257 research outputs found

    HARQ Feedback in Spectrum Sharing Networks

    Get PDF
    This letter studies the throughput and the outage probability of spectrum sharing networks utilizing hybrid automatic repeat request (HARQ) feedback. We focus on the repetition time diversity and the incremental redundancy HARQ protocols where the results are obtained for both continuous and bursting communication models. The channel data transmission efficiency is investigated in the presence of both secondary user peak transmission power and primary user received interference power constraints. Finally, we evaluate the effect of secondary-primary channel state information imperfection on the performance of the secondary channel. Simulation results show that, while the throughput is not necessarily increased by HARQ, substantial outage probability reduction is achieved in all conditions.Comment: Published in IEEE Communications Letter

    Rate Adaptation for Incremental Redundancy Secure HARQ

    No full text
    International audienceThis paper studies secure communication based on incremental redundancy (INR) secure hybrid automatic retrans-mission request (HARQ) protocol over block-fading wiretap channels. The transmitter has no instantaneous channel state information (CSI) available from either main channel or the eavesdropper channel, hence the coding rates cannot be adapted to instantaneous channel conditions. We investigate the outage performance for two schemes of INR secure HARQ protocols: case 1) when there exists two reliable multi-bit feedback channels from both legitimate receiver and eavesdropper to the transmitter carrying a function of outdated CSI, case 2) when there is a multi-bit feedback channel only from legitimate receiver. In both cases, we demonstrate that using the information carried via multi-bit feedback channels, the transmitter can adapt the coding rates in order to achieve a better secrecy throughput using a smaller number of transmissions comparing to the ACK/NACK feedback channel model. For some parameters, our rate adaptation protocol achieves a strictly positive secrecy throughput whereas it is equal to zero for the protocol with ACK/NACK feedback. We show that for some set of parameters, the loss of secrecy throughput between case 1 and case 2 is very small compared to the gain provided by both protocols

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Joint PHY/MAC layer security design using ARQ with MRC and null-space independent PAPR-aware artificial noise in SISO systems

    Get PDF
    Automatic-repeat-request (ARQ) as a MAC layer mechanism and artificial noise (AN) as a physical layer mechanism along with the help of maximal ratio combining (MRC), are jointly designed to achieve secrecy. Basically, a special AN, which does not require null-space in the channel, is designed based on the quality of service requirements and the channel condition between the legitimate parties and injected to the data packet. If the same packet is requested by the legitimate receiver (Bob), an AN canceling signal is properly designed and added to the next packet. Then, an AN-free packet is obtained by using MRC process at Bob, while deteriorating the eavesdropper's performance. Furthermore, two simple closed-form expressions of the achievable secure throughput are derived. The first one is given in a closed-form for the case of ARQ scheme without AN, while the second one is given in an upper-bound form for the case of ARQ with AN. Moreover, this paper addresses two critical security-associated problems: 1) the joint design of secrecy, reliability, throughput, delay and the tradeoff among them, and 2) the increase in the peak-to-average power ratio (PAPR) due to the added AN. Finally, the proposed design is extended to OFDM to demonstrate its capability in not only enhancing the secrecy due to the frequency selectivity of the channel, but also in reducing the PAPR and out-of-band emission of OFDM-based waveforms, while maintaining secrecy.No sponso

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding
    corecore