85 research outputs found

    Perceptual techniques in audio quality assessment

    Get PDF

    Speech quality prediction for voice over Internet protocol networks

    Get PDF
    Merged with duplicate record 10026.1/878 on 03.01.2017 by CS (TIS). Merged with duplicate record 10026.1/1657 on 15.03.2017 by CS (TIS)This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin ([email protected]) to discuss options.IP networks are on a steep slope of innovation that will make them the long-term carrier of all types of traffic, including voice. However, such networks are not designed to support real-time voice communication because their variable characteristics (e.g. due to delay, delay variation and packet loss) lead to a deterioration in voice quality. A major challenge in such networks is how to measure or predict voice quality accurately and efficiently for QoS monitoring and/or control purposes to ensure that technical and commercial requirements are met. Voice quality can be measured using either subjective or objective methods. Subjective measurement (e.g. MOS) is the benchmark for objective methods, but it is slow, time consuming and expensive. Objective measurement can be intrusive or non-intrusive. Intrusive methods (e.g. ITU PESQ) are more accurate, but normally are unsuitable for monitoring live traffic because of the need for a reference data and to utilise the network. This makes non-intrusive methods(e.g. ITU E-model) more attractive for monitoring voice quality from IP network impairments. However, current non-intrusive methods rely on subjective tests to derive model parameters and as a result are limited and do not meet new and emerging applications. The main goal of the project is to develop novel and efficient models for non-intrusive speech quality prediction to overcome the disadvantages of current subjective-based methods and to demonstrate their usefulness in new and emerging VoIP applications. The main contributions of the thesis are fourfold: (1) a detailed understanding of the relationships between voice quality, IP network impairments (e.g. packet loss, jitter and delay) and relevant parameters associated with speech (e.g. codec type, gender and language) is provided. An understanding of the perceptual effects of these key parameters on voice quality is important as it provides a basis for the development of non-intrusive voice quality prediction models. A fundamental investigation of the impact of the parameters on perceived voice quality was carried out using the latest ITU algorithm for perceptual evaluation of speech quality, PESQ, and by exploiting the ITU E-model to obtain an objective measure of voice quality. (2) a new methodology to predict voice quality non-intrusively was developed. The method exploits the intrusive algorithm, PESQ, and a combined PESQ/E-model structure to provide a perceptually accurate prediction of both listening and conversational voice quality non-intrusively. This avoids time-consuming subjective tests and so removes one of the major obstacles in the development of models for voice quality prediction. The method is generic and as such has wide applicability in multimedia applications. Efficient regression-based models and robust artificial neural network-based learning models were developed for predicting voice quality non-intrusively for VoIP applications. (3) three applications of the new models were investigated: voice quality monitoring/prediction for real Internet VoIP traces, perceived quality driven playout buffer optimization and perceived quality driven QoS control. The neural network and regression models were both used to predict voice quality for real Internet VoIP traces based on international links. A new adaptive playout buffer and a perceptual optimization playout buffer algorithms are presented. A QoS control scheme that combines the strengths of rate-adaptive and priority marking control schemes to provide a superior QoS control in terms of measured perceived voice quality is also provided. (4) a new methodology for Internet-based subjective speech quality measurement which allows rapid assessment of voice quality for VoIP applications is proposed and assessed using both objective and traditional MOS test methods

    Enhancement of perceived quality of service for voice over internet protocol systems

    Get PDF
    Voice over Internet Protocol (WIP) applications are becoming more and more popular in the telecommunication market. Packet switched V61P systems have many technical advantages over conventional Public Switched Telephone Network (PSTN), including its efficient and flexible use of the bandwidth, lower cost and enhanced security. However, due to the IP network's "Best Effort" nature, voice quality are not naturally guaranteed in the VoIP services. In fact, most current Vol]P services can not provide as good a voice quality as PSTN. IP Network impairments such as packet loss, delay and jitter affect perceived speech quality as do application layer impairment factors, such as codec rate and audio features. Current perceived Quality of Service (QoS) methods are mainly designed to be used in a PSTN/TDM environment and their performance in V6IP environment is unknown. It is a challenge to measure perceived speech quality correctly in V61P system and to enhance user perceived speech quality for VoIP system. The main goal of this project is to evaluate the accuracy of the existing ITU-T speech quality measurement method (Perceptual Evaluation of Speech Quality - PESQ) in mobile wireless systems in the context of V61P, and to develop novel and efficient methods to enhance the user perceived speech quality for emerging V61P services especially in mobile V61P environment. The main contributions of the thesis are threefold: (1) A new discovery of PESQ errors in mobile VoIP environment. A detailed investigation of PESQ performance in mobile VoIP environment was undertaken and included setting up a PESQ performance evaluation platform and testing over 1800 mobile-to-mobile and mobileto- PSTN calls over a period of three months. The accuracy issues of PESQ algorithm was investigated and main problems causing inaccurate PESQ score (improper time-alignment in the PESQ algorithm) were discovered . Calibration issues for a safe and proper PESQ testing in mobile environment were also discussed in the thesis. (2) A new, simple-to-use, V611Pjit ter buffer algorithm. This was developed and implemented in a commercial mobile handset. The algorithm, called "Play Late Algorithm", adaptively alters the playout delay inside a speech talkspurt without introducing unnecessary extra end-to-end delay. It can be used as a front-end to conventional static or adaptive jitter buffer algorithms to provide improved performance. Results show that the proposed algorithm can increase user perceived quality without consuming too much processing power when tested in live wireless VbIP networks. (3) A new QoS enhancement scheme. The new scheme combines the strengths of adaptive codec bit rate (i. e. AMR 8-modes bit rate) and speech priority marking (i. e. giving high priority for the beginning of a voiced segment). The results gathered on a simulation and emulation test platform shows that the combined method provides a better user perceived speech quality than separate adaptive sender bit rate or packet priority marking methods

    Considering Bluetooth's Subband Codec (SBC) for Wideband Speech and Audio on the Internet

    Get PDF
    The Bluetooth Special Interest Group (SIG) has standardized the subband coding (SBC) audio codec to connect headphones via wireless Bluetooth links. SBC compresses audio at high fidelity while having an ultra-low algorithm delay. To make SBC suitable for the Internet, we extend it by using a time and packet loss concealment (PLC) algorithm that is based on ITU's G.711 Appendix I. The design is novel in the aspect of the interface between codec and speech receiver. We developed a new approach on how to distribute the functionality of a speech receiver between codec and application. Our approach leads to easier implementations of high quality VoIP applications. We conducted subjective and objective listening tests of the audio quality of SBC and PLC in order to determine an optimal coding mode and the trade-off between coding mode and packet loss rate. More precisely, we conducted MUSHRA listening tests for selected sample items. These tests results are then compared with the results of multiple objective assessment algorithms (ITU P.862 PESQ, ITU BS.1387-1 PEAQ, Creusere's algorithm). We found out that a combination of the PEAQ basic and advanced values best matches---after third order linear regression---the subjective MUSHRA results . The linear regression has coefficient of determination of R²=0.907². By comparison, our individual human ratings show a correlation of about R=0.9 compared to our averaged human rating results. Using the combination of both PEAQ algorithms, we calculate hundred thousands of objective audio quality ratings varying audio content and algorithmic parameters of SBC and PLC. The results show which set of parameters value are best suitable for a bandwidth and delay constrained link. The transmission quality of SBC is enhanced significantly by selecting optimal encoding parameters as compared to the default parameter sets given in the standard. Finally, we present preliminary objective tests results on the comparison of the audio codecs SBC, CELT, APT-X and ULD coding speech and audio transmission. They all allow a mono and stereo transmission of music at ultra-low coding delays (<10ms), which is especially useful for distributed ensemble performances over the Internet

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Structure-Constrained Basis Pursuit for Compressively Sensing Speech

    Get PDF
    Compressed Sensing (CS) exploits the sparsity of many signals to enable sampling below the Nyquist rate. If the original signal is sufficiently sparse, the Basis Pursuit (BP) algorithm will perfectly reconstruct the original signal. Unfortunately many signals that intuitively appear sparse do not meet the threshold for sufficient sparsity . These signals require so many CS samples for accurate reconstruction that the advantages of CS disappear. This is because Basis Pursuit/Basis Pursuit Denoising only models sparsity. We developed a Structure-Constrained Basis Pursuit that models the structure of somewhat sparse signals as upper and lower bound constraints on the Basis Pursuit Denoising solution. We applied it to speech, which seems sparse but does not compress well with CS, and gained improved quality over Basis Pursuit Denoising. When a single parameter (i.e. the phone) is encoded, Normalized Mean Squared Error (NMSE) decreases by between 16.2% and 1.00% when sampling with CS between 1/10 and 1/2 the Nyquist rate, respectively. When bounds are coded as a sum of Gaussians, NMSE decreases between 28.5% and 21.6% in the same range. SCBP can be applied to any somewhat sparse signal with a predictable structure to enable improved reconstruction quality with the same number of samples
    • …
    corecore