well as in general IQA methods is reviewed. There
exist several types of IQA methods depending on the availability of the original, or higher
quality image. These methods are called full-reference (FR) if the original is available, partial
reference if it is partially available and no-reference (NR) if it is not available. In our case,
we are interested in NR IQA.

Besides this, IQA methods can be classified by some other properties (as discussed in [65]):

1. Necessity for a dataset to be subjectively evaluated by human:

e Opinion-aware which require such a dataset;

e Opinion-unaware which does not;
2. The distortions which are assumed:

e Distortion-specific which assume only one distortion present in an image;

e General;
3. Area of application:
e NSS (natural scene statistics) methods which use image statistics and suit for

assessment of different types of images;

e non-NSS — trained on some specific images database and, hence, have the better
performance on the images of the same type as in the training database.

There is a lot of research done recently on IQA that relies on deep learning (as in [66], [67])
and these methods are shown to perform better than non-deep learning ones but only on
some datasets. Moreover, these methods require large training samples, hence, they are not
feasible in our project. Thus, we will focus on IQA with the use of feature extraction.

Most of the IQA metrics require application of image transformations in order to extract
features. Generally speaking, their construction can be fitted into the following scheme:

1. The image is converted into gray-scale (optional);
2. Some transformations are applied to the image (optional):

(a) Spatial transformations (filters);

(b) Spectral transformations (DFT, DCT, wavelets);

3. Features are extracted from the transformed image:

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 11



CHAPTER 4. LITERATURE REVIEW

(a) Mean, standard deviation or maximum of transformed image pixels is taken;

(b) Some other, more complicated, function is applied to the transformed image;

(c) Some distribution is fitted to transformed image pixel values and estimated para-
meters are taken as features;

4. Features are used to construct the quality (or another) metric:

(a
(b
(c
(d

If it is the only feature, it is used as metric;
Machine learning is applied to features based on subjective evaluated data;

Some function is applied to features (sum, average or something more complicated);

— — ~—

Some distribution is fitted to the features and it is compared to a fitted distribution
to the same features of images which are considered to be of high quality.

The most used features are colors, brightness (luminance), contrast, sharpness (opposite to
blur), and noise. Some other features which are extracted can’t be interpreted as indicative
of the quality of an image and are only defined mathematically as a function of an image.
These functions are mostly complicated and not all of them are used in this project. Thus,
some of them will be omitted and mentioned only as “a function”.

The remaining part of this section will be split into subsections. Firstly, we discuss possible
image transformations. Afterwards, IQA techniques related to specific image characteristics
are discussed in separate subsections. The last subsection refers to general IQA techniques
which are used to evaluate overall image quality without a connection to any specific image
characteristic.

Image transformations

10 -1 0 -1 0

(0 -1 1) 5 0 9 R
Horizontal forward 10 -1 0 1 0
derivative filter Vertical Sobel flter Laplacian filter

Figure 4.1: Examples of filters.

We can distinguish several groups of transformations which can be applied to an image as
mentioned above. These are spatial and spectral transformations.

Among spatial transformations, the most popular ones are convolutional filters. These are
matrices that are used to convolve an image. Examples are derivative filter, Sobel filter, and
Laplacian filter which can be found in Fig. When they are applied to an image, they are
scaled by the sum of absolute values of matrix elements.

The spectral transformations of image u(x, y) of the size N x M include DFT (eq.|4.1)), discrete
cosine transform (DCT) (eq. [£.2), and wavelet transforms. DFT of an image in practice is
usually calculated using fast Fourier transform algorithm.
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N-1M-1 A
u(z,y)e CRHY) (4.1)
=0 y=0
N-1M-1
mk 1 ml 1
= — — —-1]. 4.2
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Wavelet transformations, as opposed to DFT, allow localizing frequencies in space. There
exist various types of wavelet transformations: for example, Haar wavelet or Daubechies
9/7 or 5/3 wavelets (J26]). They all have the same idea. In wavelet transformation an
image is passed through the series of low-pass filters hg[n] and high-pass filters hi[n]. Firstly,
the filters are applied to the original image: 4 different combinations of low-pass and high-
pass filter to obtain 4 subbands. They are LL, HL, LH, and HH subbands, where “L”
corresponds to a low-pass filter and “H” to a high-pass filter. The first mentioned filter
is applied in the horizontal direction, second filter — in the vertical. Subsampling in the
horizontal direction is applied between the filters and subsampling in the vertical direction
afterwards. That results in vertical (HL subband), horizontal (LH subband) and diagonal
(HH subband) edges discovery. These subbands are twice smaller than the original image
due to double subsampling (Fig. . Afterwards, the whole process is repeated for the LL
subband. The number of iterations is usually given in each paper.

ILLs|HL.
HL,
ILH|H H.
HL,
LH, | HH,
LH, HH,

Figure 4.2: Subbands after application of wavelet transform.

Thus, the main question when constructing wavelets is which filters to choose. There ex-
ist several methods resulting in different types of wavelet transformations mentioned above.
Theory behind wavelets and its applications to image processing can be found in the following
papers and tutorials: [51], [22], [78] and [52].

Another filter which is often used in IQA and is closely related to wavelet transforms is a log-
Gabor filter. It allows discovering edges not only in vertical, horizontal, or diagonal directions
but also in other custom angles (central orientations). Log-Gabor filter in polar coordinates
in frequency domain has the form as in eq. This filtering method is discussed in [32].
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log(;}‘)—o) _(970j)2

Gw,0) =¢ 207 .e > | (4.3)

where 0, and oy are bandwidth constants and wg and ¢; are parameters of the filter repres-
enting central frequency (scale) and orientation. Usually, set of log-Gabor transforms with
N different wy and J different 6; = jm/J for j € {0,...,J — 1} is applied to an image. DFT
of an image converted into polar coordinates is multiplied by log-Gabor filter element-wise in
order to obtain filtered image.

One more transformation which is used by some authors of IQA methods is a 1D pseudo-
Wigner transform (eq. [4.4)). It is applied iteratively to windows of size N of a flattened image
z. The image can be flattened in vertical or horizontal direction.

N/2
Wk = > 2(k+m)z*(k—m)e 2CF), (4.4)
m=—N/2

where z* is a complex conjugate of z.

Now, we can look into the methods of IQA where these transformations can be used.

Brightness

To begin with, let’s look into brightness evaluation methods. In [6] several brightness metrics
are proposed by applying several different functions to color values of pixels and taking the
average, the maximum and the standard deviation of them as metrics of brightness.

Other sources of brightness evaluation are methods of transformation into grayscale. This
is directly related to brightness as the gray value represents the brightness of the pixel. In
[49] 13 different grayscale transformation methods are compared. All of them apply some
function to each pixel separately (e.g., a linear combination of colors) to get a brightness map
of the image. Thus, as an overall image brightness, the maximum or the average can be taken
again.

Contrast

The next feature that we consider is contrast. For it RMS (root mean square) and Michelson
metrics are among the ones that are often used as mentioned in [54]. Both of them use the
grayscaled image and apply a function to it to get a contrast metric.

More IQA methods based on contrast evaluation are suggested in [I10], [30] and [35]. In
[30] an opinion-aware method is suggested, where for a training set of gray-scaled images the
mean, the variance, and other simple features are calculated and then a normal distribution
is fitted to them. The PDF values of these distributions on the evaluated images are used
as features and support vector regression (SVR) is applied to get the final metric. SVR is
a regression method which is based on the same principle as support vector machine but
performs the regression instead of classification. In contrast to usual regression, it does not
minimize the error but tries to fit the error into some boundaries.
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In [T10] an opinion-aware CEIQ (contrast-changed image quality) measure is proposed. There,
as features for SVR entropy and cross-entropy of the gray-scaled image are used alongside
with a similarity measure of the original and the contrast-enhanced images. In [35] NIQMC
(NR image quality metric for contrast distortion) is proposed where a local and a global
quality metrics are combined together to obtain an overall quality metric. To calculate the
local measure, firstly, an image predicted by AR (autoregression model) is subtracted from
the original. After that, the maximum of the local entropy values of the most salient regions
(chosen as in [37]) of the resulted image is taken as measurement. As a global measurement,
Jensen-Shannon divergence is used between the uniform and the image histograms.

Sharpness

There is a lot of research done on sharpness (or blur) metrics. In order to evaluate sharpness,
spatial or spectral transforms are usually firstly applied to an image. In this section, we
discuss various methods proposed in the literature.

To begin with, let’s look into a simple method suggested in [81] where spatial transforms are
used to evaluate sharpness. There, a Laplacian filter or a Sobel filter is applied to an image.
Then, a magnitude function, the average, and the standard deviation of the transformed
image are calculated as different sharpness metrics.

There also exist methods where spatial and spectral transforms are used together. This
way, S3 method was introduced in [I02], where the author uses the product of a spectral
and a spatial feature to evaluate sharpness. Total variation, which is introduced in [9], is
used as a spatial sharpness measure. Originally, it is defined as the sum of values over an
image after the application of derivative filters. However, in [102] the image is split into
equally-sized small square regions (e.g., 3 x 3 or 4 x 4 pixels) and the maximum of total
variation over all these regions is taken as a spatial feature. This method of splitting the
image into small regions of the same size and applying some transformation or a function to
them (locally) is widely used in IQA. To get a spectral feature, the author also splits the image
into regions. In this case, their size is 32x32 and they are overlapping. Then, DFT is applied
to each region. Afterwards, a composition of a magnitude function, function minimization,
and sigmoid function are applied to obtain a sharpness map and the maximum is taken as a
spectral sharpness measure.

In [31] the authors suggest a new non-NSS opinion-aware metric JNB (Just Noticeable Blur)
which is reported to perform better than all previously developed methods. There, a Sobel
operator is applied to an image and the contrast is estimated in regions of the image with
a sufficient number of edge points. To estimate it, the authors firstly performed an experi-
ment where people evaluated the sharpness of images. Based on its results, they proposed a
function to estimate contrast in each block. After that, the sharpness of the whole image is
calculated from the blocks using a Minkowski metric. In [73] the authors propose an improved
CPBD (Cumulative Probability of Blur Detection) metric, which uses JNB. There, the au-
thors slightly change the contrast function and use 0.63 percentile of the local JNB metrics as
a new overall sharpness metric. This metric is also implemented in the cpbd Python package.
In [117] another quality metric based on JNB is proposed. It is improved to account for
different noise levels in different regions of an image.

In opinion-unaware methods in [§] and [59] the idea of Global phase coherence, initially in-
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troduced in [9], is used to construct a sharpness metric with lower computational complexity.
Firstly, the image has to be periodized and dequantized as described in [71] and [27] respect-
ively. Afterwards, DFT is applied to the image. Finally, the sharpness index is calculated as
a function of a gradient cross-correlation matrix obtained from DFT transformed image and
total variation. In [59] another function is suggested to be applied to total variation and the
gradient cross-correlation matrix to obtain a sharpness metric, so-called s-index.

In [41] an opinion-unaware method is proposed. There, DCT is applied to 8 x 8 regions of an
image and for each coordinate pair (i,7) a Laplace distribution is fitted to DCT coefficients
at these coordinates in all regions. Then, a function is applied to the parameters of the fitted
distributions to get sharpness.

In [42] another opinion-unaware method is introduced. It starts with applying a wavelet
transform with log-Gabor filter and then calculating the local phase coherence (LPC) map
based on it. LPC is introduced in [I06] and uses the fact that the phases of complex wavelet
coefficients form a highly predictable pattern in the proximity of sharp edges. Then, as a
sharpness metric, a weighted average of the LPC map across the image is taken.

Some papers suggest methods with a decreased computational complexity of calculations.
For example, in an opinion-aware method from [I05] features are constructed by applying
combinations of linear and absolute value functions to the image filtered with a derivative
filter. After that, a polynomial function is applied to these features in order to get sharpness
measure. However, parameters of this polynomial function should be evaluated based on
linear regression on a subjectively evaluated image dataset.

Another fast method is suggested in [I03]. There, a Daubechies 9/7 wavelet transform with
3 levels of decomposition is applied to an image. After that, log-energy is computed for LH,
HL, and HH subbands in each level and the total log-energy in each level is calculated as a
linear function of the respective subbands. Finally, the sharpness index FISH is calculated as
a weighted sum of the total log-energy values at each level.

One more opinion-unaware blur estimation metric with low complexity was suggested in [69].
There, a Sobel filter is applied to find edges and after that, the average width of edges is
considered as a blur metric.

Sharpness and noise combined

Several characteristics of an image can be evaluated simultaneously in order to obtain an IQA
metric. This way, sharpness and noise are sometimes combined.

For example, in [I18] the authors calculate gradients by applying derivative filters and con-
struct gradient matrices of regions of an image with rows referring to image pixels and columns
— to a direction of the gradient. After that, they find maximum singular values for each of
these local gradient matrices. Then, a square root of a quadratic function of the maximum
singular value for each matrix is evaluated and its average over all regions is considered as a
final sharpness and noise metric. In [119] an improvement of this metric is proposed. The
previously mentioned metric required a reliable noise variance estimate which is not always
easy to obtain. The improved metric suggests an estimate for this variance.

In an opinion-aware method in [56] a Daubechies 5 wavelet transform is applied locally to the
blocks of size 64 x 64 and the variance of eigenvalues of the HH subband is calculated for each
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block. Then, their average is taken as a feature. The second feature is constructed by firstly
applying the Wiener filter for denoising and, then, evaluating the LPC blur metric. These
features are used to perform a linear regression of the quality based on the subjective scores.

In an opinion-unaware method in [2I] two blur and two noise metrics are calculated for the
image. Firstly, an image is filtered using an average filter. Then, the edges are detected by
means of derivative filters both in the original image and in the filtered image. Afterwards,
two blur metrics and two noise metrics are calculated as rational functions of the values of edge
pixels in the original image and the filtered image respectively. Then, a linear combination
of all 4 metrics is considered a final sharpness and noise metric.

Noise

Noise can be also used on its own in order to evaluate image quality. For instance, in [64] local
gradient matrices are used only to evaluate the amount of noise. Their traces are calculated
and assumed to follow a gamma distribution. After that, a two-step iterative procedure is
performed until the convergence of the noise variance. Firstly, the patches with weak texture
are chosen using some threshold and, then, the noise variance is estimated by means of PCA.

Another approach for evaluation of the amount of noise is proposed in [46]. There, the authors
apply a combination of Laplacian filters to an image and estimate the noise variance as the
sample variance function of the pixel values of the filtered image.

One more noise specific metric is the CINEMA (Content Independent Noise Estimation for
Multimedia Applications) metric described in [98]. In this paper, regions of the image with
weak texture are selected and a wavelet transform is applied to them. Finally, the minimum
over the selected regions of the standard deviation of the difference between the original block
and the LL subband is considered a noise metric.

General IQA

Now, let’s look into general IQA methods. Firstly, we start with IQA methods mentioned in
a survey [65]. Afterwards, we look into other available methods.

One of the most popular IQA methods is BRISQUE (Blind /Referenceless Image Spatial Qual-
ity Evaluator) and it is introduced in [70]. BRISQUE is an opinion-aware NSS metric. In this
method, Gaussian filters are applied to a gray-scale image in order to obtain locally normal-
ized luminances. These luminances are used to produce image features by applying functions
to them and then approximating parameters of a fitted generalized Gaussian distribution
(GGD) and an asymmetric generalized Gaussian distribution (AGGD). Finally, SVR is ap-
plied to these features. This method is implemented in several packages in Python. However,
its computational complexity is fairly high: it takes approximately 1,5 seconds for a 512 x 512
image according to authors (on a standard HP Z620 workstation with a 3.2GHZ Intel Xeon
E5-1650 CPU and an 8G RAM).

Another popular metric IL-NIQE (Integrated Local Natural Image Quality Evaluator) is
proposed in [I14]. It is an opinion unaware metric and, in addition to the features described
in BRISQUE, it uses gradient, orientation, and color statistics obtained after applying various
transforms to an image. There are Gaussian filtering (blurring), derivative filtering and

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 17



CHAPTER 4. LITERATURE REVIEW

wavelet transform with log-Gabor-filters among these transforms. They are followed by fitting
a GGD to obtain features in the same way as in BRISQUE. For the calculation of the image
quality index the similarity method described in in Section is used with fitting a
multivariate Gaussian distribution. The authors concluded that the features obtained after
applying log-Gabor filters are the most influential on the quality. IL-NIQE method, according
to the authors, is more computationally expensive than BRISQUE. In [114] other NSS IQA
methods are compared in terms of time complexity and all other NSS methods mentioned
in [65] are slower than BRISQUE. On the other hand, we can incorporate only part of the
suggested features in order to avoid long computation time.

Other opinion-aware NSS methods discussed in [65], BIQI (Blind Image Quality Indices) and
BLIINDS-II (BLind Image Integrity Notator using DCT Statistics), are several years older
than the ones discussed in the previous paragraph. BIQI is introduced in [72]. Firstly, it
determines distortions in the image by applying a wavelet transform, fitting a GGD, and
applying SVM to the approximated parameters. After that, the same features are used in the
SVR for these specific distortions and the results are combined proportionally to the probab-
ility of the distortions. In BLIINDS-II, discussed in [91], DCT is applied to the regions of the
image and then GGDs are fitted to them. Several functions are applied to the approximated
parameters of these distributions to obtain the features of the image. Then, the features are
combined with a subjective score. Finally, a Bayesian approach is used to obtain quality
scores assuming a multivariate GGD for these combinations.

There are two opinion-aware non-NSS methods mentioned in [65]: both [33] and [63] rely on
image entropy. In [63] spatial and spectral local entropy values are calculated for 3 different
frequency scales of an image. Spatial entropy is calculated directly from pixels values and
spectral entropy — after application of DCT. These entropy values are used to construct
features by pooling and averaging. Finally, the features are used in SVM. In [33] 1D pseudo-
Wigner transform is used in several directions of image and the average or the standard
deviation of normalized anisotropy values are used as quality metrics.

One more opinion-aware method is proposed in [38]. There, the authors use the idea of free
energy to construct features. The authors down-sample an image and apply different Gaussian
filters to it. Afterwards, the features are constructed using linear regression for free energy
on some rational functions of means, variances, and covariances of the input and distorted
images. Some other features are constructed using an image predicted by AR-model fitted to
the input image. The last group of features is obtained in the same way as in BRISQUE in
[70] by means of fitting a GGD. After that, SVR is applied to the features.

The next considered IQA method is a non-NSS opinion-unaware method of quality-aware
clustering (QAC) which is proposed in [108]. In this paper, the training set of original images
is distorted. After that, each image is split into overlapping regions (so-called patches) and
for each patch similarity score between distorted and non-distorted patches is calculated.
Then, the patches are clustered into so-called “quality clusters” based on the averaged and
normalized similarity scores. Afterwards, 3 different Gaussian filters are applied to patches
and the flattened outcomes are used as feature vectors for k-means clustering inside of each
of the quality clusters. To estimate the quality of a new image the following procedure is
performed. Firstly, it is split into patches and the feature vector for each patch is calculated.
Then, for each patch the respective cluster and its’ centroid are determined. A weighted
average of these centroids is considered as a quality estimate. This way any image can be
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classified as a weighted average of its’ local qualities.

In an opinion-aware method in [95] the features are calculated after applying Daubechies
9/7 wavelet transform. Then, linear regression on these features is used in order to obtain a
quality score.

In [36] several different types of features mentioned before are collected in order to train IQA
model. The features are obtained in several different ways. Log-Gabor transform is applied
and phase congruence (PC) entropy is calculated. Local contrast features are calculated
based on the Gaussian-filtered image. Sharpness-related features are evaluated after applying
wavelet transform. Brightness features are entropy values of brightness transformed images.
Color features are saturation and a function of the mean and variances of color channels.
Naturalness features are constructed as parameters of fitted Laplacian onto the normalized
image and the mean of the darkest color of an image. Then SVR is applied to the features in
order to assess the images based on scores obtained from comparing original and enhanced
ones.

In [97] a random tree classificator is used for quality assessment. It uses technical features
of images some of which are extracted based on the similarity between an enhanced and
the original images. Furthermore, there are simplified versions of spatial envelopes used as
features that were initially introduced in [76]. They represent the dominant spatial structure
of an image. To get these features, firstly, DFT is used. Then, in order to get features from
the transformed image, dimensionality reduction methods such as Karhunen-Loeve transform
and PCA are suggested. Although it was applied in [76] to scene images, for example, for
distinguishing man-made structures and nature, it can be still used to assess orientation or
other features of documents.

To sum up this part of the literature review, many IQA methods exist and most of them com-
bine different image features into a single quality metric. The assessment process sometimes
is computationally expensive, hence, instead of the quality metrics proposed we can use only
part of the features which are used in papers to construct a quality metric.

4.2 OCR methods and pre-processing

Features of images that influence the precision of OCR algorithm can be also found in research
related to OCR itself and image pre-processing for it. Thus, it is important to understand
how state-of-the-art algorithms work. Therefore, in this section, we review works on OCR
algorithms and pre-processing techniques.

In [I11] an extensive survey of existing OCR techniques up to 2014 is provided with examples
of works that use different techniques: from traditional computer vision to deep learning
algorithms. The main steps of discussed algorithms are text localization, text and character
segmentation, and word recognition which can be performed in different ways.

For text localization methods color, edge and gradient features, and texture features (extrac-
ted by means of spectral transforms) and their combinations are usually used. Furthermore,
dense neural networks or machine learning algorithms (such as SVM) can be applied to them
in order to verify text regions. After the discovery of text regions, they are binarized: trans-
formed into binary images and lines of text and characters are segmented sequentially. This
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is followed by the character recognition step and word recognition step which uses language
knowledge in order to connect characters.

Since 2014, some progress was made in the area of OCR in each step. For example, in [116]
a new method for text detection that is fast and accurate is introduced. An LSTM network
is used in a new version of the character recognition algorithm tesseract as mentioned in the
Chapter|3] New binarization methods are suggested: for example, improved existing methods
as in [40] or new methods as in [39], which can be sometimes computationally expensive.

Sometimes, pre-processing of an image is performed before OCR itself. In a book about
OCR [13] noise reduction, different types of normalization and compression are suggested as
pre-processing techniques for OCR. However, it is also mentioned that pre-processing should
be handled with care as it can result in worsening OCR.

As our problem covers only photos of invoices, we can also look into methods related to doc-
uments as these problems have some specific restrictions. For example, usually in documents,
there is black text present with a clearly distinguishable background (white paper). If there
is still variation in color, color-reduction (as in [74]) or conversion to grayscale algorithms can
be applied. A survey with a comparison of these algorithms is presented in [49]. Among other
problems that we can encounter are blurring, uneven or not sufficient illumination, document
skew in a photo, cropped text, and damages or transformations of the paper (e.g., folds,
fractures, or stains). Therefore, we look for the approaches which are suggested to correct for
these problems and are not computationally expensive.

In [62] it is suggested to apply projective geometry methods in order to rectify documents
and transform them into the scan-looking paper before application of OCR. However, one
of the limitations of the suggested method is that a page should consist of dense text while
invoices are usually sparse in text.

Furthermore, many papers suggest applying enhancement techniques aimed at improving
different image characteristics such as sharpness or contrast before doing OCR. This way, for
example, in [20] authors propose an image deblurring method based on deconvolution aimed
specifically at text images. Learning-based methods are also suggested in the literature for
cleaning images and enhancing resolution, such as in [11] or in [I07] with the use of GANs.

Some papers approach several document image quality problems. For instance, in [61] the
authors approach both rectification and correction for uneven illumination with the use of
convolutional networks before applying OCR. And in [I7] multi-plain segmentation approach
is suggested for text regions allocation which allows correcting for uneven illumination.

Thus, we can see that OCR methods have shifted from computer vision approaches to mostly
deep learning ones. However, some steps of OCR which do not require learning can be
performed for feature extraction. This way, the text localization step will be further discussed
in Section Besides this, the discussed pre-processing methods for OCR can be also used
as enhancement methods in this project.

4.3 Text images features

In this section, we will look into features that can be extracted specifically from document
images. We will look into text skew and orientation detection methods in Section [4.3.1] and
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into text localization methods in Section [41.3.2

4.3.1 Text skew and orientation detection

Text skew and orientation in images are useful features in IQA of document images. Skew
detection can be performed both on a whole image and locally to detect skew in different
regions of the image. This is useful as paper can be cramped or lie on an uneven surface so
that different skew angles are observed in different parts of the image. Images are usually
binarized and downscaled before detecting skew.

Most of the methods used for skew detection can be classified into the methods which use
the Hough transform, interline cross-correlation, connected component analysis, and project
histograms described in [43], [I09], [79] and [23] respectively.

In [43] the Hough transform is applied to a binarized image. It converts the image from
Cartesian (x,y) space to (p,0) space by applying the formula to black pixels and adding
1 to the respective (p, ) coordinates.

p = xcost + ysind (4.5)

For every black pixel (x,y) p is calculated for all values of # € [0°,...,180°]. This range is
taken smaller in practice as we do not expect large skew angles. In [43], before application
of the Hough transform the authors downscale the image and apply a so-called bursting
procedure vertically in order to increase speed. During this procedure, the sequential black
pixels are substituted by only one gray pixel at the end of the sequence with the intensity
equal to the number of black pixels in this sequence. As now there are gray pixels, the value
in respective (p,#) coordinates is increased by the intensity value. 6 coordinate of the largest
value is taken as text orientation.

In [109] interline cross-correlation is calculated for lines in an image and then accumulated
in order to estimate the skew of the document. Thus, for reliable estimates, this method
requires a lot of text in the image which is not the case in our project. In [23] the region with
the maximum density of black pixels per row is rotated by different angles and the horizontal
projection histogram for each of them is evaluated. The rotation angle for which the mean
square deviation is maximized is taken to be the skew angle.

Several skew detection methods similar to described above are proposed in [58]. There,
the authors also split an image into regions and then propose 7 criteria for choosing text-
dominated regions for analysis. Then, they suggest using the projection profiling method or
the Hough transform for skew and orientation detection.

The method suggested in [55] uses profile analysis for skew detection. The image is split into
regions and for each of them a so-called complexity variance V' (0) is calculated for different
rotation angles 6 of the image. Complexity variance V() is defined as the variance of the
number of transitions between black and white pixels in a line. The value of 6 for which V' (0)
is maximum is considered as a skew angle of a region. In this paper, it is required to choose
regions with a sufficient amount of text which might be challenging for images with sparse
text.

In [79] the authors suggest a connected components method that corrects for noise and im-
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proves on the speed of algorithms that use the Hough transform. Firstly, connected compon-
ents are discovered. In the documents, connected components usually represent letters. Then,
too large and too small components are discharged and two new images are constructed by
retaining only top-left and only bottom-right points of the component bounding boxes. After-
wards, pixels in both new images are clustered in lines and the average of slopes of each line
is considered as a skew metric. A similar method is proposed in [I4]. Besides this, connected
components can also be used in projection profiling which is applied not to an original image
but to the image where only the centroids of connected components are kept as described in
[10]. Another skew detection method based on connected components analysis is introduced
in [45]. There, the authors suggest a method to identify eligible connected components and
to calculate skew angle options based on them. Then, the overall skew angle can be chosen
by applying the projection profile method or Dixon’s Q outliers test.

The authors mention that the methods described above require a lot of text on the image
which is not always the case for images of invoices. Thus, we also study the research related
to skew detection in the images with sparse text.

One of such methods is proposed in [04]. Firstly, an image is downscaled to make text
resemble a texture and then apply methods for detecting texture skew. For this, the image is
convolved with two Gaussian filters in order to obtain two new images, which are considered
as gradients. Then, the magnitude and direction of the gradient are calculated. Finally, the
dominant direction is calculated for different windows of the image by applying Rao’s [89] or
Chaudhuri’s [15] formula. The windows were chosen in such a way that they include some
text and are not completely blank. The use of Chaudhuri’s formula is slower according to the
authors, therefore, in their experiments, only Rao’s function was used.

In [85] the DFT is applied to the image and the direction of the highest density is considered
as a skew angle. In [44] the authors propose to apply a mask to the Fourier transformed
image before a search for direction in order to remove a bias at 45°.

In [25] authors propose to use morphological operations for skew detection. They are used
in order to convert text on the image into black bands and to remove noise from the image.
Then, only baseline pixels of these bands are retained and component labelling is performed
in order to detect lines. Finally, the median skew angle of these lines is reported as a skew
angle. The authors also propose several speed-ups of the morphological operations.

Most of the algorithms described above do not approach the problem of curved strings: they
can only detect skew. In [19] the authors propose an algorithm that will also detect the curving
structure of a text. However, text regions should be chosen manually or by another algorithm
beforehand. Then, connected components (letters) are grouped into strings following several
proposed rules. Finally, the orientation of the strings is evaluated by means of morphological
operations as described in the method from [I8].

Thus, in this section, we have discussed various document skew and orientation detection
and evaluation methods. Document skew is an often problem that emerges during OCR.
Therefore, it is worth evaluating skew angles and using them as features in our project.
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4.3.2 Text regions localization

Let’s look more thoroughly into text localization methods. This problem is researched a lot as
it is a part of OCR methods. Modern methods propose to use convolutional neural networks
(CNN) in order to locate the text regions ([I00]). As these networks do not require training
on our specific images, it is possible to train such a network on some images corpus and then
apply it to our data.

However, let’s first look into not deep learning methods. Most of them can be split into 3
categories according to [I15]: texture-based, connected components (CC) based, and edge-
based methods. The texture-based methods treat text as a specific type of texture and,
depending on the features, distinguishes it from the background. The connected components
method detects connected components and then merges the large ones together. Finally, the
components related to the text are distinguished from background components by geometric
features. The last group of methods detects regions of dense edges. However, these methods
are bad at differentiating texture and text. Thus, they might work only if the background on
the images is absent (e.g., only a piece of paper is present on the image).

Texture-based methods usually require some transforms of an image and a machine learning
algorithm in order to distinguish the text using features. This way, in [I12] the authors
propose to use a wavelet transform in order to extract features, and SVM to classify text and
non-text regions. In [I6] the authors use AdaBoost learning with features such as the entropy
or the mean and standard deviation of intensity in the blocks of gradient images. Thus, if we
would like to avoid any learning, we should look into CC based methods.

One of such methods is proposed in [I15]. There, the authors suggest detecting corner points
and constructing a binary image from them (with white pixels representing corners). Then,
they apply a morphological dilation and, finally, using features of the corner points regions
(area and ratio of white pixels in the bounding box, orientation and aspect ratio of white
regions), they distinguish text from non-text regions.

Another CC based method is suggested in [29]. There, the authors use stroke width transform
(SWT) which substitutes each pixel of an image with the estimated width of the stroke
(straight line of which a letter consists) in which it is contained. Afterwards, connected
components are detected based on the transformed image. The components with the large
variance, too small and too large ones, and the ones that contain others inside are discarded.
The remaining components are assumed to be letters. Finally, the letters are clustered into
text lines taking into account stroke width, the distance between them, and the height of the
components. The lines which are too short are also discarded as noise.

The discussed text localization methods can be used to produce new features in this project
such as, for example, distance from the text to the border of the image.

4.4 Image enhancement techniques

The second part of the project covers image enhancement. Thus, we have to review the
literature on this topic, too. We have already mentioned some methods in Section which
are used as preprocessing techniques for OCR. In this section we will focus both on general
image enhancement techniques (Section and images enhancement techniques aimed at
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document images (Section [4.4.2). Besides this, we will look into text skew correction methods
in Section As there is extensive research done in the image enhancement domain, we
will omit methods with high computational complexity.

4.4.1 General image enhancement techniques

Let’s start with classification of general image enhancement techniques. Most of them are
applied to grayscaled images. These methods can be classified into spatial and frequency
domain techniques (as mentioned in [90], [104], [47], and [68]).

Spatial methods

Various spatial methods are suggested in the enhancement techniques surveys [104] and [68].
In [68] the focus is made on spatial domain methods. In further classification in [68] the au-
thors split spatial methods into point-processing operations and histogram operations. Among
the point-processing methods, they mention taking negative of an image, thresholding, log-
arithmic transformation of the image, gamma-transformation (exponentiation of the image
into power 7), piece-wise linear transformation, and gray-scale slicing (band-pass filter in the
spatial domain). The histogram methods mentioned in the paper are histogram equalization,
histogram matching to another image, and local histogram equalization.

The histogram equalization method can be found in [47]. In [84] the authors propose an
adaptive histogram equalization method for contrast improvement which does not introduce
too much noise as the previous histogram equalization approaches did and which is compu-
tationally less complex. In this method, the grid is introduced and for each grid pixel, its
intensity is set proportionally to the pixel rank among the pixels surrounding it. Then, all
other pixel values are interpolated from the surrounding grid pixel values.

An improved gamma-transformation method, a so-called adaptive gamma correction, is sug-
gested in [87] and later improved in [12]. In this method, power « is calculated using a
normalized histogram of the image and differs for different values of pixels.

Slightly different split of spatial domain methods is presented in [90] and [104]. The following
3 groups of methods are proposed there: smoothing, gray-level scaling, and edge enhancement
methods. The smoothing methods are mostly implemented as weighted matrix filters. These
methods help in reducing noise while blurring the image. The gray-level scaling methods are
analogous to the histogram methods mentioned in [68]. The edge enhancement methods are
presented as rational formulas applied to the gradients and original image to improve the
sharpness of details. For example, subtracting the multiple of the Laplacian of the image
as described in [90]. Moreover, edges can be enhanced by applying a high-pass filter to the
image as the edges are high-frequency components of the image.

Many papers on spatial enhancement methods focus on improving image quality in certain
aspects. More specifically, the authors mainly suggest methods for increasing sharpness,
increasing contrast, or reducing noise.

In [34] the authors use the idea of representing an image as a Laplacian pyramid in order
to increase sharpness. The idea is that the image can be decomposed into a high-frequency
component Ly with emphasized edges and a low-frequency component by applying the re-
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spective filters. Afterwards, the low-frequency component can be again decomposed into a
high-frequency L; and a low-frequency one and so on. The enhancement method is based on
predicting L_1 — a previous high-frequency component. For this, L is first extracted and,
then, L_; predicted as in eq.

L_1 =H(s x BOUND(Ly)), (4.6)

where H is a high-pass filter represented as 5 x 5 kernel and BOUND is a function defined
in eq. [4.7] which allows to avoid extreme values of pixels.

T, ifxe>T,
BOUND(z) =<z, if —-T<z<T,, (4.7)
T ifx<-T

where T'= (1 — ¢) Lomaz With Lo, being the maximum values of Ly.

The constants s and ¢ can be estimated theoretically based on the filter variance. The en-
hanced image is then constructed as the sum of the input image and L_; which has emphasized
edges.

For noise improvement, window filtering techniques are often used. This way, in [53], a center-
weighted median filter is proposed for noise reduction. There, each pixel is substituted by the
median of weighted values inside a window surrounding this pixel.

Separately applied improvement techniques for denoising and sharpening usually do not give
a good result. The method applied last distorts the enhancement by the previous method
and can introduce artifacts. Thus, many authors approach the problem of sharpening and
denoising the image simultaneously. This way, in [75] the authors propose a method that
improves images both in terms of sharpness and noise. The noise filtering algorithm consists
of 4 stages: for each pixel, the neighbourhood is selected, then the pixels to be used for
enhancement are selected in this neighbourhood. Afterwards, the weights are assigned to
these pixels and the weighted sum is normalized. In parallel, a high-pass filter in form of a
3 x 3 filter is applied to the original image and, then, both results are combined with some
pre-defined coefficients in order to get an improved image.

Another method that corrects both for noise and blur is proposed in [50]. There, the authors
suggest using an optimal unsharp mask to improve image sharpness and reduce the noise
level. In this paper, the enhanced image f is constructed from the original image g using the

formula in eq.

f(m,n) = g(m,n) + A(g(m, n))H(g(m,n)), (4.8)

where H is a high-pass filter and X is a coefficient. This algorithm requires training on the set
of images close to ideal to learn coefficients A for different pixel values. In this method, we
again sum up the original image and an image with emphasized edges as we pass the original
through a high-pass filter.

One more training-based method built on unsharp masks is proposed in [I13]. There, the
authors use an adaptive bilateral filter (ABF). It is an improvement of a bilateral filter and in
addition to softening the noise, it sharpens the edges. One more similar method is proposed
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n [83]. It is called adaptive guidance filtering (AGF) and differs from ABF by the weights
which are used in the filter.

In [7] authors propose an approach that combines a smoothing method (sigma filtering ([60])
is chosen by the authors due to its simplicity) and unsharp masks: a so-called constrained
unsharp masking method. Smoothed image and image, passed through a high-pass filter are
summed up with pre-defined coefficients, and the resulting image is clipped (by applying a
function analogically to BOUND in eq. [4.7).

Sigma filtering introduced in [60] is a denoising method. In this method each pixel x(i,j) of
the image is substituted by the average value of pixels lying in the specified window around
(i,7), and specified pixel values range around z(i, j).

In [77] the authors suggest shock filters to improve image sharpness in presence of noise. In
this paper, a blurred image is considered as a convolution of an image of high quality. Thus,
for deconvolution, a partial differential equation with an improved image as an unknown
function is constructed and then solved by numerical methods. According to the authors,
this method allows saving total variance, so that the edges and other lines on the image are
not lost.

Another method relying on differential equations is suggested in [82]. The authors use there
the anisotropic diffusion for edges enhancement. In this paper, an iterative numeric method
for solving partial differential equations is used on the grid of an image.

The contrast of the image is another feature to be enhanced. For example, in [8§] the retinex
function is used to enhance image contrast. In this paper, the authors also propose to use it
for color restoration. Another method is proposed in [48]. There, the image is passed through
a low-pass filter, then, the detailed and smooth regions of the image are separated and, finally,
contrast gain is added to detailed regions according to some thresholds.

To sum up, there is a wide range of available spatial image enhancement methods that are
aimed at different image deteriorations. In this project, we implement some of them and
investigate their performance on document images.

Spectral methods

The survey of spectral methods can be found in [5]. Generally speaking, they suggest the
following algorithm for all spectral domain methods:

1. Apply a spectral transform to an image X (m,n);
2. Apply a filter to the transformed image X'(m,n);
3. Apply the inverse spectral transform to the filtered image f(X'(m,n)).

Among the suggested spectral transforms there are DFT, real DFT, and DCT of 2 types.
The main purpose of the filtering methods is to reduce large transform coefficients which
correspond to low frequencies and make them closer to small ones which correspond to high
frequencies (and, hence, edges). Thus, after the inverse spectral transform, the image with
strengthened edges will be obtained. The authors of [5] propose such filtering methods as mul-
tiplication by a matrix filter, alpha-rooting, modified unsharp masking, and a filter motivated
by the human visual system (HVS). Alpha-rooting is presented in eq.
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fo(X'(m,n)) = X'(m,n)|X/(m,n)\a_l. (4.9)

Modified version of unsharp masking is defined as in eq.

fom(X'(m,n)) = X'(m,n)(H(X'(m,n))(1 - C) + CYHn(X'(m,n)). (4.10)
where H and Hy are two different low-pass filters and C' is some constant.

Finally, the HVS filter is a non-linear filter that amplifies mid-frequencies to which the human
eye is most sensitive. Thus, it is not very relevant for the project as we focus on improvements
for computer vision instead of human vision. The authors report that both types of DCT
with the modified unsharp mask or the HVS filter provide the best result.

In [4] the authors elaborate more on spectral methods. The proposed approaches follow the
same structure with the difference that instead of filtering they suggest applying some function
O(z,y) to the magnitude of the transformed image. In their research, the authors try different
spectral transforms with 4 choices of O(m,n). They are constant, modified alpha-rooting,
logarithmic, and a product of modified alpha-rooting and logarithmic functions, so-called
log-alpha rooting. It is given in eq.

fioga(X'(m, n)) = log(|X' (m,n)|" + 1)7 X' (m, n)| X' (m,n)|* . (4.11)

They also introduce the performance metric and according to it, the best results are obtained
with Walsh transform. The best choice of function O(m,n) might vary depending on the
images. The authors also mention the possibility of application of different O(z, y) to different
regions of the image.

Thus, spectral enhancement methods have a similar structure. The differences are only ob-
served in the spectral transforms and filtering functions which are applied to the transformed
images. In this project, we implement different spectral transforms, filtering functions, and
compare the results.

4.4.2 Image enhancement for text images

We have discussed the enhancement methods that can be applied to any type of image.
However, it is usual that natural scene sharpness enhancement methods do not perform well
on text images according to [20]. That is why we also discuss the research in the area of
enhancement methods which can be applied specifically to the text images.

Recently, many text image enhancement methods have been proposed based on kernel estim-
ation methods. The blurred image b can be represented as k * [ 4+ n, where k is a blurring
filter, also referred to as kernel, [ is a latent (not blurred) image and n is noise. The meth-
ods are based on estimating the blurring filter £ and performing deconvolution to obtain the
unblurred image.

In [20] the authors propose a method for text deblurring. They suggest solving an optimization

problem in eq.

argmin|[b — k * U+ pi(1) + pre(k) + pala) + BI|l — al %, (4.12)

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 27



CHAPTER 4. LITERATURE REVIEW

where p;(1) and pg(k) are priors for the latent image and the blurring filter respectively, a
is an auxiliary image which enforces domain-specific properties, p,(a) is a cost function, and
B is a weight of regularization term. Then, they suggest solving this optimization problem
iteratively: assuming we know k we start with solving it for | with initial value a = [, then
solve it for a using this [ and repeat the process increasing 5. Each step involves calculations
of several FFT. Afterwards, k is estimated and the whole process is repeated again with the
estimated k. In the end, deconvolution is performed using k, a and [.

The authors report the computational time of a few minutes for an image of size 425 x 313
on a PC running MS Windows 7 64bit version with Intel Core i7 CPU and 12GB RAM. This
is too slow for our project as we are looking for the fast methods which will take maximum
2-3 seconds.

A simpler method was proposed in [80] with use of Ly regularization and gradient priors. The
optimization problem posed in this paper is similar to eq. and given in eq.

argmin|[b — k * U012+ ||k 2 + Mo Pi(l) + Py(v1)), (4.13)

where 7, A and o are weights, V[ is a gradient of the image and P;(z) = ||z||o is a prior, where
||z||o counts the number of 0’s in z. The authors also suggest solving this minimization prob-
lem iteratively by introducing an auxiliary variables and solving 3 alternative minimization
problems. Each step, as in the previous method, involves computation of FFT.

This method is reported to be less computationally expensive, although, it still requires the
computational time of 50 seconds for an image of size 255 x 255 on a desktop computer with
an Intel Xeon processor and 12 GB RAM.

A faster deblurring method is proposed in [28]. Its computational time is 8.7 seconds on an
image of a size 255 x 255 (on a PC with an Intel i7 CPU and 8 GB memory) according to the
authors which is still unaffordably long. It is reported to perform well both on text images
and natural scene images. The optimization problem they offer to solve is given in eq.

D
+7||k||?, 4.14
s + Ikl (114)
where a and «y are weights, € is a smoothing-enhancement parameter and D is the magnitude
of the gradient of b. As well as before, the authors suggest solving this optimization problem
by solving iteratively alternative optimization problems using FFT and fixed point iteration
algorithm.

argn%il]aHb—k*le—Fa

However, all these methods are computationally expensive and, hence, are not useful in the
problem approached in the current project. Thus, we will not use them for image enhance-
ment.

4.4.3 Skew correction techniques

Most of the papers on skew detection suggest a simple method for skew correction: rotate
an image by the detected angle. However, the images can have a different skew in different
regions and, so-called slant, which is an angle of the characters tilt. Slant was not observed
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as a problem in this project. However, slant correction methods can be applied to regions of
the image in order to rotate them by the correct angle.

For example, in [99] the authors suggest a slant correction by shear operation. For each pixel
(i,7) its new coordinates (z,y) are calculated as in eq.

{y =J , (4.15)

x =1 — (height — j) tané
where 6 is a slant angle and height is the text height.

There is also research made on the local skew correction. For example, in [93] the authors sug-
gest using a connected components approach to detect characters and after that group them
into the words. Afterwards, the lines and regions of text with similar slope are formed. Even-
tually, the regions are rotated with a help of bilinear interpolation to avoid the overlapping
of text areas.

In this project, we will focus on the simple skew correction methods when the image is rotated
by the angle discovered during the skew detection step.
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Data preparation and labelling

After reviewing the literature on image features and enhancement methods, we should label
the data for classification. For this, the ORTEC algorithm was run on all available images
and the outcomes were saved. We want our algorithm to focus on evaluating the quality of
an image of an invoice and not the content of it. Thus, we cannot simply use the outcome of
the ORTEC algorithm as labels for the data as it also analyzes the content of the invoice. As
mentioned in Chapter [3] we differentiate between correctly and incorrectly rejected images
and between correctly and incorrectly partially recognized images. Therefore, we have to go
through all the invoices manually to distinguish these cases. Then, we can introduce a new
labelling that suits the problem at hand.

We introduce a labelling of 3 classes: positive, partial and negative. When splitting the
images, we were considering that after classifying an image as negative a user of the application
will be asked to take a new photo. Thus, in our labelling, we want to have a negative label on
the images whose recognition can be improved by taking a new photo. The images are split
into the classes according to the following, previously discussed in Chapter [3] possibilities:

e Positive class:

— Fully recognized;
— Correctly partially recognized;

— Correctly rejected;
e Partial class:

— Incorrectly partially recognized;
e Negative class:

— Not recognized (the same as incorrectly rejected);

— Cropped images: the images where part of the text important for recognition is
not seen.

After manual labelling of the data, we get 312 positive examples, 103 partial examples, and
114 negative examples.
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Later, in Section [8.1] we will consider classification into 2 classes, for which we will have to
include partial class either into the positive or into the negative class.

Furthermore, some new data was generated. It was made to increase the number of negative
and partial examples with specific image quality problems. For example, invoices rotated by
different angles, cramped invoices, or invoices out of focus. Firstly, several scans of invoices
were printed and new photos of them were made with different illumination, orientation, and
paper folding. This provided with another 46 negative examples and 9 partial examples which
were immediately included in the dataset. Thus, for the analysis, we have 584 images: 312
positive, 112 partial, and 160 negative examples.

Besides this, some data was generated by blurring recognized images by means of Gaussian
blur kernel filter with different sizes and variances. This data is used only in Section [8.2.7
about dataset enlargement to determine the impact of expanding the dataset with such kind
of data. As the blurred images may be very similar to original ones in terms of all the features
except sharpness, we should handle this data with care.

Besides dataset labelling and expansion, we should also make an adjustment to the ORTEC
algorithm as all invoices used in the project are anonymized as mentioned in Chapter[2} Thus,
we have to exclude the client’s details from the mandatory fields when running the ORTEC
algorithm.

To sum up, we have introduced a labelling that suits the classification problem that we are
solving. Furthermore, we have generated some new images in order to expand the dataset.
Finally, we adjusted the ORTEC algorithm so that it can handle anonymized data.
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Approaches

In this chapter, we discuss the possible approaches to image classification and image enhance-
ment problems.

We start by considering possible approaches to classification. Firstly, we will look at the
problem of classification of invoices into 3 classes: positive, partial, and negative. The first
idea is to use a convolutional neural network (probably, pre-trained on some other data) on
the raw images of invoices. However, due to the insufficient amount of available training
data, it might be not a good idea. On the other hand, the dataset can be extended by doing
further data augmentation from available images and by manually creating fake invoices and
taking photos of them. However, data augmentation by transforming the existing invoices
does not provide completely new data. Furthermore, faking a sufficient number of invoices is
a time-consuming process. Thus, we would better consider other classification methods.

That is why our primary approach is to extract features from the images, such as colors,
brightness, and contrast among others in order to run one of the machine learning algorithms
(e.g. k-NN, decision trees, or SVM). Possible choices for the features can be taken from
image statistics, IQA, and text features papers discussed in Sections and and from
preprocessing section of the OCR, papers discussed in Section When the desired features
are extracted we can classify images based on them and look into incorrectly classified ones
in order to choose new features that might be able to capture their specifics.

Furthermore, classification into 2 classes instead of 3 classes can be investigated. Then, we
have to include the partial class into the positive or negative class. Both approaches might
be suitable: a partial example can be considered a positive as the partial example is analyzed
by the ORTEC algorithm and a user does not have to take a new photo, he has only to add
missing details. On the other hand, it might worth including it into the negative class as the
reason for being partially recognized might be the bad quality of the image. We will approach
this question in Section 8.1

In the beginning, the complexity of the developed algorithm would not be considered as an
important factor and we will be looking mostly at the evaluation metrics. After investigating
the quality of suggested options, we will look into which of them performs better in terms
of both complexity and quality. Moreover, images can be downscaled before running the
algorithm which will improve the speed of it. Thus, we can use downscaling to balance
performance and speed, too.
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Next, let’s consider several approaches to the image enhancement problem. The features
extracted for classification can also provide us with the information on which image charac-
teristics are contributing the most to the recognition of invoices. Thus, the improvement of
image quality might be focused on these features.

Furthermore, after the application of enhancement techniques, some images might become
recognized by the ORTEC algorithm and some might become not recognized. Thus, we
can classify the images according to the enhancement techniques that help to improve their
quality. Therefore, we would be able to apply the enhancement technique only to the images
on which we assume it to have a positive impact.

Thus, we have discussed the approaches that we will use for solving the classification problem
and enhancement problem. In the next sections, we will elaborate on these methods.
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Features extraction

In this chapter, we discuss in detail the implemented methods for feature extraction intro-
duced in Section We choose several methods for each of the image characteristics, such
as brightness, contrast, and sharpness. We choose the methods which are simple in imple-
mentation, have relatively low computational complexity, and perform well in evaluating the
respective image characteristics according to the authors of the papers.

After implementing these methods for each of the image characteristics, we implement the
extraction of the features used in the state-of-the-art general IQA methods BRISQUE and
IL-NIQE. Finally, we implement the extraction of relevant document-related features such as,
for instance, skew.

7.1 Image characteristics

In this section, we discuss the implemented methods for the extraction of such features as
brightness, contrast, and sharpness as well as some other image characteristics.

To begin with, we extract basic image features such as width and height of an image in pixels,
size of the image in bytes, and the average values of the 3 RGB (red, green, and blue) color
channels.

Afterwards, we extract brightness features, described in [6]. There are several methods sug-
gested which use RGB color channels values, such as the average (eq. , the maximum

(eq[7.2)), luma (eq. [7.3) and luminance (eq. [7.4).

R+G+ B
B, - 2t&t5s (7.1)
3
Bmax = max(R, G, B). (7.2)
Bluma = 0.299R + 0.587G + 0.114B. (7.3)
Biuminance = 0.2126R + 0.7152G + 0.0722B. (7.4)
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(a) Example of an image with high brightness. (b) Example of an image with low brightness.

Figure 7.1: Examples of images with high and low brightness.

All of these brightness metrics appear to be correlated. Thus, let’s look at the examples for
B,y. The largest values of B,, are obtained for scans (up to 250 as in Fig. [7.1a]) and the
lowest values — for dark images (as in Fig. with brightness 84) as expected.

The next step is to extract contrast features. The following methods are considered: ratio
(eq. [7.5)), Michelson (eq. [7.6), and RMS (eq. [7.7). Here, B; is a brightness metric and i €
{av, max, luma, luminance}.

maxB; — minDB;
Cratio = av 3 . (75)

maxB; — minB;
ich = N . .6
Ctich maxB; + minB; (7.6)

CrMS = Std(Bi). (77)

Michelson contrast metric does not provide any information in our setting as, due to anonym-
ization with white boxes used in many cases, the lowest brightness is 0 and the highest is 255
which results in the same Michelson contrast for many different images. Two other contrast
metrics perform better. The ratio contrast metric returns low values mostly for scans while
RMS also returns low values for images such as in Figure (0.07 while the mean for the
feature is 0.17). The images with high contrast, according to both ratio and RMS metric, are
usually the ones with dark background as in Figure (the image with the highest RMS
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(a) Example of an image with low RMS contrast. (b) Example of an image with high RMS and ratio
contrasts.

Figure 7.2: Examples of images with high and low contrast according to the RMS and ratio
contrast metrics.

contrast of 0.26). Thus, it does not give a lot of information on the contrast of the invoice
itself in presence of a dark background.

Most of the calculated contrast values also turn out to be correlated as they are calculated
based on correlated brightness metrics. Thus, they are excluded from the set of features in
the further analysis. This will be elaborated more in Section regarding feature selection.

The next step is to include the average hue and saturation pixel values. For this, a Python
function is used which converts an image from RGB color channels to HSV (hue, saturation,
value). Value channel is equivalent in this case to eq. Low hue and saturation levels are
usually obtained on scans. In Figure[7.3|the examples of images with high hue level (Fig.
of 153 (mean hue level is 44) and high saturation level (Fig. of 159 (mean saturation
level is 33) are presented.

After that, several sharpness metrics are included in the feature set. The first considered
metrics are so-called Laplace sharpness metrics, which are discussed in [81]. There, the image
is firstly convolved with the Laplace filter [ (eq. . Then, the mean and the standard
deviation of the pixels after convolution are considered as the Laplace sharpness metrics.

1 4 -1}. (7.8)

Both the mean and the standard deviation Laplace sharpness have small values on blurred
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(a) Example of an image with high hue level. (b) Example of an image with high saturation level.

Figure 7.3: Examples of images with high levels of hue and saturation.

images as in Figure (the mean equals to 0.34 and std to 0.6 with the average over all
images of 1.3 and 22.4 respectively). However, low values of both features are occasionally
obtained on sharp images, too. High values of mean are obtained on images of a screen as
in the Figure (the mean equals to 7, std — to 131). The standard deviation takes large
values both on images of a screen and scans.

Then, S3 spatial and spectral sharpness measures from [102] are implemented. For spectral
feature calculation, FFT is applied to an image and it is converted into polar coordinates
image x. Then, z(f) = > ,x(f,0) is computed, where § is orientation and f is frequency.
Afterwards, o* given in eq. is found numerically using Nelder-Mead algorithm provided
by a Python package.

o* = argmin |/ = (/)| (7.9

Finally, spectral sharpness measure Sspecirar is calculated as in eq.

1

Thes@-2 (7.10)

Sspectral =1-

To calculate spatial S3 metric, the image is split into 20 x 20 = 400 regions X;. Then, total
variance v(X;) of each region is calculated according to eq.

v(X;) =Y | — ], (7.11)
i

where 7, j are all the pairs, so that x; and z; are neighbouring pixels.

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 37



CHAPTER 7. FEATURES EXTRACTION

W Bankrelatie:
= w: NL|7A1BNAN$14 7190
1271 KW Huizen
AGB declarant: 12059221
DATUM: 16 mei 2018 DECLARATIE:  84113/1346

patint bendatm code_sem santal _prostate bodrag.

(a) Example of an image with low mean and std of (b) Example of an image with high mean and std of
Laplace sharpness. Laplace sharpness.

Figure 7.4: Examples of images with high and low Laplace sharpness.

Afterwards, Sspatiar = max; v(X;) is taken as spatial S3 sharpness measure.

The spectral sharpness measure takes values in the interval [0.999, 1] and does not provide a
lot of information. This might be happening since we calculate spectral sharpness over the
whole image and do not aggregate it over regions as suggested by the authors of [102]. If we
calculate it over regions in the same manner as spatial sharpness, then it takes more than a
minute to compute which is too long for the current project.

In contrast, the spatial S3 sharpness gives some good insights: low values are obtained for
blurred images as in Figure (13030 with the average feature value of 57927). High values
are obtained for scans and screen images.

Furthermore, spatial S3 sharpness metric Sspetiqr and both Laplace sharpness metrics are
applied to 64 x 64 regions of an image and then, the standard deviation, the minimum, the
maximum, and histograms over the whole image are used as features, too. We use 18 bins to
cover the interval (100000, 500000) and 2 more bins for values larger than 500000 and smaller
than 100000 for Sgpetia. Similarly, we define 30 bins for Laplace sharpness by covering the
interval (0, 3) for the mean and (0, 30) for the standard deviation. In addition, we include the
average of the mean values larger than 3 as a feature. All histograms are scaled so that they
sum up to 1. This way, the sizes of an image do not influence them. Including these regional
sharpness features will allow accounting for the difference in sharpness in different regions of
the image.

One more sharpness metric implemented is FISH sharpness index from [I03]. There, as
discussed in Section Daubechies 9/7 wavelet transform is applied to an image with 3
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levels of decomposition resulting in Sxy,, where XY € {LH,HL, HH} defines a subband
and n € {1,2,3} — the level of decomposition. Then, log-energy for the subband XY, is
calculated as given in eq. [7.12]

1 .
Exy, =logyy | 1+ N E Sg(yn (i,9) ], (7.12)
n ..
27]

where NN,, is the number of the subband coefficients in the subbands on the nth level of
decomposition.

The total log-energy for each level n is calculated as in eq.

Erg, +FEur,
2
where a = 0.8 is a parameter chosen empirically to give a larger weight to the HH subband.

Finally, the FISH sharpness index is calculated as in eq.

E, = (1 — a) + OéEHHn, (7.13)

3
FISH=> 2°"E,. (7.14)
n=1

Low values of FISH index are obtained on blurred images such as in Fig. with a value 3.7
(the mean FISH sharpness is 10). High values are obtained both on scans and screen images
similarly to what was already observed for the Laplace sharpness metric.

Another implemented sharpness metric is s-index. It is calculated using the algorithm pro-
posed in [59] but without the last step. The image is first periodized and dequantized using the
algorithms from [71] and [27] respectively. Periodization is performed to cancel the border-to-
border discontinuities. Dequantization is performed in order to avoid adding 0’s to the total
variance that correspond to the flat regions artificially created by quantization of the image
to {0,1,...,255} and add small numbers instead.

The periodized image per(u) of the original image wu is obtained as given in eq.
per(u) =u — s, (7.15)

where § (a FFT of s) is given by eq.

R o(q,r)
s(q,r) = , 7.16
(¢:7) 4—2008%—20%% ( )

where M, N are the sizes of the image and v = u on all the pixels except the borders where
v equals to the difference between the opposite border pixels. v is a FFT of v.

Dequantized image 7(u) is defined as inverse FFT of T/(E) given in eq.

— —

7(u)(q,r) = per(u) (g, r)e ™ F+F), (7.17)
where m is a FFT of per(u).

The further algorithm can be generally described as following:
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(a) Example of an image with a high s-index. (b) Example of an image with a low s-index.

Figure 7.5: Examples of images with high and low s-index.

1. Calculate total variance TV of the whole image 7(u) similarly to eq.

2. Calculate vertical and horizontal gradient images u, and u, of the converted image 7(u)
using derivative filters;

3. Apply FFT to both gradient images to obtain u, and d,;

4. Construct new images I'; with ¢ € {zx, 2y, yy} as an element-wise product of the abso-
lute values of the respective transformed gradient images;

5. Calculate p, 02 according to eq. 7.19;
6. Calculate a sharpness index S;,q as in eq.

2M N
p= (g + o)/ —— (7.18)
1 (Tl | ITayll3 | [Tyl
2 zx|[2 Tyll2 yyli2
= 2 7.19
7 7rMN< a2 * QzOy * o2 ’ (7.19)

where o, and o, — 2-norms of the horizontal and vertical gradient images respectively and
M, N — sizes of the image.

(7.20)
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S-index can be as well a useful sharpness feature for the classification as the minimum values
of s-index are obtained on images of a screen as in Fig. with a value of 7 (the minimum
value) and high values are obtained on visually sharp images which are not scans as in Fig.
with a value of 724 (the maximum value, the mean value of s-index is 303).

Thus, in this section, we have discussed in detail the implementations of extraction of the
features that correspond to various image characteristics such as brightness, contrast, and
sharpness. We have looked into the examples of the images with high and low values of these
features and discussed how these features can help in the classification.

7.2 General image quality measures

After extraction of the features which represent image characteristics, we move to the ex-
traction of the features which are used in state-of-the-art IQA algorithms. As mentioned in
Section [4.1.2] we can use features from general IQA algorithms without the last step, which
is performed to estimate overall quality. This makes sense as we create our own analogue of
IQA algorithm and, thus, want to use features rather than single quality estimates. Besides
this, we can’t apply this last step for opinion-aware metrics as we do not have subjectively
evaluated data.

We implement the features from BRISQUE ([70]) and IL-NIQE ([114]) algorithms. In BRISUQE,
there are 18 features used which are parameters of 4 asymmetric GGD (AGGD) and one GGD.
Firstly, MSCN (mean subtracted contrast normalized) coefficients I(i,j) are calculated ac-

cording to eq.

Freo. I Z)] — M 7’7]
i, j) = 100 = nli-J)
o(i,j) +1
where [ is the gray-scale image, local mean field p is the image I blurred with a Gaussian
filter of size 3 x 3 and the local variance field o2 is the image (I — u)? also blurred with a
Gaussian filter.

: (7.21)

Then, products of MSCN coefficients along 4 different orientations (horizontal, vertical and

2 diagonals) are calculated as in eq.

H(i,j) =1(i,))I(i,5 + 1), (7.22)
V(i,j) =1(i,/)I(i +1,5), (7.23)
D1(i,5) = I1(i,))I(i+ 1,5+ 1), (7.24)
D2(i,5) = 1(i,)I(i+1,j —1) (7.25)

MSCN coefficients are assumed to obey to GGD while H, V, D1, and D2 are assumed to
obey to AGGD with probability density function (PDF) given in eq. PDF of GGD has
the same form with a difference that o; = o, and, hence, its PDF has a from of eq. [7.26] with
only one case.
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—1 B Z‘TZ)V <0,
fziv,00,0,) = (Bi+Br)T (;)ei L)u ’ (7.26)
Graor@m© w20
where
T (L
B = o \/% (7.27)
T (L1
Br = UTJ. (7.28)

Then, flattened MSCN coefficients are fitted to GGD and parameters v and ¢ are approxim-
ated using the moment-based matching approach from [57]. Alongside with it, H, V', D1 and
D2 are fitted to AGGD and the parameters v, og;, o, and its mean are approximated by the
same method.

(a) Example of an image with a low BRISQUE o value (b) Example of an image with a high BRISQUE o
for MSCN coefficients. value for MSCN coefficients.

Figure 7.6: Examples of images for high and low values of BRISQUE feature o for MSCN
coefficients.

BRISQUE shape features v distinguish well scans and images of a screen. For example, one of
the smallest values of shape parameter v = 0.3 for MSCN coeflicients is obtained on the scan
in Figure and one of the highest v = 25.8 is obtained on Figure [7.4D] which appeared
also for the Laplace features. Other BRISQUE features do not have that obvious explanation.
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For instance, the images presented in Figure have a low value o = 0.28 (Fig. [7.6a) and a
high value 0 = 0.72 (Fig|7.6b]) of o parameter of distribution of MSCN coefficients.

Let’s move to the next investigated IQA method which is IL-NIQE. IL-NIQE method uses
BRISQUE features and, besides them, introduces new ones. To extract some of these features,
image transformations are required. Firstly, the original image I is converted from RGB
channels into 010503 channels by the transformation in eq. resulting in the image Io.

O1 0.06 0.63 027\ /R
O, =(03 004 —035](G]. (7.29)
Os 034 —06 017 ) \B

Then, vertical and horizontal derivative filters or Sobel filters are applied to Ip to obtain
gradients of the image, fov and th. The difference between the filters is that the Sobel filter
provides the smooth gradient of the image while the derivative filter does not. However, it
was revealed that the type of filter does not influence the classification algorithm performance
much. Thus, it was decided to apply derivative filters.

(a) The image with the minimum value of IL-NIQE (b) The image with the maximum value of IL-NIQE
horizontal gradient feature o = 535 for the channel O horizontal gradient feature v = 0.51 for the channel Oz
(the mean is 8657). (the mean is 0.27).

Figure 7.7: The images with the maximum and minimum values of some IL-NIQE horizontal
gradient features.

Afterwards, for each of the channels 010503 of va and th MSCN coefficients are calculated
and parameters v and o of fitted GGD are approximated resulting in 12 features. We will
refer to them as to IL-NIQE horizontal and vertical gradient features. These features perform
well in evaluating sharpness. For example, the maximum values of the shape parameter v
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for all channels O1, Oz, and Os are obtained on screen images and blurred images and the
minimum values are obtained on scans. The variance parameters ¢ distinguish blurred images
well, too. Their minimum values are obtained on blurred images and the maximum values are
obtained on scans. The examples of blurred images that can be detected using these features
are given in Figure [7.7] Thus, we can see that the IL-NIQE horizontal gradient features are
helpful when evaluating blur in images.

Next, 6 IL-NIQE color features are extracted using RGB color channels. These features are
the means and standard deviations of Iy, I and I3 defined as in eq. [7.30}[7.32}

Iy =(log R — pug +1og G — i + log B — pup)/ V'3, (7.30)
ly =(log R — g +log G — pe — 2log B + 2up)/ V6, (7.31)
Is =(log R — g — log G + pax) / V2, (7.32)

where pug, g and pp represent the means of log R, log G and log B respectively.

NLG7ABNADG27000800 S7a0P
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(a) Example of an image with a low value of IL-NIQE (b) Example of an image with a high value of IL-NIQE
mean color feature for lq. mean color feature for [.

Figure 7.8: Examples of images for high and low values of IL-NIQE color features.

Low values of the mean color features are obtained on scans and images with a prevalence of
gray color as in Figure The mean color feature for I; in this image is —0.627 while the
average value of this feature is 0.281. High values are obtained on images with a wide range
of colors or images with a not gray but some other prevalent color: for instance, pink or blue.
An example of a large color mean equal to 0.87 can be found in Figure The standard
deviation features also take the minimum values on scans and images with a prevalence of one
color. Large values are obtained if the image has, for example, a black or blue background
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which contrasts with the white color of the paper. Thus, IL-NIQE color features distinguish
several interesting color properties of images. However, the colors do not play a significant
role in OCR algorithms, so, these features might be not very useful for the classification.

(a) Example of an image with a low value of the (b) Example of an image with a high value of the
feature. feature.

Figure 7.9: Examples of images with low and high values of simple IL-NIQE Gabor feature
v for the orientation 0 and scale 1/2.

Finally, 150 features are calculated by applying log-Gabor filters. We apply FFT to the
grayscaled version of the original image and transform it into polar coordinates. Then, it is
multiplied by a set of log-Gabor kernels (eq. 4.3)) of the same size as the image with o, =
0.996 \/m, o9 = 0.9967/5v/2, and all possible combinations of 5 different central orientations
(0, /5, 2w /5, 31/5, 47 /5) and 5 different scales (1/2", wheren € {1,...,5}. Here, high values
of the central scale correspond to high-frequency structures such as edges, and low values — to
low-frequency structures such as blurred edges or noise. The central orientation represents the
direction in which the sharpness of the image is assessed. Furthermore, vertical and horizontal
gradient images are constructed from the grayscaled original image using respective derivative
filters. Then, they are also transformed into polar coordinates and multiplied by the same
set of log-Gabor kernels. After application of log-Gabor filters, the images are transformed
back to Cartesian coordinates and back from frequency domain using inverse DFT. Next, the
obtained real part of transformed images is flattened and parameters v and o of fitted GGD
are approximated. This results in 3 x (5 x 5) sets of parameters and, hence, 150 features.
50 of them which were obtained from the grayscaled original image we will call simple IL-
NIQE Gabor features. Other 100 we will call horizontal and vertical gradient IL-NIQE Gabor
features respectively. In the original paper [114], the authors also suggested fitting GGD to
the imaginary part of the transformed images. However, we observed a very high correlation
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between approximated parameters of GGD for the real and imaginary parts, thus, we decided
to keep only the ones related to the real part.

We can notice that some of the IL-NIQE Gabor features can capture the difference in sharp-
ness. For example, we obtain one of the 5 smallest values (0.25 with mean of this feature
of 0.55) for the simple IL-NIQE Gabor v feature with the orientation 0 and scale 1/2 for
the image in Figure However, high values of this feature are obtained on various kinds
of images: screen images, scans, and sharp images as in Figure (equals to 0.885) which
does not provide useful information for the classification. Another example of a blurred image
for which we obtain extreme values of some IL-NIQE Gabor feature is given in Figure [7.7a
There, we obtain the minimum value of the simple IL-NIQE Gabor ¢ feature with the ori-
entation 0 and scale 1/8 (equals 0.45, the mean of this feature is 31.5). The maximum values
of this feature are obtained on scans. Therefore, it also succeeds in distinguishing blurred
images and scans.

Thus, in this section, we have discussed the features which are used in BRISQUE and IL-
NIQE IQA method and elaborated on their implementations. Furthermore, we have shown
that these features can differentiate between various kinds of images such as, for instance:
scans and screen photos, sharp and blurred images, images with a wide range of colors and
images with a prevalence of a single color. Therefore, these features might add value to the
classification algorithm.

7.3 Document-specific image quality features

In the section above, we have discussed features that can be relevant for any kind of images.
In this section, we will discuss the document-specific features.

7.3.1 Skew evaluation

One of the document-specific features is text skew. To evaluate it, several methods from
Section [4.3.1] are implemented.

Before applying the methods, an image is downscaled by factor 4, binarized, rotated to
correct orientation, and cropped by 10% from each side. Downscaling is done to reduce the
computational cost, and binarization is done as chosen skew detection methods use a binary
image as an input. Cropping is performed in order to minimize the presence of paper edges
on the image and try to retain only text.

Then, 7 methods of skew detection are applied. Some of these methods are applied not only
to the whole transformed image but also to the 32 x 32 regions of it in order to account for
the possibility of different orientations in different regions of the image. Only the regions
with a sufficient amount of black pixels (more than 3 — 5% of the region) are considered
for regional skew evaluation. Then, the mean, the standard deviation, and the maximum
absolute value of the regional values are taken as features. This results in 3 features which we
will refer to as general regional skew features and will extract for all skew detection methods.
Besides them, the histograms of regional values are constructed and also taken as features
which gives from 9 to 15 features — depending on the number of bins. The bins were chosen
as [< =b,—b,—b+1,...,0,1,2,...,b,> b] for b € {3,6}. This split into bins provided the
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highest number of important features compared to other investigated splits.

The first implemented method is the one using the Hough transform from [43] which is
discussed in detail in Section[£.3.1] It is implemented both for bursted and non-bursted images
(resulting in 2 features) as well as for regions 32 x 32 of the non-bursted image (resulting in 3
general regional skew features and 9 histogram features for split into the bins with b = 3). Its
outcome is not trustworthy as for some examples of scanned invoices it returns various large
skew angles instead of values close to 0 (Tab. . This is expected as this method requires
dense text on the image. However, we keep these 14 features as they still might provide some
useful information.

Two more implemented methods: with use of the DFT as in [85] and with the use of connected
components as in [79] do not provide with reliable results and, hence, were not used further.

Next implemented methods provided more reliable estimates. They are the complexity vari-
ance (CV) method from [55], the projection profile (PP) method from [23], the morphological
method from [25], and the Sauvola method using Rao’s formula from [94].

The complexity variance and projection profile methods are applied to the whole image res-
ulting in 1 feature each, and to the regions of it resulting in 3 general regional features for
each method, 9 histogram features for CV with b = 3, and 15 histogram features for PP with
b = 6. These methods were already explained in Section

In the morphological method, we first apply a morphological closing operation with a line
structuring element 18 x 1 and then, an opening with a square structure element 5 x 5. Let’s
define these morphological operations. The closing operation is a dilation followed by an
erosion. The opening operation is an erosion followed by a dilation. By definition, the erosion
transforms each pixel of the image into 1 if the structuring element centered in this pixel
fits the input image, meaning that all the covered image pixels are equal to 1. The dilation
is a similar operation with the difference that the structuring element has to hit the input
image, meaning that at least one of the covered image pixels should be equal to 1. In our
project, pixels that equal to 1 are black pixels. There exists a Python library that provides
morphological operations on images, so there is no need to implement them manually.

After applying the morphological operations, a so-called transfer image is constructed by
keeping only black pixels followed by white in the vertical direction. Afterwards, lines con-
sisting of neighbouring pixels are identified. Finally, the skew angle of each line of sufficient
length (more than 8 pixels) is calculated. In the same manner as with regions, we calculate
the mean, the standard deviation, and the maximum of the absolute value of these skew
angles as features (resulting in 3 features) and constructing histogram with b = 3, which gives
9 more features.

One more used method, a so-called Sauvola method by the author name, is introduced in
[94]. In this method, the image is filtered in vertical and horizontal directions with line filters
ha(i,7) and hy(i,j) given in eq. resulting in [, and I, respectively.

2 _ (2452
he (i, j) = 0_726 - ) (7.33)
. 27 _ 4%
hy(i,j) = 2¢ 7 (7.34)
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where —s < i,j < s with s &~ [a\/—Zloga - log(0.005)}.

Afterwards, a gradient vector (G, @) is calculated with G = /12 + fg and ¢ = arctan(l,/1,).

Finally, a Rao‘s formula (eq. [7.35)) is applied to the windows of size m x m with m = 10 in
order to find skew angles 6 for each window.

1 (arctan 21 2 G(i,j)%in(?cﬁ(i,j))) . (7.35)

b =73 S Sy Gl )% cos(26(i, 7))

2
Then, as before, we use the mean, the standard deviation, and the maximum absolute value
of all 0, (resulting in 3 features) and histogram features with b = 3 (resulting in 9 features).
In addition, we include the most frequent 6 value as a feature as this is how the authors define
the skew angle of a document in [94].

Image | Fig.[7.10 Fig.[7.10b] | Fig.[7.10c
M angle | std | angle | std | angle | std
Hough -15 | 11.9 -13 | 12.9 4| 13.3
Ccv 0| 84 38| 7.2 0] 126
Morphology -1 ] 4.8 31 39 -6 | 8.9
PP -1 26 5| 34 -5 9.6
Sauvola -2 | 128 -3 10 0104

Table 7.1: The skew angles for some examples (positive skew angle corresponds to counter-
clockwise rotation).

Kk 37+,

Banirelatie:
TBAN: NL74ABNA 06 8664 1939
Wt medischeentrur

(a) Example of an image with no (b) Example of an image with skew  (c¢) Example of an image with high
skew. present. std of the regional skew angles.

Figure 7.10: Examples of images with and without skew.

We also try splitting the image into 6 regions: 3 by vertical and 2 by horizontal and apply CV,
PP, and the Hough methods to these regions as an alternative to the histogram features. This
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results in 6 new features. However, the use of these features instead of the histogram features
gave worse classification results during the experiments and, hence, they are not investigated
further.

Let’s look into several examples and estimate the quality of the suggested skew evaluation
methods. We look at the images with different visible levels of skew. The observed results
are presented in Table We can confirm that the Hough method is the least reliable as
mentioned before, while 4 other methods may sometimes give incorrect results. For example,
CV method for Figure [7.1I0b] or both Sauvola and CV methods for Figure provide

inaccurate skew angle estimates.

Thus, we have seen that skew evaluation methods perform differently. Some of them do not
provide reliable results. Others perform well on the majority of the images but can still
sometimes give incorrect results. Therefore, in the classification algorithm, we will use the
skew features extracted using several different methods.

7.3.2 Other text features

Other text features which are important for recognition algorithm are the font of the text
and its closeness to the borders of the image. The latter helps to understand if the text is
not fully seen.

In order to evaluate font quality, a font thickness metric is developed. Firstly, the image
is cropped by 10% from each side, downscaled by the factor of 2, and binarized. Then, the
bursting procedure from [43] is applied in the horizontal direction, transforming each sequence
of black pixels into one pixel with a value of the sequence width. Then, we split the image
into the blocks of size 32 x 32 and calculate the mean width and the standard deviation of
the widths in each block. Finally, we use the mean over all blocks and the histograms of the
mean and standard deviation values with 8 equidistant bins in the interval [0,4] as features.
We consider only this interval as large font thickness usually does not pose any problems for
recognition. Besides this, we also use the mean of the values which lie in the interval [0, 4] as
a feature. This helps to omit large values which can also correspond to the horizontal paper
edges or some other horizontal non-text elements.

These features do not always represent font thickness as they are supposed to: there are a
lot of additional lines on images whose thickness is also considered as font thickness. Besides
this, some letters also have horizontal strokes. However, in many cases, this metric represents
font thickness well. For example, in Figure the images with a thin and thick fonts are
presented.

To estimate the distance from the text to the borders we also have to binarize the image.
After that, this distance can be estimated in several ways. The first, simple way, is just to find
the closest black pixel to each of the borders of the image. The second approach is to apply
the bursting procedure in the horizontal direction both from the left to the right and the other
way around, and in the vertical direction from the bottom to the top. This way, we can find
the right-most, the left-most, and the top-most pixels of the lines in the image. Then, we find
the closest pixel to the border with a value in the pre-specified interval [2,10] for horizontal
lines and [20, 50] for vertical lines which correspond to the possible font thickness and letter
height respectively. The distance from this pixel to the respective border is considered the
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(a) Example of an image with low font thickness equal (b) Example of an image with high font thickness
to 1.7. equal to 7.1.

Figure 7.11: Examples of images with high and low font thickness.

distance from the text to this border. This way, we decrease the influence of noise and edges
of the paper on the distance metric. However, this metric is not accurate due to the presence
of various non-text elements and not precise estimation of the intervals for the pixels values
which to consider part of the text.

That is why another possible method for estimating the distance from the text to the border
is implemented, too. In this method, we detect text regions first and then calculate the
distance from them to the borders of an image. This can be done by applying morphological
operations mentioned in Section [£.3.1] and explained in Section Firstly, we apply a
closing operator with a line structuring element of size 50 x 1 and then, an opening with a
structuring element of size 10 x 10. Then, we measure the distance from the detected text
regions to the left, right, and top borders. Besides this, we crop the image by 3/8 from above
and below in order to measure the distance from the left and the right borders in the middle
of the image. This way we reduce the impact of non-text elements which are located in the
top and bottom parts of the image.

The morphological method is bad in distinguishing background texture (if present on an
image) from the text. Thus, paper edges and the surface on which it lies decreases the
precision of the text localization and, hence, distance measurements are not correct. For
example, for the image in Figure the estimated distance to the right border equals 0
because of the textured background present on the right side of the image. On the other
hand, for the image in Figure [7.12D] the distance to the right border is 388 which is close to
reality.
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Figure 7.12: Examples of the images with different distance between the text and the right
border calculated using the morphological method.

Thus, in this section, we have suggested several text-related features such as font thickness and
distance from the text to the borders of the image. These features do not always accurately
represent what they are supposed to. However, in many cases, they are good estimates of the
respective quantities. Therefore, we keep these features for further analysis.

7.4 PCA features

As one more source of features, we can consider the features extracted from images by means
of PCA. We convert images to the grayscale, resize all of them to the standard size and flatten.
Then, we perform PCA analysis on this data in order to get components that explain the
largest share of the variance and keep them as features. It turned out that there exists one
component explaining more than 50% of the variance and the first 50 components together
explain 85% of the variance. The feature which explains the most of the variance turns out to
be highly correlated with the ratio contrast feature with the estimated correlation coefficient
of 0.93. At the same time, all the other features do not have the correlation higher than
0.8 with already extracted features. However, these PCA features do not add value to the
classification model and do not provide sufficiently high precision and recall when they are
used alone for classification. Thus, we do not investigate these features further.
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Image size 1200 x 900 2500 x 1900 4000 x 3000
M mean std mean std mean std
BRISQUE (5 feature sets) 0.287 | 0.031 | 1.186 | 0.152 | 2.893 | 0.291
IL-NIQE gradient
(3 feature pairs)
IL-NIQE color 0.289 | 0.021 1.263 | 0.106 | 3.167 | 0.114
IL-NIQE simple Gabor
(25 feature pairs)
IL-NIQE gradient Gabor
(25 feature pairs)

0.509 | 0.032 | 2.226 | 0.183 | 5.578 | 0.242

5.551 | 0.549 | 25.822 | 0.783 | 64.753 | 0.685

5.801 | 0.554 | 26.911 | 0.736 | 67.283 | 5.874

Size 0.024 | 0.005 | 0.103 | 0.015 | 0.251 | 0.035
Average brightness 0.031 | 0.004 | 0.137 | 0.006 | 0.347 | 0.012
Max brightness 0.018 | 0.004 | 0.077 | 0.005 | 0.193 | 0.009
Luma brightness 0.031 | 0.005 | 0.137 | 0.006 | 0.347 | 0.014
Luminance brightness 0.031 | 0.004 | 0.136 | 0.005 | 0.348 | 0.013
Contrast ratio (2 features) 0.002 | 0.0005 | 0.010 | 0.001 | 0.065 | 0.002
Contrast RMS 0.014 | 0.002 | 0.062 | 0.004 | 0.157 | 0.008
Hue and saturation 0.005 | 0.001 0.019 | 0.002 | 0.047 | 0.003
Laplace sharpness 0.028 | 0.003 0.122 | 0.006 | 0.312 | 0.012
S3 spectral sharpness 0.120 | 0.021 0.549 | 0.022 | 1.378 | 0.045
S3 spatial sharpness 0.112 | 0.039 0.480 | 0.036 | 1.220 | 0.084
S-index 0.534 | 0.056 | 2.533 | 0.092 | 6.389 | 0.177
FISH sharpness 0.048 | 0.009 | 0.255 | 0.031 | 0.691 | 0.068

Regional Laplace sharpness 0.015 | 0.003 0.070 | 0.134 | 0.166 | 0.026
Regional S3 spatial sharpness | 0.050 | 0.008 0.225 | 0.041 | 0.565 | 0.090

Font thickness 0.020 | 0.005 | 0.069 | 0.010 | 0.189 | 0.028
Border distance 0.121 | 0.019 0.543 | 0.052 | 1.520 | 0.122
Borders morphology 0.249 | 0.039 1.080 | 0.126 | 2.711 | 0.296
Hough orientation 0.044 | 0.017 | 0.153 | 0.057 | 0.354 | 0.135
Morphology orientation 0.038 | 0.015 0.324 | 0.143 | 1.521 | 0.771
PP orientation 0.065 | 0.020 | 0.229 | 0.070 | 0.513 | 0.157
CV orientation 0.060 | 0.020 | 0.253 | 0.063 | 0.582 | 0.147
Sauvola orientation 0.003 | 0.001 | 0.012 | 0.003 | 0.029 | 0.005

Table 7.2: Computational complexity of the feature extraction methods (in seconds) for
different image sizes based on the analysis of 370 images.

7.5 Computational complexity analysis of feature extraction

In this section, we consider the computational complexity of the feature extraction algorithms.
Images were resized to the specific sizes which often appear in the dataset: 1200 x 900,
2500 x 1900, and 4000 x 3000. For each of the sizes, the feature extraction algorithms were
timed only on 370 different images as this process takes a long time to run for all the images.
The results can be found in Table [Z.2l

We can see that IL-NIQE features and S-index are the most computationally expensive fea-
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tures. Other features whose extraction is also slow for large images are border features, S3
sharpness, and morphological orientation features. Thus, it would be good if we can omit
some of these features and if computing of the remaining ones on downscaled images does
not deteriorate the quality of the classification algorithm. We will analyze these possibilities
in Sections and
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Recognition prediction

8.1 Classification algorithms description

In this section, we formulate the classification problem and discuss machine learning al-
gorithms that can be used to solve it.

To begin with, let’s formulate the classification problem. There are two classification problems
considered in out research:

e Classification with all 3 classes: positive, partial and negative;
e Classification with 2 classes: positive and negative:

— Partial class included in the negative class;

— Partial class included in the positive class.

We assign the following numerical labels to the classes in the 3 classes classification: 0 for the
negative class, 1 — for partial, and 2 — for positive.

When the classification into 3 classes is performed, we can also introduce order of the classes
as the positive, partial, and negative classes can be considered as image quality estimates.
Then, partially recognized images are somewhere between the negative and positive classes in
terms of the image quality. Thus, we can use some regression algorithm for the classification,
assigning images to the classes according to the obtained values. To do so, we have to
introduce the thresholds, which will allow us to choose the class according to the obtained
value. The first threshold is a value in [0, 1] that splits the negative and the partial classes.
Another threshold is a value in [1, 2] that splits the partial and the positive classes. We will
refer to these thresholds as to “partial” and “positive” thresholds and will use the notation
alb, where a is a partial threshold and b is a positive one.

Furthermore, we can also use a threshold when classifying into 2 classes. Then, it will be only
one probability threshold which takes values in [0,1]. Thus, if the probability of an image
being assigned to the positive class is larger than this threshold, we classify it as positive and,
otherwise, as negative.

The next step is to choose a machine learning algorithm for these classification problems. For
classification, we use methods from the sklearn package in Python [3]. We have tried using
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random forest classification and SVM with the default hyper-parameters for both classification
problems: into 2 classes and 3 classes. SVM failed to perform the classification, resulting in
the same prediction for all samples while random forest gave better results. Therefore, we
use only random forest models in further research.

Two types of random forests are used: a classifier and a regressor. The random forest regressor
is used for the ordered classification into 3 classes as the classifier does not account for ordering.
The random forest classifier is used for classification both into 2 and 3 classes. We also explore
the possibility of using a random forest regressor for classification into 2 classes, although, it
should not behave much differently from a random forest classifier.

Let’s discuss how these models work. We introduce the notation {(X,,ym)}_, for the
dataset, where X,,, = (z1,z2,...,x)m is the set of features (independent variables) and y,,
is the target value (dependent variable) for the sample m. vy, refers to the class in the
classification model and to some real number in the regression model. We will discuss the
random forest models using these notations.

Random forest is an ensemble of decision trees, classification models described in [92]. Each
of the decision trees is constructed using only a subset {X,, 7]\,/{:1 of the features which is
selected randomly. The size of X, is one of the random forest parameters. Often, it equals
to the square root of the total number of features. When the subset is chosen, a decision
tree is constructed. All the data points are firstly located in the root node. Then, at each
node n, the best feature to split the data is chosen according to some criterion. There are
different criteria for random forest classification and regression models. Let’s start with the
criterion used in the classification model. There, we use the Gini impurity Ig(n) criterion
(eq. . According to it, the feature that results in a split with the largest reduction of the
Gini impurity is selected to perform this split. This reduction for a vertex n is calculated
as difference of I¢(n) and the weighted sum of the Gini impurity of children of the vertex n

(eq.[8:2).

J
Ig(n)=1= 7}, (8.1)
i=1
where J is the number of classes and p; is the number of samples from class ¢ in the node n.

ny
To(n) - LI (m), (5.2
where n, and n; are the children nodes of the node n, and |n|, |n,|, and |n;| are the numbers
of samples falling into the respective nodes.

_ |

red(IG) = IG(n) ’n‘

In the regression model, the criterion is the largest reduction of mean squared error (MSE)
which is given in eq. [8:3]

red(MSE) = (yi —yn)* = > (i —vn)? = > (i —wn,)%s (8.3)

€N S 1EN,
where y;,, yy,, and y;, are the means of target values y; in the respective nodes.

Some other hyper-parameters of the model are the maximum allowed depth of the trees, the
minimum number of samples in the node for splitting it, and the minimum number of samples
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in a leaf. These parameters help to avoid overfitting as if we perform too many splits, we can
end up with leaves with single samples.

The splitting process is stopped when there is no reduction of the criterion can be obtained,
the maximum depth is reached, or the number of samples in a node or resulting leaf after a
split does not satisfy the hyper-parameters mentioned above.

In the end, each leaf of the decision tree has some samples. Calculations of the final prediction
of a decision tree differ for a classification and regression decision trees. In the classification
model, the samples in the leaf belong to different classes and, thus, provide an empirical
distribution over these classes. When a test sample is passed through the decision tree, it
returns this empirical distribution over classes and the class with the highest probability is
considered as a predicted class for the test sample.

In the regression model, the samples in the leaves have some target values y; and the prediction
of the tree is the average of the values in the leaf.

The outcome of the random forest classifier for a test sample is the probability distribution
over the classes that is calculated as the mean of the empirical distributions over all decision
trees. The prediction of the random forest regressor is the average of the predictions over all
decision trees.

Thus, in this section, we have formulated the classification problems with 2 and 3 classes.
Furthermore, we have discussed the random forest models which we will use for classification
in this project. Throughout the report, we will use the following order of the random forest
parameters: the number of estimators (trees), the maximum depth, the minimum number of
samples to split the node, the minimum number of samples in a leaf, the sizes of a features
subset to consider for splitting a node (“auto” corresponds to the square root of the number
of features).

8.2 [Evaluation and comparison of the models

After choosing the classification algorithms, we evaluate them and compare their performance
with different hyper-parameters, different number of features, and on different data. In this
section, we elaborate on the methods and results of evaluation and comparison.

8.2.1 Evaluation methods

To begin with, we discuss the evaluation methods that we use. We use several metrics
for evaluation: classification accuracy (eq. , positive precision (referred to as positive
prediction value in the literature, eq. and negative precision (referred to as negative
predictive value in the literature, eq. .

# correctly classified images

ace= # all images

# correctly classified positive images

TE€Cpos =
Precpos # all images classified as positive
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# correctly classified negative images (8.6)

Pr€Cneg = # all images classified as negative
As we have more positive examples than negative and partial ones (Section, accuracy might
be not fully representative of the quality of the classification method. That is why we also
consider 2 precision metrics. We can give preference to one of them depending on our final
goal of classification. Originally, we need classification in order to decide if we have to ask a
user for a new photo immediately or whether we should pass the image through the ORTEC
algorithm first. Thus, the default action is to pass the image to the ORTEC algorithm. If we
want to pass it only if we are sure with some high probability that the image will be eventually
recognized, we should focus on positive precision which can be interpreted as the probability
of the image being recognized by the ORTEC algorithm if it is classified as positive. On the
other hand, if we are interested in asking the user for a new photo only if we are sure with a
high probability that it wouldn’t be recognized by the ORTEC algorithm we should focus on
negative precision. It was decided that it is more important to ask for a new photo only if
we are sure that it is needed, hence, the focus should be made on the negative precision. We
will start by reporting both precision values and then focus on the negative precision.

Alongside with the negative precision, we will also refer to the negative recall (referred to as
true negative rate in the literature, eq. . It will be useful when we select the threshold and
the features for the model as it is also important to know which percentage of the negative
examples are actually classified as negative by the classification model. Positive recall (referred
to as true positive rate in the literature) can be defined analogically but it is not used in this
project.

# correctly classified negative images

(8.7)

Unee =
rectine # all negative images

All of the mentioned metrics are calculated using k-fold cross-validation. This way, we obtain
a prediction for each image and, hence, can calculate these metrics over the whole dataset.

To choose the number of folds k, we run a loop over different values of k € {2,3,...,20}
and plot the graph (Fig. of metrics depending on k for the random forest classification
model with 2 classes including partial into negative, parameters (200, 20, 3,2, auto), and the
threshold 0.5. We can see that the number of folds does not influence the classification
algorithm quality too much for k > 5 and, as we would like to choose k, that will be reasonable
in terms of both computational complexity and evaluation quality, we can consider £ = 10
in the further analysis. The graphs for models with other thresholds and parameters have
similar form and, hence, k¥ = 10 will suit for analysis of any model. We will report all the
evaluation metrics as the mean of the metrics over 20 simulations and will also mention the
standard deviation.

As a baseline, we use classification, where all the images are classified as positive. This is the
default behaviour which resembles the way how the current ORTEC algorithm works as all
the images despite of the quality are directly passed to the OCR and the ORTEC algorithm.

Thus, we have discussed the evaluation methods that are used in the project and have ex-
plained our choices. In the next sections, we will compare different models using these eval-
uation metrics.
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Figure 8.1: Metrics values depending on the number of folds k in k-fold cross-validation.

8.2.2 Classification algorithms comparison and evaluation

Now, when we have introduced the classification models and the evaluation methods for them,
we perform comparisons of different models. As discussed in Chapter 5] we have 584 images
in the dataset: 312 in the positive class, 112 in the partial, 160 in the negative. Moreover,
we use the features discussed in Sections [7.2]and [7.3] There are 401 features that are at
first used for classification.

2 classes classification

Let’s start by comparing several models for classification into 2 classes. Firstly, we have to
decide, into which class, positive or negative, to include partial examples. Let’s first use a
random forest regressor with parameters (200, 20, 3, 2, auto) for classification into 2 classes for
both options and try different threshold values to distinguish positive instances from negative.
Threshold values vary between 0 and 1 with a step of 0.05. In Figures we can
see the 3 metrics depending on the threshold value. We can see, that when partial examples
are considered as negative, the negative precision is higher than in the case when we consider
them as positive examples. At the same time, the accuracy and positive precision are slightly
larger in another case. As we are interested in the negative precision, we have decided that in
the case of random forest regressor for 2 classes, we will work with the model where partial
examples are considered as negative. However, we could have chosen another option if we
had been focused on the positive precision.

Now, let’s look at the random forest classifier model with 2 classes with the same parameters.
The accuracy is similar in both models in this case, so we focus more on the plots of the
positive precision and recall (Fig. [8.3)) and of the negative precision and recall (Fig. |3.4).
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Figure 8.2: Evaluation metrics for the random forest regressor with 2 classes.
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Figure 8.3: Positive precision and recall for the random forest classifier with 2 classes.
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Figure 8.4: Negative precision and recall for the random forest classifier with 2 classes.

We can see that the positive precision and recall are almost always higher when we include

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 59



CHAPTER 8. RECOGNITION PREDICTION

partial examples in the positive class. On the other hand, the negative recall is always higher
when we include partial examples into the negative class while the negative precision is also
slightly higher in this case. Thus, based on these graphs, we can conclude that we should
include partial examples into positive class if we focus on the positive precision and recall and
into the negative class if we focus on the negative precision and recall. Thus, in this project,
we include partial examples into negatives for the random forest classifier, too. This choice
also has a common-sense explanation as the partial class consists of the incorrectly partially
recognized images which means that there is some information present in the images that is
not recognized by OCR. Thus, in this sense, the partial and negative classes are similar with
the difference that there is less not recognized information in the partial class compared to
the negative.

Furthermore, we can choose thresholds for the models which maximize the metrics we are
interested in. Based on Fig. and Fig. we decide to look at the thresholds of 0.2,
0.3 and 0.4 for which the high values of the negative precision are obtained and the negative
recall values are not extremely low. Depending on the needs of the business, one of these
thresholds can be chosen in the final model. Besides this, we will sometimes still consider the
threshold of 0.5 as it maximizes the accuracy.

Therefore, we have decided to include the partial class in the negative class when performing
classification into 2 classes. Moreover, we have chosen several threshold values to consider for
classification into 2 classes.

Classification methods comparison

In this subsection, we will compare random forest regression and classification models with
different numbers of classes, parameters, and thresholds. For the classification, we use 189
features out of 401, retaining only the uncorrelated features (it is discussed in Section .
For random forests, presence of unimportant features among these 189 does not deteriorate
the model so we do not consider removing them in this section.

In Table the accuracy, positive and negative precision, and negative recall are given
for random forest classifier (RFC) and regressor (RFR) with 2 and 3 classes with various
thresholds and parameters. The parameters and thresholds were chosen by grid-search on
the accuracy, positive precision, and negative precision. Some parameter sets were used on
multiple models to allow direct comparisons of performance. Besides this, the number of
estimators was manually decreased sometimes in order to see if it significantly influences the
performance of the model or not, so that we can decrease the computational complexity of
evaluation procedures without losing much in the quality of performance. The parameters
can still be suboptimal as the grid-search did not explore a lot of parameter sets as it will be
very computationally expensive.

We can see, that depending on the metric which we want to maximize, we should choose
different parameters and thresholds. As we mentioned in Section we focus mostly on
the negative precision and negative recall. For maximizing these metrics the models with 2
classes work better. We can see that for the random forest classifier with 2 classes the highest
negative precision is obtained in the model with the parameters (400,15, 3,2, auto) and a
threshold of 0.3. The negative recall for this model is not much lower compared to other
random forest classifiers with negative precision of around 0.9. Thus, we would often use this

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 60



CHAPTER 8. RECOGNITION PREDICTION

Model Threshold Parameters Accuracy Precision pos. | Precision neg. Recall neg.
mean | std mean std mean std mean std
Baseline 0.534 0.534
RFC. 2 cl. 0.5 400, 40, 4, 3, 0.8 | 0.735 | 0.006 | 0.741 | 0.004 | 0.727 | 0.008 | 0.69 | 0.005
RFC. 2 cl. 0.8 200, 20, 3, 3, 0.5 | 0.608 | 0.008 | 0.871 | 0.016 | 0.546 | 0.005 | 0.947 | 0.007
RFC. 2 cl. 0.3 200, 20, 3, 3, 0.5 | 0.719 | 0.003 | 0.664 | 0.002 | 0.905 | 0.011 | 0.443 | 0.006
RFC. 2 cl. 0.3 400, 40, 4, 3, 0.8 0.72 | 0.005 | 0.666 | 0.004 | 0.896 | 0.009 | 0.45 | 0.011
RFC. 2 cl. 0.3 400, 15, 3, 2, auto | 0.716 | 0.006 | 0.657 | 0.004 | 0.939 | 0.008 | 0.416 | 0.01
RFC. 2 cl. 0.3 200, 15, 3, 2, auto | 0.711 | 0.006 | 0.655 | 0.004 | 0.929 | 0.011 | 0.412 | 0.01
RFC. 3 cl. 600, 15, 3, 3, auto | 0.673 | 0.006 | 0.695 | 0.004 | 0.651 | 0.007 | 0.624 | 0.013
RFR. 3 cl. | 0.5 — 1.5 | 600, 15, 3, 3, auto | 0.494 | 0.003 | 0.81 | 0.006 | 0.769 | 0.017 | 0.254 | 0.007
RFR. 3 cl. | 0.9 — 1.5 | 200,25, 3,2,0.6 | 0.547 | 0.007 | 0.807 | 0.008 | 0.664 | 0.013 | 0.609 | 0.01
RFR. 3 cl. | 0.65 — 1.6 | 200, 20, 3,2, 0.8 | 0.474 | 0.007 | 0.83 0.01 | 0.742 | 0.008 0.4 0.01
RFR. 2 cl. 0.5 200, 20, 3,2, 0.8 | 0.746 | 0.005 | 0.701 | 0.004 | 0.851 | 0.009 | 0.551 | 0.007
RFR. 2 cl. 0.3 400, 15, 3, 2, auto | 0.661 | 0.005 | 0.612 | 0.003 | 0.986 | 0.004 | 0.276 | 0.01

Table 8.1: Evaluation metrics for different random forest models.

set of parameters further in the project. Sometimes, we will choose (200, 15, 3,2, auto) if we
will need to reduce the time spent on computations as the negative precision and recall do
not decrease significantly in this case compared to (400,15, 3,2, auto). We also obtain high
values of the negative precision in the random forest regressor with 2 classes, though we still
have to tune it in order to obtain relatively high negative recall, too. For classification into
2 classes, it does not matter much if we use classifier or regressor, so we choose to use the
random forest classifier.

Thus, we have decided to focus on classification into 2 classes. For it, we have chosen the
random forest classifier models with the parameters (400, 15, 3, 2, auto) or (200, 15, 3, 2, auto)
and the thresholds 0.2, 0.3, and 0.4 which were mentioned in the previous subsection about
2 classes classification.

8.2.3 Feature selection

We have mentioned in Section [8.2.2] that there are 401 features in total. Some of them are
correlated with each other and some of them are unimportant for the classification. In this
section, we perform feature selection in order to reduce the size of the feature set and, hence,
decrease the computational complexity of the feature extraction part.

Feature selection is performed in several steps. The first step is to calculate correlation
between the features and for those pairs where the correlation is large (larger than 0.8) one
of the features in the pair is removed. Afterwards, the features importance is calculated in
the chosen classification algorithm using different feature importance calculation algorithms.
Finally, the mean and the variance of the importance values are used to choose and remove
the irrelevant features.
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Correlated features

Firstly, we remove correlated features so that we do not have highly correlated ones in our
features set. Out of 401 original features, 189 are not highly correlated and are kept for
further analysis. These features are the following:

e 10 BRISQUE features:

— parameters v and o for mscn coeflicients;

— parameters v and o; for one of the orientations (any can be chosen as they are
correlated);

— the mean and o, for horizontal, vertical and one of the diagonal orientations;
e 26 IL-NIQE features:

— 4 horizontal gradient IL-NIQE features: parameters of GGD fitted to 2 channels
01 and Oo;
All 6 IL-NIQE color features;

— 11 simple Gabor features:

* a pair of parameters for the orientation 7 /5 and scale 1/4;
x b parameters for the orientation 0;
* 4 parameters for the orientation 27/5;

5 horizontal gradient Gabor features:
x 3 parameters for the orientation 0;
* 1 parameter for the orientation 7/5 and scale 1/2;
« 1 parameter for the orientation 37/5 and scale 1/8;

2 image dimensions parameters;

e Image size in bytes;

1 brightness metric;

3 contrast metrics (calculated for the chosen brightness metric);

e Hue and saturation parameters;

Spectral and spatial S3 sharpness;

S-index;

44 histogram values for regional Laplace sharpness and the mean of large regional sharp-
ness values;

6 histogram values for regional S3 spatial sharpness metric and the standard deviation,
minimum and maximum values;

15 histogram values for font thickness, the mean and the mean of small values;
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e All 12 border features: usual and morphological;

e Mean for morphological and PP skew evaluation methods and 5 other skew angle es-
timates: 2 estimates from the Hough and one from CV, PP, and Sauvola methods;

e All 51 skew histogram values;

Thus, we can already omit some calculations for feature extraction. For example, we omit
calculation of BRISQUE for the second diagonal, calculations of IL-NIQE for vertical gradient
image, most of the orientations and scales for log-Gabor transform of original and horizontal
gradient images, all but one brightness and related contrast metrics and standard deviation
and maximum for regional orientation calculation methods.

Feature importance calculation algorithms

Now, we calculate feature importance values which will allow us to remove unimportant
features from the remaining ones.

The algorithms for calculation of feature importance which can be used are the permuta-
tion feature importance algorithm ([3]), Shapley feature importance, and feature importance
calculation algorithm provided by the random forest classification algorithm.

Permutation feature importance for feature ¢ is calculated using the following scheme:

1. Score is calculated on the original data;
2. Values of the feature ¢ are permuted and the score is evaluated again;

3. Difference in the scores is considered as feature importance.

As a score, different evaluation metrics can be used such as accuracy or precision.

Shapley value ¢ is the notion from game theory that can be also used to calculate feature
importance as discussed in [24]. It represents the marginal contribution of the feature to all
possible features combinations. Formally, it is defined as in eq.

8li) = & 3 Au(Si(r), (58)
mell

where II is the set of random permutations, S;(7) is the set of features which appear before
i feature in permutation 7 and A;(S) defines marginal importance of feature i to set S
and in the case of feature importance equals to difference in predictions. Averaging over
all permutations is a very computationally expensive procedure. Thus, an approximation of
Shapley importance can be calculated as the average over permutations of size v N, where N
is the total number of features.

In a random forest classifier, a so-called Gini importance criterion is used for feature import-
ance calculation in the sklearn package ([3]). It is an impurity-based method. There, the
feature importance is explained as a reduction of impurity by use of the feature weighted
by the probability of reaching the respective nodes. It is calculated as the average of the
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normalized importance values over all decision trees. In a decision tree, feature importance
f of a feature i is calculated as in eq.

f‘ . Zj:node j splits on feature ¢ nj (8 9)
[ ) :
Z]Enodes nj

where n; is importance of node j which is calculated as in eq.

nj = w;ila(j) —wjla(G) — wj la(r), (8.10)

where I(j) is Gini impurity value for the node j, w; — weighted number of samples reaching
the node j and j; and j, are the left and right children of the node j respectively.

Thus, we have discussed 3 algorithms for calculation of feature importance in random forests.

Choice of the algorithm for feature importance calculation

After describing the possible feature selection methods, we have to choose the one which we
would like to follow for feature selection.

For a random forest classifier, the Shapley feature importance method returns similar results
to the Gini feature importance algorithm. Therefore, let’s investigate feature selection based
only on the Gini method and the permutation method.
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(a) Gini feature importance calculation algorithm. (b) Permutation feature importance calculation

algorithm.

Figure 8.5: Evaluation of the models with threshold 0.5 with different number of features
selected sequentially according to respective feature importance calculation method.

We will conduct the feature selection process in the following manner. Firstly, we calculate
feature importance values according to both methods in the models with 189 uncorrelated
features discussed in the subsection about correlated features in We perform 10 sim-
ulations and average the feature importance values over these simulations. Then, we sort
the features in descending order according to these feature importance values. Then, we in-
clude features one by one into the model according to this order and evaluate the resulting
model. We use the random forest classification model with 2 classes and with parameters
(200, 15,3, 2, auto). Depending on the threshold, a different number of features appears to be
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optimal. Let’s first consider the threshold 0.5 which maximizes accuracy. In Fig.[8.5] the met-
rics are presented for various numbers of included features selected according to the feature
importance values calculated using 2 different methods.

We can see that quite fast, somewhere after including the 10 most important features, the
model accuracy, both precision values, and negative recall stop growing rapidly. Then, we
occasionally obtain high values of these metrics until the inclusion of 30-40 features. After
that, all of them stagnate or even decrease slightly due to possible overfitting on features. If
we follow the order obtained using the Gini index, we reach high values of accuracy around
0.76 already after the inclusion of 25 features and these numbers fall to 0.75 if we continue
the process. On the other hand, when we use the order according to the permutation feature
importance values, we can see that the accuracy grows slightly faster and reaches the value
of 0.76 after the inclusion of around 15 features. Afterwards, it drops slightly and stays in
the region of 0.75. We can see that slightly fewer features are required to reach the maximum
accuracy and precision values when following the order obtained using the permutation feature
importance calculation algorithm. However, the maximum values are similar in both methods,
S0, it is only a question of computational complexity: the smaller number of features, the faster
is the algorithm. Thus, it is more profitable to use the permutation feature importance order
in the case of the threshold 0.5.
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Figure 8.6: Evaluation of the model with the threshold 0.3 with different number of features
selected sequentially according to respective feature importance calculation method.

However, in this project, we are more interested in the smaller thresholds which increase
negative precision and recall. For example, let’s look at the threshold 0.3 (Fig. . Until
the inclusion of around 80 features, the selection according to Gini feature importance order
results in a higher negative recall. It seems that the features on the positions 20-24 in the
Gini feature importance order appear to be more important than predicted by the feature
importance algorithm. Thus, we can consider including them earlier if we are going to use less
than 25 features. Otherwise, we can simply follow the Gini feature importance order which
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is performing better than the permutation feature importance order on all other numbers of
features excluding 15-20.

Furthermore, we can see that after the inclusion of 50 features the negative precision grows
very slowly while the negative recall drops gradually. The negative precision reaches 0.92
with the standard deviation of 0.01 at that point and the highest negative precision when all
the features are included is 0.93 £ 0.015. Therefore, we do not gain much in terms of the
precision while losing a lot in terms of the recall if we continue including features into the
classification model. Thus, we would consider not more than 50 features in further research.

In this section, we have compared different feature importance calculation algorithms. We
have concluded that for the threshold of 0.5 it is more profitable to follow the permutation
feature importance order. However, for the smaller thresholds such as, for example, 0.3, it
is better to follow the Gini feature importance order. As we are interested in the smaller
thresholds, we decide to follow the Gini feature importance order. Besides this, we have
decided to investigate only the models with not more than 50 features.

Feature importance calculation results

After choosing the feature importance order which we are following, we look for the optimal
number of features for different thresholds. As we have decided in the previous subsection,
we consider not more than the first 50 features for classification.

Based on Fig. we can choose to use first 50 features for the threshold of 0.3. We can
also define the reasonable amount of features for other thresholds: 0.2 (Fig. and 0.4
(Fig. [8.7b]). The results are presented in Table where we refer to the negative precision
and recall simply as precision and recall. All the numbers are the mean values with the
standard deviation of approximately 0.01. Here, we can see that for all the thresholds we
gain in terms of recall and almost do not lose anything in terms of precision when we keep
the suggested reasonable number of features in the model. Thus, we retain the similar quality
of the models in terms of precision while significantly increasing the quality in terms of the
recall.
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(a) Metric values for the models with the threshold 0.2. (b) Metric values for the models with the threshold 0.4.

Figure 8.7: Evaluation of the models with different number of features selected sequentially
according to the Gini feature importance with the thresholds 0.2 and 0.4 for classification.
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Threshold Reasonable choice Highest precision All features
Features | Precision | Recall | Features | Precision | Recall | Precision | Recall
0.2 38 0.965 0.32 100 0.986 0.25 0.97 0.22
0.3 50 0.92 0.48 180 0.937 0.42 0.93 | 0.415
0.4 25 0.837 | 0.613 100 0.843 0.59 0.824 | 0.566

Table 8.2: Comparison of the means of negative precision and recall over 20 simulations for
the models with different thresholds and number of features.

Thus, depending on the threshold that we would like to use, we could include different numbers
of features in the models. The decision about the threshold should be made taking into
account both the negative precision and the negative recall. This poses a typical precision-
recall problem when we have to decide what is more important in the problem: having high
recall or having high precision. Notice that here we recognize about 60% of the negative
examples with a threshold 0.4, almost 50% with a threshold 0.3, and around 30% with a
threshold 0.2. However, the threshold 0.2 results in higher precision values.

Thus, for the optimal performance of the models with thresholds 0.2, 0.3 or 0.4 we need not
more than 50 features. Hence, anyway, we should omit at least 139 features which do not add
much value to the classification model.

Currently, as the 50 most important features according to the Gini feature importance there
are:

e S3 spatial sharpness and its 5 histogram features;

e 3 Laplace sharpness regional histogram features;

e S-index;

Width of the image;

10 simple IL-NIQE Gabor features and 3 horizontal gradient IL-NIQE Gabor features;

4 BRISQUE features;

4 horizontal gradient IL-NIQE features;

2 IL-NIQE color features;

6 font thickness features;

2 border distance features calculated using morphological method;

Brightness feature;

Contrast feature;

Hue feature;

2 PP, 1 Sauvola, 1 morphology and 1 CV orientation features;
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Thus, we have come up with a reasonable number of features for the classification models
with different thresholds. In addition to improving the recall of the models, reducing the
number of features also reduces the computational complexity of the classification algorithm
as we have to extract fewer features.

Computational complexity of classification algorithm

In this subsection, we look at the computational complexity of the classification algorithm
with different numbers of selected features.

The random forest classification algorithm itself takes approximately 0.12 seconds. Thus, the
features extraction part is the most computationally expensive. We remember from Table
that there were many computationally expensive features such as IL-NIQE features and s-
index. When we include the features in the model according to the Gini feature importance
order, we get a computationally expensive model for an image of a typical size 2500 x 3200
already after including a small number of features (Fig. . We can see that most of the
features in the beginning are computationally expensive while for the less important features
we spend less time on calculations. This is happening as many feature extraction algorithms
extract several features simultaneously and one of these features can be important and others
less important. For the latter ones, we do not have to repeat the calculations: we already
have extracted these features.
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Figure 8.8: Computational complexity (in seconds) for the calculation of different number of
features taken in the order of the Gini feature importance for an image of size 2500 x 3200.

We can conclude that the extraction of the features from the original images is a very com-
putationally expensive process. From Figure [8.8| we can see that the extraction of 10 features
already results in a model that takes around 10 seconds to run. As we are looking for a fast
algorithm with calculations time around 1 second, the current classification algorithm is not
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a good solution. As one of the methods to reduce computational complexity, we can consider
extracting the features from downscaled images.

8.2.4 Evaluation of the models with features extracted from downscaled
images

As we have seen in the previous subsection about computational complexity, the feature
extraction process is unaffordably slow. One of the reasons is that we use the original size of
the images for feature extraction. If we downscale the images before extracting features, it
will speed up the process. Thus, we are interested in the impact of using downscaled images
for feature extraction on the performance of the models.

Let’s evaluate the models where for extraction of some features we use downscaled images. We
will refer to the features extracted from downscaled images as to “downscaled features”. We
will consider image sizes 1200 x 900 (“ds1”), 800 x 600 (“ds2”), and 600 x 500 (“ds3”). Let’s
also fix the parameters (400, 15, 3, 2, auto) of the random forest model and explore thresholds
0.2, 0.3, and 0.4. Depending on the threshold, we choose the number of features according to
the reasonable number of features from Table We extract the features with the highest
computational complexity (IL-NIQE features, BRISQUE features, S-index, S3 sharpness,
Laplace sharpness, orientation features, borders features, contrast, and brightness) from the
downscaled images and compare the accuracy, negative precision, and recall of the obtained
models. Besides this, we try to extract all the necessary features from downscaled images and
consider this model, too. The complete results are presented in the Appendix [A] Besides the
metrics, we mention the gain in time when using respective downscaled features. There, we
color with orange the cells with the evaluation metrics values that are significantly lower than
the values for the original model (with difference larger than one standard deviation). That
means, that downscaling the respective feature to the specified sizes results in deterioration
of the model.

We can see that for each threshold the precision, recall, and accuracy metrics decrease signi-
ficantly when we use all downscaled features compared to original features. That is why we
investigated the models with only specific downscaled features.

We also notice that for most of the features the evaluation metrics do not depend on the size
of the image from which the feature is extracted. The slight differences are mostly random
as, for example, the lowest value of precision is sometimes obtained on the size “ds2” and not
on “ds3” (as in Gradient Gabor in Tab. . However, there are several exceptions here:
gradient IL-NIQE features and BRISQUE features for the model with threshold 0.2, simple
Gabor features for the model with threshold 0.3, and S3 sharpness and BRISQUE features
in the model with threshold 0.4. For these features, we can observe a slight decrease in the
metrics values with the image size. The decrease of the accuracy and negative precision with
the size of the images is also observed in the models with all downscaled features.

Thus, among the suggested sizes, for some of the features, it is more profitable to consider the
size “ds3” as it does not decrease the performance. For the features where the performance
deteriorates with the size, we can choose different sizes of the images in order to balance
the computational complexity and performance. However, for some very computationally
expensive features, the loss in performance is unavoidable. Before making the final decision
on which downscaled features to use, we evaluate the respective model again with the chosen
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downscaled features.

From the tables in Appendix [A] we can see that it is possible to decrease the computational
complexity of all orientation features, Laplace sharpness features, brightness, and contrast in
every model without loss of quality of the model. Thus, we will use “ds3” size of the images
for the extraction of these features. For other features, it depends on the model if the quality
decreases when using downscaled features.

For each model we choose if to use the downscaled feature instead of the original according
to the following rules. We choose “ds3” size of the image if all of the metric values are not
significantly smaller compared to the original model. If the decrease for some image sizes
is significant for some metric, we choose size “dsl1”, “ds2” or the original feature depending
on the computational complexity. For example, for S3 regional sharpness it is better to
use original size as otherwise we obtain a significant loss in precision for the models with
thresholds 0.2 and 0.3. On the other hand, for S-index in the model with the threshold 0.2
we can use “dsl” size. Moreover, we should consider that simple and gradient Gabor features
can’t be calculated for different image sizes: this will increase the computational complexity
as we will have to construct and apply log-Gabor filters of different sizes.

Therefore, we choose to use downscaled to “ds3” orientation features, brightness, contrast,
and Laplace regional sharpness features for all thresholds. For other features the choice of
the downscaled features depends on the threshold. We use the following downscaled features
in different models:

e With the threshold 0.2:

— “ds3” of S3 sharpness, morphological borders, and IL-NIQE color features;

— “ds1” of BRISQUE, S-index, simple and gradient Gabor features, and gradient
IL-NIQE features;

e With the threshold 0.3:

— “ds3” of S3 sharpness, morphological borders, S-index, BRISQUE, IL-NIQE color
features, and gradient IL-NIQE features;

— “dsl” of simple Gabor and gradient Gabor features;
e With the threshold 0.4:

— “ds3” of regional S3 sharpness, S-index, simple Gabor and gradient Gabor features,
IL-NIQE color features, and gradient IL-NIQE features;

— “ds1” of S3 sharpness, morphological borders, and BRISQUE;

According to this choice, we can evaluate the respective suggested models. The results can
be found in Table We observe the increase in the speed of the classification algorithm,
though the performance deteriorates sometimes. For the thresholds of 0.2 and 0.3 we do not
lose in the negative precision but lose in the negative recall. For the model with the threshold
of 0.4, we lose both in the negative precision and recall. On the other hand, we can save up
to 26 seconds using downscaled features.

However, we can still see that for the models with the thresholds 0.2 and 0.3 the calculation
time is still relatively long. In order to decrease it, we have to use downscaled to at least “ds2”
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Model Threshold Accuracy Precision neg. Recall neg. Time
mean | std | mean | std | mean | std (sec)

Original 0.2 0.675 | 0.004 | 0.968 | 0.008 | 0.312 | 0.009 | 28.616
Suggested model 0.2 0.661 | 0.004 | 0.965 | 0.005 | 0.283 | 0.01 | 3.877
Incl. ds2 for IL-NIQE 0.2 0.66 | 0.004 | 0.962 0.01 | 0.281 | 0.008 | 2.165
Incl. 400 x 300 features 0.2 0.658 | 0.005 1 0.96 | 0.011 | 0.276 | 0.01 | 2.069
All downscaled features 0.2 0.63 | 0.003 | 0.912 | 0.012 | 0.228 | 0.007 1.173
Original 0.3 0.737 | 0.006 | 0.919 | 0.009 | 0.476 | 0.01 | 29.761
Suggested model 0.3 0.709 | 0.005 1 0.92 | 0.007 | 0.412 | 0.01 ]| 3.039
Incl. ds2 for IL-NIQE 0.3 0.713 1 0.004 | 0.92 | 0.004 | 0.42 | 0.009 | 1.975
Incl. 400 x 300 features 0.3 0.714 | 0.005 | 0.92 | 0.006 | 0.423 | 0.011 | 1.799
All downscaled features 0.3 0.686 | 0.003 | 0.86 | 0.005 | 0.39 | 0.007 | 1.198
Original 0.4 0.762 | 0.003 | 0.841 | 0.006 | 0.602 | 0.005 | 23.402
Suggested model 0.4 0.739 | 0.004 | 0.819 | 0.006 | 0.564 | 0.004 | 1.417
Incl. 400 x 300 features 0.4 0.738 | 0.005 | 0.818 | 0.008 | 0.563 | 0.008 | 1.240
All downscaled features 0.4 0.717 | 0.002 | 0.774 | 0.006 | 0.554 | 0.004 | 0.986

Table 8.3: Evaluation of the suggested models based on the metric values obtained using
downscaled features and comparison to the original models and the models with all downscaled
features.

size IL-NIQE features and to “ds3” s-index as these are the most computationally expensive.
Otherwise, we will not reduce computational complexity enough. From the same Table
we can see that this does not influence the performance much but reduces the calculations
time (rows with “incl. ds2 for IL-NIQE”).

Even more improvement in terms of computational complexity can be obtained by using an
even smaller size of downscaled images for the extraction of the computationally complex
features. Thus, let’s use images of size 400 x 300 for extraction of the most computationally
expensive features at the moment. These are s-index and gradient IL-NIQE features. How-
ever, gradient IL-NIQE features are extracted from 400 x 300 image only for the thresholds
0.3 and 0.4 as for 0.2 extracting them from small images deteriorates performance (Tab. .
The comparison of these models is also given in Table [8.3] in the rows “Incl. 400 x 300
features”. Again, as in the previous case, we do not lose much in the quality while saving
additionally approximately 0.1 second in each model. This process can be continued for less
computationally expensive features for speeding up the algorithm. However, we will use the
current ones as the further speeding up requires more experiments and will not save that
much time.

We can also see that the final suggested models provide better quality than the models with
all downscaled features and have only slightly larger computational complexity.

Thus, in this section, we have suggested using different sizes of images for the extraction of
different features. These sizes differ for the models with different thresholds. This slightly
worsens the quality of the classification algorithms but improves a lot on their computational
complexity.
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8.2.5 Changing the order of feature inclusion

In Section we have suggested the models with the reduced computational complexity.
However, the calculations time of 2 seconds in some models is still too long. That is why we
have to consider other options to speed up the classification algorithm. One of the options is
to change the order of inclusion of the features in the models.

In Section [8.2.3] we selected features one by one according to the Gini feature importance index.
However, as we mentioned in that section, some of the features are extracted simultaneously:
for example, histogram features of regional sharpness or pairs of the parameters from IL-NIQE
Gabor features. Some of these features are more important than others and, hence, included
in the model at different moments. The suggestion is to include these groups of features into
the model together at the moment when the first feature of the group is included according
to the feature importance order. This method can have 2 variations. In the first one, we
include all the features from the group, for example, all 9 S3 regional sharpness features. In
the second variation, we include only the features which appear in the 50 most important
features. The experiments showed that these 2 methods result in the same performance of
the model. Thus, we will use the latter variation as it involves less features. We call this a
model with grouped feature selection order.
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Figure 8.9: Metric values and calculation time of the models with the threshold 0.2.

For each of the thresholds 0.2, 0.3, and 0.4 let’s compare the initially suggested model and
the model with grouped feature selection order. The plots for evaluation metrics and com-
putational complexity can be seen in Figures R9}8.11} In the models with grouped feature
selection order, the dots correspond to the moments when a group of features is added. Thus,
we cannot stop the selection process somewhere between the dots and can do it only at the
moments corresponding to the dots. From these graphs, we can select the optimal number of
features based on the negative precision, negative recall, and computational complexity. As
we aim at the calculations time close to 1 second, we choose the number of features according
to it.

In the models with the threshold 0.2 (Fig. we stop the selection on 22 features for initial
features ordering and on 32 features for the grouped ordering which corresponds to the same
calculations time of 1.355 seconds. If we stop earlier when the calculations time is 1.1, we lose
in the negative precision and negative recall around 0.1 which is quite a large loss. Thus, it is
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decided to spend additional 0.2 seconds. At that moment, there is no significant difference in
negative precision and recall in the 2 models with different feature inclusion orders as can be
seen from Table [8:4] We can also notice that the negative precision and recall grow after the
inclusion of the computationally expensive regional S3 sharpness features up to 0.936 and 0.3
respectively. Afterwards, the negative recall stays stable and the negative precision grows up
to 0.96.
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Figure 8.10: Metric values and calculation time of the models with the threshold 0.3.
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Figure 8.11: Metric values and calculation time of the models with the threshold 0.4.

We can avoid the expensive computations of S3 regional sharpness by use of downscaled S3
regional sharpness features or by removing them completely and including the next features.
Both of the methods give the same outcome in terms of the quality, so, we choose a faster
method, where we remove these features completely. Let’s include the following, less computa-
tionally expensive, feature instead of S3 regional sharpness. Then, we save around 0.3 seconds
and we observe the same gain in the negative precision and a lower gain in the negative recall
compared to what we get in the model with included S3 regional sharpness. Moreover, the
evaluation metrics values do not grow further if we include more features and we can’t reach
0.96 precision as it was observed with S3 regional sharpness features. Therefore, the optimal
number of the features in the model with the threshold 0.2 is 34 with following the grouped
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feature selection order without S3 regional sharpness features.

We perform the same comparisons for the models with the thresholds 0.3 and 0.4. The main
difference in these models, compared to the one with the threshold 0.2 is that we observe a
difference in the performance of the models with initial and grouped feature selection order.
Spending the same time on the features calculations, we get higher negative precision and
recall for the models with grouped feature selection order (Tab. and Figs. .

In the model with the threshold 0.3, we also stop after the inclusion of 22 features in the
initial order and 32 in the grouped feature order. Then, we perform the same trick with
the exclusion of S3 regional sharpness and inclusion of the next features from the grouped
feature selection order. Similarly to the case with the threshold 0.2, this gives an increase
in the negative precision and recall up to 0.905 and 0.426 respectively. These metrics values
do not increase if we continue including other features as the S3 regional sharpness features
are absent. Thus, here, the optimal choice of the number of features is the same: 34 features
taken in the grouped feature selection order without S3 regional sharpness.

In the model with the threshold 0.4, we do not observe any growth of the evaluation metrics
after the moment when we include 32 features according to the grouped feature selection
order. Thus, there is no need to further extend the feature set in this case and the optimal
number of features is 32 taken in the grouped feature selection order.

Model Threshold | # features Precision neg. Recall neg. Time

mean | std | mean | std | (sec)

Initial 0.2 221 0.928 | 0.018 | 0.212 | 0.008 | 1.355
Grouped 0.2 32 ] 0.916 | 0.015 | 0.203 | 0.007 | 1.355
Grouped with reg. S3 0.2 37 1 0.936 | 0.013 0.3 | 0.011 | 1.727
Grouped no reg. S3 0.2 3410938 | 0.011 | 0.249 | 0.01 | 1.392
Initial 0.3 22 ] 0.859 | 0.007 | 0.418 | 0.007 | 1.126
Grouped 0.3 32 ] 0.885 | 0.009 | 0.411 | 0.008 | 1.126
Grouped with reg. S3 0.3 37 1 0.902 | 0.006 | 0.428 | 0.009 | 1.498
Grouped no reg. S3 0.3 34 1 0.905 | 0.007 | 0.426 | 0.007 | 1.135
Initial 0.4 22 ] 0.808 | 0.007 | 0.554 | 0.007 | 1.190
Grouped 0.4 32 ] 0.829 | 0.007 | 0.579 | 0.009 | 1.190

Table 8.4: Comparison of the models with initial feature selection order and with grouped
feature selection order where we use different number of features.

Thus, the 32 features, which are used in these models, are the following (in the grouped
feature selection order):

1. S3 sharpness;
2. Shape v gradient IL-NIQE Gabor feature with scale 1/8 and orientation 37 /5;

3. Shape v and variance o2 gradient IL-NIQE Gabor features with scale 1/2 and orientation
0;

4. Shape v and variance o2 simple IL-NIQE Gabor features with scale 1/4 and orientation
/55
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10.
11.

12.
13.

14.

15.
16.
17.
18.

19.

. Maximum brightness;

Shape v and variance o2 gradient IL-NIQE features for channels Oy and Os;

Shape v and variance o2 simple IL-NIQE Gabor features with scale 1/8 and orientation
0;

Contrast ratio feature;

Shape v and variance o2 simple IL-NIQE Gabor features with scale 1/2 and orientation
27 /5;

Variance o2 gradient IL-NIQE Gabor feature with scale 1/32 and orientation 0;

Distance from the text to the right border, in the whole image and in the middle of the
image, using morphological method;

Projection profile skew histograms at 2° and > 3°;
Complexity variance skew histogram at 0°;

Shape v and variance o2 simple IL-NIQE Gabor features with scale 1/2 and orientation
0;

Font mean thickness;

Font thickness mean histogram value at [1; 1.5];

Font thickness std histogram values at [0;0.5], [0.5; 1], [2; 2.5], [3; 3.5];
BRISQUE shape v for mscn coefficients;

S-index;

The 33-34 features used in two out of 3 models are BRISQUE shape v and left variance 0'l26 ft
for vertical gradient image.

Here, font features are extracted from the original image. Brightness, contrast, PP skew
features, and CV skew feature are extracted from the downscaled image of size 600 x 500.
S-index is extracted from the downscaled image of size 400 x 300. Other features are extracted
from different downscaled images depending on the threshold in the model. More specifically:

e The model with the threshold 0.2:

— Image of size 1200 x 900 for BRISQUE features;

Image of size 800 x 600 for simple and gradient IL-NIQE Gabor and gradient
IL-NIQE features;

— Image of size 600 x 500 for S3 sharpness, morphological borders, and IL-NIQE
color features;

e The model with the threshold 0.3:

— Image of size 800 x 600 for simple and gradient IL-NIQE Gabor features;
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— Image of size 600 x 500 for S3 sharpness, morphological borders, BRISQUE, and
IL-NIQE color features;

— Image of size 400 x 300 for gradient IL-NIQE features;
e The model with the threshold 0.4:

— Image of size 1200 x 900 for S3 sharpness, morphological borders, and BRISQUE
features;

— Image of size 600 x 500 for regional S3 sharpness, simple and gradient IL-NIQE
Gabor features, and IL-NIQE color features;

— Image of size 400 x 300 for gradient IL-NIQE features;

To sum up, we have developed the models for the classification of the images into 2 classes
using random forest classification algorithms with different probability threshold values. We
have performed the feature selection process and suggested improvements of the algorithm
for speeding it up only with a slight loss in performance.

8.2.6 Incorrectly classified images analysis

In this section, we will look into examples of incorrectly classified images, explain probable
reasons for being incorrectly classified, and discuss possible new features that might help to
classify these examples correctly in the future. We will use classification into 2 classes with
parameters (400, 15,3, 2, auto). As we will look into the probabilities of being in the positive
class, the thresholds do not play any role in this section. We will consider 6 incorrectly
classified images for each class with the highest probability of being in another class. That
is to say, 6 images from the positive class with the highest predicted probability of being
negative and 6 images from the negative class with the highest predicted probability of being
positive.

To begin with, let’s look into the examples from the positive class that are predicted to be
negative with the highest probabilities. They are presented in Figure with predicted
probability p of being included in the positive class (meaning that 1 — p is the predicted
probability of them being included in the negative class). For some of the examples incorrect
classification can be explained. For example, the image in Fig. is a photo of the screen.
Photos of a screen are negative examples in the vast majority of cases. Thus, this image is an
exception. The image in Fig. is not a photo of an invoice but of a check and, thus, it is
correctly rejected by the ORTEC algorithm. However, it is classified as a negative example as
it does not look similar to invoices: for example, does not have enough white background and
has a wide range of colors. Probably, if we will have enough correctly rejected examples of
this type, we will classify them as positive. For the remaining examples brightness, sharpness,
and some IL-NIQE features are the most influential in the decision of classifying them into
the negative class.

We can also notice that there is only one image from the positive class with the predicted
probabilities p of belonging to the negative class lower than 0.2 and only 4 images with p < 0.3.
That means, that there are few false positives in the models with the thresholds 0.2 and 0.3.

Next, let’s also look into the examples of images from the negative class that are incorrectly
classified as positive with the highest probabilities. They are presented in Figure [8.13] Here,
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Figure 8.12: Examples of images incorrectly classified as negative.

we can also explain some of the problems. Firstly, in the image in Fig there is a small
tick before the cost in the third line. It is recognized as “1” and, hence, the total amount does
not sum up. In Fig. and Fig. we have cut images that still cannot be correctly
classified, probably due to the fact that we do not have enough cut examples in the dataset. In
the images in Fig. and Fig. partially recognized images are presented. For the one
in Fig.[8.13dsome element number is missing. In Fig.[8.13fthe format of the invoice is unusual
and the treatment date cannot be found as it is expected to be in the line of the treatment and
not above the treatment table. These problems are related to the content and layout of the
invoice and not to the quality of the photo. Thus, they are not detected by our classification
algorithm. Finally, in the image in Fig. the anonymization box is not well aligned and
covers the date of treatment in some lines so that the date cannot be read correctly by OCR.
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Figure 8.13: Examples of images incorrectly classified as positive.

Thus, after looking into these images, we can conclude that most of the negative examples
that are classified as positive have some layout or content problem due to which they are
classified as negative. These problems are not captured by our classification algorithm and,
hence, the images are not classified correctly. Besides this, there are some incorrectly classified
cut invoices, hence, some more investigation is required for the correct classification of the cut
invoices. Furthermore, we have seen many positive examples with a high predicted probability
of belonging to the negative class with no obvious explanation. Thus, it might be possible to
find some other features which will still classify well the negative examples but will be able
to distinguish the presented positive examples.

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 78



CHAPTER 8. RECOGNITION PREDICTION

8.2.7 Dataset enlargement

In this section, we will investigate the influence of the extension of the training dataset in
different ways on the performance of the classification algorithm. Firstly, the impact of the
size of the training dataset on the performance of the algorithm will be discussed. Afterwards,
the impact of the inclusion of newly generated blurred images will be discussed.

Training dataset size importance analysis

Firstly, let’s have a look at how metrics change when we increase the size of the training data-
set. For a random forest classification model with 2 classes and parameters (400, 15, 3, 2, auto)
we plot the graphs of the dependence of the evaluation metrics on the dataset share used for
training. We consider the models with the thresholds 0.5 (Fig. and 0.3 (Fig. |8.14b)).
For both models, it does not seem profitable to include more data as the learning process
does not give more information starting from around 75%-80% of the dataset. However, the
reason for this behaviour might be also the quality of the dataset as we do not have enough
negative and partial examples for some image degradations.

1.0 1.0
0.91 0.91 \/\/‘/"”'\M
0.8 0.8
0| —— ~ 0.74 /_/—
o o
£ 0.6 £ 061
[ [
= =
0.5 0.5
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034 — precision (pos) 0.3 —— accuracy
"~ | —— precision (neg) ' —— precision (neg)
0.2 4 — recall (neg) 0.2 —— recall (neg)
Ojl 0;2 0;3 014 015 016 0j7 0j8 0j9 0;1 0;2 0;3 0j4 OjS 0j6 0j7 0j8 Oj9
Data share Data share
(a) The model with the threshold 0.5. (b) The model with the threshold 0.3.

Figure 8.14: Evaluation metrics depending on the share of the training dataset from the
complete dataset for 2 classes random forest classifier.

Training dataset increase with blurred images

In this subsection, we consider another way of increasing the size of the training dataset. We
can include in the dataset the blurred versions of fully recognized images that are already
present in the dataset.

To generate these images, we blur fully-recognized images with Gaussian blur filters of sizes
5,7,9, and 11 and the variance 100. This will increase the number of negative and partial
images. For the larger filter sizes, most of the invoices cannot be recognized by a human
neither.

We consider a random forest classification model with 2 classes with the parameters (400, 15, 3, 2, auto).
We can include blurred images in the dataset in 2 ways. Firstly, blurred images can be just
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Model Threshold Accuracy Precision pos. | Precision neg.
mean | std | mean | std mean std

Initial 0.5 ] 0.744 | 0.005 | 0.75 | 0.004 | 0.736 | 0.006
Initial 0.3 ] 0.701 | 0.005 | 0.648 | 0.004 | 0.922 | 0.009
Mixed blur 0.5 ] 0.683 | 0.002 | 0.585 | 0.003 | 0.732 | 0.002
Mixed blur 0.3 ] 0.627 | 0.004 | 0.501 | 0.003 | 0.842 | 0.003
Blur linked to original 0.5 ] 0.752 | 0.004 | 0.723 | 0.004 | 0.783 | 0.004
Blur linked to original 0.3 ] 0.703 | 0.003 | 0.627 | 0.003 | 0.905 | 0.005

Table 8.5: Evaluation of the models with included blurred examples.

added into the dataset and the model can be trained with random splits of all data into
training and validation sets (“Mixed blur”). However, this might result in having the original
image and its blurred versions split into training and validation dataset. Thus, we consider
the second method of splitting the data into training and validation datasets. There, we
split only original images and, afterwards, include all blurred versions of the corresponding
image into the part where the original is located (“Blur linked to original”). In Table the
evaluation of both models is presented. We can see that in case of the threshold of 0.5 the
accuracy and the negative precision improve for the model with blurred versions linked to the
original. However, for another model inclusion of blurred versions does not seem profitable.

Thus, the method of enlarging the dataset with blurred images does not seem profitable for the
model with the threshold of 0.3. However, for another threshold of 0.5, the dataset extension
method with linking blurred images to the originals improves the performance of the model.
We have not considered other thresholds and, hence, cannot conclude that this method is not
useful in this project. We can only conclude that it does not help the classification with the
threshold of 0.3.
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Enhancement techniques

In this chapter, we describe implemented enhancement techniques, their influence on the
recognition of images by the ORTEC algorithm, and methods of choosing a relevant enhance-
ment technique to increase the recognition percentage.

9.1 Implemented enhancement techniques

We implement some fast and simple image transformations and spatial and spectral enhance-
ment techniques discussed in Section We choose the techniques which are aimed at the
sharpening of an image and at skew correction.

We will apply all of the techniques to gray-scaled images in order to shorten and simplify the
process. However, they can be also applied to each of the RGB color channels separately in
order to preserve colors.

Firstly, we use the binarization transform. We use the respective method from the OpenCV
library in Python with adaptive Gaussian thresholding. In this thresholding method, the
threshold value for a pixel is defined by the sum of pixel values in a window centered in this
pixel and convolved with a Gaussian filter. We use a window of size 31 x 31 in the experiments.

Secondly, we apply two point-processing transformations: gamma-transformation with ~ €
{0.5,2} and logarithmic transformation. Moreover, we use two histogram methods: histogram
equalization and histogram matching. For the histogram matching, we choose a scan with a
sufficient amount of text as an image to which we match others. Local histogram equalization
was also implemented but it did not produce images of good quality. These methods can be
found in [68].

As an edge enhancement technique, we use the Lapalce method proposed in [90]. We subtract
a Laplacian of an image multiplied by a constant e € {1/21,1/16,1/6, 1} from the image itself.

Besides this, the constrained unsharp masking method from [7] is implemented with the
Gaussian bilateral filtering (described in [101]) as a smoothing method with o, = 20 and
o4 = 2. Bilateral filtering is present in the OpenCV Python library. The values of the
variance of the unsharp mask used are o € {20,50}. The enhanced image is obtained as the
sum of the smoothed image and the masked image multiplied by « with « € {0.2,0.4}.
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Furthermore, we implement several spectral methods proposed in [5] and [4] both with DET
and DCT as spectral transforms. As a filtering technique we implement unsharp masking
(UM) as in eq. modified unsharp masking as in eq. alpha rooting (eq. 4.9)), and
log alpha rooting (eq. . Modified unsharp masking resulted in images of poor qual-
ity with block artifacts (some sort of grid appears on images), thus, this technique was
not considered further. In other methods, after some exploration, the following paramet-
ers were chosen: a € {0.9,0.95,0.975,0.99} in alpha-rooting, combinations of (a,3,7) €
{(0.9,0.7,1.3),(0.8,0.7,0.9), (0.8,0.9,1.5) } in log-alpha rooting and C' = 7 and filters with
the variance o2 € {20,50} of size 41 in UM.

For skew correction, we try rotating an image by the skew angle obtained from PP, CV, and
Sauvola methods. Besides this, we try to rotate each region of the image separately according
to its skew angle obtained from PP and CV methods. This method often results in images of
poor quality as the text in them becomes discontinuous.

Finally, we apply combinations of enhancement methods that performed well on their own.

9.2 Impact of enhancement techniques

The discussed above enhancement techniques might improve images as well as deteriorate
them. That is to say, after the application of any technique, not recognized image can become
partially recognized or fully recognized by the ORTEC algorithm and, at the same time, fully
recognized images can become partially recognized or not recognized.

We introduce some notation to describe the impact of enhancement techniques. Firstly, let’s
name the negative and partial images that became positive and negative images that became
partial “improved images”. Secondly, let’s name positive and partial images that became
negative and positive images that became partial “worsened images”.

9.2.1 Impact of single enhancement techniques

We start by investigating the impact of single enhancement techniques on the images.

The numbers of improved and worsened images for different enhancement techniques are
provided in Table The total numbers of the positive, partial, and negative examples
after application of the respective enhancement techniques can be found in Table While
evaluating the impact of the enhancement method we should compare it to the results on
gray-scale images as all of the enhancement techniques are applied to gray-scaled versions of
images. From here we can see, that among the most successful methods there are binarization,
constrained UM, DFT and DCT UM, Laplace method, and skew correction methods. We
can also see some dependencies between the parameters of enhancement techniques and their
impact. For instance, small values of the parameter ¢ for the Laplace method give better
results. In the constrained UM the variance o does not influence the performance while higher
« results in both more improvements and more worsenings. For the spectral UM methods
the variance o2 also does not matter much while the method with DFT used as a spectral
transform performs slightly better than the method with DCT. On the other hand, DCT with
log-alpha rooting and histogram matching have a much larger negative than positive impact
on images. Thus, these enhancement techniques do not add value to the project.
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Worsenings Improvements
Enhancement method From positive From part. From negative From part.
To part. | To neg. To neg. To part. | To pos. To pos.

Gray-scaling 9 19 11 10 6 20
Binarization 34 26 35 17 15 28
Constrained UM o = 0.2,0% = 20 15 23 28 18 10 29
Constrained UM o = 0.4, 0% = 20 27 22 26 19 12 34
Constrained UM o = 0.4, 0% = 50 27 22 26 19 12 34
DCT alpha rooting o = 0.9 32 20 25 25 14 16
DCT alpha rooting oo = 0.95 19 11 21 19 10 24
DCT alpha rooting o = 0.975 9 12 14 22 11 26
DCT alpha rooting oo = 0.99 11 12 12 18 8 19
DCT log alpha rooting
(@, B,7) = (0.8,0.7,0.9) 32 35 35 16 11 11
DCT log alpha rooting
(@, 8.7) = (0.8,0.9,1.5) 32 219 104 4 0 0
DCT UM o* = 20 9 12 11 13 6 19
DCT UM o? = 50 7 14 11 13 6 19
DFT UM o2 = 50 8 14 9 15 7 20
Histogram equalization 61 133 60 19 7 7
Laplace € = 1/21 11 15 21 16 3 20
Laplace € = 1/16 9 11 16 15 7 23
Laplace e = 1/6 16 16 25 15 6 22
Laplace e = 1 66 118 73 14 3 9
Histograms matching 37 123 82 10 3 8
Log transformation 17 18 24 16 7 23
Gamma transformation v = 0.5 32 23 30 22 8 26
Gamma transformation v = 2 29 20 26 17 8 18
PP rotation 24 21 18 22 10 25
PP regional rotation + binarization 66 65 50 23 4 22
Sauvola rotation + binarization 36 33 34 20 11 36

Table 9.1: Numbers of improved and worsened images for different enhancement techniques.

We can look into some examples of improved and worsened images for different enhancement
techniques. We present only the images which improved or worsened in respect to both
original and gray-scaled image in order to exclude the influence of conversion to gray-scale.
Let’s first look into the examples for the methods with not many worsenings and relatively
many improvements. In Figure the examples after binarization are provided and in
Figure 9.2 — the examples for the constrained UM. Sometimes, it is not seen directly from
the image itself why it worsens, as in these cases. However, OCR does not recognize any text
on the image in Fig. and on the image in Fig. the treatment code and the cost
are recognized incorrectly. The examples for the DCT alpha-rooting and log-alpha rooting
are given in Figure We can notice that the images become darker after the application
of these enhancement techniques. Besides this, after the log-alpha rooting some line artifacts
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Totals

Enhancement method Positive | Partial | Negative
Original images 314 112 159
Gray-scaling 312 100 173
Binarization 297 100 188
Constrained UM «a = 0.2,02 = 20 315 883 182
Constrained UM «a = 0.4, 02 = 20 311 93 176
Constrained UM a = 0.4, 0% = 50 311 98 176
DCT alpha rooting o = 0.9 292 128 165
DCT alpha rooting o = 0.95 318 105 162
DCT alpha rooting oo = 0.975 330 103 152
DCT alpha rooting o = 0.99 318 110 157
DCT log alpha rooting
(. B, %) = (0.8,0.7,0.9) 269 14 202
DCT log alpha rooting
(@, 8,7) = (0.8,0.9,1.5) 63 44 478
DCT UM o? = 20 318 104 163
DCT UM o2 = 50 318 102 165
DFT UM o2 = 50 319 106 160
Histogtam equalization 134 125 326
Laplace e = 1/21 311 98 176
Laplace € = 1/16 324 97 164
Laplace e = 1/6 310 96 179
Laplace e =1 142 110 333
Histograms matching 165 69 351
Log transformation 309 98 178
Gamma transformation v = 0.5 293 110 182
Gamma transformation v = 2 291 114 180
PP rotation 304 115 166
PP regional rotation + binarization 209 129 247
Sauvola rotation + binarization 292 98 195

Table 9.2: Total number of positive, partial and negative images in the dataset after applic-
ation of different enhancement techniques.

can be observed near the text which results in a worsened image in some cases.

Let’s also look into the examples for the methods where we get many worsened images.
The examples for histogram methods are given in Figure We can see that matching
and equalization change the images a lot and, hence, might easily result in a worsening as
well as in improvement. The worsenings often happen in the presence of background as in
Figures For example, for the histogram matching method, the background gets the
most amount of dark pixels and, hence, the text on the paper is not that distinguishable.

Thus, we have discussed the impact of different enhancement techniques on image recognition
by the OCR algorithm and the ORTEC algorithm. We have concluded that there is no
enhancement technique which only improves the images. However, there are some techniques
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Figure 9.1: Examples of binarized images.

(a) Original of an improved (b) The improved image. (c) Original of a worsened (d) The worsened image.
image. image.

Figure 9.2: Examples of images after constrained UM.

that result in more improvements than worsenings. Among them, there are the Laplace
sharpening method, the DCT alpha-rooting method, and the DFT UM method. Some other
methods, such as the constrained UM method, result in equally many improvements and
worsenings.

9.2.2 Impact of combinations of enhancement techniques

Now, let’s look into the impact of some combinations of the enhancement techniques on the
invoices recognition process.

We will consider the combinations of the single methods which performed well on their own.
Thus, we look at the combinations of the Laplace method with e = 1/16 with the constrained
UM with a = 0.2 and ¢? = 20, DFT UM with 02 = 50, and DCT alpha-rooting with o =
0.975. Besides this, we will combine PP rotation with all 4 mentioned sharpening methods.
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(a) Original of an improved image. (b) The improved image after DCT al- (¢) The improved image after DCT
pha rooting.

log-alpha rooting.

(d) Original of a worsened image.  (e) The worsened image after DCT al- (f) The worsened image after DCT log-
pha rooting. alpha rooting.

Figure 9.3: Examples of improved and worsened images after DCT alpha-rooting and log-
alpha rooting.

In addition, we binarize the resulted images. The complete results with a comparison with
the outcome of the same enhancement techniques used on their own can be found in Table B.T]
in Appendix

We can see that combining the Laplace and the constrained UM methods improves the results
which were obtained by only one of these 2 techniques. We can also notice the slight differ-
ences between different order of methods application. Other pairs of sharpening methods do
not outperform sharpening methods used on their own. Applying binarization after combin-
ations of sharpening techniques does not improve the results either. On the other hand, the
rotation method performs better when combined with a sharpening method, as, in this case,
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Figure 9.4: Examples of improved and worsened images after histograms equalization and
matching.

the technique corrects for both skew and blur. However, overall, we do not see significant im-
provements compared to the results obtained before: the number of positive examples after
application of the DCT alpha-rooting with a = 0.975 is similar to the maximum number
of positive examples obtained after application of combinations of enhancement techniques
as can be seen in Table The maximum number of positive examples is obtained after
application of the combination of the Laplace transform and constrained UM.

Thus, we can conclude that the combinations of the sharpening enhancement techniques do
not outperform the single sharpening enhancement techniques. On the other hand, combin-
ing the techniques which correct for different degradations can be useful as in the case of
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combination of sharpness improvement and deskewing techniques.

9.3 Computational complexity of enhancement techniques

In Table [9.3| computational complexity of different image enhancement algorithms for several
image sizes is given. Calculation time for rotation algorithms can be reduced as we will
already know the angles for rotation after feature extraction. Besides this, DFT and DCT
of the image can be calculated only once and might be calculated already in the feature
extraction process. Hence, the respective enhancement times could be also reduced.

We can see that the enhancement techniques which involve spectral transforms take around 1
second or even more to perform for the average-sized images. Other enhancement techniques
are less computationally complex.

Thus, some of the enhancement techniques are too slow to be applied to the original image.
Hence, they can be applied only to a downscaled image. However, the outcome of this
enhancement might differ from the outcome on the original image and this method requires
further studies.

Image size 1200 x 900 2500 x 1900 4000 x 3000
Feature mean | std mean | std mean | std

Constrained unsharp masking | 0.400 | 0.018 | 1.800 | 0.157 | 4.300 | 0.141

Binarization 0.011 | 0.002 | 0.046 | 0.003 | 0.115 | 0.007
Logarithm transform 0.043 | 0.003 | 0.152 | 0.011 | 0.384 | 0.016
Power transform 0.038 | 0.016 | 0.150 | 0.077 | 0.380 | 0.193
Histogram equalization 0.049 | 0.004 | 0.166 | 0.013 | 0.415 | 0.024
Histogram matching 0.089 | 0.006 | 0.253 | 0.016 | 0.593 | 0.030
Laplace transform 0.029 | 0.005 | 0.112 | 0.006 | 0.285 | 0.012
DFT with alpha-rooting 0.189 | 0.011 | 0.910 | 0.040 | 2.293 | 0.077
DCT with alpha-rooting 0.176 | 0.059 | 0.866 | 0.250 | 2.235 | 0.633

DFT with log alpha-rooting 0.323 | 0.021 | 1.521 | 0.117 | 3.838 | 0.013
DCT with log alpha-rooting 0.250 | 0.016 | 1.217 | 0.042 | 3.124 | 0.092
DFT with unsharp masking 0.256 | 0.023 | 1.287 | 0.045 | 3.097 | 0.116
DCT with unsharp masking 0.209 | 0.071 | 1.047 | 0.034 | 2.738 | 0.079

PP full rotation 0.025 | 0.004 | 0.076 | 0.008 | 0.167 | 0.015
PP regional rotation 0.012 | 0.004 | 0.052 | 0.015 | 0.148 | 0.046
CV full rotation 0.025 | 0.005 | 0.105 | 0.012 | 0.272 | 0.020
CV regional rotation 0.012 | 0.004 | 0.049 | 0.014 | 0.139 | 0.043
Sauvola full rotation 0.013 | 0.002 | 0.052 | 0.006 | 0.128 | 0.014

Table 9.3: Computational complexity for image enhancement algorithms (in seconds) for
different image sizes.

Prediction and Improvement of the Outcomes of Image Recognition Algorithms 88



CHAPTER 9. ENHANCEMENT TECHNIQUES

9.4 Classification algorithms for choosing relevant enhance-
ment technique

We have seen in Section that image quality can deteriorate as well as improve after the
application of different techniques. Our goal is to understand which enhancement technique
to apply to which image in order to maximize the percentage of images recognized by the
ORTEC algorithm.

Thus, to achieve this goal, a classification algorithm can be constructed based on the outcomes
of the ORTEC algorithm for images after the application of enhancement methods. As
the independent variables, we can use the same features as in Chapter We will use 189
uncorrelated features given in Section

However, we have to introduce a new labelling for the new problem. For each of the enhance-
ment techniques we can introduce several labellings:

e 1 for improved images and 0 for all other images;
e 0 for worsened images and 1 for all other images;

e 2 for improved, 0 for worsened, and 1 for all other images.

The next step is to choose the evaluation metrics. As there is quite a small number of the
improved images, as we can see in Tables and the accuracy metric is not relevant
in this classification. A greater role will be played by the recall (eq. . Depending on the
labelling, it will show one or both things out of the following:

e For how many images out of those that can be improved by a certain enhancement
technique we actually will choose to apply this technique;

e For how many images out of those that are worsened by a certain enhancement technique
we will choose to apply this technique and, actually, worsen them.

# correctly classified images of class ¢ (9.1)

ecall ;=

recdticlass i # images in class ¢

Precision will be still important as well. It will allow understanding which percentage of

the images which were chosen for enhancement will be actually improved and which will be
worsened, depending on the labelling and a class for which precision is calculated.

As a classification algorithm, we use a random forest model as well as in Chapter For
the classification into 2 classes, we use a random forest classifier and for classification into 3
classes, we use a random forest regressor. We consider thresholds of 0.3 and 0.5 for 2 classes
classification and threshold pairs of 0.5/1.5 and 0.3|1.5 for 3 classes classification.

9.5 Evaluation of classification algorithms

In this section, we will evaluate random forest algorithms for a choice of enhancement tech-
niques with different parameters and for different data labellings from
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Maximizing, Recall pos. Recall neg. Precision pos. | Precision neg.
Enhancement method Labelling mean | std | mean | std | mean | std mean std

Constrained UM, thr 0.3 | Recall pos, 1 0.145 | 0.017 | 0.928 | 0.004 | 0.176 | 0.018 | 0.911 | 0.002
Sauvola rotation Precision pos, 1 | 0.031 | 0.004 | 0.996 | 0.002 | 0.497 | 0.111 | 0.888 | 0.001
+ binarization
DCT log-alpha rooting Recall neg, 2 0.67 | 0.008 | 0.694 | 0.006 | 0.673 | 0.004 | 0.691 | 0.005
Equalization 2 0.8 | 0.004 | 0.549 | 0.005 | 0.687 | 0.003 | 0.689 | 0.006
DFT UM Recall pos, 2 0.991 | 0.001 0 0] 0.934 | 0.001 0 0
Binarization, thr 0.3—1.5 | Recall pos, 3 0.024 | 0.008 | 0.042 | 0.009 0.85 | 0.229 0.22 | 0.043
BS% ;‘f’fgpha rooting, | g call neg, 3 0.008 | 0.017 | 0.849 | 0.006 | 0.1 0.2 | 0.559 | 0.004

Table 9.4: Evaluation metrics for classification of impact of enhancement techniques on re-
cognition.

The evaluation of these classification algorithms shows that they do not perform well enough
for any labelling. Some of the best results for each type of labelling according to the respective
important metrics (positive or negative recall and positive or negative precision) are given in

Table [0.4]

For the first labelling we are interested in the positive recall and the positive precision and we
can see that both metrics in the best models have low values. For the second labelling we are
interested in the negative recall. We get reasonable values for the enhancement techniques
with a large number of worsenings, such as DCT log-alpha rooting or histogram equalization.
However, we have seen in Section that these methods result in a few improvements and
are not helpful for image enhancement. On the other hand, when it comes to other methods
with fewer worsenings we do not get the negative recall higher than 0.11. This means that if
we follow that classification, we will apply the enhancement technique to many images which
will worsen due to it. For the third labelling we are interested in both recall values. However,
the maximum value of the positive recall is very small. The maximum value of the negative
recall is obtained for the techniques with a large number of worsened images and the positive
recall and precision are very small in these cases. Thus, all 3 labellings do not provide high
enough precision and recall in the random forest classification and regression models.

Thus, we have investigated different enhancement techniques and found several of them that
might improve image quality. However, we could not find a classification algorithm that will
accurately predict if the image will be recognized or not after application of these enhancement
techniques.

9.6 Other possible approaches to image enhancement

In Section we have not found a classification algorithm that will help to choose the
enhancement technique which will improve the image. Therefore, we can think of other
approaches to image enhancement where we do not need to perform classification.

One such approach is to apply some image enhancement techniques to the image only if it
is predicted as negative by the prediction algorithm from Chapter [§] As we have seen that
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only a few images improve after application of any enhancement technique (Sec. , we
cannot run the ORTEC algorithm immediately after enhancement as it can still result in a
not recognized image. Therefore, we can run the prediction algorithm again on the enhanced
image. This will take slightly more than a second according to Table in Section [8.2.5
Thus, the whole procedure will take around 3 seconds: firstly, predict the class, then run an
enhancement technique, and, finally, predict the class again. Thus, this approach cannot be
applied in practice as it takes too long to run.

To sum up, we have investigated several different approaches to image enhancement. However,
none of them can be implemented in practice as they do not provide a significant improvement
of the recognition process or take a long time to run.
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Chapter 10

Future research

In this project, we have developed an image classification algorithm and have investigated
various image enhancement methods. However, there is still a large area for the research
remaining. In this chapter, we discuss possible directions for future research.

Let’s start by discussing possible research directions for the classification problem. Firstly,
other features can be added to the classification model. For example, other methods suggested
in Sections[4.1 can be used for feature extraction. Secondly, some currently used features
can be substituted by correlated ones which are less computationally expensive. This way,
for example, the Laplace sharpness and FISH sharpness (Sec. can be used instead of the
respective simple IL-NIQE Gabor features they are correlated with. Thirdly, some features
can be calculated only for the middle of the image to avoid problems with background. For
example, contrast features are very sensitive to the background but if they are evaluated only
in the middle of the image, they should focus on the contrast of the invoice itself.

In addition, it might be considered to use not only image features but also the text extracted
by means of OCR and include it as a feature for the algorithm. However, this is already
touching upon problems related to the content of an invoice. Besides this, it depends on the
speed of OCR API if it is worth including this information in the algorithm.

The next possible point of the improvement of the classification algorithm can be the choice
of another machine learning algorithm instead of a random forest. For instance, SVM, logistic
regression, or k-NN can be investigated more thoroughly.

Furthermore, a more optimal combination of the currently extracted features can be dis-
covered for the classification problem. There is a broad range of available options in terms
of the extracted features and sizes of images which to use for extraction. This way, both the
computational complexity and the quality of the model can be improved.

Finally, the implementations of the feature extraction algorithms can be suboptimal in this
project and, hence, can be further improved.

The second problem approached in this project is the image enhancement problem. No
universal image enhancement technique was discovered. Thus, other techniques suggested
in Section [4.4) can be implemented for image enhancement. Moreover, suitable enhancement
techniques for text images can be developed.

New techniques could result in a higher percentage of the images recognized after enhance-
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ment. In addition, a better algorithm for classifying the images depending on the enhancement
technique that improves the image can be developed.

One more possible approach for research is to apply image enhancement techniques only to
the text regions. For it, text localization could be performed at first, then, the text regions
can be corrected and deskewed and passed to the OCR API.

Thus, we can see that there are many directions in which the research of the problems set in
this project can be continued.
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Chapter 11

Conclusions

In the project, we have approached the problems of text images quality assessment and
enhancement subject to time constraints. As the examples of text images, invoices from the
dental care were provided by ORTEC, the company where this project was performed. As a
subjective quality metric of an image, an outcome of the ORTEC algorithm (Chapter [3) was
used.

During the course of the project, the existing algorithm and the available data were carefully
studied. Furthermore, a literature research in computer vision was performed in order to
get familiar with the image analysis field. Finally, random forest classification models were
applied and investigated.

An algorithm to assess the quality of text images was suggested based on feature extraction
and random forest classification. The size of the available dataset did not allow for use of deep
learning frameworks and that is the reason why features were extracted to perform learning.
After extensive literature research on image statistics extraction and image quality assessment,
the features were chosen and extracted. The further analysis helped to select the features
which balanced the selected quality measures and computational complexity. Finally, the
whole framework was developed for text image quality assessment, more specifically, invoices
images quality assessment.

This framework consists of three steps. Firstly, we downscale the input image to 4 different
sizes, 1200 x 900, 800 x 600, 600 x 500, and 400 x 300. Then, the features are extracted
from the downscaled images or the original image: for each feature the size of the image to
extract it is chosen depending on the probability threshold that is used in the model. After
the feature extraction, the random forest classifier is run that returns the probability of the
image belonging to the positive class. If this probability is larger than the threshold, the
image is classified as positive and passed to the ORTEC algorithm. Otherwise, it is classified
as negative and a user is asked to provide a new, higher quality photo.

In the end, 3 random forest classification models were suggested for the classification of
invoices images into 2 classes. The considered probability thresholds are 0.2, 0.3, and 0.4.
The larger is the threshold, the lower is the obtained negative precision and the higher is
the recall. The models result in the estimated precision values of 0.94, 0.91, and 0.83 and
recall values 0.25, 0.43, and 0.58 respectively. Thus, depending on the business needs and
acceptable trade-off between these metrics, one of the models can be used.
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Each of the models takes less than 1.4 seconds to run and involves the extraction of 34 (in 2
of them) or 32 features (in the remaining one with the threshold 0.4).

The second problem which was considered in the project is text image enhancement. After
literature research of existing enhancement techniques, we have implemented some of them.
As these methods not only improved some images but also degraded others, we tried to
perform classification based on the features extracted for the previous problem using random
forests. Using the classifier, we aimed at separating the improved enhanced images from the
degraded ones. However, this classification did not give valuable results. We also suggested
another possible approach using the already developed classification algorithm for predicting
the influence of enhancement methods. This method was too computationally expensive for
the use-case and, hence, was not investigated in detail.

To sum up, the project resulted in the fast text image quality classification algorithm which
includes a feature extraction step and a classification step. Moreover, image enhancement
techniques were studied and their performance on text images was investigated.
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Appendix A

Use of downscaled images for

features extraction

Downscaled features | Size Accuracy Precision neg. | Recall neg. | Time gain

mean | std | mean | std | mean | std (sec)
None (original model) 0.762 | 0.003 | 0.841 | 0.006 | 0.602 | 0.005 0.000
S3 sharpness dsl | 0.758 | 0.004 | 0.836 | 0.005 | 0.597 | 0.007 0.703
S3 sharpness ds2 | 0.757 | 0.002 | 0.832 | 0.005 | 0.598 | 0.005 0.768
S3 sharpness ds3 | 0.757 | 0.003 | 0.834 | 0.006 | 0.596 | 0.004 0.786
Brightness dsl | 0.764 | 0.004 | 0.84 | 0.007 | 0.608 | 0.005 0.007
Brightness ds2 | 0.761 | 0.004 | 0.84 | 0.007 | 0.603 | 0.006 0.017
Brightness ds3 | 0.763 | 0.004 | 0.841 | 0.005 | 0.607 | 0.007 0.019
Contrast dsl | 0.761 | 0.006 | 0.841 | 0.006 | 0.601 | 0.008 0.129
Contrast ds2 | 0.762 | 0.004 | 0.841 | 0.007 | 0.604 | 0.006 0.141
Contrast ds3 | 0.762 | 0.004 | 0.84 | 0.006 | 0.604 | 0.006 0.144
Borders morphological | ds1 | 0.762 | 0.003 | 0.835 | 0.005 | 0.609 | 0.008 1.169
Borders morphological | ds2 | 0.757 | 0.003 | 0.832 | 0.006 | 0.599 | 0.005 1.276
Borders morphological | ds3 | 0.758 | 0.004 | 0.833 | 0.006 | 0.601 | 0.006 1.307
PP dsl | 0.76 | 0.005 | 0.834 | 0.007 | 0.605 | 0.008 0.247
PP ds2 | 0.76 | 0.005 | 0.838 | 0.007 | 0.601 | 0.009 0.275
PP ds3 | 0.763 | 0.002 | 0.841 | 0.004 | 0.606 | 0.004 0.283
Cv dsl | 0.761 | 0.004 | 0.838 | 0.005 | 0.605 | 0.008 0.209
Cv ds2 | 0.763 | 0.002 | 0.843 | 0.005 | 0.603 | 0.005 0.232
CvV ds3 | 0.764 | 0.004 | 0.838 | 0.007 | 0.61 | 0.007 0.239
S3 sharpness regional | dsl | 0.764 | 0.003 | 0.841 | 0.007 | 0.609 | 0.005 0.323
S3 sharpness regional | ds2 | 0.763 | 0.005 | 0.842 | 0.009 | 0.605 | 0.006 0.351
S3 sharpness regional | ds3 | 0.765 | 0.004 | 0.841 | 0.006 | 0.61 | 0.005 0.359
BRISQUE dsl | 0.754 | 0.005 | 0.825 | 0.007 | 0.599 | 0.009 0.865
BRISQUE ds2 | 0.75 | 0.005 | 0.818 | 0.007 | 0.596 | 0.008 0.983
BRISQUE ds3 | 0.751 | 0.004 | 0.823 | 0.005 | 0.593 | 0.008 1.017
S index dsl | 0.766 | 0.005 | 0.847 | 0.009 | 0.606 | 0.006 3.788
S index ds2 | 0.765 | 0.004 | 0.844 | 0.007 | 0.608 | 0.007 4.093
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Downscaled features | Size Accuracy Precision neg. | Recall neg. | Time gain
mean | std | mean | std | mean | std (sec)
S index ds3 | 0.769 | 0.004 | 0.848 | 0.009 | 0.614 | 0.006 4.180
Simple Gabor dsl | 0.765 | 0.005 | 0.848 | 0.006 | 0.603 | 0.007 8.587
Simple Gabor ds2 | 0.764 | 0.004 | 0.846 | 0.008 | 0.604 | 0.006 9.327
Simple Gabor ds3 | 0.763 | 0.004 | 0.847 | 0.004 | 0.599 | 0.008 9.533
Gradient Gabor dsl | 0.766 | 0.004 | 0.846 | 0.007 | 0.61 | 0.006 4.463
Gradient Gabor ds2 | 0.765 | 0.004 | 0.842 | 0.005 | 0.611 | 0.007 4.848
Gradient Gabor ds3 | 0.765 | 0.004 | 0.84 | 0.004 | 0.61 | 0.006 4.955
Gradient IL-NIQE dsl | 0.765 | 0.003 | 0.838 | 0.005 | 0.614 | 0.005 2.798
Gradient IL-NIQE ds2 | 0.767 | 0.004 | 0.845 | 0.007 | 0.612 | 0.007 3.053
Gradient IL-NIQE ds3 | 0.764 | 0.003 | 0.843 | 0.005 | 0.606 | 0.007 3.126
All features dsl | 0.729 | 0.006 | 0.822 | 0.008 | 0.535 | 0.01 20.114
All features ds2 | 0.723 | 0.004 | 0.803 | 0.008 | 0.536 | 0.009 21.907
All features ds3 | 0.717 | 0.002 | 0.774 | 0.006 | 0.554 | 0.004 22.415

Table A.1: Evaluation of the models with the threshold 0.4 and 25 features when extracting
specified features from downscaled images.
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Downscaled featires Size Accuracy Precision neg. | Recall neg. | Time gain

mean | std | mean | std | mean | std (sec)

None (original model) 0.737 | 0.006 | 0.919 | 0.009 | 0.476 | 0.01 0.000
S3 sharpness dsl | 0.738 | 0.003 | 0.918 | 0.005 | 0.481 | 0.006 0.703
S3 sharpness ds2 | 0.734 | 0.004 | 0.911 | 0.01 | 0.475 | 0.007 0.768
S3 sharpness ds3 | 0.734 | 0.005 | 0.914 | 0.009 | 0.474 | 0.008 0.786
Brightness dsl | 0.74 | 0.004 | 0.918 | 0.007 | 0.484 | 0.006 0.007
Brightness ds2 | 0.741 | 0.004 | 0.927 | 0.008 | 0.482 | 0.005 0.017
Brightness ds3 | 0.741 | 0.004 | 0.926 | 0.008 | 0.483 | 0.007 0.019
Contrast dsl | 0.736 | 0.005 | 0.917 | 0.008 | 0.476 | 0.01 0.129
Contrast ds2 | 0.735 | 0.004 | 0.919 | 0.004 | 0.473 | 0.008 0.141
Contrast ds3 | 0.737 | 0.003 | 0.923 | 0.004 | 0.475 | 0.007 0.144
Borders morphological dsl | 0.737 | 0.004 | 0.919 | 0.005 | 0.477 | 0.009 1.169
Borders morphological ds2 | 0.736 | 0.003 | 0.918 | 0.006 | 0.476 | 0.006 1.276
Borders morphological ds3 | 0.735 | 0.002 | 0.916 | 0.006 | 0.475 | 0.004 1.307
PP dsl | 0.738 | 0.002 | 0.918 | 0.005 | 0.48 | 0.005 0.247
PP ds2 | 0.738 | 0.005 | 0.919 | 0.007 | 0.479 | 0.008 0.275
PP ds3 | 0.737 | 0.004 | 0.918 | 0.005 | 0.477 | 0.008 0.283
CV dsl | 0.736 | 0.004 | 0.916 | 0.006 | 0.476 | 0.007 0.209
CV ds2 | 0.735 | 0.004 | 0.916 | 0.01 | 0.475 | 0.006 0.232
CvV ds3 | 0.738 | 0.004 | 0.92 | 0.008 | 0.479 | 0.007 0.239
S3 sharpness regional dsl | 0.73 | 0.005 | 0.899 | 0.009 | 0.473 | 0.009 0.323
S3 sharpness regional ds2 | 0.733 | 0.005 | 0.902 | 0.008 | 0.479 | 0.009 0.351
S3 sharpness regional ds3 | 0.73 | 0.003 | 0.902 | 0.007 | 0.471 | 0.009 0.359
Laplace sharpness regional | ds1 | 0.736 | 0.003 | 0.918 | 0.004 | 0.475 | 0.006 0.102
Laplace sharpness regional | ds2 | 0.737 | 0.003 | 0.92 | 0.006 | 0.476 | 0.007 0.11
Laplace sharpness regional | ds3 | 0.736 | 0.003 | 0.923 | 0.007 | 0.474 | 0.007 0.113
BRISQUE dsl | 0.737 | 0.004 | 0.914 | 0.005 | 0.479 | 0.008 0.865
BRISQUE ds2 | 0.738 | 0.003 | 0.92 | 0.008 | 0.479 | 0.007 0.983
BRISQUE ds3 | 0.737 | 0.004 | 0.922 | 0.007 | 0.476 | 0.007 1.017
Morphology dsl | 0.737 | 0.005 | 0.922 | 0.005 | 0.476 | 0.009 0.765
Morphology ds2 | 0.736 | 0.004 | 0.917 | 0.008 | 0.478 | 0.007 0.785
Morphology ds3 | 0.736 | 0.004 | 0.917 | 0.008 | 0.477 | 0.008 0.791
S index dsl | 0.735 | 0.004 | 0.92 | 0.004 | 0.473 | 0.008 3.788
S index ds2 | 0.735 | 0.004 | 0.92 | 0.009 | 0.473 | 0.006 4.093
S index ds3 | 0.736 | 0.004 | 0.923 | 0.008 | 0.472 | 0.008 4.180
Simple Gabor dsl | 0.733 | 0.004 | 0.928 | 0.007 | 0.462 | 0.009 8.587
Simple Gabor ds2 | 0.729 | 0.003 | 0.927 | 0.006 | 0.455 | 0.007 9.327
Simple Gabor ds3 | 0.728 | 0.005 | 0.931 | 0.008 | 0.45 | 0.009 9.533
Gradient Gabor dsl | 0.731 | 0.005 | 0.914 | 0.007 | 0.467 | 0.008 4.463
Gradient Gabor ds2 | 0.732 | 0.006 | 0.917 | 0.009 | 0.466 | 0.009 4.848
Gradient Gabor ds3 | 0.732 | 0.005 | 0.915 | 0.007 | 0.468 | 0.011 4.955
IL-NIQE colors dsl | 0.738 | 0.003 | 0.926 | 0.008 | 0.475 | 0.005 1.459
IL-NIQE colors ds2 | 0.739 | 0.005 | 0.919 | 0.006 | 0.483 | 0.01 1.594
IL-NIQE colors ds3 | 0.738 | 0.004 | 0.92 | 0.007 | 0.479 | 0.008 1.634
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Downscaled featires Size Accuracy Precision neg. | Recall neg. | Time gain
mean | std | mean | std | mean | std (sec)
Gradient IL-NIQE dsl | 0.736 | 0.005 | 0.912 | 0.007 | 0.479 | 0.009 2.798
Gradient IL-NIQE ds2 | 0.734 | 0.003 | 0.91 | 0.006 | 0.477 | 0.006 3.053
Gradient IL-NIQE ds3 | 0.736 | 0.002 | 0.914 | 0.008 | 0.478 | 0.005 3.126
All features dsl | 0.696 | 0.003 | 0.884 | 0.007 | 0.399 | 0.007 25.683
All features ds2 | 0.692 | 0.005 | 0.876 | 0.013 | 0.396 | 0.006 27.924
All features ds3 | 0.686 | 0.003 | 0.86 | 0.005 | 0.39 | 0.007 28.563

Table A.2: Evaluation of the models with the threshold 0.3 and 50 features when extracting

specified features from downscaled images.
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Downscaled featires Size Accuracy Precision neg. | Recall neg. | Time gain

mean | std | mean | std | mean | std (sec)

None (original model) 0.675 | 0.004 | 0.968 | 0.008 | 0.312 | 0.009 0.000
S3 sharpness dsl | 0.681 | 0.003 | 0.968 | 0.007 | 0.326 | 0.007 0.703
S3 sharpness ds2 | 0.676 | 0.005 | 0.964 | 0.006 | 0.316 | 0.011 0.768
S3 sharpness ds3 | 0.674 | 0.004 | 0.964 | 0.008 | 0.312 | 0.006 0.786
Brightness dsl | 0.676 | 0.005 | 0.965 | 0.01 | 0.315 | 0.01 0.007
Brightness ds2 | 0.676 | 0.005 | 0.967 | 0.008 | 0.315 | 0.011 0.017
Brightness ds3 | 0.677 | 0.004 | 0.969 | 0.007 | 0.317 | 0.009 0.019
Contrast dsl | 0.677 | 0.004 | 0.971 | 0.007 | 0.317 | 0.008 0.129
Contrast ds2 | 0.674 | 0.004 | 0.967 | 0.006 | 0.311 | 0.009 0.141
Contrast ds3 | 0.675 | 0.002 | 0.969 | 0.008 | 0.312 | 0.005 0.144
Borders morphological dsl | 0.677 | 0.003 | 0.964 | 0.004 | 0.318 | 0.006 1.169
Borders morphological ds2 | 0.677 | 0.006 | 0.963 | 0.013 | 0.318 | 0.011 1.276
Borders morphological ds3 | 0.676 | 0.003 | 0.96 | 0.007 | 0.318 | 0.006 1.307
PP dsl | 0.679 | 0.004 | 0.975 | 0.005 | 0.318 | 0.007 0.247
PP ds2 | 0.679 | 0.004 | 0.974 | 0.005 | 0.32 | 0.008 0.275
PP ds3 | 0.68 | 0.003 | 0.969 | 0.008 | 0.323 | 0.006 0.283
CV dsl | 0.677 | 0.004 | 0.967 | 0.006 | 0.317 | 0.007 0.209
CV ds2 | 0.676 | 0.004 | 0.966 | 0.009 | 0.316 | 0.008 0.232
CvV ds3 | 0.68 | 0.004 | 0.975 | 0.005 | 0.321 | 0.007 0.239
S3 sharpness regional dsl | 0.674 | 0.005 | 0.959 | 0.009 | 0.313 | 0.009 0.323
S3 sharpness regional ds2 | 0.675 | 0.004 | 0.957 | 0.008 | 0.317 | 0.006 0.351
S3 sharpness regional ds3 | 0.671 | 0.005 | 0.956 | 0.011 | 0.307 | 0.009 0.359
Laplace sharpness regional | ds1 | 0.678 | 0.005 | 0.963 | 0.009 | 0.32 | 0.01 0.102
Laplace sharpness regional | ds2 | 0.678 | 0.003 | 0.967 | 0.006 | 0.319 | 0.008 0.11
Laplace sharpness regional | ds3 | 0.676 | 0.004 | 0.964 | 0.012 | 0.317 | 0.007 0.113
BRISQUE dsl | 0.678 | 0.004 | 0.961 | 0.006 | 0.321 | 0.009 0.865
BRISQUE ds2 | 0.678 | 0.004 | 0.96 | 0.012 | 0.321 | 0.009 0.983
BRISQUE ds3 | 0.679 | 0.004 | 0.956 | 0.008 | 0.326 | 0.009 1.017
S index dsl | 0.679 | 0.004 | 0.958 | 0.008 | 0.325 | 0.008 3.788
S index ds2 | 0.678 | 0.002 | 0.955 | 0.007 | 0.323 | 0.004 4.093
S index ds3 | 0.677 | 0.003 | 0.959 | 0.008 | 0.32 | 0.008 4.180
Simple Gabor dsl | 0.669 | 0.004 | 0.972 | 0.011 | 0.297 | 0.007 8.587
Simple Gabor ds2 | 0.665 | 0.004 | 0.971 | 0.008 | 0.289 | 0.008 9.327
Simple Gabor ds3 | 0.666 | 0.003 | 0.974 | 0.009 | 0.291 | 0.007 9.533
Gradient Gabor dsl | 0.669 | 0.004 | 0.963 | 0.007 | 0.302 | 0.008 4.463
Gradient Gabor ds2 | 0.665 | 0.005 | 0.957 | 0.012 | 0.293 | 0.012 4.848
Gradient Gabor ds3 | 0.669 | 0.004 | 0.96 | 0.007 | 0.303 | 0.009 4.955
IL-NIQE colors dsl | 0.677 | 0.004 | 0.968 | 0.007 | 0.316 | 0.007 1.459
IL-NIQE colors ds2 | 0.679 | 0.003 | 0.968 | 0.008 | 0.321 | 0.005 1.594
IL-NIQE colors ds3 | 0.674 | 0.004 | 0.966 | 0.01 | 0.312 | 0.009 1.634
Gradient IL-NIQE dsl | 0.676 | 0.004 | 0.969 | 0.005 | 0.315 | 0.008 2.798
Gradient IL-NIQE ds2 | 0.678 | 0.002 | 0.964 | 0.007 | 0.32 | 0.005 3.053
Gradient IL-NIQE ds3 | 0.678 | 0.004 | 0.955 | 0.007 | 0.323 | 0.008 3.126
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Downscaled featires Size Accuracy Precision neg. | Recall neg. | Time gain
mean | std | mean | std | mean | std (sec)
All features dsl | 0.646 | 0.003 | 0.936 | 0.011 | 0.257 | 0.005 24.625
All features ds2 | 0.62 | 0.004 | 0.917 | 0.019 | 0.203 | 0.008 26.819
All features ds3 | 0.63 | 0.003 | 0.912 | 0.012 | 0.228 | 0.007 27.443

Table A.3: Evaluation of the models with the threshold 0.2 and 38 features when extracting

specified features from downscaled images.
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Appendix B

Comparison of enhancement
techniques combinations

Worsenings Improvements
Enhancement method From positive From part. From negative From part.
To part. | To neg. To neg. To part. | To pos. To pos.

Gray-scaling 9 19 11 10 6 20
Binarization 34 26 35 17 15 28
CUM a =0.2, 6% =20 15 23 28 18 10 29
DCT alpha rooting o = 0.975 9 12 14 22 11 26
DFT UM o2 = 50 8 14 9 15 7 20
Laplace € = 1/16 9 11 16 15 7 23
CUM + Laplace 13 18 26 17 16 31
Laplace + CUM 18 14 25 11 17 32
CUM + Laplace + Binarize 36 22 39 16 14 29
Alpha rooting + Laplace 11 12 16 18 5) 26
Laplace + Alpha rooting 8 10 14 21 8 26
Alpha rooting + Laplace + Binarize 68 107 46 18 7 16
Masking + Laplace 10 12 17 23 ) 18
Laplace + Masking 10 12 18 21 3 20
Masking + Laplace + Binarize 33 25 35 18 14 24
PP full 24 21 18 22 10 25
CUM + PP full 21 17 21 15 16 27
CUM + PP full + Binarize 36 18 39 22 11 30
Masking + PP full 20 16 20 19 10 29
Masking + PP full + Binarize 33 31 39 20 12 29
Laplace + PP full 25 17 22 14 14 32
Laplace + PP full + Binarize 26 33 39 15 14 28

Table B.1: Comparison of several combinations of enhancement techniques and the same

techniques used on their own
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Enhancement method Pos | Partial | Neg
Original 314 112 | 159
Gray-scaling 312 100 | 173
Binarization 297 100 | 188
CUM a = 0.2, 0 =20 315 88 | 182
DCT alpha rooting o = 0.975 330 103 | 152
DFT UM o2 = 50 319 106 | 160
Laplace e = 1/16 324 97 | 164
CUM + Laplace 330 85 | 170
Laplace + CUM 331 84 | 170
CUM + Laplace + Binarize 299 96 | 190
Alpha rooting + Laplace 322 99 | 164
Laplace + Alpha rooting 330 101 | 154
Alpha rooting + Laplace + Binarize | 162 136 | 287
Masking + Laplace 315 110 | 160
Laplace + Masking 315 105 | 165
Masking + Laplace + Binarize 294 104 | 187
PP full 304 115 | 166
CUM + PP full 319 100 | 166
CUM + PP full 4+ Binarize 301 101 | 183
Masking + PP full 317 102 | 166
Masking + PP full + Binarize 291 97 | 197
Laplace + PP full 318 97 | 170
Laplace + PP full 4+ Binarize 297 86 | 202

Table B.2: Comparison of total number of positive, partial and negative examples after
application of several combinations of enhancement techniques and the same techniques used
on their own
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