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Abstract

The topic of this thesis is the enhancement of noisy, periodic signals with application to
speech signals. Generally speaking, enhancement methods can be divided into signal-
and noise-driven methods. In this thesis, we focus on the signal-driven approach by
employing relevant signal parameters for the enhancement of periodic signals. The
enhancement problem consists of two major subproblems: the estimation of relevant
parameters or statistics, and the actual noise reduction of the observed signal. We con-
sider both of these subproblems.

First, we consider the problem of estimating signal parameters relevant to the en-
hancement of periodic signals. The fundamental frequency is one example of such a
parameter. Furthermore, in multichannel scenarios, the direction-of-arrival of the pe-
riodic sources onto an array of sensors is another parameter of relevance. We propose
methods for the estimation of the fundamental frequency that have benefits compared
to other state-of-the-art estimation methods. For example, we consider improving the
spectral resolution of existing subspace-based and optimal filtering based fundamental
frequency estimators. Moreover, we propose fast implementations of the proposed op-
timal filtering based estimators, e.g., by exploiting matrix structures. This decreases the
computational complexity by several orders of magnitude.

We also consider the joint estimation of the fundamental frequency and the direction-
of-arrival. Joint estimation enables us to resolve multiple periodic sources that share
the same fundamental frequency and have different directions-of-arrival and vice versa.
This may not be possible if the parameters are estimated separately. Moreover, we
stress the importance of estimating the parameters jointly in relation to the estimation
accuracy. Both optimal filtering based and nonlinear least squares based joint estima-
tors are proposed; the former is excellent for resolving closely spaced sources, while
the latter is statistically efficient.

Then, we consider noise reduction methods based on the aforementioned parameter
estimates. First, we propose several non-causal, time-domain filters for single-channel
noise reduction. These non-causal filters can increase the noise reduction compared to
their causal counterparts without increasing the distortion of the desired signal. We also
show the link between some single-channel, signal- and noise-driven noise reduction
filters; motivated by this, we suggest joint filtering schemes employing these two filter
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types for tackling the difficult problem of nonstationary noise reduction. It was shown
that the suggested schemes outperform other widely used enhancement methods for
nonstationary noise reduction in terms of perceptual scores. Finally, we propose an
optimal filtering based method for multichannel periodic signal enhancement that is
driven by fundamental frequency and direction-of-arrival estimates. This method was
proven useful for enhancement of real-life, multichannel, periodic signals.

In summary, the importance of joint parameter estimation is clarified by our con-
tributions to the relatively young research topic of joint fundamental frequency and
direction-of-arrival estimation of multichannel periodic signals. Joint estimation is a
key to obtain robust and accurate fundamental frequency and direction-of-arrival es-
timators. Moreover, our contributions on noise reduction reveals the applicability of
signal-driven enhancement of single-channel and multichannel periodic signals. By uti-
lizing information about relevant signal parameters such as the fundamental frequency
and the direction-of-arrival, noise reduction can be conducted without relying fully on
the noise statistics. As appearing from our results, this can be exploited to obtain robust
methods for nonstationary noise reduction.
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Resumé

Emnet for denne afhandling er støjreduktion af støjfyldte og periodiske signaler som
for eksempel talesignaler. Generelt kan støjreduktionsmetoder opdeles i signal- og støj-
drevne metoder. I denne afhandling fokuseres der på den signaldrevne tilgang ved at
bruge relevante signalparametre i støjreduktionen af periodiske signaler. Støjreduktion-
sproblemet består af to overordnede delproblemer: Estimeringen af de relevante signal-
parametre eller statistikker og den egentlige støjreduktion af det observerede signal.
Begge delproblemer behandles i denne afhandling.

Først behandles delproblemet vedrørende estimering af de relevante parametre til
støjreduktion af periodiske signaler. Den fundamentale frekvens er ét eksempel på
sådan en parameter. En anden relevant parameter i multikanals scenarier er ankom-
stvinklen af en periodisk kilde på et array af sensorer. Metoder foreslås til estimering
af den fundamental frekvens. Disse har en række fordele sammenlignet med de nyeste
eksisterende metoder. For eksempel foreslås forbedringer mht. den spektrale opløs-
ning af underrums- og optimal filtreringsbaserede metoder til estimering af den funda-
mental frekvens. Ydermere foreslås hurtige implementationer af de foreslåede optimal
filtreringsbaserede estimatorer. De hurtige implementationer udnytter eksempelvis ma-
trixstrukturer, hvilket sænker den beregningsmæssige kompleksitet betydeligt.

Samtidig estimation af den fundamental frekvens of ankomstvinklen behandles også.
Samtidig estimation gør det muligt at adskille flere periodiske kilder med den samme
fundamental frekvens og forskellige ankomstvinkler og vice versa. Dette er ikke nød-
vendigvis muligt, hvis parametrene estimeres hver for sig. Desuden understreges vigtighe-
den af at estimere parametrene samtidigt i relation til estimationsnøjagtigheden. Dernæst
foreslås både optimal filtreringsbaserede og ulineær mindste kvadraters baserede sam-
tidige estimatorer. Den første metode er fremragende til at adskille tætplacerede kilder
og den anden er statistisk effektiv.

Derefter betragtes støjeduktionsmetoder baseret på de førnævnte parameterestimater.
Først foreslås en række nonkausale, tidsdomæne filtre til enkeltkanals støjreduktion.
Disse nonkausale filtre kan øge støjreduktionen sammenlignet med deres tilsvarende
kausale filtre uden at øge forvrængningen af det ønskede signal. Sammenhængen
mellem nogle enkeltkanals signal- og støjdrevne støjreduktionsfiltre vises også. Denne
sammenhæng motiverer anvendelsen af disse to filtertype samtidigt til reduktion af us-
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tationær støj, som det udnyttes i de to efterfølgende foreslåede filtreringssystemer. Det
er vist, at disse systemer udkonkurrerer andre ofte brugte metoder til reduktion af usta-
tionær støj med hensyn til et perceptuelt mål. Endeligt foreslås en optimal filtrerings-
baseret metode til støjreduktion af multikanals periodiske signaler. Denne metode er
drevet af estimater af den fundamentale frekvens og af ankomstvinklen. Metoden har
vist sig anvendelig til støjreduktion af virkelige, multikanals, periodiske signaler.

Bidragene til det relativt unge forskningsområde omkring samtidig estimering af
den fundamentale frekvens og ankomstvinklen tydeliggør vigtigheden af samtidig es-
timering. Samtidig estimering er en nøgle til at opnå robuste og præcise estimatorer af
den fundamentale frekvens og ankomstvinklen. Ydermere viser bidragene vedrørende
støjreduktion anvendeligheden af signaldrevet støjreduktion af enkelt- og multikanals
periodiske signaler. Ved at anvende information om relevante signalparametre såsom
den fundamental frekvens og ankomstvinklen, kan der foretages støjreduktion uden at
hvile fuldstændigt på støjstatistikkerne. Som det fremgår af resultaterne, kan dette ud-
nyttes til at opnå robuste metoder til reduktion af ustationær støj.
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Introduction to Periodic Signal
Enhancement

1 Introduction
If a function f(t) repeats its values in regular intervals of length T , i.e.,

f(t) = f(t+ T ), (1)

we say that it is a periodic function [146]. A signal x(t) which can be exactly described
by a periodic function is termed a periodic signal. If the period T of x(t) changes slowly
over time, we say that the signal x(t) is quasiperiodic. That is, for a quasiperiodic signal
x(t), we have that

x(t) ≈ x (t+ T ) . (2)

If a relatively small, confined time interval t ∈ [t1; t2] is considered, in which the period
is almost constant, the signal x(t) can be treated as periodic signal.

Many real-life signals, both artificial and natural, are quasiperiodic. A few exam-
ples of such signals are electrocardiograms (ECGs) [137], voiced speech [58], sounds
from musical instruments (guitar, violin, trumpet, etc.) [4], passive sonar signals from
boats [144], radar returns from helicopters [171], vibration signals [5, 70], astronomical
data (e.g., star observations) [152], seismological data [139], and infant cry [111]. In
Fig. 1, we have depicted two examples of such real-life quasiperiodic signals. During
the last century, countless applications have spawned employing quasiperiodic signals
as the ones just described. Considering voiced speech and audio, for example, some
applications are hearing-aids, teleconference systems, music information retrieval, di-
agnosis of illnesses, and surveillance systems.

A common desire in most applications utilizing quasiperiodic signals is that the raw
quasiperiodic signal is available. Unfortunately, this is rarely the case due to the pres-
ence of noise. In hearing-aids, for example, the use case is often that the user wants to
focus the attention on a particular quasiperiodic stimulus while ignoring a range of other

3
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Fig. 1: Excerpts from recordings of (a) female speech and (b) a violin, respectively.

stimuli commonly referred to as the cocktail party problem [28]. Hearing impaired per-
sons, however, can not resolve multiple sound sources naturally as efficient as persons
with normal hearing [85]. That is, background noise can have a devastating impact on
the listening experience of hearing impaired people; the noise can cause both auditory
fatigue [177], and general discomfort for the listener [48, 198]. Coding systems for,
e.g., mobile phones and Voice over IP (VoIP) are other examples of applications involv-
ing quasiperiodic signals which are negatively affected by noise since noise will often
cause the coding efficiency to decrease [132, 164, 185]. A third application example is
automatic speech recognition (ASR). ASR systems are used for control in, e.g., aircraft
cockpits and wheelchairs where environmental noise is inevitable. It is well-known that
noise can increase the word error rate (WER) of such systems significantly [83]. While
not mentioned here, several other noise critical applications exists (see, e.g., [12] for
additional speech related examples).

In summary, many applications exist which utilize a quasiperiodic signal. As the
quasiperiodic signal is often corrupted by noise, the performance of such applications
will most likely be degraded if we do not apply any preprocessing. This fact has spurred
decades of research in noise reduction (aka. enhancement) methods since the early
1960s where Schroeder filed a couple of patents on the analog implementation of the
spectral magnitude subtraction method [167, 169]. While several types of naturally
occurring quasiperiodic signals exist, we focus on enhancement of speech in this thesis.
The remainder of this chapter gives an introduction to enhancement methods for both
single- and multichannel periodic signals.
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1.1 Signal Model
In this thesis, we consider both single- and multichannel quasiperiodic signals. To
facilitate the development of enhancement methods for such signals, it is essential to
have general and appropriate models.

Single-Channel Model

In the single-channel scenario, a single sensor, say a microphone, is used to pick up
the discrete observed signal y(n) which is constituted by a desired quasiperiodic signal
x(n) and a noise signal v(n) as

y(n) = x(n) + v(n), (3)

where n is the discrete time index. This rather simple additive noise model is efficient
in describing real-life quasiperiodic signals in noise like noise corrupted voiced speech
and audio [33]. In many applications, the desired signal is reflected by surfaces gener-
ating a multitude of echoes [52]. We can easily extend the model in (3) to encompass
this scenario. However, convolutive noise is not the topic of this thesis, and will not be
considered further herein.

As the desired signal is quasiperiodic, we can extend the model in (3). In the 19th
century, Joseph Fourier showed that any periodic signal can be decomposed into a sum
of a set of complex exponentials [67]. This knowledge enable us to rewrite (3) as

y(n) =

L∑
l=1

Al cos(lω0n+ φl) + v(n), (4)

=

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (5)

where L is the harmonic model order, al = Al
2 e

jφl ,Al > 0 is the complex amplitude of
the lth harmonic, φl is the phase of the lth harmonic, ω0 is the fundamental frequency,
and (·)∗ denotes the complex conjugate. The model in (4) assumes exact periodicity
even though some real-life, quasiperiodic signals contain inharmonicities [66, 162].
To account for inharmonicity, (4) can be adapted to model the underlying physical
phenomenon causing the inharmonicity [59, 75, 77, 106], or a more general model with
perturbed harmonics can be used [33, 40, 74].

As we will see later, an integral part of the enhancement methods considered in
this thesis is fundamental frequency estimation. Often, the fundamental frequency is
estimated from analytic signals while the desired signal is in fact real as in (4) [33].
It is straightforward, though, to convert real signals to analytic signals1 by using the

1Note that analytic signals only exist for continuous-time real signals, so the analytic signals we refer to
herein are analytic-like discrete signals obtained using the discrete Hilbert transform [126].
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Fig. 2: Illustration of the uniform linear array structure.

Hilbert transform [81, 126]. Moreover, utilizing analytic signals can have the benefits
of a lower computational complexity and a simpler notation of the estimator [33]. The
complex, single-channel counterpart to (4) is given by

y(n) =

L∑
l=1

αle
jlω0n + v(n), (6)

with αl = Ale
jφl . Another important parameter is the model order L. If the model or-

der is not chosen or estimated correctly, many fundamental frequency estimators would
very likely yield erroneous estimates (aka. fundamental frequency halvings and dou-
blings). To circumvent this problem, the model order can be estimated either separately
from [181, 183] or jointly with [36, 141] the fundamental frequency.

Multichannel Model

The noise reduction capabilities of single-channel enhancement methods are rather lim-
ited since no spatial information is available. That is, the potential performance of
enhancement methods can be increased by considering multiple channels [12]. In the
multichannel scenario, we can model the observed signal yns(nt) at the nsth sensor and
at time instance nt as [15]

yns(nt) = xns(nt) + vns(nt) (7)
= βnss(nt − fsτns) + vns(nt), (8)
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Fig. 3: Generic block diagrams for (a) noise- and (b) signal-driven enhancement methods.

where xns(nt) and vns(nt) denotes the desired signal and the noise, respectively, βns is
the attenuation of the source at the nsth sensor, τns is the delay from sensor 0 to sensor
ns, and fs is the sampling frequency. As the model in (3), this model is anechoic since
convolutive noise is not considered.

For multichannel, quasiperiodic signals, we have extended models for real signals

yns(nt) = βns

L∑
l=1

[
ale

jlω0(nt−fsτns ) + a∗l e
−jlω0(nt−fsτns )

]
+ vns(nt), (9)

and complex, analytic signals

yns(nt) = βns

L∑
l=1

αle
jlω0(nt−fsτns ) + vns(nt). (10)

The models in (9) and (10) are general and holds for different structures of sensor arrays.
If the array structure is known, we can specify the models even more by modeling the
time-delays τns and/or the attenuation factors βns . An example of a commonly utilized
array structure is the uniform linear array (ULA) illustrated in Fig. 2 [192]. The ULA
structure is assumed and utilized in the remainder of this thesis. If we assume that the
source is in the far field of the array, we know that the delay τns is given by

τns = ns
d sin θ

c
, (11)

where d is the inter-element spacing of the ULA, and c is the wave propagation velocity.

1.2 The Enhancement Problem
The ultimate goal of enhancement methods is to recover a desired signal from a noisy
single-channel or multichannel mixture as in (3) and (7), respectively. In practice, how-
ever, it is extremely difficult, if not impossible, to remove the noise completely. A
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common practical goal is therefore that the noise should be attenuated as much as pos-
sible while the distortion of the desired signal is insignificant. During the previous
decades, numerous methods have been proposed that consider this enhancement prob-
lem. Generally speaking, we can categorize these methods as either being driven by
estimates of the noise statistics or of parameters describing the desired signal. The two
different approaches are illustrated in Fig. 3. As hinted by these block diagrams, we can
divide the enhancement problem into two subproblems: first, we need to estimate either
the noise statistics or relevant signal parameters. Then, on basis of these estimates, we
need to conduct the actual enhancement of the observed signal. The two subproblems
are considered individually in the following sections.

2 Statistics and Parameter Estimation
The first step in most enhancement methods is to estimate either the noise statistics or
relevant parameters describing the desired signal. For periodic signals, relevant param-
eters are, e.g., the fundamental frequency and the direction-of-arrival (DOA). Follow-
ingly, we describe the estimation of these noise and desired signal related quantities.

2.1 Noise Estimation
The vast majority of enhancement methods for, e.g., speech are driven by a noise es-
timate (see, e.g., [8, 12, 48, 124, 195] and the references therein). Naturally, this has
nourished research in noise estimation, resulting in innumerable proposed methods. In
many of the enhancement methods, only an implicit estimate of the noise is necessary,
for example, in form of a noise autocorrelation matrix estimate R̂v ∈ CMsMt×MsMt or
a noise cross power spectral density (CPSD) matrix estimate Ŝv(f) ∈ CNs×Ns at the
frequency f . The true matrices are defined as [114]

Rv = E
{
vns(nt)v

H
ns

(nt)
}
, (12)

Sv(f) = F {Rvs(mt)} , (13)

where E{·} denotes the mathematical expectation operator, F{·} denotes the element-
wise discrete Fourier transform (DFT), and

vns(nt) = vec


 vns(nt) · · · vns(nt −Mt + 1)

...
. . .

...
vns+Ms−1(nt) · · · vns+Ms−1(nt −Mt + 1)


 , (14)

Rvs(mt) = E
{
vs(nt +mt)v

H
s (nt)

}
, (15)

vs(nt) =
[
v0(nt) · · · vNs−1(nt)

]T
, (16)
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with vec{X} denoting the vectorization or column-wise stacking of the matrix X. Fol-
lowingly, we describe different approaches for estimating these noise related quantities
for the single-channel and multichannel signals, respectively.

Single-Channel Noise Estimation

For some types of signals contaminated by noise, the noisy signal can be divided into
two types of segments: segments in which the desired signal is present and absent,
respectively. If it is assumed that the noise is stationary, the noise can be estimated
during the segments of desired signal absence. To accomplish this, we need to detect
whether or not the desired signal is present. Such a detection has been extensively
studied for, e.g., speech signals in form of voice activity detection (VAD). However,
it is non-trivial to detect if the desired signal is present as features describing only the
desired signal needs to be extracted. Early examples of such features used in VAD
methods are energy-levels and zero-crossings [154], cepstral features [82], the Itakura
distance measure [155], and a periodicity measure [188]. Despite of the intuitiveness
of the activity detection approach, it often yields erroneous error estimates in practice
as the noise is rarely stationary.

Followingly, we consider three other classes of noise estimators that can estimate
the noise even during presence of the desired signal. The first is the minimum tracking
approach [124]. In this approach, it is assumed that the power of a noisy speech signal
in each frequency bin decays to the power level of the noise even in segments with
speech activity. That is, the noise level in a frequency bin can be estimated by tracking
the minimum spectral level in that particular bin. This approach was first considered in
the minimum statistics method originally proposed by Martin in [128]. The minimum
statistics method was later refined in [129] by introducing bias compensation. In [55],
Doblinger proposed an alternative to the minimum statistics method, where the noise
spectral level is instead tracked per sample. However, while the minimum statistics
based methods are useful for tracking the noise level even during speech presence, they
generally need long time windows to reduce speech leakage in the noise estimate; this
effectively puts a limit on these methods’ ability to track rapid changes in the noise
level [63].

Another well-known class of noise estimators is the time-recursive averaging algo-
rithms. In these algorithms, it is exploited that the signal-to-noise ratio (SNR) and the
presence probability of the desired signal vary across the different frequency bands. For
example, if either the SNR or the presence probability is low in a particular frequency
band, it is reasonable to update the noise spectral level estimate in that band. Pioneer-
ing examples of time-recursive averaging algorithms based on the SNR level and the
presence probability can be found in [121, 122] and [41, 42, 63, 175, 176], respectively.
Without going into too much detail, the time-recursive approach to noise estimation can
yield significantly better noise estimates than the minimum statistic based methods for
abruptly changing noise level; this is achieved by using a recursively averaged mini-
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mum MSE (MMSE) of the noise power for determining speech presence probability as
considered in [63].

Histogram-based noise estimation algorithms constitute a third class of noise esti-
mators. These estimators are based on the observation that the most occurring value
of energy values in a frequency band corresponds to the noise level. That is, the noise
level in a particular frequency band can be estimated from the histogram of the spectral
levels within that band. Generally, the histograms have two modes: 1) a mode corre-
sponding to frames which could contain noise and where the desired signal is absent,
and 2) a mode corresponding to frames where the desired signal and maybe noise are
present [160]. When noise is added, the modes get close and eventually they merge into
one mode. In the two-mode case, the former mode is the most frequently occurring, and
it will typically correspond to the noise level. A few examples of noise estimators using
histograms are found in [88, 131, 189]. In general the histogram-based estimators can
be used for noise estimation even during speech presence, however, they are computa-
tionally expensive, require much memory resources, and have poor performances in low
SNR conditions. Moreover, the signal segments used for generating the histograms are
typically several hundreds of milliseconds long, which limits these estimators’ ability
to track nonstationary noise [41].

Multichannel Noise Estimation

If multiple sensors in the vicinity of each other are used for measuring the desired signal
in noise, spatial information about the sources is also embedded in the measurements.
That is, the noise present in the measurements can be reduced, not only in the time-
and frequency-domains, but also in the spatial domain. To achieve this, however, the
spatial characteristics of the noise or desired signal need to be known in terms of, e.g.,
the cross power spectral density (CPSD). Estimating the multichannel noise can be
even more challenging than estimating the single-channel noise as the noise can also be
spatially nonstationary [86].

Through, at least, the past 40 years, the multichannel noise characteristics have been
the foundation of several multichannel noise reduction methods such as the minimum
variance distortionless response (MVDR) beamformer [44] and, more recently, the mul-
tichannel quotient singular value decomposition (QSVD) based Wiener filter [56]. De-
spite the importance of knowing the multichannel noise characteristics in noise reduc-
tion methods, the estimation of the multichannel noise has apparently been considered
less than estimation of single-channel noise. A common approach to the multichannel
estimation problem is to use energy-based activity detection. In many methods based
on this approach, a single-channel noise power spectral density (PSD) estimator is ap-
plied on each sensor signal, and the resulting estimate is used to detect the presence
of the desired signal. When the desired signal is not present on a single channel, the
noise PSD can be updated. If the desired signal is absent on two or more channels,
the noise CPSD between these sensors can also be updated. Examples of methods em-



2. Statistics and Parameter Estimation 11

ploying this approach are found in [18, 68, 157, 207]. However, like the single-channel
activity detection based noise estimators, the multichannel counterparts are vulnerable
to nonstationary noise which is frequently encountered in practice.

Another and more recent group of multichannel noise estimators are based on mak-
ing assumptions on the type of noise field. These methods do not need activity detec-
tion, however, their practical applicability are restricted by the noise assumptions that
are not always realistic. An example of a noise type that enables multichannel noise
estimation without activity detection is the diffuse noise field as exploited by the meth-
ods proposed in [125, 156]. The method in [125] utilizes the fact that the noise CPSD
matrix for a diffuse noise field can be decomposed into the noise PSD and a matrix
completely determined by the noise coherence function. Under the assumed noise field
condition, the noise coherence function is known [80]. The other method in [156] ex-
plicitly exploits the noise field assumption by only computing the real part of the noise
CPSD matrix.

Recently, a more general multichannel noise estimation method was proposed in
[86] that can be applied to the noise estimation on both spatially and temporally non-
stationary noise fields. In this method, the diagonal terms of the CPSD matrix are es-
timated using traditional single-channel noise PSD estimators as previously described,
while the off-diagonal terms are updated recursively from the DFT coefficients related
to the observed data. It should be emphasized, however, that the method in [86] as-
sumes that the propagation of the desired signal is known which might not be the case
in practice.

2.2 Fundamental Frequency Estimation
While most enhancement methods for, e.g., periodic signals are driven by a noise esti-
mate, it is also feasible to design enhancement methods driven by parameters or statis-
tics related to the desired signal [48]. An example of a parameter that is applicable in
enhancement of periodic signals is the fundamental frequency [98]. Besides being im-
plicitly applicable for enhancement, the fundamental frequency has been proven useful
for signal compression [30, 133, 149], signal modification [71, 151], music transcrip-
tion [22, 105], tuning of musical instruments [33], etc. The usefulness of the fundamen-
tal frequency in various applications has resulted in extensive research in fundamental
frequency estimation methods.

Single-Channel Fundamental Frequency Estimation

Traditionally, fundamental frequency estimation has been considered as a single-channel
estimation problem. Most of the classical fundamental frequency estimators do not as-
sume a model for the periodic signal(s), i.e., we can classify these as non-parametric
methods. A popular approach has been to compare the observed signal with a de-
layed version of the self-same signal by a similarity measure. The rationale behind
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doing this is that, when the delay corresponds to the reciprocal of the fundamental
frequency, the similarity measure should be maximized since the desired signal is peri-
odic. Some of the first methods utilizing this approach used the autocorrelation function
(ACF) [153] and the average magnitude difference function (AMDF) [161] as similar-
ity measures. More recent variants of methods using the delay approach can be found
in [47, 134, 186]. Another subclass of non-parametric fundamental frequency estima-
tors is based on peak detection. These methods exploits the fact that the peaks of, e.g.,
the time-series representation [76] or the cepstrum [142] of the observed signal should
appear in fixed intervals, where the length of the intervals can be mapped to a funda-
mental frequency estimate. A third approach to non-parametric fundamental frequency
estimation is based on the harmonic product spectrum. In methods based on this ap-
proach, the spectrum at the fundamental frequency and multiples thereof are multiplied
for different candidate fundamental frequencies [143, 168]. Then, the fundamental
frequency estimate is obtained from the maximizer of the so-called harmonic product
spectrum (HPS). For an overview of the above and other non-parametric fundamental
frequency estimators, see, e.g., [87].

While the non-parametric methods are intuitively sound, they are often relying on
several heuristics and suffer from poor resolution. To tackle these issues, research in
parametric fundamental frequency estimators has attracted considerable attention in the
recent years. In general, the parametric estimators can be divided into three groups of
methods [33]:

• statistical methods,

• subspace methods,

• filtering methods.

In the statistical methods, the likelihood or probability of the fundamental frequency
is maximized possibly under some noise assumptions (e.g., the noise being white and
Gaussian). Examples of maximum likelihood (ML) and maximum a posteriori (MAP)
probability approaches can be found in [33, 39]. Moreover, examples of other Bayesian
approaches the MAP approach can be found in [23, 46, 74]. The statistical methods do
often provide efficient estimates, however, they are rather computationally demanding.
This has motivated research in other groups of parametric methods such as the subspace
methods.

The subspace methods utilize the fact that the space spanned by the observed signal
covariance matrix can be divided into two subspaces spanning the signal and the noise
subspaces, respectively. The properties of these subspaces can then be exploited for
various estimation and identification tasks [108, 190, 191]. To perform the division into
subspaces, we can take the eigenvalue decomposition (EVD) of the observed signal
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covariance matrix and group the eigenvectors and eigenvalues as

Ry = UΛUH (17)

=
[
S G

]([Ψ 0
0 0

]
+ σ2I

)[
SH

GH

]
, (18)

where Ry = E{y(nt)y
H(nt)}, U contains the eigenvectors of Ry, Λ is a diagonal

matrix containing the eigenvalues of Ry, S contains the eigenvectors of Ry spanning
the signal subspace, G contains the eigenvectors of Ry spanning the noise subspace, Ψ
contains the eigenvalues related to the signal subspace, 0 is a vector containing zeros,
σ2 is the noise variance, and

y(nt) =
[
y(nt) · · · y(nt −Mt + 1)

]T
. (19)

Recently, fundamental frequency estimators were proposed based on this subspace di-
vision, e.g., by exploiting orthogonality of the signal and noise subspaces [36, 38] and
the shift-invariance of the signal subspace [35]. One of the disadvantages of the sub-
space method in [36, 38] is that the cost-function is multimodal and therefore needs to
be evaluated over a frequency grid. To avoid this search, we proposed a new subspace-
based estimator in paper A based on rooting of the cost-function considered in [38].
Moreover, as we showed, the rooting based estimates often have higher resolution than
the estimates obtained using the method [38]. Another disadvantage of the subspace
methods is that the noise needs to be white. In practice, this assumption rarely holds, in
which case the observed signal needs to pre-whitened [33].

A third group of parametric fundamental frequency estimators is the filtering meth-
ods. The concept behind these methods is to design a filter that passes a periodic signal
undistorted and apply it on the observed signal. This could, for example, be an Mtth
order finite impulse response (FIR) filter, resulting in the filter output

z(nt) = hHy(nt), (20)

where the filter vector is defined as

h =
[
h0 · · · hMt−1

]H
. (21)

More specifically, the filter h is designed such that it passes the harmonics of the pe-
riodic signal while the noise is attenuated. Some of the first methods utilizing this
approach were based on comb filtering [136, 138], i.e., the filters are designed inde-
pendent on the noise statistics. As a result of that, these methods are mainly applicable
when the noise is white. To loosen up this implicit noise assumption, some optimal
filtering based methods were proposed recently [32, 37]. In these methods, the filters
are designed to pass the desired, periodic signal undistorted, while minimizing the filter
output power. These filtering methods are generally not statistically efficient, but they
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are excellent for resolving closely spaced sources and are robust against various kinds
of noise since no noise assumptions are needed.

The lack of statistical efficiency is a common issue for fundamental frequency esti-
mators based on the data covariance matrix, since data partitioning is needed to obtain a
full-rank covariance matrix estimate in form of the sample covariance matrix. This will
effectively reduce the spectral resolution of these fundamental frequency estimators. To
mitigate this issue, we consider the use of a method for obtaining a full-rank covariance
matrix estimate without data partitioning in conjunction with an optimal filtering-based
fundamental frequency estimator in paper B. By doing this, we can obtain a fundamen-
tal frequency estimator with a significantly better spectral resolution compared to if the
sample covariance matrix is used. The computational complexity is also a problem for
some of the filtering-based fundamental frequency estimators, since their cost-functions
are multimodal with narrow peaks requiring a fine search grid. However, the complex-
ity can be lowered significantly by exploiting matrix structures and using time-recursive
updates as we propose in paper C. For an overview of the mentioned and other para-
metric methods, we refer to [33, 39].

Multichannel Fundamental Frequency Estimation

As hinted previously, fundamental frequency estimation from noisy, single-channel and
periodic signals has been a popular research topic for decades. However, the multichan-
nel estimation problem has received far less attention. Of course, one could argue that
the multichannel fundamental frequency estimation problem can be considered as a
single-channel estimation problem by applying beamforming on the multi-channel ob-
served signal. It can be shown, however, that such a cascaded procedure can degrade
the precision of the fundamental frequency estimate. Followingly, we mention a few
examples of existing multichannel fundamental frequency estimators.

Quite a few heuristically motivated fundamental frequency estimators for multi-
channel signals have been proposed recently. For example, in [72], Gerkmann et al.
proposed two multichannel fundamental frequency estimators. Both estimators were
based on a preprocessing step followed by cepstrum based fundamental frequency es-
timation as in [142]. For preprocessing, they proposed to either average the cepstrum
coefficients across all channels, or to find the cepstrum coefficients from the output
of a delay-and-sum (DSB) beamformer. Another method proposed by Armani and
Omologo in [3], was based on the autocorrelation approach [153]. In this method, the
ACF for each channel was normalized before, eventually, being weighted and summed.
However, it was not explained in [3] how the weights should be determined. The fun-
damental frequency estimate was then obtained by maximizing the sum of weighted
ACFs with respect to the fundamental period τ02. Later, Flego and Omologo proposed
yet another multichannel fundamental frequency estimator based on the maximization
of the so-called multi-microphone periodicity function (MPF) [64, 65]. Their method

2We define the reciprocal of the fundamental frequency as the fundamental period.
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can be interpreted as an autocorrelation approach, being different from the aforemen-
tioned autocorrelation approaches in the choice of weights; in the MPF-based method,
the weight are found using the Cauchy-Schwarz inequality [187]. It was shown that the
MPF based method in [64, 65] outperforms the weighted ACF approach in [3] in terms
of gross error rate (GER), whereas Gerkmanns cepstrum based methods [72] were never
compared to the others.

As mentioned previously, the just described estimators are based on several heuris-
tics and will therefore most likely not be statistically efficient. This is in contrast to two
recently proposed and statistically motivated multichannel fundamental frequency esti-
mators. First, Chan et al. proposed a weighted least squares (WLS) approach in [24].
Their method consists of two steps: first, a set of unconstrained frequencies are esti-
mated using an iterative WLS method, and, then, the fundamental frequency is esti-
mated from the unconstrained frequencies, again, using a WLS approach. Then, Chris-
tensen proposed a ML based method in [31]. This method yields an ML estimate of the
fundamental frequency when the noise on each channel is white Gaussian even when
the noise variances for the different channels are different. The methods in [24, 31] are
statistically efficient when their respective assumptions are met. However, they have
not been thoroughly evaluated in other scenarios.

2.3 Direction-of-Arrival Estimation
Another signal and noise related parameter that is essential in various multichannel
enhancement methods is the DOA onto the array of sensors [11, 145]. If the DOA of
the signal is known, the observed signal can be spatially preprocessed to attenuate signal
components impinging from all other directions. Moreover, if the DOA of the noise is
known it can be canceled out by explicitly placing a null in that direction. Apart from
noise reduction, knowledge of the DOA is important in many other applications such as
automated camera steering [200], wafer-mask rotational alignment in very-large-scale
integration (VLSI), and autonomous vehicles [1].

Decades of research have resulted in numerous methods for DOA estimation; gener-
ally, these can be classified as either narrowband or broadband methods. The definition
of a narrowband signal is that it has a bandwidth which is small compared to its cen-
ter frequency and vice versa for broadband signals. According to the models in (9)
and (10), DOA estimation of a periodic signal can be considered as either the problem
of estimating the DOA of L narrowband signals, or the DOA of a broadband signal.
Followingly, we review some of the popular approaches to narrowband and broadband
DOA estimation, respectively.
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Narrowband DOA Estimation

For narrowband signals, the DOA estimation problem boils down to the estimation of
the so-called spatial frequency ωs defined as [181]

ωs = ωc
d sin θ

c
, (22)

where ωc is the center frequency. That is, the narrowband DOA estimation problem
basically resembles the problem of estimating the frequency of a sinusoid when ωc, d
and c are known. Since narrowband DOA estimation resembles frequency estimation
when only the DOA is unknown, frequency estimation approaches such as statistical,
subspace and filtering methods (aka. beamforming in the array signal processing liter-
ature) as described in Section 2.2 can be utilized. In fact, the subspace methods were
originally developed for DOA estimation.

The most well known and frequently used approach for DOA estimation may be to
apply the ML principle. This approach is based on modeling both the desired signal and
the noise. In the array signal processing literature, two different models for the desired
signal have been considered: a deterministic model and a stochastic model. This has
resulted in two ML-based methodologies for DOA estimation, namely deterministic
ML (DML) [108, 109, 192] and stochastic ML (SML) [16, 96] methods, respectively.
It has been shown that the SML methods have a better large sample accuracy compared
to the corresponding DML methods, especially when the number of sensors is small,
the SNR is low, and in scenarios with highly correlated signals [108, 147].

While the ML-based methods provides good DOA estimates, they suffer from a high
computational complexity due to high dimensional searches. Therefore, alternative ap-
proaches have been considered. Another common approach to DOA estimation is the
subspace approach as described for fundamental frequency estimation. To summarize,
these methods are based on exploiting certain properties of the so-called signal and
noise subspaces. Examples of popular methods utilizing the subspace approach are the
multiple signal classification (MUSIC) [166], the estimation of signal parameters by ro-
tational invariance techniques (ESPRIT) [163], the minimum norm (Min-Norm) [110],
and the weighted subspace fitting (WSF) [196] methods. Note that the ESPRIT method
is only applicable to some array structures such as the ULA. The MUSIC, Min-Norm,
and ESPRIT methods have all been shown to have a good statistical performance, i.e.,
the variance of the estimators are close to the Cramér-Rao bound (CRB), while the
WSF method is statistically efficient. On a side note, it has been shown that the MU-
SIC method is a large sample realization of the DML method [182], and that the WSF
method has the same asymptotic properties as the SML method [147].

The last group of narrowband DOA estimators considered here is beamforming
methods. The concept in these methods is to steer a spatial filter in different directions
while measuring the output power of the filter. The DOA estimate is then obtained by
maximizing the output power with respect to the steering direction. Many beamform-
ing methods exist [192], with the delay-and-sum beamformer (DSB) (aka. conventional
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beamforming) [193] and Capon’s beamformer (aka. the minimum variance distortion-
less response (MVDR) beamformer) [21] being two widely used methods. The DSB
is a data independent beamformer, i.e., its spatial response is designed without knowl-
edge of the observed, desired or noise signal. Due to this, the DSB generally has poor
noise reduction capabilities unless the noise is spatially white. Capon’s beamformer, on
the other hand, is designed to pass the desired signal undistorted while attenuating the
noise as much as possible resulting in better noise reduction compared to the DSB. In
general, however, the beamforming methods do not provide as accurate DOA estimates
as the statistical and subspace methods [108], but filtering methods have proven useful
for resolving closely spaced sources [39].

Broadband DOA Estimation

The narrowband DOA estimators are only usable in applications where the desired sig-
nal is indeed narrowband such as in radar and communication. However, in many
applications such as enhancement of multichannel periodic signals, the desired signal
is most likely broadband. Here, we consider the problem of estimating the DOA of
a broadband signal which can be tackled in several different ways. Most existing so-
lutions to the broadband DOA estimation problem can be loosely divided into three
groups [50, 52]: beamforming methods, high-resolution spectral estimation methods,
and time difference of arrival (TDOA) methods. Note that classifying broadband DOA
estimators can be misleading as some estimators belong to more than one of the men-
tioned classes.

Many of the beamforming methods derived for narrowband signals have also been
generalized to be applicable on broadband signals. The generalization is realized by
narrowband filtering the observed signal, e.g., using the DFT [108], and then by ap-
plying narrowband beamformers on the individual frequency bins. Finally, the DOA is
estimated by maximizing the output power, aka. the steered response power (SRP), of
the broadband beamformer3 [52]. The output power is obtained by accumulating the
output powers of all narrowband beamformers for each candidate DOA. For broadband
beamforming based DOA estimation, the DSB has been commonly used. The DSB can
be implemented either in the frequency domain by applying phase shifts in the indi-
vidual frequency bins corresponding to the DOA, or in the time domain by introducing
different delays on each sensor to steer the array.

The DSB can also be written as a sum of cross-correlations between sensor pairs
which resembles the so-called SRP method without filtering of the individual sensor
signals [52, 53]. The general SRP method relies on a filter-and-sum beamformer (FSB),
where a filter is applied to each sensor signal before beamforming. The output of the

3Here, a broadband beamformer is defined as a bank of narrowband beamformers
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FSB steered in the direction θ at the frequency ω can be written as

Y (ω, θ) =

Ns−1∑
ns=0

Gns(ω)Xns(ω)ejωfsτns (θ) , (23)

where Gns(ω) denotes the filter response at frequency ω for the nsth sensor. A com-
mon filter choice is the phase transform (PHAT) [51, 107], i.e., Gns(ω) = |Xns(ω)|−1.
Basically, this filter whitens the signal in the desired direction. The SRP method com-
bined with PHAT (SRP-PHAT) has been proven useful for broadband DOA estimation
in moderate reverberation conditions [52].

A different approach to broadband DOA estimation has been to generalize existing
high-resolution, narrowband DOA estimators to the broadband scenario. For exam-
ple, the narrowband subspace approach has been considered for DOA estimation of
broadband signals by dividing the broadband signal into several narrowband signals.
In the first methods based on this approach, the DOA was estimated for all the nar-
rowband components, and then combined to yield the DOA estimate of the broadband
signal [184]. However, these methods are not applicable in scenarios with a low SNR
and/or correlated sources. Later, a method with superior estimation performance com-
pared to the incoherent methods (e.g., [201]) has been devised which processes the
narrow bands coherently. The WSF method has also been extended to broadband sce-
narios; this was considered in [20]. However, the broadband WSF method is difficult
to use in reverberant and time-varying environments as it is very sensitive to steering
errors [50].

TDOA-based DOA estimation is a third strategy for localization of broadband sources.
In methods based on this approach, the DOA is estimated in a two-step procedure; first,
the time delays between signals obtained from sensor pairs are estimated, and, then,
the estimated time delays are mapped to a DOA estimate. Examples of methods for
mapping the TDOA estimates to a DOA estimate are found in [19, 165, 174] and the
references therein. The cornerstone in the TDOA approach is the estimation of the time
differences. Commonly, these differences have been estimated through maximization
of the generalized cross-correlation (GCC) function [107]. The GCC function for the
sensors p and q is defined as

Rpq(τ) =
1

2π

∫ ∞
−∞

Ψpq(ω)Xp(ω)X∗q (ω)ejωτdω, (24)

where Ψpq(ω) is a weighting function. We note that the SRP and GCC methods are
closely related. In the SRP method, the GCC function between all sensor pairs are
summed and the DOA is estimated by maximizing the sum corresponding to the steered
response power. In the GCC method, on the other hand, the GCC function is used
only for estimating the time differences between the sensor pairs. Different choices of
weighting functions have been considered for the GCC method including SNR-based
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weighting and the PHAT [107]. The TDOA-based DOA estimators are typically outper-
formed by the SRP methods due to the suboptimal two-step procedure, however, they
are less computationally demanding [52]. In summary, many of the broadband DOA
estimators have proven useful for speech signals, but they will most likely yield subop-
timal DOA estimates, since they do not exploit the underlying model for, e.g., periodic
signals.

2.4 Joint Parameter Estimation
Traditionally, fundamental frequency and DOA estimation has been considered as two
separate estimation problems. However, there is a number of benefits by estimat-
ing these parameters jointly. In a two-source scenario, for instance, the DOA of the
sources can not be resolved by only DOA estimation if they share the same DOA. The
same problem arises for fundamental frequency estimation of two sources sharing the
same fundamental frequency. If the DOA and the fundamental frequency are estimated
jointly, it may be possible to resolve such overlapping sources as long as they are sep-
arated in one dimension. Moreover, estimating the fundamental frequency and DOA
separately will most likely yield estimates with lower accuracy compared to joint esti-
mation methods [99]. These observations have in the recent years inspired researchers
to work on the joint fundamental frequency and DOA estimation methods.

The joint frequency and DOA estimator can generally be divided into two groups:
methods that jointly estimate the frequency and DOA of single sinusoid, and methods
that jointly estimate the fundamental frequency and DOA of a number of harmonically
related sinusoids. First, we consider examples of methods for jointly estimating the
frequency and DOA of a single sinusoidal source. In [197], a subspace method was
proposed that is based on state-space modeling of the observed signal. In this method,
the frequency is estimated first whereupon a beamforming like estimate of the DOA is
obtained. Another subspace method for joint frequency and DOA estimation was pro-
posed in [112, 113]. This method is an extension of the ESPRIT method for direction
finding. In scenarios with white Gaussian noise, the method in [112, 113] outperforms
the method in [197] in terms of root mean squared error (RMSE) and vice versa in col-
ored noise scenarios [197]. Later, it has been shown that the MUSIC method can be ex-
tended to joint frequency and DOA estimation by using MUSIC iteratively in time and
space [120]. This extension showed better estimation accuracy than the ESPRIT-based
method in [112, 113]. A different approach was taken in [97] where two-dimensional
(2-D) MVDR beamforming was considered. Instead of first applying beamforming and
then temporal filtering, a two-dimensional filter is applied on the signal. The frequency
and DOA can also be estimated jointly using a multi-stage Wiener filter (MWF) ap-
proach [172]. This was realized by using the MWF to obtain a signal subspace estimate,
which is then used to obtain the frequency and DOA estimates similar to the approach
in [197]. It was shown that the MWF approach outperforms the methods mentioned
above (except for the 2-D MVDR method which was not considered in the comparison)
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Fig. 4: Pseudo spectrum of a synthetic, multichannel, periodic signal constituted by five harmon-
ics of unit amplitude with θ = −23◦ and f0 = 450 Hz.

in colored noise in terms of RMSE.
As mentioned previously, many real-life quasiperiodic signals are constituted by a

number of harmonically related sinusoids. In Fig. 4, we have illustrated the structure of
such signals in form of a pseudo spectrum4 of a synthetic, multichannel, periodic signal
with five harmonics of unit amplitude. For such signals, it is often desired to estimate
both the fundamental frequency and the DOA of the quasiperiodic signal, and not only
the frequencies and DOAs of the individual harmonics. Recently, quite a few methods
for this estimation problem have been proposed. For example, a ML-based estimator
was proposed in [150] that jointly estimates the fundamental frequency and TDOA. The
method proposed by Qian and Kumaresan is a generalization of the ML fundamental
frequency estimator proposed in [203]. Moreover, a few subspace based methods have
been considered. In [117], it was proposed to find a joint time delay and fundamen-
tal frequency estimate by using the eigenvectors of matrix that was derived from the
covariance matrix of the received signals. This subspace method is outperformed by
another subspace method proposed in [140] in terms of estimation accuracy. This other
subspace method is based on a state-space realization where the fundamental frequency
and time delay are estimated from the transition and observation matrices. However,
the subspace methods in [117, 140] are only applicable in scenarios with two sensors
as opposed to the subspace method by Zhang et al. proposed in [206]. This method
can be seen as a generalization of the single-channel fundamental frequency estimator
in [36, 38] to multiple channels. The RMSE of the estimates obtained using the method

4The pseudo spectrum was obtained using the nonlinear least squares method proposed in paper E.
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in [206] was close to the CRB and lower than the RMSE of weighted least squares
(WLS) estimator.

The concept of comparing the observed signal with a delayed version of the ob-
served signal in terms of correlation has also been applied to joint time delay and
fundamental frequency estimation. This approach has been considered by Képesi et
al. in [104, 204]. They introduce the position-pitch plane that can be interpreted as a
spatio-temporal ACF, and the time delays and fundamental frequencies of one or more
periodic sources are then found from the maxima of this plane. This approach, however,
requires several heuristics to obtain good estimates and it is not statistically efficient.
Recently, we proposed another joint DOA and fundamental frequency estimator in pa-
per D based on LCMV filtering [54, 69]. The main advantage of this approach is that
it can resolve closely space sources as the optimal filters for fundamental frequency
estimation. Similarly to the single-channel filtering method in [32, 37], the proposed
beamforming- or filtering-based method is based on designing a filter that passes the
spatio-temporal periodic signal undistorted while suppressing the noise as much as pos-
sible. The DOA and the fundamental frequency are then estimated by maximizing the
filter output power for a set of parameter candidates. Despite the high-resolution of this
method, it is also statistically inefficient. Therefore, in paper E, we have also proposed
a nonlinear least squares (NLS) method for joint estimation that yields maximum likeli-
hood (ML) estimates for periodic signals under three assumptions: the noise should be
white Gaussian, the source should be in the far field of the array, and the environment
should be anechoic. Even when the assumptions do not hold, the estimator still yields
approximately ML estimates.

2.5 Estimation Bounds
When estimating signal parameters such as the fundamental frequency and DOA it is
useful to be able to place a lower bound on the variance of the parameter estimate
obtained using an unbiased estimator. The bound can be used for determining whether
an estimator is the minimum variance unbiased (MVU) estimator or just to benchmark
different estimators. Moreover, the bound can reveal if a desired accuracy is obtainable
in a given scenario. A few examples of different estimation bounds are the Barankin
bound [130], the Seidman bound [170], the Ziv-Zakai bound [208], and the Cramér-
Rao bound [45, 158]. Out of these bounds, the CRB is probably the most commonly
used as it is the easiest to determine, although other bounds have been proved to be
tighter [102]. Therefore, we only consider the CRB in the remainder of this section.

In the derivation of the CRB it is assumed that the probability density function (pdf)
p(x;θ) of the observed signal x satisfies the so-called regularity conditions, i.e.,

E
{
∂ ln p(x;θ)

∂θ

}
= 0 ∀θ, (25)

where θ is a vector containing the unknown signal parameters. Then, the covariance
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matrix Cθ̂ of any unbiased estimate θ̂ of θ satisfies [102]

Cθ̂ − I−1(θ) ≥ 0, (26)

with ≥ 0 denoting that the matrix is positive semidefinite, and I(θ) is the Fisher infor-
mation matrix (FIM). The (p, q)th element of the FIM is given by

[I(θ)]pq = −E
[
∂2 ln p(x;θ)

∂θp∂θq

]
. (27)

That is, from (26) we can see that the variance of the estimator of the pth parameter
[θ]p is lower bounded by

var
(

[θ̂]p

)
≥ [I−1(θ)]pp. (28)

The CRBs for a particular estimation problem can then be found by modeling the pdf
p(x;θ) and by using (27)-(28). The exact CRBs obtained using (28) are most likely
given by complex expressions, but for large sample sizes we can often find simpler
asymptotic expressions for the CRBs that are easier to interpret (see, e.g., [36, 180]).

In paper E, we derived the exact and asymptotic CRBs for the joint DOA and fun-
damental frequency estimation problem for ULAs, white Gaussian noise, sources being
in the far field of the array, and anechoic environments. In this case, and for a single
periodic source, the asymptotic CRBs are given by

CRB(ω0) ≈ 6

N3
t Ns

PSNR−1, (29)

CRB(θ) ≈

[(
c

ω0fsd cos θ

)2
6

NtN3
s

+

(
tan θ

ω0

)2
6

N3
t Ns

]
PSNR−1, (30)

where the pseudo SNR (PSNR) is defined as

PSNR =

∑L
l=1 l

2A2
l

σ2
. (31)

These asymptotic expressions hold when the number of samples and the number of
sensors are large. From these bounds, we can see that it is advantageous to estimate the
DOA and the fundamental frequency jointly. First, taking the harmonic structure into
account decreases the CRB for the DOA, since it depends on the PSNR. Moreover, the
CRB of the pitch decreases linearly as a function of the number of sensors.

2.6 Summary
In this section, we have considered the estimation of the statistics and parameters
needed in most reduction methods for periodic signals. As it appears from these consid-
erations, both estimation of the noise statistics and estimation of signal parameters such
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as the fundamental frequency and the direction-of-arrival have been popular research
topics for several decades. Although several methods for estimating these quantities
have been proposed, there are still unsolved problems.

For example, many fundamental frequency estimators are based on the covariance
matrix of the observed signal. As the covariance matrix is unknown in practice it is
typically replaced by the sample covariance matrix. Doing this, however, has a detri-
mental impact on the spectral resolution of such estimators, since this covariance matrix
estimate requires data partitioning. Another example of an unsolved problem was how
to obtain joint and statistically efficient estimates of the fundamental frequency and the
DOA of periodic signals such as speech. In the papers A–E, we have proposed solutions
for these and other important research problems. For a more detailed overview of these
contributions, we refer to Section 4.

3 Noise Reduction
Equipped with an estimate of either the noise statistics or relevant signal parameters
such as the fundamental frequency and DOA, the second step in most enhancement
methods is to attenuate or, ideally, to remove the noise from the observed noisy signal.
In this section, we consider the noise reduction problem, and describe different solu-
tions to it for both single-channel and multichannel scenarios. Moreover, we describe
several performance measures that can be used to quantify the performance of noise
reduction methods.

3.1 Single-Channel Noise Reduction
The research area of noise reduction, and single-channel noise reduction in particular, is
well established. That is, a multitude of different techniques for combating this problem
have been proposed.

Spectral-Subtractive Methods

For the single-channel case, one of the first popular algorithms is the spectral-subtractive
algorithms proposed in [17] by Boll. In this algorithm, it is assumed that the noise ad-
ditive and that the noise amplitude spectrum can be estimated by other means. Then,
the desired signal spectrum X(ω) can be estimated by subtracting the estimated noise
amplitude spectrum |V̂ (ω)| from the observed signal spectrum Y (ω) as

X̂(ω) =
[
|Y (ω)| − |V̂ (ω)|

]
ejφy(ω), (32)

where φy(ω) is the phase spectrum of the observed signal y(nt). Note that it is im-
plicitly assumed by (32) that the phase of the noise can be replaced by the phase of
the observed signal which is a reasonable assumption when the SNR in all frequency
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bands is larger than 8 dB [124, 194]. However, inaccuracies in the noise amplitude
spectrum estimate may result in negative spectral components in the estimated desired
signal spectrum. This issue was originally resolved by half-way rectification [17], i.e.,

X̂(ω) =

{[
|Y (ω)| − |V̂ (ω)|

]
ejφy(ω), for |Y (ω)| > |V̂ (ω)|

0, otherwise
. (33)

When an estimate of the desired signal spectrum is obtained, the desired signal can be
estimated by applying the inverse DFT.

Unfortunately, the simple and intuitively sound spectral-subtractive method in [17]
suffers from so-called musical noise in the estimated desired signal [14]. To alleviate
this, several modifications to the method have been proposed. Examples of such modi-
fications are to overestimate the noise power spectrum and use spectral flooring [14], to
use frequency dependent oversubtraction [101, 123, 173], to apply adaptive gain aver-
aging [79], or to use perceptual weighting [199]. The improvements obtained by these
modifications come at the cost of the introduction of additional heuristics that may be
difficult to control in practice though.

Filtering Methods

Another well-known class of noise reduction methods is the filtering methods. Many
of these methods are based on optimal filtering techniques such as Wiener filtering
[202]. Let us assume that the order Mt filter h under consideration has a finite impulse
response such that the filter output is given by

z(nt) = hHy(nt). (34)

Then, the Wiener filter is obtained by minimizing the minimum mean-squared error
between filter output and the desired signal x(nt). Considering time-domain Wiener
filtering for noise reduction, this filter design problem can be written as,

hW = arg min
h

E
{
|x(nt)− z(nt)|2

}
. (35)

Although the Wiener filter is optimal in the MSE sense, its noise reduction capabilities
partly come at the cost of distortion of the desired signal. Therefore, different exten-
sions of the Wiener filter have been proposed in, e.g., [26, 119] that enables control of
the noise reduction and the distortion of the desired signal. Another extension of the
Wiener filter was proposed in [118] that designs the filter iteratively without an estimate
of the desired signal or noise spectrum. The Wiener filter and the variants thereof men-
tioned above are all derived for stationary signals. When the signals are nonstationary,
the Wiener filters can be extended to handle such signals by means of Kalman filtering
(see, e.g., [148]).
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While the observed signal is indeed captured in the time-domain, the Wiener filter-
ing methods for noise reduction are often derived and implemented in the frequency do-
main. Conducting the filtering operation in the frequency domain has advantages such
as computationally more efficient implementations and easier monitoring and analysis
of the performance [7]. Recently, the noise reduction Wiener filter was also derived
in the Karhunen-Loève expansion (KLE) domain, and in a generalized transform do-
main [7, 8]. In these domains, the speech and noise may be better separated. Moreover,
when the filters are derived in the KLE domain, there is no aliasing problem [7].

Recently, a new class of noise reduction filters were proposed based on a orthogonal
decomposition of the desired signal defined as

x(nt) =
[
x(nt) · · · x(nt −Mt + 1)

]T
= ρxxx(nt) + xi(nt), (36)

where ρxx = E{x(nt)x(nt)}/E{x2(nt)} is the normalized correlation vector with re-
spect to x(nt) and xi(nt) is the interference signal vector being defined similarly to
y(nt) and x(nt). That is, by applying this decomposition, we get an extra noise term
in form of xi(nt). Noise reduction filters can then be designed that attenuates both the
interference term xi(nt) and the noise v(nt). Some well-known filtering techniques
such as the maximum (max) SNR, Wiener, MVDR, trade-off and LCMV filters were
recently rederived in this framework in both the time [6, 27] and frequency [9, 10] do-
mains. The time-domain versions of these filters were derived to be causal. However, as
we showed in paper F, the output SNR of the filters can be improved without increasing
the distortion by allowing non-causality in the filter design.

The aforementioned filters for noise reduction are typically derived designed using
an estimate of the noise statistics. The noise statistics, are difficult to estimate dur-
ing presence of the desired signal as described previously, which make these filtering
method vulnerable to nonstationary noise. However, when the underlying model of the
desired signal is known, this can be exploited in the filter design to avoid the need for an
explicit estimate of the noise statistics. When the desired signal is periodic, for example,
the harmonic structure can be taken into account. An example of this is in [138], where
Nehorai and Porat proposed an infinite impulse response (IIR) comb filtering method
for enhancing periodic signals. The comb filter is designed to pass the harmonic com-
ponents undistorted while attenuating other frequency component. The filter design is
independent of the observed signal and is therefore implicitly designed under a white
noise assumption. More recently, optimal filters were designed for enhancement of pe-
riodic signals without any noise assumptions [34]. These filter designs can be seen as
extensions of the MVDR [21] and amplitude and phase estimation (APES) [116] filters.

The robustness that the above fundamental frequency driven filters have against
nonstationary noise can not be obtained without paying a price though. In reality, sig-
nals such as voiced speech can only be approximately modeled as quasiperiodic signals.
That is, when using these filters in practice, distortion of the desired signal will happen.
In paper G, however, we propose the joint use of two filters driven by the noise statistics
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and the fundamental frequency, respectively, for speech enhancement. By doing so, the
complementary advantages of both filters can be obtained.

Subspace Methods

As in the subspace methods for parameter estimation, the subspace methods for noise
reduction are based on a decomposition of the space spanned by the observed signal co-
variance matrix into a signal and a noise subspace. This decomposition can be realized
by applying orthogonal matrix factorizations such as the singular value decomposition
(SVD) or the eigenvalue decomposition (EVD), and by then grouping the singular vec-
tors and values or eigenvectors and -values. The SVD-based subspace approach to
enhancement was proposed in [49] for white noise scenarios. In this approach, the ob-
served signal is organized in a matrix, e.g., in a Toeplitz or Hankel structure; then, the
SVD is applied on this matrix. An enhanced version of the desired signal is then ob-
tained in the transform domain, e.g., by discarding the least significant singular vectors
and values. As the noise in most practical scenarios is colored, several extensions for
the SVD-based noise reduction method have been proposed to loosen the white noise
assumption. This can be accomplished by applying prewhitening or by embedding
prewhitening in the method as considered in [84, 100].

As mentioned previously, the EVD can also be used to divide the space spanned
by the observed signal into signal and noise subspaces. This can be performed by
applying the EVD on the covariance matrix of the observed signal as considered by
Ephraim and Van Trees in [62]. Again, an estimate of the desired signal is then obtained
in the transform domain by, for example, identifying the eigenvectors spanning the
signal subspace, and by then using these eigenvectors to project the observed signal
onto the the signal subspace. As the SVD-based approach in [49], the EVD-based
noise reduction method in [62] was derived under a white Gaussian noise assumption.
Examples of extensions of the method to colored noise scenarios can be found in, e.g.,
[115, 135, 159].

Statistical-Model based Methods

The last approach to single-channel noise reduction mentioned here is the statistical-
model based. In these methods, the amplitude spectrum is estimated using nonlinear
estimators on basis of the observed signal and the pdfs of the noise and desired sig-
nal DFT coefficients. One of the first of such statistical-model based noise reduction
methods was proposed by McAulay and Malpass in [131]. They proposed to use a ML
estimate of the spectral amplitudes on basis of a two-state model of the observed signal
and soft-decision filtering based on the presence probability of the desired signal. Two
other examples of well-known statistical-model based noise reduction methods are the
MMSE and log-MMSE methods in [60, 61]. In the MMSE method in [60], the noise
reduction is based on minimizing the MSE between the estimated short time spectral
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amplitude of the desired signal and its true value on basis of modeling the desired signal
and noise spectral components as independent Gaussian random variables. This proce-
dure was modified slightly in the log-MMSE method in [61] by minimizing instead
the MSE of the log spectral amplitudes. This modification is motivated by the human
perception of sounds.

3.2 Multichannel Noise Reduction
In many applications, signal observations from multiple sensors are available. That is,
the just described single-channel noise reduction methods are not directly applicable in
these applications if only a single enhanced output is desired. While multichannel noise
reduction has not received as much research attention as single-channel noise reduction,
quite a number of approaches for the multichannel problem have been considered. Gen-
erally speaking, two different types of multichannel noise reduction methods have been
considered since the spatial and temporal filtering can be treated either separately or
jointly.

Separate Spatial and Temporal Filtering

In separate spatial and temporal filtering methods, the noise can, e.g., be reduced by
first performing spatial filtering. Spatial filtering can be conducted by using some of the
well-known beamforming techniques also described for DOA estimation. Most origi-
nal beamforming techniques, however, were derived for narrowband signals, but they
can be extended to noise reduction of broadband signals by decomposing the observed
signal into subbands and by then applying narrowband beamformers on the subband
signals [11]. Examples of narrowband beamformers or spatial filters that can be ap-
plied in the subbands are the DSB [193], the maximum SNR filter [2, 11], and Capon’s
beamformer [21].

Unfortunately, extending the well-known narrowband beamforming methods to noise
reduction of multichannel periodic broadband signals is problematic. The reason is that
the beampatterns for the narrowband beamformers for the different frequency bands
will be different; in general, the beamwidth of these beamformers will decrease for an
increasing frequency. The effect of this is that the sources impinging from different
DOAs than the look direction will be lowpass filtered, which results in disturbing arti-
facts, e.g., when enhancing audio and speech [11]. This problem can be dealt with by
designing a response-invariant beamformer, i.e., a broadband beamformer having the
same beamwidth for all frequencies. We can achieve this by means of a proper sen-
sor placement, for example, by using harmonically nested subarrays [103, 127]. The
subarrays are used for beamforming in the different frequency bands. To make the
beamformers frequency invariant for their respective frequency band, the nested array
structuring can be combined with FSB [29, 69].
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The previously mentioned single-channel noise reduction methods can then be ap-
plied on the beamformer output as considered in [95] to achieve even further noise
reduction. Alternatively, a single-channel noise reduction method can be applied on the
signals observed on all sensors, and then a beamformer could be applied on the outputs
of these filters as considered in [84]. Conducting the spatial and temporal filtering in
two steps may not be optimal though, as the linear transformation in the first step can
influence the maximum achievable noise reduction in the next step.

Joint Spatial and Temporal Filtering

As mentioned for parameter estimation of multichannel signals, it can be beneficial
to process the observed signal jointly in time and space in multichannel scenarios. In
the recent years, it has been shown how well-known filtering methods can be extended
for such joint processing. For example, Doclo and Moonen considered time-domain
multichannel Wiener filtering (MWF) for noise reduction in [56]. In their method,
they used the generalized SVD (GSVD) to implement the multichannel Wiener filter.
Later, the MWF was combined with the general sidelobe canceler (GSC) [78] in a
generalized scheme in [179]. In this scheme, also termed the spatially pre-processed
speech distortion weighted MWF (SP-SDW-MWF), the GSC was applied for spatial
preprocessing and an adaptive noise canceler was designed to enable trading off noise
reduction for less distortion of the desired signal. Originally, the SP-SDW-MWF was
derived in the time-domain, but it can also be derived in the frequency domain as shown
in [57]. The frequency domain parametric MWF (PMWF) [178] is another example
of a multichannel filter that enables a trade off between speech distortion and noise
reduction. It can be shown that the frequency domain MVDR filter for multichannel
noise reduction presented in [11] is a special case of PMWF [178].

Another multichannel noise reduction method that shows better performance than
the MWF in many scenarios in terms of both SNR and signal distortion is the spatio-
temporal prediction approach [11]. It is well-known that temporal prediction implicitely
plays a fundamental role in enhancement, so therefore spatial prediction was also con-
sidered. Theoretically, the spatio-temporal prediction approach should have lower out-
put SNR than the Wiener filter, but, on the other hand, it may introduce less distor-
tion of the desired signal. The Kalman filter for single-channel noise reduction of
speech [73, 148], has also been extended to the multichannel scenario [11]. While
the multichannel Kalman filter performs both dereverberation and noise reduction, it
may be impractical in many scenarios as it requires knowledge of the signal parame-
ters in form of autoregressive (AR )parameters and of the impulse responses from the
source to the microphones. The last group of multichannel filtering methods for noise
reduction considered here is the recently proposed orthogonal decomposition based
filters. These are basically generalizations of the corresponding orthogonal decomposi-
tion based single-channel filters to the multichannel case. Examples of noise reduction
filters derived in this framework are the max SNR filter, the Wiener filter, the MVDR
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filter, the LCMV filter, and the trade-off filter [6].
The aforementioned multichannel filtering methods for noise reduction typically

use an estimate of the noise statistics of the filter design. As mentioned for the single-
channel noise reduction problem, however, this makes the methods vulnerable against
nonstationary noise. We have therefore proposed a fundamental frequency driven fil-
ter design for multichannel signals in paper I. The proposed filter can be seen as an
extension of the APES filter [116].

3.3 Performance Measures
When designing and evaluating both single-channel and multichannel methods, it is
essential to have relevant performance measures. In this section, we introduce a number
of both objective and subjective performance measured related to noise reduction. For
more details on these and other performance measures, we refer the interested reader
to [8, 11, 13, 26, 48, 124].

Objective Noise Reduction Measures

One of the most important and well-known measures for noise reduction is the SNR [8].
Before any processing of the observed signal, the SNR is defined as the ratio between
the power of the desired signal and the noise, i.e.,

iSNR =
σ2
x

σ2
v

, (37)

with σ2
x and σ2

v being the signal and noise variances, respectively. This SNR is also
commonly referred to as the fullband input SNR (iSNR). The iSNR can also be defined
for a frequency subband ω as

iSNR(ω) =
φx(ω)

φv(ω)
, (38)

where φa(ω) is the PSD of the signal a(nt) at frequency ω. The goal in many noise
reduction methods is to improve the iSNR, i.e., the so-called output SNR (oSNR) should
be greater than the iSNR. The oSNR is defined as the ratio between the variances of the
desired signal and the noise after noise reduction

oSNR =
σ2
x,nr

σ2
v,nr

. (39)

Similarly to the iSNR, the oSNR can also be defined in frequency subbands. Another
important measure for noise reduction is the noise reduction factor ξnr [26]. The noise
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reduction factor is defined as the ratio between the variance of the noise before and after
filtering. That is,

ξnr =
σ2
v

σ2
v,nr

. (40)

We note from this expression that the noise reduction factor should be greater than 1
if noise reduction is desired. For the orthogonal decomposition based noise reduction
methods, the abovementioned noise reduction measures are defined in a slightly differ-
ent way as the desired signal vector contains an interference term [6].

Objective Distortion Measures

When it comes to measuring the distortion of the desired signal, we have at least two
widely used measures. First, we have the signal distortion index introduced in [26].
This index is given by the ratio between the power of the difference between the filtered
and unfiltered desired signals, and the power of the desired signal. Mathematically
speaking, we can write this as

νsd =
E
{
|xf(nt)− x(nt)|2

}
σ2
x

, (41)

where xf(nt) is the filtered desired signal at time instance nt. The signal distortion index
can be generalized to support subband measuring and scenarios where more than one
sample of the desired signal are estimated simultaneously from the observed signal [8].
The distortion of the desired signal can also be measured using the signal-reduction
factor. This factor is defined similarly to the noise-reduction factor, i.e., it is the ratio
between the power of the desired signal before and after noise reduction. We can write
this equivalently as

ξsr =
σ2
x

σ2
x,nr

. (42)

Like the previously mentioned noise reduction measure, these distortion measures can
be extended to support the orthogonal decomposition based noise reduction methods.
If no distortion of the desired signal is desired, the signal-reduction factor should be
equal to 1. This is not a sufficient condition, however, as the desired signal may still
be distorted in frequency subbands. In paper G, we proposed an alternative distortion
measure for periodic signals, namely the harmonic distortion measure. This measure
is defined as the sum of the absolute differences between the powers of the harmonics
before and after filtering, i.e.,

ξhd = 2

L∑
l=1

|Pl − Pf,l|, (43)
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where Pl = |αl|2 and Pf,l is the power of the lth harmonic after filtering. When the
harmonic distortion equals 0, none of the harmonics are distorted.

Objective Hybrid Measures

Besides the aforementioned noise reduction and distortion measures, there also exist
hybrid objective measures that measures the overall performance, i.e., both noise reduc-
tion and distortion. An example of such a measure is the log-spectral distance (LSD)
that can be used to estimate the distance between the spectra of, e.g., a desired signal
and an estimated desired signal [195]. This distance is defined as

LSD =

√√√√ 1

2π

∫ π

−π

[
10 log10

P (ω)

P̂ (ω)

]2

dω. (44)

Another widely used distance measure is the Itakura-Saito distance (ISD) that is more
correlated with the perceptual quality compared to the LSD [25, 89, 90]. The ISD is
given by

ISD =
1

2π

∫ π

−π

[
P (ω)

P̂ (ω)
− log

P (ω)

P̂ (ω)
− 1

]
dω. (45)

For speech and audio applications, two other commonly used objective measures are
the perceptual evaluation of speech quality (PESQ) [94] measure and the perceptual
evaluation of audio quality (PEAQ) measure [91]. The PESQ and PEAQ measures are
objective measures that reflects the perceptual quality of speech and audio, respectively,
and they were both selected as recommendations from the International Telecommuni-
cation Union (ITU).

Subjective measures

The objective measures just described have the advantage that they can be computed
directly from the signals. To get subjective measures, on the other hand, it is necessary
to conduct experiments with test subjects. An example is in noise reduction of speech
and audio, where the perceptual performance can be measured using listening tests in
terms of quality and intelligibility. The quality of a speech signal can be measured
using various kinds of listening tests. In general, these tests can be grouped into two
categories: tests that are based on relative preference, and tests based on assigning a
numerical value to the quality of a stimuli. In the relative preference tests, a reference
signal is compared with a test signal to measure the subjective difference between these
signals. The difference is quantified by methods such as the degradation category rat-
ing (DCR) method [43], the A/B comparison [124], or the comparison category rating
(CCR) method [124].
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The relative preference based methods are excellent for detecting even subtle dif-
ferences between a reference signal and a test signal. When the number of test signals
is large, however, it is preferable to use numerical rating methods as the listening test
sessions should not be too long [92]. In these methods, the signals are given an individ-
ual score that should reflect their quality. An example of such a test is the MUSHRA
test [93] in which the quality of the test signals is measured using the mean opinion
score (MOS).

Intelligibility is another subjective measure that can be obtained from listening tests.
It can be measured in several different ways, but, in general, three classes of intelligi-
bility measurement methods exists [124]: recognition of syllables made up of mean-
ingless combinations of speech, recognition of single meaningful words, or recognition
of meaningful sentences. Using either of these methodologies, the recognition rate is
measured which reflects the intelligibility.

3.4 Summary
We considered noise reduction of periodic signals in this section. The noise reduction
methods considered are based on either an estimate of the noise statistics or estimates of
relevant signals parameters, and the estimation of these quantities was considered in the
previous section. Considering speech, as an example of a real-life periodic signal, it is
clear that enhancement is a well-established research area. In general, the enhancement
methods for speech can be grouped into two classes: those that are based on an estimate
of the noise statistics and those that are based on the desired signal, i.e., in the form of
relevant signal parameter estimates.

The first class of methods are basically applicable to enhancement of any kind of de-
sired signal as they are fully relying on the noise statistics. The noise statistics, however,
are difficult to estimate when the desired signal is present though. These methods are
therefore vulnerable against nonstationary noise. The second class of methods, on the
other hand, are robust against such noise as they rely on estimates of signal parameters
such as the fundamental frequency and the DOA. The price to pay for this robustness is
an increased distortion of the desired signals, since the assumed signal model will not
be exact in practice. Therefore, in the papers G–H, we proposed joint filtering schemes
for reduction of nonstationary noise in speech signals. In these schemes, we use filters
based on a noise statistics estimate and a fundamental frequency estimate, respectively,
to obtain the complementary advantages of these two different approaches. Moreover,
it is well known that in many enhancements methods it is only possible to improve the
noise reduction performance by increasing the distortion of the desired signal. In paper
F, however, we propose a novel set of non-causal, time-domain filters that can improve
the noise reduction performance compared to their causal counterparts without neces-
sarily increasing the distortion. A more detailed overview of our contributions within
the research field of noise reduction can be found in the following section.
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4 Contributions
In summary, the overall topic of this thesis is enhancement of periodic signals with
focus on speech signals as hinted by the title. This research area covers both estimation
of either the noise or relevant signal parameters, and noise reduction as depicted in
Fig. 3. The main body of this thesis is constituted by the papers A–I that are all
related to the abovementioned research topic. The papers A–E deal with the estimation
of parameters of a periodic signal. In particular, paper A–C consider the estimation
of the fundamental frequency of a single-channel periodic signal, and paper D–E are
on the joint estimation of the fundamental frequency and the direction-of-arrival of a
multichannel periodic signal. Given knowledge about the fundamental frequency and
the direction-of-arrival, we considered noise reduction of periodic signals in the papers
G–I. In the papers F–G, we considered single-channel signals, whereas multichannel
signals were considered in paper I. Followingly, we provide a more detailed description
of the contributions from the individual papers.

Paper A The first paper presented in this thesis considers the estimation of the fun-
damental frequency. The paper presents a novel fundamental frequency estima-
tor based on rooting of the harmonic MUSIC (HMUSIC) algorithm proposed
in [36, 38]. Compared to the HMUSIC method, the proposed method does not
require a search grid and, in many scenarios, it has a better spectral resolution.

Paper B We proposed another fundamental frequency in this paper. The proposed
estimator is obtained by using the harmonic LCMV filter proposed in [39] in
conjunction with the iterative adaptive approach (IAA) [205]. In this paper, the
IAA is only used for estimating the covariance matrix of the observed signal. One
of the major benefits of estimating the covariance matrix using the IAA is that it
enables estimation from only a single signal snapshot while the covariance matrix
estimate is still full rank as opposed to when using the sample covariance matrix
estimate. As a results of that, the spectral resolution of the proposed method
is improved compared when the sample covariance matrix estimate is used in
conjunction with LCMV-based fundamental frequency estimator.

Paper C While the fundamental frequency estimator proposed in paper B provides a
good spectral resolution, it also has a relatively high computational complexity.
To alleviate this issue, we exploited the inherently low displacement rank of the
necessary products of Toeplitz-like matrices. By doing this, we reduced the com-
putational complexity of the method in paper B by several orders of magnitude.
We also propose an approximative implementation using the preconditioned con-
jugates gradient method and a Quasi-Newton approach, and, finally, we propose
a set of time-recursive implementations; these initiatives lower the computational
complexity even further. The difference between the estimates obtained using the
direct and fast implementations, respectively, was shown to be negligible, and the
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time-recursive implementations were shown to be able to track the fundamental
frequency of both synthetic and real-life signals.

Paper D In this paper, we proposed two joint fundamental frequency and DOA esti-
mators. Estimating these parameters jointly is advantageous, as it enable us to,
for example, resolve sources with overlapping fundamental frequency as long as
their DOAs are distinct. The first estimator proposed is based on a filterbank of
periodogram-based filters, and it is therefore implicitely derived under a white
noise assumption. The other estimator is a spatio-temporal HLCMV filter, i.e., it
is signal dependent and useful for any additive noise scenario. At the cost of a
higher computational complexity, the latter estimator shows superior estimation
performance.

Paper E This paper expands further on joint fundamental frequency and DOA estima-
tion. In this paper, we provide expression for the exact as well as the asymp-
totic CRBs of the joint estimation problem at hand, and we describe why it is
beneficial to estimate the parameters jointly. We also propose a non-linear least
squares (NLS) estimator and an approximate NLS (aNLS) estimator for the joint
estimation problem. The proposed estimators are applicable on real-life signals,
robust against reverberation, and they outperform several existing multichannel
fundamental frequency estimators and broadband DOA estimators in terms of
estimation performance.

Paper F Here, we turn the focus to noise reduction. In this paper, a novel set of orthog-
onal decomposition based filters for noise reduction is proposed; these filters can
be regarded as generalizations of the time-domain filters in [6] to incorporate non-
causality into the filter design. It is shown that the introduction of non-causality
can be beneficial from a noise reduction point of view. Besides the filter designs,
we proposed some performance measures for the non-causal filters. Moreover,
we showed how some of the filters can be updated recursively which, eventually,
proves that output SNR always increases if we increase the filter length (provided
that the signals are stationary).

Paper G Following the trail of paper F, we consider causal, time-domain filters for
noise reduction in this paper. First, the relationship between two novel, time-
domain, noise reduction filters is investigated. This investigation reveals that
the orthogonal decomposition based MVDR filter is asymptotically equivalent
with the harmonic decomposition based LCMV filter. Therefore, as the filters
have complementary advantages and disadvantages, we propose a joint filtering
scheme employing both filters. Experiments show that the proposed noise re-
duction scheme outperforms existing noise reduction methods in terms of PESQ
scores.
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Paper H In this paper, we propose another joint filtering scheme for reduction of non-
stationary noise in speech signals. The difference between the scheme considered
in this paper and in paper G is the choice of filter for noise reduction. In both pa-
pers, a harmonic decomposition based LCMV filter is used for estimating the
noise statistics. Then, an orthogonal decomposition based Wiener filter is used
for reduction of the noise in this paper, whereas an orthogonal decomposition
based MVDR filter was used in paper H. Out of these two joint filtering schemes,
the scheme of this paper has the best perceptual performance in terms of PESQ
scores.

Paper I The noise reduction filtering methods in the papers F–H were only derived for
single-channel signals. However, in this paper, we proposed a novel pitch-based
filtering method for noise reduction of multichannel signals. The proposed filter
design was inspired by the APES filter that was extended to enhancement of mul-
tichannel periodic signals. The experimental results indicate that the proposed
filter has better noise reduction properties than the spatio-temporal HLCMV fil-
ter, and that the filter can be applied for noise reduction of real-life, multichannel,
periodic signals.

Followingly, we present the major general conclusions that can be drawn on basis of
the contributions described above. Regarding estimation of the fundamental frequency
and DOA, it is the opinion of the author that these parameters should be estimated
jointly when both are needed for a number of reasons. First of all, joint estimation
enables us to resolve the fundamental frequencies and DOAs if only one of these pa-
rameters are sufficiently spaced in a multisource scenario. Furthermore, as we consid-
ered in paper E, estimating the parameters separately using a cascade procedure can
deteriorate the estimation performance. Finally, estimating the parameters jointly en-
ables us to treat the DOA estimation problem as a narrowband estimation problem, as a
otherwise broadband periodic signal can be decomposed into a number of narrowband
signals. The second major aspect covered in our contributions is noise reduction of
single-channel and multichannel periodic signals. We have showed examples of how
information about the fundamental frequency can be incorporated into noise reduction
methods without relying fully on the harmonic model of periodic signals.

It is the opinion of the author that continued research in the exploitation of funda-
mental frequency information in noise reduction of, e.g., speech and audio signals is a
key to obtain a robust solution to the difficult problem of nonstationary noise reduction.
To achieve such a solution, the author believes that future work on, e.g, improving the
robustness of the proposed methods is of great importance. An example of relevant
future work in this regard is model selection. Many real-life signals have missing har-
monics, so it is important to incorporate such information into fundamental frequency
based enhancement methods to optimize the noise reduction performance. Further-
more, the author believes that it is important to investigate how fundamental frequency
based enhancement methods can be robustly applied on speech, since only the voiced



36 INTRODUCTION

parts of speech is harmonic. Finally, the author finds it plausible that the harmonic
model driven approach to noise reduction considered in this thesis can be applied for
tackling the difficult and pertinent problem of dereverberation.
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Abstract
We consider the problem of estimating the fundamental frequency of periodic signals
such as audio and speech. A novel estimation method based on polynomial rooting of
the harmonic MUltiple SIgnal Classification (HMUSIC) is presented. By applying poly-
nomial rooting, we obtain two significant improvements compared to HMUSIC. First,
by using the proposed method we can obtain an estimate of the fundamental frequency
without doing a grid search like in HMUSIC. This is due to that the fundamental fre-
quency is estimated as the argument of the root lying closest to the unit circle. Second,
we obtain a higher spectral resolution compared to HMUSIC which is a property of
polynomial rooting methods. Our simulation results show that the proposed method
is applicable to real-life signals, and that we in most cases obtain a higher spectral
resolution than HMUSIC.

1 Introduction
In many signal processing applications, it is of great importance to estimate the funda-
mental frequency. A specific example is in audio and speech processing. For example,
the fundamental frequency is needed in parametric coding of audio and speech using a
harmonic sinusoidal model. Also, many music information retrieval applications, such
as automatic music transcription and musical genre classification, rely on the knowl-
edge of the fundamental frequency. Within the last couple of decades, the problem of
estimating the fundamental frequency has attracted considerable attention. This has re-
sulted in numerous different fundamental frequency estimators. For a few examples of
such estimators, we refer to [1–5].

Following, we define the fundamental frequency estimation problem. Consider a
harmonic signal buried in white Gaussian noise w(n), for n = 0, . . . , N − 1,

x(n) =

L∑
l=1

αle
jω0ln + w(n) , (A.1)

where L is the model order and αl = Ale
jφl is the complex amplitude of the lth

sinusoid with Al > 0 and φl being the real amplitude and the phase, respectively.
In this paper, we will assume that the model order is known, hence, the problem at
hand is to estimate the unknown fundamental frequency ω0. While not considered in
this paper, we refer the reader to [6] for few examples on how the model order could
be estimated. In many existing methods for fundamental frequency estimation, the
estimator is based on a grid search over a set of candidate fundamental frequencies [7].
This can be problematic for several reasons. For example, it can be hard to choose the
resolution of the grid since the width of the peaks in the cost-function relies on, the
sample size, the method, the signal-to-noise ratio (SNR), the source spacing (in multi-
source scenarios), etc. Another issue is the compuational complexity. Naturally, the
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computational complexity depends on the resolution of the grid. That is, if the peaks
are narrow or if high-resolution is required, it is necessary to use a fine grid which
of course increases the computational complexity. The problem of choosing the right
grid can, to some extend, be relieved by introducing a gradient search. To alleviate
the abovementioned issues, we consider the problem of obtaining an estimate of the
fundamental frequency without having to do a grid search.

It was shown in [8] that the MUltiple SIgnal Classification (MUSIC) estimation
criterion [9, 10] can be used to obtain a high-resolution estimate of the fundamental
frequency. The resulting estimator, refered to as Harmonic MUSIC (HMUSIC), was
shown to have a good statistical performance. In this paper, we propose an estimator
which is a relaxation of the HMUSIC cost-function from the unit circle onto the whole
complex plane. That is, the proposed estimator evaluates the HMUSIC cost-function
using a polynomial rooting method which can be seen as a generalization of the original
root MUSIC method [11]. Using polynomial rooting has two signficant advantages.
First, it gives an increased spectral resolution in multi-source scenarios and, second, it
will give an estimate of the fundamental frequency without using a grid search. For
more on the performance of the MUSIC and root MUSIC algorithms see, e.g., [12,
13]. Through simulations we investigate the performance of the proposed method on
real-life signals. Also, using synthetic data, we evaluate the proposed estimator in
Monte-Carlo simulations, and we compare the result with both the performance of the
HMUSIC estimator and the Cramér-Rao Lower Bound (CRLB).

The rest of the paper is organized as follows. In Section 2, we make a brief in-
troduction to the HMUSIC estimation method and we describe the proposed method.
In Section 3, we evalute the performance of the proposed using both qualitative and
quantitative measurements. Finally, Section 4 concludes on our work.

2 Proposed Methods
In this section, we present the fundamental theory behind the HMUSIC estimator [8]
and we present the proposed estimator. Consider a signal of the form (A.1) from which
we take M consecutive samples. The samples is then used to form a signal vector

x(n) =
[
x(n) x(n− 1) · · · x(n−M + 1)

]T
, (A.2)

where (·)T denotes the transpose. If we then assume that the phases of the harmonics
are independent and uniformly distributed in the interval (−π;π], we can write the
covariance matrix R ∈ CM×M as [14]

R = E
{
x(n)xH(n)

}
(A.3)

= APAH + σ2
wI , (A.4)
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Fig. A.1: An example of a HMUSIC cost-function transformed into polar coordinates. The point
(0, 0) in the right-hand plot corresponds to J(ω0) = 0 while the whole unit circle corresponds
to J(ω0) =∞. Note that ◦ denotes a root of p(z).

where E{·} and (·)H denotes the expectation and the conjugate transpose, respectively,
σ2
w is the noise variance and I is theM×M identity matrix. The matrix P is a diagonal

matrix containing the squared real amplitudes, i.e.,

P = diag
([
A2

1 · · · A2
L

])
, (A.5)

and A ∈ CM×L is a full-rank Vandermonde matrix

A =
[
a(ω0) · · · a(Lω0)

]
, (A.6)

with a(ω) =
[
1 e−jω · · · e−jω(M−1)

]T
. Note that since we assume a harmonic

model, the Vandermonde matrix A is only dependend on a single frequency, namely
the fundamental frequency. Let us then define

R = UΛUH , (A.7)

as the eigenvalue decomposition (EVD) of the covariance matrix. The matrix U =[
u1 · · · uM

]
then contains the M orthonormal eigenvectors of R and Λ is a diag-

onal matrix containing the corresponding eigenvalues, λk. Note that λ1 ≥ λ2 ≥ . . . ≥
λM . It is well known that the L most significant eigenvectors will span the signal sub-
space while the noise subspace is spanned by the M − L least significant eigenvectors.
That is, the noise subspace is spanned by G defined as

G =
[
uL+1 · · · uM

]
. (A.8)

We know that range(A) = range(S) where S =
[
u1 · · · uL

]
spans the signal

subspace. Also, we know that the signal subspace is orthogonal to the noise subspace
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which allows us to write

AHG = 0 . (A.9)

The covariance matrix, however, is most often not available in practice. Therefore, we
will replace the covariance matrix in the above expression by the sample covariance
matrix defined as

R̂ =
1

N −M + 1

N−1∑
n=M−1

x(n)xH(n) . (A.10)

Due to estimation errors, A will not be exactly orthogonal to G. Therefore, in HMU-
SIC, the fundamental frequency is found by

ω̂0 = arg max
ω0∈Ω0

1

‖AHG‖2F
(A.11)

= arg max
ω0∈Ω0

1

Tr
{

AHGGHA
}

︸ ︷︷ ︸
J(ω0)

, (A.12)

with Tr{·} and ‖ · ‖F denoting the trace and the Frobenius norm, respectively, and Ω0

is the set of candidate fundamental frequencies. Notice, that the HMUSIC criterion can
be seen as an approximation to the angle between subspaces [15]. The minimization
is done over the set Ω0, i.e., the resolution of the estimate depends on the cardinality
of Ω0. The resolution can, however, be refined by performing a gradient search after a
coarse estimate has been obtained.

Instead, we will now present how the cost-function can be evaluated using a rooting
method. This has both the advantage of obtaining a solution without doing a grid search
and an increased spectral resolution. Let us define a new matrix C = GGH and rewrite
the cost-function J(ω0) by using the definition of the trace

J(ω0) =
1

Tr{AHCA}
(A.13)

=
1∑L

l=1 aH(lω0)Ca(lω0)
. (A.14)

As mentioned previously, the expression in the denominator will have no solutions
when equated with zero. However, if we instead replace ejω in a(ω) with the variable
z = |z|ej arg(z), we can expect that denominator will have some solutions when equated
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with zero. That is, we can write

1

J(z)
=

L∑
l=1

aT (z−l)Ca(zl) (A.15)

=

L∑
l=1

M−1∑
k=−(M−1)

ckz
lk (A.16)

=

L∑
l=1

pl(z) = p(z) = 0, (A.17)

where pl(z) is the lth polynomial and ck is the sum of entries of C along the kth
diagonal, i.e.,

ck =
∑

m−n=l

[C]mn . (A.18)

The expression in (A.17) will only be zero when all of the individual polynomials pl(z)
for l = 1, . . . , L is equal to zero. This can be proven by the fact that C = GGH is
Hermitian and thereby positive semi-definite. Positive semi-definiteness implies that

xHCx ≥ 0 , ∀x , (A.19)

which proves our statement. Therefore, we can conclude that p(z) has a root close on
the unit circle only when ω̂0 approaches ω0. This will only be fulfilled when M → ∞
which implies that N →∞

lim
N→∞

p(z) = 0
∣∣∣
z=ejω0

⇔ lim
N→∞

J(z) =∞
∣∣∣
z=ejω0

. (A.20)

In reality, the roots of the polynomial will not lie exactly on the unit circle since we
have a limited number of samples. Instead, if N and M are sufficiently large, we can
assume that the root lying closest to the unit circle will correspond to the largest peak
of the HMUSIC pseudospectra. This is also illustrated in Fig. A.1 which shows an
example of a HMUSIC cost-function and its related roots. The fundamental frequency
can therefore be estimated as the angle of the root r̂ being closest to the unit circle, i.e.,

ω̂0 = ∠r̂ . (A.21)

Notice, however, that the roots come in complex conjugate pairs so we only consider
the roots within the unit circle.

3 Experimental Results
This section contains the experimental results obtained during evaluation of the pro-
posed method. First, we investigate the performance of the proposed method on a
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Fig. A.2: A spectrogram of a trumpet signal sampled at 8,820 Hz (top) and fundamental fre-
quency estimates obtained using root HMUSIC (bottom).

real-life signal. The signal used in this experiment, was a trumpet signal sampled at
8,820 Hz. In Fig. A.2, the spectrogram of the trumpet signal is shown. We divided the
trumpet signal into blocks of length N = 160 overlapping each other by 50 %. The
fundamental frequency was estimated from each block with M = 65 and by assuming
that L = 7. The results are depicted in Fig. A.2. In the end of the signal, the proposed
estimator seems to give erroneous estimates, however, it can also be seen that the model
order in this part of the signal is rather five than seven. Except from the parts where
there is a missmatch between the assumed model order and the true model order, the
proposed estimator obtains estimates close to the true fundamental frequency. This ver-
ifies that the proposed estimator is applicable to real-life signals.

Also, we have conducted a series of Monte-Carlo simulations evaluating the sta-
tistical performance of the proposed method compared to both the original HMUSIC
estimator and the CRLB [16]. In the first of these simulations, we evaluated the estima-
tion performance with respect to the choice of M for N being fixed to 80. The signal
used in this simulation, was a synthetic signal composed by L = 3 harmonically related
complex sinusoids each with unit amplitudes with a fundamental frequency of 189.44
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Fig. A.3: Plot of the asymptotic CRLB and the MSE of root HMUSIC and HMUSIC as a function
of M .

Hz. Complex white Gaussian noise was added to the signal such that the SNR

SNR = 10 log10

∑L
l=1A

2
l

σ2
w

, (A.22)

was 20 dB. Furthermore, the signal was sampled at fs = 2 kHz. We then conducted 500
Monte-Carlo trials for each differentM where we estimated the fundamental frequency.
Also, for each different M we calculated the mean squared estimation error (MSE)
defined as

MSE =
1

S

S∑
s=1

(
ω0 − ω̂(s)

0

)2

, (A.23)

with ω0 and ω̂
(s)
0 being the true fundamental frequency and its estimate in the sth

Monte-Carlo trial, respectively, and S is the number of Monte-Carlo trials. The re-
sulting MSEs for both root HMUSIC and MUSIC from this Monte-Carlo simulation
are shown in Fig. A.3 together with the CRLB. We calculated the CRLB by using the
asymptotic expression in [8]

CRLB(ω0) =
6σ2

w

N(N2 − 1)
∑L
l=1A

2
l l

2
. (A.24)
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Fig. A.4: Plot of the asymptotic CRLB and the MSE of root HMUSIC and HMUSIC as a function
of the SNR.

The first observation from the first Monte-Carlo simulation is, that both root HMUSIC
and HMUSIC shows similar performance independently on the choice of M . Below
M = 10 we see some thresholding behaviour for both methods. Also, we note that
both methods are following but not reaching the CRLB as it was also reported in [8].
In another Monte-Carlo simulation, we evaluated the performance of root HMUSIC
and HMUSIC with respect to the SNR. The parameters N , ω0, L and fs had the same
values as in the previous Monte-Carlo simulation while M was fixed to bN3 c. We
then ran 500 Monte-Carlo trials for each different SNR, and the results are depicted in
Fig. A.4 in terms of the MSE. We note that for high SNRs, the two methods show the
same performance while for low SNRs root HMUSIC seems to perform slightly better
than HMUSIC. Thresholding behaviour is observed around an SNR of 0 dB for this
particular setup.

Also, we evaluated the performance with respect to the fundamental frequency. In
this Monte-Carlo simulation, N = 60 samples with a sampling frequency of fs =
2 kHz of a synthetic signal having L = 3 sinusoids with unit amplitudes was used.
Complex white Gaussian noise was added such that the SNR was 40 dB. Again, M
was chosen to bN3 c. We ran 500 trials for each different fundamental frequency, and
the results are depicted in Fig. A.5. Notice that for low fundamental frequencies, the
proposed method shows a better performance compared to HMUSIC. This is also ex-
pected, since it has been reported that rooting methods have a better spectral resolution



3. Experimental Results 61

5 10 15 20 25 30 35 40 45
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Fundamental frequency [Hz]

M
S

E

 

 
Root HMUSIC
HMUSIC
CRLB

Fig. A.5: Plot of the asymptotic CRLB and the MSE of root HMUSIC and HMUSIC as a function
of the fundamental frequency.

than spectral methods [11]. In the final Monte-Carlo simulation, we evaluated the per-
formance of both root HMUSIC and HMUSIC in a two-source scenario. The sample
length in this experiment was N = 120, M was 40 and the sampling frequency was
fs = 2 kHz. We generated the signal such that it was composed by two harmonic sig-
nals each with L = 2. The fundamental frequency of one of the harmonic signals was
fixed to 114.79 Hz while the fundamental frequency of the other harmonic signal was
varied. Furthermore, the SNR with respect to one harmonic signal was set to 40 dB. We
ran 500 trials for each different fundamental frequency of the second harmonic source,
and the outcome of this Monte-Carlo simulations is shown in Fig. A.6. Using this par-
ticular setup, it can be seen that at low frequency spacings (< 30 Hz), both methods
show the same poor performance since they cannot resolve the sources. However, for
higher frequency spacings (> 30 Hz), the proposed method shows a better performance
compared to HMUSIC. In this simulation, the performance of both methods are rela-
tively far away from the CRLB which is partly explained by the fact, that the CRLB is
derived for a single source scenario with white noise.
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Fig. A.6: Plot of the asymptotic CRLB for the one source in white Gaussian noise scenario and
the MSE of root HMUSIC and HMUSIC as a function of the fundamental frequency frequency
spacing in a two-source scenario.

4 Conclusion
In this paper, we considered the fundamental frequency estimation problem. We pro-
posed a new estimation method which is based on polynomial rooting of the known
HMUSIC estimator. This has two significant advantages: 1) using the proposed method
we obtain an estimate of the fundamental frequency without having to do a grid search
and 2) using polynomial rooting we obtain a better spectral resolution compared to
HMUSIC. We evaluated the proposed method using simulations. First, we showed that
the proposed method is applicable to real-life signals, by using the root HMUSIC to cor-
rectly estimate the fundamental frequency. Second, we performed a series of statistical
measurements on the proposed method. These simulations showed, that in many cases
root HMUSIC will have a similar performance as HMUSIC. However, in multi-source
scenarios with closely-spaced sources, the simulations showed that for most fundamen-
tal frequency spacings the proposed root HMUSIC method outperforms HMUSIC. This
was also expected due to the properties of polynomial rooting methods. Like the HMU-
SIC method, the root HMUSIC method follows, but do not reach, the CRLB in good
conditions.
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Abstract
Recently, optimal linearly constrained minimum variance (LCMV) filtering methods
have been applied for fundamental frequency estimation. Like many other fundamental
frequency estimators, these methods utilize the inverse covariance matrix. Therefore,
the covariance matrix needs to be invertible which is typically ensured by using the
sample covariance matrix involving data partitioning. The partitioning adversely af-
fects the spectral resolution. We propose a novel optimal filtering method which utilizes
the LCMV principle in conjunction with the iterative adaptive approach (IAA). The
IAA enables us to estimate the covariance matrix from a single snapshot, i.e., without
data partitioning. The experimental results show, that the performance of the proposed
method is comparable or better than that of other competing methods in terms of spec-
tral resolution.

1 Introduction
There exists a multitude of signal processing applications in which the fundamental
frequency is an essential parameter. A few examples are, e.g., parametric coding of
audio and speech, automatic music transcription, musical genre classification, tuning
of musical instruments, separation and enhancement of audio and speech sources, etc.
Due to the importance of knowing the fundamental frequency, numerous of approaches
and methods have been proposed for estimating this parameter. For a few examples of
such estimators see, e.g., [1–7] and the references therein.

We will now introduce the problem of fundamental frequency estimation. The
reasoning behind describing audio and speech signals by the fundamental frequency,
among other parameters, is that audio and speech signals are quasi-periodic. That is,
for a limited amount of signal samples, we can safely assume that for n = 0, . . . , N−1

x(n) =

L∑
l=1

αle
jlω0n + w(n) , (B.1)

where L is the number of harmonics, αl = Ale
jφl withAl > 0 and φl denoting the real

amplitude and the phase of the lth harmonic, ω0 is the fundamental frequency and w(n)
is complex noise. We assume that the model order L is known, hence, the fundamental
frequency estimation problem is to estimate ω0 from (B.1). While not considered in
this paper, the model order assumption can easily be avoided by using a model order
estimator [8, 9] or even by doing the model order and fundamental frequency estimation
jointly [7].

Many of the aforementioned fundamental frequency estimators (e.g., optimal filter-
ing techniques and subspace-based methods) utilizes the covariance matrix inverse [7],
hence, in such estimators the covariance matrix must be invertible. In consequence of
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that, the covariance matrix must be full-rank. Typically, this is ensured by using the
sample covariance matrix

R̂ =
1

N −M + 1

N−1∑
n=M−1

x(n)xH(n) , (B.2)

where x(n) =
[
x(n) · · · x(n−M + 1)

]T
and M < N

2 + 1. It is well-known that
the spectral resolution depends on the sample length. That is, the resolution is decreased
by the data partitioning embedded in (B.2).

Recently, however, the iterative adaptive approach (IAA) was proposed [10, 11],
which can be used for covariance matrix and spectrum estimation. There is no data
partitioning in this method, i.e., the covariance matrix is estimated iteratively from only
a single snapshot. In this paper, we will propose to use a covariance matrix estimate,
obtained by using the IAA, in conjunction with an optimal filtering method for funda-
mental frequency estimation. Note that the IAA could be used in conjunction with other
covariance based fundamental frequency estimators as well. Since our method operates
on a single snapshot of data, we can expect that our proposed optimal filtering method
has a higher spectral resolution compared to the optimal filtering method in [7].

The remainder of the paper is organized as follows. In Section 2, we briefly review
the optimal filtering method for fundamental frequency estimation and propose to use
it in conjunction with the IAA. In Section 3, we present some experimental results
obtained from quantitative experiments. Finally, in Section 4 we conclude on our work.

2 Optimal Filtering Method Utilizing the Iterative Adap-
tive Approach

2.1 Fundamental Frequency Estimation using Optimal Filtering
First, we will briefly review the concept of using an optimal filtering method for fun-
damental frequency estimation. This concept was introduced in [12] and is based on
an optimal harmonic LCMV (hLCMV) filter. Consider M time-reversed samples from
(B.1) in vector format

x(n) =
[
x(n) x(n− 1) · · · x(n−M + 1)

]T
, (B.3)

for n = M−1, . . . , N−1. We introduce the FIR filter h =
[
h(0) · · · h(M − 1)

]H
,

from which the output is given by

y(n) = hHx(n) . (B.4)

The output power of the filter is the defined as

E{|y(n)|2} = hHRh , (B.5)
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where R = E{x(n)xH(n)}. The optimal filter response is found, by using the LCMV
principle. That is, we design the filter to have a unit gain at the harmonic frequencies
while having maximum noise suppression

min
h

hHRh s.t. hHz(lω0) = 1 , (B.6)

for l = 1, . . . , L,

where z(ω) =
[
1 e−jω0 · · · e−j(M−1)ω0

]T
. The well-know solution to this opti-

mization problem is

ĥ = R−1Z(ω0)
(
Z(ω0)HR−1Z(ω0)

)−1
1 , (B.7)

with Z(ω0) =
[
z(ω0) · · · z(Lω0)

]
. We can then obtain an estimate of the funda-

mental frequency by inserting (B.7) into (B.5) and maximize the output power as

ω̂0 = arg max
ω0

1H
(
ZH(ω0)R−1Z(ω0)

)−1
1 . (B.8)

The covariance matrix R is replaced by (B.2). Recall, that for R to be invertible, it
is required that M < N

2 + 1. In this paper, we propose instead to use a covariance
matrix estimate obtained by using the iterative adaptive approach. In this method, the
covariance matrix can be estimated from a single snapshot, i.e., we can obtain anN×N
covariance matrix estimate.

2.2 Covariance Matrix Estimation using the Iterative Adaptive Ap-
proach

The iterative adaptive approach (IAA), proposed in [11], is a method for estimating the
spectral amplitudes. In the estimation procedure, a WLS cost-function [13] is mini-
mized

α̂k = arg min
αk

(x(n)− αkz(ωk))
H

Q−1(ωk) (x(n)− αkz(ωk)) (B.9)

where Q(ωk) is the noise covariance matrix defined as

Q(ωk) = R− |αk|2z(ωk)zH(ωk) . (B.10)

In the IAA, the covariance matrix is approximated by the well-known covariance matrix
model [9]

R̃ = Z̄(ω)P̂Z̄H(ω) , (B.11)
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where ω =
[
0 2π 1

K · · · 2πK−1
K

]
is the K-point frequency grid. The matrices

Z̄(ω) and P̂ are defined as

Z̄(ω) =
[
z(ω(0)) · · · z(ω(K − 1))

]
(B.12)

P̂ = diag
{[
|α̂0|2 · · · |α̂K−1|2

]T}
, (B.13)

where |α̂k|2 = P̂k. Minimizing (B.9) with respect to αk yields

α̂k =
zH(ωk)Q−1(ωk)x(n)

zH(ωk)Q−1(ωk)z(ωk)
. (B.14)

By using the matrix inversion lemma it turns out that we can simplify (B.14) as

α̂k =
zH(ωk)R̃−1x(n)

zH(ωk)R̃−1z(ωk)
. (B.15)

Note, however, that to estimate the covariance matrix using (B.11), we need an estimate
of the spectral amplitudes (B.15) and vice versa. The estimation is therefore performed
iteratively initialized by the periodogram estimate. For most applications, 15 iterations
is enough [11].

2.3 Proposed Optimal Filtering Method Utilizing the Iterative Adap-
tive Approach

In the proposed filtering method, we use the filter design in (B.7) where we replace the
covariance matrix with the estimate in (B.11). This result in the optimal harmonic IAA
(hIAA) filter

h̃ = R̃−1Z(ω0)
(
Z(ω0)HR̃−1Z(ω0)

)−1

1 . (B.16)

We could also use the noise covariance matrix Q instead of R in (B.16) which is intu-
itively more correct, i.e.,

˜̄h = Q̃−1(ω0)Z(ω0)
(
Z(ω0)HQ̃−1(ω0)Z(ω0)

)−1

1 . (B.17)

We can write the IAA-based noise covariance matrix estimate as

Q̃(ω0) = R̃− Z(ω0)P̂sZ
H(ω0) , (B.18)

where P̂s is a diagonal matrix containing the estimated powers of the harmonics. By
making use of the matrix inversion lemma, it can then be shown that

h̃ = ˜̄h . (B.19)
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α̂k =
zH(ω(k))x(n)

N
, k = 0, . . . ,K − 1

repeat
R̃ = Z̄(ω)P̂Z̄H(ω)

for k = 0, . . . ,K − 1

α̂k =
zH(ω(k))R̃−1x(n)

zH(ω(k))R̃−1z(ω(k))
P̂k = |α̂k|2

end
until (convergence)

ω̂0 = arg max
ω0

1H
(
ZH(ω0)R̃−1Z(ω0)

)−1

1

Table B.1: The optimal filtering method for ω0 estimation utilizing the IAA

Since the two filter designs are identical for the problem at hand, we will just use the
design in (B.16) which is simpler. In Table B.1, it is shown how we can use the optimal
hIAA filter to estimate the fundamental frequency.

As it can be seen, the estimate is obtained by maximizing the expected filter output
power over a set of candidate frequencies. If a fine estimate is required, a relatively
coarse set of candidate frequencies can be chosen whereupon the coarse fundamental
frequency estimate is refined using a gradient search. The gradient, needed in that
respect, is given by

gω0
= −2Re{1H(ZHR̃−1Z)−1ZHR̃Y(ZHR̃−1Z)−11} , (B.20)

where [Y]pq =
[
∂
∂ωZ

]
pq

= −j(p− 1)qe−jω0q(p−1).

3 Experimental Results
In this section, we describe the experimental evaluation of the proposed method. Note
that in all simulations we estimate the fundamental frequency over a relatively coarse
grid and refine the estimate using (B.20) in a steepest-descent algorithm with exact line
search. First, we investigated how to choose the frequency grid size when estimat-
ing the covariance matrix using (B.11). To investigate this, we performed a series of
Monte-Carlo simulations where we varied the frequency grid size. For each grid size
we conducted 500 Monte-Carlo simulations. To evaluate the average error of doing the
discretization in (B.11), we chose a random fundamental frequency in all simulations
for a certain grid size. The random fundamental frequency was sampled from a uni-
form distribution U(0.4, 0.5). The model order was set to L = 3, the sample length
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Fig. B.1: Fundamental frequency estimation MSE as a function of the grid size used in estimation
of the covariance matrix with N = 40.

was N = 40 and the SNR, defined as

SNR = 10 log10

∑L
l=1 |αl|2

σ2
w

, (B.21)

was 20 dB (σ2
w is the noise variance). The results from this series of simulations are

shown in Fig. B.1. From the results it can be seen that for this particular setup, a grid
size of K ≈ 600 frequency points is enough. Note also, that the MSE is following but
not reaching the Cramér-Rao lower bound (CRLB). This is common, however, for the
inverse covariance based methods [7]. The depicted CRLB is the asymptotic CRLB
[14]

CRLB(ω0) ≈ 6σ2
w

N3
∑L
l=1A

2
l l

2
. (B.22)

The same simulations were conducted when N = 80 and the results from these sim-
ulations are depicted in Fig. B.2. For the case with N = 80, K ≈ 1000 is enough.
The important thing to note is, that when we increase the number of samples N we
also need to increase the number of frequency grid points K, to achieve the maximum
possible performance.

We also compared the proposed method with the harmonic WLS (hWLS) [1], the
harmonic LCMV (hLCMV) [7], the harmonic approximate NLS (hANLS) [7], and the
harmonic MUSIC (hMUSIC) methods [7]. For example, we compared the methods
for different sample lengths. For each sample length we conducted 500 Monte-Carlo
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Fig. B.2: Fundamental frequency estimation MSE as a function of the grid size used in estimation
of the covariance matrix with N = 80.

simulations and in each simulation ω0 was sampled randomly from U(0.42, 0.43). The
remaining setup was: L = 3, SNR = 20 dB and K = 2000. The results from this series
of simulations are shown in Fig. B.3. First, we note that the hANLS method shows
an erratic behaviour for these small sample lengths and is thereby outperformed by the
other methods. The hIAA method outperforms the hLCMV method for all Ns, which
is also expected since it has more degrees of freedom in the filter. Finally, we note that
hMUSIC and hWLS performs best for N < 25 while for N ≥ 25 hIAA, hWLS and
hMUSIC show the same performance. Also we note, that for highNs all methods seem
to closely follow the CRLB. Then we compared the methods for different values of
the fundamental frequency. A series of Monte-Carlo simulations were conducted with
500 simulations for each fundamental frequency. In each simulation K was sampled
randomly from Ud(2000, 3000) (Ud(x1, x2) is the discrete uniform distribution taking
integer values in the interval from x1 to x2). The remaining set up was: N = 35,
L = 3 and SNR = 20 dB. The results from this experiment are depicted in Fig. B.4.
Again we note that hANLS is unreliable for the given setup. The hIAA shows an
improvement compared to hLCMV for ω0 < 0.4. For low fundamental frequencies
(ω0 < 0.3), hIAA and hWLS outperforms the other methods, while for ω0 > 0.4
all methods except hANLS show the same performance. The results indicate that the
proposed method (along with hWLS and hMUSIC) has a better spectral resolution than
hLCMV. Finally, we compared hIAA, hLCMV, hANLS and hMUSIC in a scenario
with two harmonic sources. The two sources both had L = 3 harmonics each with
unit amplitudes. We then conducted a series of Monte-Carlo simulations for different
spacings of the fundamental frequencies of the two sources (500 simulations for each
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Fig. B.3: Fundamental frequency estimation MSE as a function of the sample length N .

frequency spacing). In each simulation, the number of samples was N = 80 and the
SNR was 40 dB. The results from these simulations are shown in Fig. B.5. For ∆ >
0.05 the proposed method clearly outperforms the other methods.

4 Conclusion
In this paper, we proposed a new optimal filtering method for estimating the fundamen-
tal frequency of a (quasi-)periodic signal. The proposed method is an optimal LCMV
filtering method which operates on single data snapshot. This is possible, because we
estimate the covariance matrix using the iterative adaptive approach (IAA). By filter-
ing on a single data snapshot rather than having to partition the data vector as in the
filtering methods in [7], we obtain a better spectral resolution. The claim on increased
spectral resolution was supported by the simulation results. The results showed that
for small numbers of samples, low fundamental frequencies, and small frequency spac-
ings in a two-source scenario, the proposed method clearly outperforms the optimal
LCMV filtering method in [7]. This was also expected since the proposed method is an
improvement of this method. Furthermore, for small number of samples and low fre-
quencies, the proposed methods performance is comparable with that of the harmonic
MUSIC and harmonic WLS methods. In a two-source scenario, it outperforms all the
methods in the comparison above the frequency spacing threshold.
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Abstract
Recently, optimal linearly constrained minimum variance (LCMV) filtering methods
have been applied to fundamental frequency estimation. These estimators, however,
suffer from a high computational complexity, since the cost functions are multimodal
with narrow peaks, and they require matrix inversions and products for each point in
the search grid. In this paper, we therefore propose a fast implementation of an LCMV-
based fundamental frequency estimator, exploiting the estimator’s inherently low dis-
placement rank of the necessary products of Toeplitz-like matrices. This reduces the
required computational complexity with several orders of magnitude. Moreover, we
consider a recently proposed LCMV-based estimator in which the data covariance ma-
trix is estimated using the iterative adaptive approach (IAA) for an increased spectral
resolution. As the increased resolution comes at a notable computational cost, we also
propose fast implementations of this estimator. One of these implementations is approx-
imative and uses the preconditioned conjugates gradient method and a Quasi-Newton
approach. Finally, we show how the considered pitch estimators can be efficiently up-
dated when new observations become available. The time-recursive updating can re-
duce the computational complexity even further. The experimental results show that
the performance of the proposed method is comparable or better than that of other
competing methods in terms of spectral resolution. Furthermore, they show that the
time-recursive implementations are able to track pitch fluctuations of synthetic as well
as real-life signals.

1 Introduction
There exists a multitude of signal processing applications in which the fundamental fre-
quency is an essential parameter, including, for instance, parametric coding of audio and
speech, automatic music transcription, musical genre classification, tuning of musical
instruments, separation and enhancement of audio and speech sources, and hearing aids.
Due to the importance of knowing the fundamental frequency, numerous approaches
and methods have been proposed for estimating this parameter, see, e.g., [1–7] and the
references therein. An example of a recently proposed, high-resolution fundamental
frequency estimator, is the linearly constrained minimum variance (LCMV) filtering
method [6]. While this estimator is excellent for estimation of the fundamental fre-
quency of closely spaced sources, it has a high computational complexity due to its
cost function being multimodal with narrow peaks and requiring matrix inversion for
each point in the search grid. The LCMV-based and many other fundamental frequency
estimators rely on an estimate of the sample covariance matrix or its inverse, both com-
monly being formed by partitioning the available measurement into sub-vectors and
forming the outer-product covariance matrix estimate. As is well-known, this approach
will adversely affect the achievable spectral resolution, and there is therefore an inter-



80 PAPER C

est in developing methods that achieve a higher spectral resolution. In this work, we
consider the use of the iterative adaptive approach (IAA) for covariance matrix esti-
mation in the LCMV method as proposed in [8]. The IAA was originally presented
in [9] to provide sparse signal representation for passive sensing, channel estimation,
and single-antenna radar applications, but having since found applications in areas as
diverse as MIMO radar [10], missing data recovery [11], non-uniformly sampled spec-
tral analysis [12], coherence and polyspectral estimation [13], spectroscopy [14], and
blood velocity estimation using ultrasound [15]. The IAA estimate is a non-parametric
data-dependent spectral estimate that does not require partitioning of the measurements.
The estimate is instead formed iteratively and alternatingly by estimating the (ampli-
tude) spectral estimate of the measurement as well as the covariance matrix formed
from this amplitude spectrum. As shown in the above noted papers, the IAA-based
estimation techniques are able to provide accurate estimates even when only a few
samples are available. That is, by using the LCMV estimator in conjunction with the
IAA for covariance matrix estimation, we achieve a substantially higher spectral reso-
lution than what is normally achievable using the outer-product estimate. However, the
improved performance comes at the cost of a considerable computational complexity.
To alleviate this increase in complexity, we extend recent work on efficient IAA imple-
mentation [16, 17], exploiting the inherently low displacement rank of the necessary
products of Toeplitz-like matrices, forming a computationally efficient implementation
of the LCMV-based estimate. Moreover, we propose an even faster implementation
that is approximative. This implementation is based on the preconditioned conjugates
gradient method using a Quasi-Newton approach for the formulation of an appropriate
preconditioning. We also show how the considered pitch estimators can be updated effi-
ciently when new observations become available. By using such time-recursive imple-
mentations, the computationally complexity can be reduced much further as compared
to batch processing, especially if time hopping is allowed. In the following section, we
first briefly recall the LCMV-based fundamental frequency estimate and the IAA-based
covariance matrix estimate. Then, in Sections 3 and IV, we introduce the proposed
efficient exact and approximative implementations of the LCMV and the IAA-based
LCMV methods. Section 5 discusses time-recursive updating of the estimates, fol-
lowed, in Section 6, by extensive simulation examples illustrating the performance of
the proposed implementations. Finally, Section VII concludes on the presented work.
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2 Fundamental Frequency Estimation using Optimal Fil-
tering

As audio and speech signals are quasi-periodic, one may well model such signals as
(see, e.g., [7])

x(n) =

L∑
l=1

αle
jlω0n + w(n), (C.1)

for n = 0, . . . , N − 1, where L is the number of harmonics, αl = Ale
jφl , with

Al > 0 and φl denoting the real-valued amplitude and the phase of the lth harmonic,
respectively. Furthermore, ω0 denotes the sought fundamental frequency, and w(n) is
a complex-valued additive noise. For simplicity, we will here assume that the model
order, L, is known, noting that this may otherwise be obtained using a model order
estimator [18, 19], or by forming the model order and fundamental frequency estima-
tion jointly, reminiscent to the ideas presented in [7]. The problem of interest is thus
estimating ω0 from x(n) without making any strong assumptions on the statistics of the
noise process.

2.1 Harmonic LCMV Method
Fundamental frequency estimation may, for instance, be conducted using the optimal
filtering method introduced in [20], being based on an optimal LCMV filter. Consider
an (M − 1)th order FIR filter of which the output is given by

y(n) =

M−1∑
m=0

h(m)x(n−m) = hHxM (n), (C.2)

for n = M − 1, . . . , N − 1, where

h =
[
h(0) · · · h(M − 1)

]H
(C.3)

xM (n) =
[
x(n) · · · x(n−M + 1)

]T
, (C.4)

with (·)T and (·)H denoting the transpose and conjugate transpose, respectively. The
output power of the filter is

E{|y(n)|2} = hHRh, (C.5)

where

R = E{xM (n)xHM (n)}, (C.6)

with E{·} denoting the statistical expectation. The optimal filter response is found using
the LCMV principle, such that the filter is designed to have a unit gain at the harmonic
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frequencies while having maximum noise suppression. This design procedure can also
be formulated as

min
h

hHRh subj. to hHzM (lω0) = 1 , (C.7)

for l = 1, . . . , L,

where

zM (ω0) =
[
1 e−jω0 · · · e−j(M−1)ω0

]T
. (C.8)

The solution to the quadratic optimization problem with multiple equality constraints
in (C.7) is well-known and given by [7]

hLCMV = R−1ZM (ω0) [GGGcov(ω0)]
−1

1, (C.9)

with 1 denoting a vector of ones,

GGGcov(ω0) , ZHM (ω0)R−1ZM (ω0), (C.10)

and where

ZM (ω0) =
[
zM (ω0) · · · zM (Lω0)

]
. (C.11)

An estimate of the fundamental frequency may thus be found by inserting (C.9) into
(C.5) and maximize the output power, yielding

ω̂0 = arg max
ω0∈Ω0

1T [GGGcov(ω0)]
−1

1, (C.12)

where Ω0 is a set of candidate fundamental frequencies. Here, we term the estimator
in (C.12) the LCMV fundamental frequency estimate. The covariance matrix R is
generally unknown, and is commonly replaced by the sample covariance matrix

R̂ =
1

N −M + 1

N−1∑
n=M−1

xM (n)xHM (n). (C.13)

To ensure that R̂ is invertible, the length of the sub-vectors, xM (n), are restricted to
M < N

2 +1, thereby limiting the spectral resolution to being on the order of 1/M [19].
A direct implementation of the estimator requires roughly

Ccov ≈M3 +M2N̄ + F̄
(
ML2 + LM2 + L3

)
(C.14)

operations, where N̄ , N −M + 1 and F̄ , F/L, with F = |Ω0| being the size
of the uniformly spaced grid of frequencies on the unit circle where the search for the
optimum ω0 is conducted. Typically, F � N , and due to the nature of the problem, the
search is limited to candidate frequencies up to F̄ .
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2.2 IAA-based Harmonic LCMV Method
We proceed to recall the IAA-based covariance matrix estimate, which is then used in
conjunction with the LCMV method for fundamental frequency estimation. However,
it should be stressed that this covariance matrix estimate could similarly be used in
conjunction with other covariance based fundamental frequency estimators, thereby
offering a similar improved spectral resolution. Following the usual IAA notation, let

xN =
[
x(0) x(1) · · · x(N − 1)

]T
. (C.15)

Then, the IAA estimate is formed by iteratively estimating the complex spectral am-
plitudes, α(ωk) , αk, and the corresponding covariance matrix, R̃, until practical
convergence, as (see [9, 11] for further details)

α̂k =
zHN (ωk)R̃−1xN

zHN (ωk)R̃−1zN (ωk)
(C.16)

R̃ =

K−1∑
k=0

|α̂k|2 zN (ωk)zHN (ωk) (C.17)

for k = 0, 1, . . . ,K − 1, with R̃ being initialized to the identity matrix, IN . This
implies that the complex amplitudes are initialized using the FFT of the sample vector.
Typically, 10-15 iterations are sufficient for convergence in practice [9]. The expression
in (C.16) can also be interpreted as a filtering operation, i.e.,

α̂k = hHIAAxN , (C.18)

where the IAA filter, hIAA, is defined as

hIAA =
R̃−1zN (ωk)

zHN (ωk)R̃−1zN (ωk)
, (C.19)

from which it may be noted that the IAA filter resembles the optimal filter used in the
traditional Capon method for spectrum estimation. Here, we instead propose a new
filter, the IAA-based optimal LCMV (IAA-LCMV) filter, formed as

hIAA-LCMV = R̃−1ZN (ω0) [GGGIAA(ω0)]
−1

1 (C.20)

where
GGGIAA(ω0) , ZHN (ω0)R̃−1ZN (ω0). (C.21)

That is, we use the filter design in (C.9) together with the IAA covariance matrix esti-
mate obtained after convergence has been achieved. Combining (C.18) and (C.20), one
obtains an estimate of the output power of the IAA-LCMV filter as

P̂IAA-LCMV =1T [GGGIAA(ω0)]
−1

ZHN (ω0)R−1XN

×R−1ZN (ω0) ([GGGIAA(ω0)]
−1

1, (C.22)
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with XN = xNxHN . By taking the expected value of the output power, we get

E
{
P̂IAA-LCMV

}
= 1T

(
GGGIAA(ω0)

)−1

1, (C.23)

from which the expectation-based fundamental frequency estimate is obtained as

ω̂0 = arg min
ω0∈Ω0

E
{
P̂IAA-LCMV

}
. (C.24)

A direct implementation of (C.24) requires roughly

CIAA ≈ m(N3 + 3N2K) + F̄
(
NL2 + LN2 + L3

)
(C.25)

operations, where K denotes the size of the grid of frequencies utilized in the IAA
implementation, with, usually, K ≤ F , whereas m is the number of IAA iterations.

3 Efficient Implementation
An efficient implementation of (C.12) and (C.24) may alternatively be formed by ex-
ploiting the inherent displacement structure of the estimator, forming the implemen-
tation using Gohberg-Semencul (GS) factorizations of the involved inverse covariance
matrices. Consider a Hermitian matrix P ∈ CN×N , and define the lower shifting matrix

D =

[
0T 0

IN−1 0

]
. (C.26)

Clearly, (D)N = 0. Then, the displacement of P with respect to D and DT is defined
as

∇D,DTP , P−DPDT . (C.27)

Suppose that there exist integers ρ and σi ∈ {−1, 1}, for i = 1, 2, . . . , ρ, such that (see
also [21–23])

∇D,DTP =

ρ∑
i=1

σitit
H
i = TρΣρT

H
ρ (C.28)

where

Tρ =
[
t1 · · · tρ

]
(C.29)

Σρ = diag
{[
σ1 · · · σρ

]T}
, (C.30)

with diag{x} denoting the diagonal matrix formed with the vector x along its diagonal,
and with ti being the ith so-called generator vector. Then, the GS factorization of P
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may be expressed as

P =

ρ∑
i=1

σiL(D, ti)LH(D, ti) , (C.31)

where L(D,b) denotes a Krylov matrix of the form

L(D,b) =
[
b Db D2b · · · DM−1b

]
. (C.32)

While this decomposition can be used to perform computationally demanding tasks
such as matrix-vector multiplication in an efficient way, it does not provide an effi-
cient way of computing the matrix itself when only its displacement representation is
available. However, as

P−DPDT =

ρ∑
i=1

σitit
H
i , (C.33)

multiplying both sides of (C.33) by ej+1 and noting that DTe1 = 0 and DTej+1 = ej ,
where ej denotes aN×1 vector with a one at the jth entry and zeros elsewhere, implies
that P may be recovered column-wise as

pj =



ρ∑
i=1

σitit
H
i ej , j = 1

Dpj−1 +

ρ∑
i=1

σitit
H
i ej , j > 1

(C.34)

for j = 1, 2, . . . , N−1, with pj denoting the jth column of P. Estimating P in this way
will require roughly ρN2 operations. The coefficients of the trigonometric polynomial

ϕ(ω) , zH(ω)Pz(ω) =

N−1∑
κ=−N+1

cκe
−jκω (C.35)

can then be formed at a cost ofO(ρN log2N) using the method detailed in [24]. How-
ever, to form the coefficients of the trigonometric polynomials

ψl1,l2(ω) , zH(l1ω)Pz(l2ω), (C.36)

for l1 and l2 ∈ Z , one needs to consider the augmented frequency vectors

zk(ω) = Slk

[
z(lkω)
×

]
, (C.37)

for k = 1 or 2, where Slk is the selection matrix with zeros and ones indicating the
presence or absence of a harmonic component, SlkS

T
lk

= IlkN , and × denotes terms of
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no relevance. Using (C.37), (C.36) may be written as

ψl1,l2(ω) = zH1 (ω)P̄z2(ω) =

l2(N−1)∑
κ=−l1(N−1)

c̄κe
−jκω (C.38)

where P̄ , STl1PSl2 is an expanded rectangular matrix of size (l1(N − 1) + 1) ×
(l2(N − 1) + 1). Thus, the coefficients c̄κ can be computed by summing all elements
upon the diagonal of P̄. In practice, there is no need to form P̄, as one can easily show
that these may be computed recursively as

C̄i+1 = C̄i +

0l2(N−1−i)
STl1pi+1

0l2i

 , (C.39)

for i = 0, 1, . . . , N − 1, where

C̄ ,
[
c̄−l1(N−1) · · · c̄l2(N−1)

]T
, (C.40)

at a cost of no more than O(N2) operations. With (C.34) and (C.39) at our disposal,
we proceed further with the proposal of fast implementation methods for (C.12) and
(C.24).

3.1 Fast Harmonic LCMV Method
Restricting the set of candidate fundamental frequencies, Ω0, to the frequencies uni-
formly spanned on the unit cycle, the maximization of (C.12) may be performed indi-
rectly by exhaustive searching. This results in the evaluation of the trigonometric ma-
trices in (C.10), and the computation of their inverses over the set of uniformly spaced
frequencies of interest, which enables the use of the Fast Fourier Transform (FFT) for
computational speed up. First, in order to form the required inversion of R̂ given by
(C.13), we exploit the generalized Levinson algorithm presented in [24] to form R̂−1

from its displacement representation. As discussed in [24], the computation of this task,
requires about

CFCOV(M,N) ≈ 4.5M2 + 1.5N log2N (C.41)

operations, while 2M2 additional operations are needed for the computation of R̂−1

from its displacement representation using (C.34). Subsequently, (C.10) is evaluated
component-wise since the (l1, l2)th component of GGG(ω0), given by

[GGG(ω0)](l1,l2) = zHM (l1ω0)R̂−1zM (l2ω0), (C.42)

can be written as a polynomial of which the coefficients can be formed efficiently using
(C.39). The cost of this is O(0.5L2M2) operations (non-trivial additions), although it
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should be noted that due to the Hermitian symmetry, only half of the polynomials actu-
ally have to be computed. Evaluating these on a uniformly spaced grid of frequencies
using the FFT can be done at a cost ofO(0.25L2F log2 F ), orO(0.25L2F log2 F/L) if
using FFT algorithms comprising output pruning. Finally, one may compute (C.12) at a
cost ofO(L2F ), implying that the overall computational cost of the proposed approach
is approximately

CFLCMV ≈CFCOV(M,N) + 2N2+

F (0.25 log2 F + 1)L2 . (C.43)

3.2 Fast IAA-based LCMV Method
Estimation of the fundamental frequency using the IAA-LMCV method is performed
by maximizing (C.24) Restricting the search on an equally spaced set of frequencies
on the unit circle, this task can be efficiently tackled by means of the FFT as in the
LCMV approach discussed before. First, though, the covariance matrix R̃ is estimated
using IAA as described by (C.16) and (C.17), which can efficiently implemented with-
out the need of direct estimation of the covariance matrix and its inverse. This can
be accomplished using the celebrated Levinson-Durbin (LD) algorithm and some fast
techniques for the evaluation of trigonometric polynomials related to structured matri-
ces as detailed in [16, 17]. In this way, given the available data set xN , the displacement
representation of the Toeplitz matrix (C.17), as well as the displacement representation
of its inverse R̃−1, are iteratively estimated at a cost of

CFIAA(N,m) ≈ m[N2 + 12N log2(2N)

+ 1.5K log2K] (C.44)

operations. With the displacement representation of R̃−1 at hand, the inverse itself is
computed using (C.34) at an additional cost of N2 operations. Subsequently, (C.21) is
component wise evaluated by computing the coefficients of the associated trigonometric
polynomials using (C.39) and the FFT, at a cost of

(
0.5L2N2 + 0.25L2F log2 F/L

)
operations. Finally, one may compute (C.24) at a cost of O(L2F ), implying that the
overall computational cost of the proposed approach is approximately

CFIAA-LCMV ≈CFIAA(N,m) +N2+

F [0.25 log2 F + 1]L2 . (C.45)

4 The Fast Approximative IAA-based LCMV Method
Substantial computational savings can be achieved by using the recently proposed ap-
proximative IAA algorithm [25] for the estimation of the covariance matrix and its
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inverse required in (C.24). In [25], a superfast implementation of the IAA algorithm,
using the preconditioned conjugates gradient method and a Quasi Newton (QN) ap-
proach, was proposed for the formulation of an appropriate preconditioning. Building
on these results, we here present a novel approximative fundamental frequency estima-
tion method. The proposed approach is motivated by the QN algorithms formulated
in [25, 26], where the inverse of Toeplitz-like matrices is approximated by extrapolat-
ing the inverse of a lower size matrix. The lower size matrix is treated as if it has been
associated with an autoregressive (AR) model of lower order q ≤ N . Thus, instead
of computing R̃−1, a lower order extrapolated estimate is adopted. This results in an
approximate IAA algorithm, where α(ωk) and Q are estimated iteratively as

α̂k =
zHN (ωk)Q−1xN

zHN (ωk)Q−1zN (ωk)
(C.46)

R̄ =

K−1∑
k=0

|α̂k|2 zq(ωk)zHq (ωk) (C.47)

for k = 0, 1, . . . ,K − 1, until practical convergence. The qth order autocorrelation
matrix R̄ is initialized to the identity matrix, Iq , and

Q−1 =

[
0 0T

0 R̄−1

]
+ AN,N−q+1A

H
N,N−q+1 (C.48)

with

AN,N−q+1 ,
[
ā Dā . . . DN−qā

]
, (C.49)

ā = [â 0TN−q]
T , (C.50)

where â is the displacement generator associated with the power normalized forward
predictor of R̄ as detailed in [25]. Then, the resulting approximative QN-IAA-based
harmonic LCMV (QN-IAA-LCMV) method is formed by considering the cost function
related to the estimate of Q as

E{P̂QN-IAA-LCMV} = 1T [GGGQN-IAA(ω0)]
−1

1 (C.51)

where

GGGQN-IAA(ω0) , ZHN (ω0)Q−1ZN (ω0). (C.52)

The fundamental frequency is then estimated by maximizing the output power using

ω̂0 = arg min
ω0∈Ω0

E
{
P̂QN-IAA-LCMV

}
(C.53)

Choosing q � N , a significant computation reduction can be achieved at the expense
of a possible degradation in the quality of the spectrum estimate. The displacement
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representation of the approximate inverse covariance matrix Q−1 is estimated from
the available data xN using the QN-IAA algorithm detailed in [25], where the LD
algorithm is employed for the computation of the displacement representation of R̄−1.
This representation is subsequently utilized in (C.48), at a cost of

CQN-IAA(m,N, q) ≈m
[
q2 + 12q log2(2q)+

N log2(N) + 1.5K log2(K)] (C.54)

operations. Evaluating (C.52) component-wise, and using (C.48), one gets

ψl1,l2(ω0) , zHN (l1ω0)QzN (l2ω0)

= ψ
(1)
l1,l2

(ω0)e−jω0(l1−l2)(N−q) + ψ
(2)
l1,l2

(ω0)

where

ψ
(1)
l1,l2

(ω0) , zHq (l1ω0)R̄−1zq(l2ω0)

ψ
(2)
l1,l2

(ω0) , zHN (l1ω0)AN,N−qA
H
N,N−qzN (l2ω0).

It should be noted that using (C.49), and recalling that D is a lower shifting matrix,
ψ

(2)
l1,l2

(ω0) may be rewritten as

ψ
(2)
l1,l2

(ω0) = N − q (C.55)

when l1 = l2 and ω0 = 0, and

ψ
(2)
l1,l2

(ω0) =
φl1(ω0)φ∗l2(ω0)(1− e−jω0(l1−l2)(N−q))

1− e−jω0(l1−l2)
, (C.56)

otherwise, where
φl(ω0) = zHq (lω0)ā. (C.57)

Finally, since the search for the optimum fundamental frequency is restricted on a set
of equally spaced frequencies on the unit circle, for frequencies ωk up to k = F/L,
(C.57) is efficiently evaluated as

φl(ωk) = φ1(ωlk). (C.58)

Thus, the overall computational complexity of the proposed QN-IAA-LCMV method
is given by

CQN-IAA-LCMV ≈CQN-IAA(m,N, q)+

q2 + F (0.25 log2 F + 1)L2 . (C.59)
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5 Time-Recursive Implementations
We proceed to examine how the discussed methods may be efficiently updated as addi-
tional measurements becomes available.

5.1 Fast Harmonic LCMV
To allow for such an updating, the required covariance matrices should be replaced
by suitable time-recursive estimates. To do so, an exponentially forgetting window
approximation may be formed in place of (C.6) as

R̂(n) =

n∑
m=0

λn−mxM (m)xHM (m) (C.60)

= λR̂(n− 1) + xM (n)xHM (n) (C.61)

where λ ∈ (0, 1) is the forgetting factor controlling the memory fading of the recursive
estimator, with R̂(−1) initialized by the scaled identity matrix σI, for σ > 0 (see also
[27]). Exponentially forgetting updating is here selected in favor of a rectangular sliding
window updating as the former allows for a computationally simpler algorithm as well
as that the associated spectral variables are then updated in a more stable manner [28].
As shown in [28], R̂−1(n) obeys a particularly interesting identity of the form[

R̂−1(n) 0
0T 0

]
=

[
0 0T

0 λR̂−1(n)

]
+ t1(n)tH1 (n)−

t2(n)tH2 (n) + t3(n)tH3 (n) (C.62)

where the vectors t1(n), t2(n), and t3(n) are defined in terms of the power normalized
forward and backward predictors as well as the Kalman gain vector (often denoted
a(n), b(n), and w(n) in the adaptive signal processing nomenclature) associated with
the sample covariance matrix R̂(n) at time instant n. Using (C.62) in conjunction
with (C.10) results in an efficient way for the component-wise estimation of the matrix
GGGcov(n, ω) at time instant n required in (C.12). The (l1, l2)th component of this matrix
can also be written as

[GGGcov(n, ω0)](l1,l2) = ψl1,l2(n, ω0) (C.63)

where ψl1,l2(n, ω0) , zHM (l1ω0)R̂−1(n)zM (l2ω0), which, using (C.62), takes the
form

ψl1,l2(n, ω0) =
1

1− λe−j(l1−l2)ω0

×
[
ϕ1,l1(n, ω0)ϕ∗1,l2(n, ω0)

− ϕ2,l1(n, ω0)ϕ∗2,l2(n, ω0)

+ ϕ3,l1(n, ω0)ϕ∗3,l2(n, ω0)
]

(C.64)
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with
ϕi,l(n, ω0) , zHM (lω0)ti(n). (C.65)

As the resulting search is restricted on a set of equally spaced frequencies on the unit
circle for frequencies ωk up to k = F/L, one may write

ϕni,l(ωk) = ϕni,l(ωlk). (C.66)

The time-varying generator vectors of R̂−1
M (n), namely ti(n), for i = 1, 2, 3, are com-

puted using a standard Recursive Least Squares (RLS) algorithm at a cost of approx-
imately 2M2 operations. Alternatively, a stabilized fast RLS (SFRLS) algorithm can
be employed at a reduced cost of 7M . Summarizing, the proposed time-recursive, fast,
harmonic LCMV method consists of the following steps:

1. computation of the time varying generator vectors ti(n), for i = 1, 2, 3, using the
standard RLS or fast RLS (FRLS) algorithms, or using any other well behaved
method,

2. element-wise computation of (C.64) using three FFTs as implied by (C.64) and
(C.65), and

3. the search for the optimal fundamental frequency using (C.12).

It is worth noting that step 1) only needs to be updated at each time instant in a time-
recursive way. The computations involved in the remaining steps 2) and 3), albeit their
time-varying formalism, are not truly time-recursive in nature, since these depend on
variables at the current time instant n only. This feature enables the development of
time-recursive fundamental frequency algorithms with time hopping, in cases when the
estimation of the fundamental frequency is not required at each time instant n, but only
at every Khop time units instead. The computational complexity per processed sample
of the proposed time recursive harmonic LCMV method is therefore approximately

CFLCMV
TR ≈ 2M2 +

(
1.5F log2F + L2F

)
/Khop (C.67)

operations, when the RLS is used at step 1), or

CFLCMV
TR-F ≈ 7M +

(
1.5F log2F + L2F

)
/Khop (C.68)

operations, when the FRLS is employed instead, withKhop being an integer designating
the possible time hopping, taking the value Khop = 1 otherwise.

5.2 Fast IAA-based LCMV
Regrettably, the time frequency interleaving imposed by the iterative scheme in (C.16)
and (C.17) of the IAA-based approach does not allow for a pure time-recursive esti-
mation of the IAA-based covariance matrix and its subsequent use for a time-recursive



92 PAPER C

computation of (C.21), required by the IAA-based cost function in (C.24). However,
the development of a time-recursive scheme for the IAA-based fundamental frequency
estimation is still feasible. As recently proposed in [29], the estimate of the covariance
matrix at time instant n should be approximately equal to the estimate of the covariance
matrix at time instant n− 1 upon convergence. Thus, an approximative time-recursive
update of the covariance matrix in (C.17) may be constructed as

α̂k(n) =
zHN (ωk)R̃−1(n− 1)xN (n)

zHN (ωk)R̃−1(n− 1)zN (ωk)
(C.69)

R̃(n) =

K−1∑
k=0

|α̂k(n)|2 zN (ωk)zHN (ωk) (C.70)

where xN (n) = [x(n−N + 1) x(n−N + 2) . . . x(n)]T is the data vector at time in-
stant n. Although GGGIAA(n, ω0), resulting from (C.21) and (C.70), is time-dependent, the
required computations are not time-recursive in nature. This enables time hopping in
the IAA-based fundamental frequency estimation case as well if desired. The computa-
tional complexity of the proposed time-recursive, IAA-based, harmonic LCMV scheme
is therefore approximately given by

CFIAA-LCMV
TR ≈CFIAA(N, 1)+[

N2 + F (0.25 log2 F + 1)L2
]
/K (C.71)

The time-recursive, QN-, and IAA-based, harmonic LCMV method is organized in a
similar way.

In Fig. C.1, we have depicted the computational complexities as a function of the
number of samples, N , for the different implementations described in the previous
sections. First, we considered the computational complexity for batch processing as
shown in Fig. C.1a. From this figure, we can see that the fast implementations in-
deed have lower complexities than the direct implementations of the LCMV and IAA-
LCMV methods. Furthermore, we observe that the implementations of the IAA-LCMV
method generally have higher complexities than the corresponding implementations
of the LCMV method. Finally, we note that the QN-based approximative implemen-
tation of the IAA-LCMV methods has computational complexity comparable to that
of the fast implementation of the LCMV method. Then we considered the computa-
tional complexities for the proposed time-recursive fundamental frequency estimators
in Figs. C.1b-C.1d. These complexities have the same trend, i.e., the implementations
of the IAA-LCMV method have the highest computational complexity, but by using
the QN-based approximative implementation, the complexity gets closer to that of the
implementations of the LCMV method. Finally, we observe that the computational
complexity of all implementations can be decreased with several orders of magnitude
if time hopping is allowed.
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Fig. C.1: Computational complexity of the harmonic LCMV fundamental frequency estimation
algorithms using the data covariance approach, where M = N/2 + 1, the IAA approach, where
m = 10 and K = 4N , and their fast implementation. In all cases, F = 10N and L = 5.
The complexities are shown for (a) batch processing, and for time-recursive processing with (b)
Khop = 1, (c) Khop = 10, (d) Khop = 50, respectively. Note the difference in scale.
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Fig. C.2: Mean absolute errors between the cost-functions obtained using the direct IAA-LCMV
implementation and its fast implementation (FIAA-LCMV).
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Fig. C.3: Mean squared errors of different fundamental frequency estimators as a function of
(a) the number of frequency grid points used for the IAA-based covariance matrix estimate, (b)
the number of available samples, (c) the expected fundamental frequency, and (d) the spacing
between fundamental frequencies in a two source scenario. Moreover, the Cramér-Rao lower
bound (CRLB) is depicted in (b) and (c).

6 Experimental Results
The experimental results obtained during the evaluation of the proposed methods are
divided into two parts. First, we evaluate the statistical performance of the pitch esti-
mators proposed for batch processing. Then, in the latter part, we evaluate the tracking
performance of the proposed time-recursive pitch estimators.

6.1 Statistical Evaluation
We proceed to evaluate the accuracy of the efficient implementation of the proposed
estimator. For this investigation, we used a harmonic signal with L = 5 in white
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Gaussian noise at an SNR of 20 dB, with the SNR being defined as

SNR = 10 log10

(
1

σ2
w

L∑
l=1

|αl|2
)
. (C.72)

The number of grid points used for the IAA-based covariance matrix estimate was
K = 1000, the number of candidate fundamental frequencies was |Ω0| = 213, and the
fundamental frequency was sampled from U(0.2, 0.3). Using this setup, we measured
the mean absolute error (MAE) over all frequency points and Monte-Carlo simulations
for differentNs. The results are provided in Fig. C.2. We note that the error between the
direct and fast IAA-LCMV implementations are close to numerical precision for N >
100. The MAE is larger for lower Ns, since the matrix product ZHN (ω0)R̃−1ZN (ω0)
becomes nearly ill-conditioned at low frequencies.

Then, we evaluate the performance of the proposed method, investigating the influ-
ence ofK,N , the expected fundamental frequency, and the spacing between fundamen-
tal frequencies (the last in a two source scenario). For these experiments, the number
of candidate fundamental frequencies was |Ω0| = 216. Initially, we consider a noisy
harmonic signal as in the previous investigation. Fig. C.3a shows the measured mean
squared error (MSE) of the IAA-LCMV and QN-IAA-LCMV estimators as a function
of K, with the fundamental frequency being samples from U(0.3, 0.4). The results
show the performance of the estimators for two different sample lengths, i.e., N = 40
and N = 80. As is clear from the figure, one needs more frequency points when N is
increased to achieve the maximum possible performance for both the IAA-LCMV and
the QN-IAA-LCMV methods. For N = 40, K ≈ 400 seems to be sufficient, whereas
at least K ≈ 1200 frequency points are needed for N = 80. In this and all the follow-
ing experiments, the order of the autocorrelation matrix was lowered to q = bN/2c in
the QN-IAA-LCMV implementation.

Fig. C.3b shows the MSE as function of N , for K = 1000 frequency grid points,
showing the performance of the IAA-based estimators as compared with a WLS method
[1, 7], a LCMV method [7], an approximate NLS (ANLS) method [7], and a MUSIC
method [7]. One may note from the figure that the IAA-based estimator show better
performance as compared to the other methods for data lengths in the interval, say 30 <
N < 35. For larger data lengths, the IAA estimators outperform the ANLS and LCMV
methods, while their performance is similar to that of the WLS and MUSIC method.
Examining the influence of the fundamental frequency, Fig. C.3c shows the MSE as a
function of the expected fundamental frequencies, E[ω0], where, in each simulation, the
fundamental frequency was sampled from E[ω0] + U(−0.001, 0.001), using N = 35
andK = 1000. As is clear from the results, the IAA estimators outperforms the LCMV
and ANLS methods for E[ω0] > 0.28, while their performances are comparable to
those of the MUSIC and WLS methods for E[ω0] > 0.3. Finally, we compared the
discussed methods in a scenario with two harmonic sources, examining two sources
with L = 3 unit amplitude harmonics. The ratio between each of the sources and a
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Fig. C.4: Plot of (top) the true pitch and pitch estimates obtained using M1-M5, and (bottom) the
MSE associated with the pitch estimates.

white Gaussian noise source was 40 dB. In each simulation, the fundamental frequency
ω1

0 of first source was sampled from U(0.299, 0.301) and the fundamental frequency of
the second source was ω2

0 = ω1
0 + ∆ω0, where ∆ω0 is the spacing, using N = 60, and

K = 1, 000. As seen in Fig. C.3d, the performances of the IAA methods are generally
better than those of the LCMV and ANLS methods, while the MUSIC method shows
the best performance. All the above presented results have been obtained using 500
Monte-Carlo simulations in which the phases of the harmonics and the noise signal
were randomized. In summary and maybe most importantly, all the results obtained
from the statistical evaluation show that the IAA can be used to improve the spectral
resolution of the LCMV method that uses the sample covariance matrix estimate as we
claimed in the introduction.

6.2 Qualitative Evaluation
We proceed to evaluate the performance of the time-recursive implementations. These
implementations are evaluated qualitatively on synthetic and real-life signals. In the
evaluation, we consider

M1 the LCMV method implemented by applying (C.12) on rectangular sliding win-
dowed data,

M2 the LCMV method implemented by (C.62)-(C.66),

M3 the IAA-LCMV method implemented by (C.69)-(C.70),

M4 the IAA-LCMV method implemented by (C.69)-(C.70) with an exponential for-
getting factor on the IAA amplitude spectrum estimate,
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Fig. C.5: Plots of (top) the true pitch and pitch estimates obtained using M1-M5, and (bottom)
the MSE associated with the pitch estimates.

M5 the NLS pitch tracker proposed in [30] without Kalman filtering.

The NLS pitch tracker (M5) is included in the evaluation for benchmarking purposes.
In all methods, observed data vectors of length N = 128 were considered. In M1-M2,
a filter length ofM = 50 were used, and the forgetting factor λ in the RLS algorithm of
M2 was set to 0.98. The IAA-based methods (M3-M4) were set up withK = 2000 and
10 iterations for initialization. The forgetting factor in M4 was also set to λ = 0.98. In
all methods, only pitch candidates in the interval 2π[0.004, 0.1] were considered, with
|Ω0| = 40000 for M1-M4 and |Ω0| = 214 for M5. Using the above setup, we first
applied the methods under evaluation on a synthetic signal constituted by a harmonic
signal with L = 5 with an abrupt pitch change and white Gaussian noise; the SNR
was 20 dB. A total of 2000 samples of the signal was observed. For the first 1000
samples, the true pitch was ω0 = 0.24, after which it changed to ω0 = 0.24 + δ. In Fig.
C.4a and C.4b, we show simulation results for δ = 0.01 and δ = 0.03, respectively.
For δ = 0.01, all methods show similar tracking performance. The NLS tracker (M5)
obtains the lowest MSEs, which is explained by the fact that it obtains the pitch estimate
using a gradient search rather than using a grid search as in the methods M1-M4. For
a larger change in pitch (δ = 0.03), the NLS tracker (M5) fails to track the pitch
compared to the proposed methods. This can also be explained by the gradient search.
We also evaluated the methods on a synthetic signal with smooth pitch changes. Again,
the number of harmonics was L = 5, the noise was white Gaussian, and the SNR was
20 dB. Using frequency modulation, we obtained a harmonic signal with a pitch of

ω0,FM(n) = ω0 + δ cos (2πfFMn/Ntotal) (C.73)

at time instance n, where ω0 = 0.225, fFM = 2 sample−1 is the modulation frequency,
and Ntotal = 10000 is the total number observed samples. Simulation results for δ =
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Fig. C.6: Plots of (top) the spectrogram of a real-life violin signal with vibrato, and (bottom)
pitch estimates obtained using M1-M5 when applied on the violin signal.

0.025 and δ = 0.125 are depicted in C.5a and C.5b, respectively. For δ = 0.025, the
performance in terms of MSE is similar for the methods M1-M4, whereas that MSE
is generally larger for M5. The conclusions are the same for δ = 0.125, except that
the LCMV method with a sliding rectangular window (M1) has problems with pitch
halving. Finally, we applied the methods on a real-life violin signal with vibrato. The
spectrogram of the signal and the estimation results are shown in Fig. C.6. As it appears
from these results, all methods were able to track the pitch fluctuations of this real-life
signal.

7 Conclusions
In this paper, we consider fast implementations of two recently proposed pitch estima-
tors. The estimators considered are both based on optimal filtering using the linearly
constrained minimum variance (LCMV) principle, but uses different estimates esti-
mates of the data covariance matrix; in one of the estimators, the sample covariance
matrix estimate is used, whereas an iterative adaptive approach (IAA) estimate is used
in the other. We propose fast implementations for both of the pitch estimators, exploit-
ing the low displacement rank of the necessary products of Toeplitz-like matrices. As
shown, this reduces the computational complexity by several orders of magnitude. We
also propose an approximative fast implementation, using covariance matrices of lower
size and extrapolation. This implementation has an even lower computational com-
plexity. Finally, we propose time-recursive implementations of both estimators. These
provide yet another mean for reducing the complexity. Our quantitative evaluation
show that the IAA-based estimator considered outperforms other state-of-the-art pitch
estimators in terms of means squared error in many scenarios, and that the difference
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between the proposed fast implementation and the direct implementation is negligible.
Moreover, the qualitative evaluations show that the proposed time-recursive implemen-
tations can be used for tracking abrupt as well as smooth pitch changes of both synthetic
and real-life signals.
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Abstract
It is well-known that filtering methods can be used for processing of signals in both
time and space. This comprises, for example, fundamental frequency estimation and
direction-of-arrival (DOA) estimation. In this paper, we propose two novel 2-D filter-
ing methods for joint estimation of the fundamental frequency and the DOA of spatio-
temporarily sampled periodic signals. The first and simplest method is based on the 2-D
periodogram, whereas the second method is a generalization of the 2-D Capon method.
In the experimental part, both qualitative and quantitative measurements show that the
proposed methods are well-suited for solving the joint estimation problem. Further-
more, it is shown that the methods are able to resolve signals separated sufficiently in
only one dimension. In the case of closely spaced sources, however, the 2-D Capon-
based method shows the best performance.

1 Introduction
In the last couple of decades, filtering methods have been used for processing of both
spatial and temporal signals [1, 2]. Processing of spatial signals is also known as array
signal processing and within this field, filtering methods are better known as beam-
formers [1]. One application of this, is processing of audio and speech signals recorded
using a multi-microphone setup as considered in [3]. A common task is to estimate the
direction-of-arrival (DOA) of such signals. However, often it is also desired to estimate
the fundamental frequency of the self-same signals. Lately, it has been shown [4] that
filtering methods are useful in this context as well. In the rest of the paper will refer
to the fundamental frequency as the pitch. It is essential to estimate both the DOA
and the pitch, since these features are useful for both separation and enhancement [5].
Furthermore, the pitch is also relevant regarding compression [6].

In many applications, such as hands-free communication, teleconferencing, surveil-
lance systems and hearing-aids, it is necessary to know both the DOA and the pitch of
speech and audio signals. This is needed for, e.g., tracking, separation and enhance-
ment purposes. Therefore, joint pitch and DOA estimation is a relevant problem. We
can formulate the joint estimation problem as follows: consider a periodic source s(nt)
impinging on an array containing Ns sensors. On the nsth sensor, the periodic source
is corrupted by the noise source wns(nt). The signal sampled by the nsth sensor, for
nt = 0, . . . , Nt − 1 and ns = 0, . . . , Ns − 1, can then be written as

xns(nt) = s(nt − τns) + wns(nt) , (D.1)

where τns is the time delay of the signal on sensor ns compared to a reference point.
Note that the DOA can be estimated by realizing that there is a relationship between the
DOA and the time delay. The relation depend on the array structure. In this paper, we
assume a uniform linear array (ULA) and that the signals of interest are located in the
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so-called far-field. This implies a simple relationship between the DOA and the time
delay. The problem considered in this paper, is join estimation of the DOA θ and the
pitch ωt of the periodic source s(nt) which can also be modeled as

s(nt) =

L∑
l=1

αle
jωtlnt , (D.2)

where L is the model order and αl = Υle
jφl is the complex amplitude of the lth sinu-

soid with Υl > 0 and φl being the amplitude and the phase, respectively. In this paper,
we consider the model order as being known. The model in (D.2) allows us to consider
the signal of interest as several narrowband sources. The narrowband assumption is a
key assumption in many array processing methods and we also employ in this paper.

Recently, the problem of joint pitch and DOA estimation has attracted considerable
attention. Some of the first approaches to solve the problem only considered how the
frequencies of single 2-D sinusoids can be estimated. A few examples of such methods
are [7], where a state-space realization technique is used, [8] which is based on the 2-D
Capon method, [9] which is based on the ESPRIT method, and [10] where a signal-
dependent multistage wiener filter (MWF) is used. The DOA and the pitch should,
when possible, be estimated jointly for several reasons. For example, by estimating the
parameters jointly we can process signals separated sufficiently in only one dimension
as opposed to 1-D methods. Recently, a few methods have been proposed for joint DOA
and pitch estimation; in [11] a ML-based method is proposed; in [11, 12] subspace-
based methods are proposed; in [13] a correlation-based method is proposed; and in [14]
a spatio-temporal filtering method based on the LCMV beamformer is proposed. In
this paper, we present two novel methods for DOA and pitch estimation. Both methods
are 2-D filtering methods based on a filter-bank interpretation of the periodogram and
a generalization of the 2-D Capon method, respectively. As opposed to the method
in [14], we do not require any prior knowledge on the spatial or temporal characteristics,
other than a harmonic structure, since we propose to estimate the DOA and pitch jointly.
In cases with colored noise, the 2-D Capon-based method is preferred because of its
excellent performance in a multi-source scenario. However, the 2-D periodogram-based
method may in some cases be preferred because of its lower computational complexity.

The rest of the paper is organized as follows: in Section 2 we introduce the joint
estimation problem and present the proposed methods. Section 3 contains the experi-
mental part of the paper and, finally, Section 4 concludes our work.

2 Proposed Methods
In this section, we briefly review the concept of 2-D filtering methods for spectral es-
timation and we present the proposed methods. In 2-D filtering methods for spectral
estimation, it is desired to design a filter which passes a signal component with a given
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frequency pair undistorted. At the same time, the filter should attenuate signal compo-
nents at all other frequency pairs. The two different filter design procedures used in the
two proposed methods are described following.

Assume that we have a matrix XD of dimension Ns × Nt containing our spatio-
temporarily sampled data. Note thatNs andNt are the numbers of spatial and temporal
samples, respectively. The input data is then to be filtered by a Ms ×Mt order 2-D
finite impulse response (FIR) filter

Hωt,ωs =

 Hωt,ωs(0, 0) · · · Hωt,ωs(0,M
′
t)

...
. . .

...
Hωt,ωs(M

′
s, 0) · · · Hωt,ωs(M

′
s,M

′
t)

 , (D.3)

where M ′s = Ms − 1, M ′t = Mt − 1 and the filter is designed for the temporal and
spatial frequencies ωt and ωs. The filter is then applied on sub-blocks Xns(nt) of the
data matrix. One sub-block is defined as

Xns(nt) =

 xns(nt) · · · xns(nt −M ′t)
...

. . .
...

xns+M ′s(nt) · · · xns+M ′s(nt −M
′
t)

 . (D.4)

Due to the ULA and far-field assumptions, the spatial frequency is given by ωs =
ωtfs

d sin θ
c , where fs is the sampling frequency, d is the inter-sensor spacing, θ is the

DOA in radians, and c is the wave propagation velocity. Following, we stack the filter
response and the sub-blocks in (D.3) and (D.4), i.e.,

hωt,ωs = vec{Hωt,ωs} (D.5)
xns(nt) = vec{Xns(nt)} , (D.6)

with vec{·} denoting the column-wise stacking operator. Since we have mapped the
filtering operation from 2-D to 1-D, it can be seen that the filter design somehow re-
sembles that of 1-D filtering methods. As the first step in the design procedure we need
to find an expression for the filter output power

E{|yns(nt)|2} = E{hHωt,ωsxns(nt)x
H
ns(nt)hωt,ωs} (D.7)

= hHωt,ωsRhωt,ωs , (D.8)

where R is the covariance matrix

R = E{xns(nt)xHns(nt)} . (D.9)

Note that E{·} and (·)H denotes the expectation operator and the complex transpose,
respectively. Often we do not have access to the true covariance matrix, which we
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therefore will replace with the sample covariance matrix

R̂ =
1

(Ns −M ′s)(Nt −M ′t)

Ns−Ms∑
p=0

Nt−Mt∑
q=0

xp(nt − q)xHp (nt − q) . (D.10)

The next task is to design the filter such that the output power is minimized subject to
a distortionless constraint at desired frequencies. The filter design procedure is what
differs between the two proposed method.

2.1 2-D Periodogram-based Method
In the 2-D periodogram-based method, we use a filter-bank structure constituted by
stacked 2-D filter responses. We assume that there is no cross-talk between the filters
in the filter-bank, which allows us to write the total filter-bank output power as

L∑
l=1

E{|yns,l(nt)|2} =

L∑
l=1

hHlωt,lωsRhlωt,lωs . (D.11)

Note that hlωt,lωs is the impulse response of the lth filter in the filter-bank. We then
define the filter-bank matrix as

Hfb,(ωt,ωs) =
[
hωt,ωs · · · hLωt,Lωs

]
. (D.12)

Having introduced the filter-bank matrix, we can rewrite the total filter-bank output
power in D.11 as

L∑
l=1

E{|yns,l(nt)|2} = Tr
{

HH
fb,(ωt,ωs)RHfb,(ωt,ωs)

}
, (D.13)

with Tr{·} denoting the trace operator. In the 2-D periodogram-based method, it is
assumed that the input signal is white Gaussian noise, hence, the method is independent
on the signal statistics. Using this assumption, it can be shown that the individual filters
in the filter-bank are constituted by Fourier vectors which will ensure a unit gain at the
desired frequencies. However, the attenuation of other frequency components will not
be optimal since the signal statistics are not used in the design procedure. The lth filter
response is then given by

hlωt,lωs = alωt,lωs , (D.14)

where

aωt,ωs = aωt ⊗ aωs (D.15)

aωk =
[
1 e−jωk · · · e−jM

′
kωk
]T

. (D.16)
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By inserting (D.14) into (D.13) we get that

L∑
l=1

E{|yns,l(nt)|2} = Tr{AH
ωt,ωsRAωt,ωs} (D.17)

= JP,(ωt,ωs) , (D.18)

with Aωt,ωs =
[
aωt,ωs · · · aLωt,Lωs

]
. We can then obtain joint estimates of the

pitch and the DOA by maximizing the total filter-bank output power over sets of candi-
date DOAs Θ and pitch frequencies Ω, i.e.,

(θ̂, ω̂) = arg max
(θ,ω)∈Θ×Ω

JP,(ωt,ωs) . (D.19)

2.2 2-D Capon-based Method
The proposed 2-D Capon-based method is a generalization of the 2-D Capon method
[15]. The generalization is obtained by introducing multiple harmonic constraints in
the filter design. That is, the proposed 2-D Capon-based method relies on a single 2-D
filter. We design the 2-D filter by minimizing the output power subject to distortionless
constraints on the harmonics, i.e.,

min
h

hHωt,ωsRhωt,ωs s.t. hHωt,ωsalωt,ωs = 1 , (D.20)

for l = 1, . . . , L . (D.21)

The optimization problem is easily solved by using the Lagrange multiplier method
which leads to the following result

hωt,ωs = R−1Aωt,ωs(A
H
ωt,ωsR

−1Aωt,ωs)
−11 , (D.22)

with 1 being a L× 1 vector containing ones. Inserting the optimal filter expression into
the filter output power expression leads to

E{|yns(nt)|2} = 1H(AH
ωt,ωsR

−1Aωt,ωs)
−11 (D.23)

= JC,(ωt,ωs) . (D.24)

Finally, we can jointly estimate the DOA and the pitch by maximizing the filter output
power for a sets of candidate DOAs Θ and pitch frequencies Ω

(θ̂, ω̂) = arg max
(θ,ω)∈Θ×Ω

JC,(ωt,ωs) . (D.25)
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Fig. D.1: Contour plot of a 2-D periodogram-based filter-bank response designed for a signal
constituted by five harmonics having a pitch of 200 Hz and a DOA of -15◦.

2.3 Refined Estimates
In cases where there are high resolution requirements, the proposed methods may imply
a huge computational burden since they rely on a grid search. However, to circumvent
this issue we can instead use a smaller grid to obtain an initial estimate of the parameters
which can then be refined by making a gradient search. Note that in the following
derivations we leave out the dependencies on ωs and ωt for a simpler notation. The first
order derivatives of the filter output powers are readily obtained as[ ∂JP

∂θ
∂JP
∂ωt

]
=

2

M2
Re
{[

Tr{AHRBθ}
Tr{AHRBωt}

]}
(D.26)[∂JC

∂θ
∂JC
∂ωt

]
= −2Re

{[
1HQAHR−1BθQ1

1HQAHR−1BωtQ1

]}
, (D.27)

where Q = (AHR−1A)−1, and Re{·} denotes taking the real part. The entries in the
B matrices are given by

[Bθ]il = −jωtfsl
d cos θ

c
ks,ie

−jωtl(fs d sin θ
c ks,i+kt,i) (D.28)

[Bωt ]il = −jl
(
fs
d sin θ

c
ks,i + kt,i

)
e−jωtl(fs

d sin θ
c ks,i+kt,i) . (D.29)
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The intermediate k variables are defined as

ks,i = (i− 1) mod Ms (D.30)

kt,i =

⌊
i− 1

Ms

⌋
, (D.31)

with (· mod ·) and b·c denoting the modulus and the flooring operators, respectively.
We can then obtain refined parameter estimates by using an iterative procedure[

θ̂(i+1)

ω̂
(i+1)
t

]
=

[
θ̂(i)

ω̂
(i)
t

]
+ δ∇J , (D.32)

where i is the iteration number, δ is a small positive constant found through line search
and ∇J =

[
∂J
∂θ

∂J
∂ωt

]T
.

Fig. D.2: Contour plot of a 2-D Capon-based filter response designed for a signal constituted by
five harmonics having a pitch of 200 Hz and a DOA of -15◦. The signal was corrupted by white
Gaussian noise with an SNR of -40 dB.

3 Experimental Results
We will now consider the evaluation of the proposed methods. In all of the experiments
described in the rest of this section, an ULA was assumed having an inter-sensor spac-
ing of d = c

fs
where c = 343.2 m/s is the speed of sound in air at 20◦ C. Furthermore,
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Fig. D.3: Contour plot of a 2-D Capon-based filter response designed for a signal constituted by
five harmonics having a pitch of 200 Hz and a DOA of -15◦. The signal was corrupted by white
Gaussian noise with an SNR of 10 dB.

in all experiments the sampling frequency was fs = 2.5 kHz. First, we evaluate the
functionality of the filters in terms of investigating the filter response. In Fig. D.1, a
filter response of a 2-D periodogram-based filter-bank is shown. The filter orders were
in this case set to Mt = Ms = 20. The filter-bank was designed for a signal constituted
by five harmonics with a pitch of 200 Hz and a DOA of -15◦. As mentioned, this filter
is independent of the signal statistics and will therefore have a rather similar attenuation
of signal components not having both one of the target harmonic frequencies and the
target DOA. At the target harmonic frequencies and DOA, the filter will have a unit
gain. These observations can also be made from the experimental result which verifies
the filter design. Likewise, we also conducted experiments on the 2-D Capon-based
filter response. In these experiments the sample lengths were set to Nt = Ns = 80 and
the filter orders were the same as in the previous experiment. The filter was designed
for a signal having five harmonics with a pitch of 200 Hz and a DOA of -15◦. Also,
the signal was corrupted by white Gaussian noise and the experiment was conducted
for SNRs of -40 dB and 10 dB. The results are depicted in Fig. D.2 and D.3, respec-
tively. For the low SNR of -40 dB the filter response somehow resembles that of the
2-D periodogram-based filter which can also be verified mathematically. At high SNRs
the 2-D Capon-based method seems to suffer from leakage, since it has a relatively
high gain at off pitch frequencies and DOAs. This is, however, characteristic for the
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Fig. D.4: Output power of the 2-D periodogram-based filter-bank of orders Mt = 30 and Ms =
10 applied on a mixture of two signals with DOAs of 4◦ and 40◦, respectively, and both with a
pitch of 213 Hz. The SNR with respect to each signal was 10 dB.

minimum variance distortionless response (MVDR) principle.
Following, we evaluate the proposed methods ability to jointly estimate the pitch

and DOA in a multi-source scenario. First, we have calculated the output power of both
the 2-D periodogram-based filter and the 2-D Capon-based filter for several candidate
pitch frequencies and DOAs. In these experiments, the number of sensors wasNs = 30,
the sample length wasNt = 100 and the filter orders wereMt = 30 andMs = 10. The
filters were applied on a mixture of two signals both constituted by four sinusoids. The
two signals had DOAs of 4◦ and 40◦, respectively, and they both had a pitch of 213 Hz.
The results from the experiments are depicted in Fig. D.4 and D.5, respectively. The
first observation from these experiments are, that the pitch frequencies and DOAs of
the two sources can be estimated correctly using both methods by taking the arguments
of the two largest peaks of the filter output powers. Also, we observe that the peaks
in the filter output power are much narrower for the 2-D Capon-based method which
indicates that the 2-D Capon-based method will be superior when it comes to resolving
closely-spaced sources.

We will now evaluate further on the proposed methods ability to resolve closely
spaced sources. For this purpose we have conducted some Monte-Carlo simulations
on the estimation error as a function of the source spacing in a two-source scenario.
Due to a high computational complexity, we assumed that the pitch and DOA estimates
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Fig. D.5: Output power of the 2-D Capon-based filter of orders Mt = 30 and Ms = 10 applied
on a mixture of two signals with DOAs of 4◦ and 40◦, respectively, and both with a pitch of 213
Hz. The SNR with respect to each signal was 10 dB.

were close to the true pitch and DOA which allowed us to just doing a gradient search
from the true pitch and DOA instead of doing a fine grid search. In the first series of
Monte-Carlo simulations we measured the MSE of the DOA estimates as a function
of the source spacing in degrees. The two sources were each constituted by four har-
monics having a pitch of 236 Hz. The DOA was fixed to -20◦ for one of the sources
while the other was varied. White Gaussian noise was added to the signal such that the
SNR with respect to each source was 10 dB. The sample lengths were Nt = Ns = 30
while the filter orders were Mt = Ms = 10. We conducted 500 Monte-Carlo sim-
ulations for each of the different source spacings and the results are depicted in Fig.
D.6. From the results, it is clearly seen that the 2-D Capon-based method are superior
in multi-source scenarios. The 2-D periodogram-based method shows some threshold-
ing behavior around a source spacing of 35◦ while the 2-D Capon-based method does
not show any thresholding behavior before a source spacing of only 10◦. Note that the
MSE for the 2-D periodogram-based method is not necessarily decreasing when the
source spacing is increased. This is due to the fact that this method is signal indepen-
dent and the MSE will therefore depend heavily on if the filter response occasionally
has a dip at the pitch and DOA of the interfering source or not. We also conducted a
series of Monte-Carlo simulations where the MSE was measured as a function of the
source spacing in Hz. In these simulations, the two sources were constituted by one
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Fig. D.6: MSE in a two-source scenario as a function of the source spacing in degrees, and the
CRLB for the single-source scenario.

2-D sinusoid. Both signals were having a DOA of 7◦. The frequency of one of the
sources was fixed to 200 Hz while the frequency of the other source was varied. The
noise conditions, sample lengths and filter orders were the same as in the other series of
Monte-Carlo simulations. Again, we conducted 500 Monte-Carlo simulations for each
source spacing and the results are depicted in Fig. D.7. We see from the results that
the 2-D Capon-based method is better for resolving closely-spaced sources. The dips
in MSE at certain spacings for the 2-D periodogram-based method can be explained in
the same way as in the previous series of Monte-Carlo simulations. Note that the 2-D
periodogram-based method shows thresholding behavior below a spacing of 250 Hz
whereas the 2-D Capon-based method does not show any thresholding behavior until
below a spacing of 100 Hz.

4 Conclusion
In this paper, we proposed two new 2-D filtering methods for joint estimation of the
pitch and the DOA of periodic signals recorded in space and time by a ULA. Since
the proposed methods are based on a harmonic model, they are relevant for all signals
being periodic of nature such as audio and speech signals. The first proposed method
is based on the 2-D periodogram, and it can thereby be implemented easily using the
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Fig. D.7: MSE in a two-source scenario as a function of the source spacing in Hz, and the CRLB
for the single-source scenario.

2-D fast Fourier transform (FFT). By doing this, the computational complexity can be
reduced significantly. The second proposed method is the 2-D Capon-based method,
which is a generalization of the 2-D Capon method. Our experiments showed that both
proposed methods can be used for jointly estimating the pitch frequencies and DOAs of
multiple sources that are only separated sufficiently in one dimension, i.e., either space
or time. We evaluated the proposed methods with respect to the sufficiency condition in
regard to separation and these experiments showed that the 2-D Capon-based method
outperforms the 2-D periodogram-based method in multi-source scenarios under ad-
verse conditions.

References
[1] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation,

and Modulation Theory. John Wiley & Sons, Inc., 2002.

[2] P. Stoica and R. Moses, Spectral Analysis of Signals. Pearson Education, Inc.,
2005.

[3] M. Brandstein and D. Ward, Eds., Microphone Arrays - Signal Processing Tech-
niques and Applications. Springer-Verlag, 2001.



References 117

[4] M. G. Christensen and A. Jakobsson, “Multi-pitch estimation,” Synthesis Lectures
on Speech and Audio Processing, vol. 5, no. 1, pp. 1–160, 2009.

[5] D. Wang and G. J. Brown, Computational Auditory Scene Analysis - Principles,
Algorithm, and Applications. John Wiley & Sons, Inc., 2006.

[6] B. Edler and H. Purnhagen, “Parametric audio coding,” in Proc. Conf. Signal Pro-
cess., vol. 1, 2000, pp. 21–24.

[7] M. Viberg and P. Stoica, “A computationally efficient method for joint direction
finding and frequency estimation in colored noise,” in Rec. Asilomar Conf. Sig-
nals, Systems, and Computers, vol. 2, Nov. 1998, pp. 1547–1551.

[8] A. Jakobsson, S. L. Jr. Marple, and P. Stoica, “Computationally efficient two-
dimensional Capon spectrum analysis,” IEEE Trans. Signal Process., vol. 48,
no. 9, pp. 2651–2661, Sep. 2000.

[9] A. N. Lemma, A.-J. van der Veen, and E. F. Deprettere, “Analysis of joint angle-
frequency estimation using ESPRIT,” IEEE Trans. Signal Process., vol. 51, no. 5,
pp. 1264–1283, May 2003.

[10] T. Shu and X. Liu, “Robust and computationally efficient signal-dependent
method for joint DOA and frequency estimation,” EURASIP J. on Advances in
Signal Processing, vol. 2008, no. 1, pp. 1–16, Apr. 2008.

[11] X. Qian and R. Kumaresan, “Joint estimation of time delay and pitch of voiced
speech signals,” Rec. Asilomar Conf. Signals, Systems, and Computers, vol. 1, pp.
735–739, Oct. 1995.

[12] L. Y. Ngan, Y. Wu, H. C. So, P. C. Ching, and S. W. Lee, “Joint time delay and
pitch estimation for speaker localization,” in Proc. IEEE Int. Symp. Circuits and
Systems, vol. 3, May 2003, pp. 722–725.

[13] M. Wohlmayr and M. Képesi, “Joint position-pitch extraction from multichannel
audio,” in Proc. Interspeech, Aug. 2007, pp. 1629–1632.

[14] J. Dmochowski, J. Benesty, and S. Affes, “Linearly constrained minimum vari-
ance source localization and spectral estimation,” IEEE Trans. Audio, Speech, and
Language Process., vol. 16, no. 8, pp. 1490–1502, Nov. 2008.

[15] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc.
IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.



118 PAPER D



Paper E

Nonlinear Least Squares Methods for Joint DOA and
Pitch Estimation

Jesper Rindom Jensen, Mads Græsbøll Christensen,
and Søren Holdt Jensen

The paper has been submitted to the
IEEE Trans. on Audio, Speech and Language Processing, 2012.



In peer-review
The layout has been revised.



1. Introduction 121

Abstract
In this paper, we consider the problem of joint direction-of-arrival (DOA) and funda-
mental frequency estimation. Joint estimation enables robust estimation of these pa-
rameters in multi-source scenarios where separate estimators may fail. First, we derive
the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then,
we propose nonlinear least squares (NLS) and an approximate NLS (aNLS) estima-
tors for joint DOA and fundamental frequency estimation. The proposed estimators are
maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environ-
ment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods
still yield approximately maximum likelihood estimates. Simulations on synthetic data
show that the proposed methods have similar or better performance than state-of-the-
art methods for DOA and fundamental frequency estimation. Moreover, simulations
on real-life data indicate that the NLS and aNLS methods are applicable even when
reverberation is present and the noise is not white Gaussian.

1 Introduction
Both direction-of-arrival (DOA) estimation and fundamental frequency estimation are
very important signal processing topics, and, individually, these two estimation prob-
lems are widely studied research topics. DOA estimation, for example, has been treated
in many text books and research papers (see, e.g., [1–6]) and has a multitude of applica-
tions in areas such as geophysics, radio astronomy, biomedical engineering, radar and
microphone arrays. Fundamental frequency estimation (we will also refer to this as
pitch estimation), on the other hand, has applications such as compression, separation
and enhancement of, e.g., audio and voiced speech [7, 8], automatic music transcription
and music classification [9]. For an overview of existing pitch estimation techniques,
see, e.g., [9–13]. That is, both DOA and pitch estimation are relevant for processing of
audio and speech signals. A few examples of applications which can benefit from the
knowledge of both the DOA and the pitch are hands-free communication, teleconfer-
encing, surveillance applications and hearing aids.

It is therefore natural to consider joint spatio-temporal processing of audio and
speech signals which is the topic of this paper. More specifically, we consider joint
DOA and pitch estimation. Besides the convenience of being able to estimate the DOA
and the pitch simultaneously, joint spatio-temporal processing potentially has two sig-
nificant advantages. For instance, if a source parameter is equal for both sources in
a two-source scenario, the sources are not resolvable if we only estimate this param-
eter separately. If joint parameter estimation of several parameters is performed and
just some of the parameters are distinct, then the sources are possibly still resolvable.
Another important advantage of joint estimation relates to the estimation accuracy. For
example, DOA and pitch estimation of periodic sources such as audio and voiced speech
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can be conducted by first estimating the DOA, then by extracting the signal impinging
from that DOA, and finally by estimating the pitch from the extracted signal. However,
the extraction can be seen as a linear data transformation which potentially increases the
Cramér-Rao bound (CRB) for the pitch estimate, meaning that the resulting estimates
may be suboptimal. Other important issues regarding processing of multi-channel sig-
nals are, e.g., reverberation and array calibration errors. We refer the interested reader
to [14, 15] for an overview of methods dealing with these problems as these topics are
out of the scope of this paper.

Motivated by the above observations, and due to an increasing computational ca-
pability, the computationally demanding problem of joint DOA and pitch estimation
has attracted considerable attention in the recent years. As a result, some methods have
been proposed for solving the joint estimation problem. Basically, these methods can be
divided into two groups. The first group jointly estimates the frequency and the DOA of
a single sinusoid defined in two dimensions (e.g., time and space). A few examples of
such methods are [16], where a state-space realization technique is used, [17–19] which
is based on the 2-D minimum variance distortionless response (MVDR) method, [20]
which is based on the ESPRIT method, and [21] where a signal-dependent multistage
Wiener filter (MWF) [22] is used. This group of methods is not commonly used in
speech and audio processing. In most of the literature (see, e.g., [23–27]), DOA esti-
mation of audio and speech recorded using a microphone array, has been treated as a
broadband problem. In this paper, however, we shall assume a harmonic model which
describes audio and voiced speech well; this will incontrovertibly allow us to treat the
joint DOA and pitch estimation problem as L narrowband problems. Methods utilizing
this fact forms the other group of estimators that consider the case with one or more har-
monically related, two-dimensional sinusoids. These methods can, therefore, be seen
as a generalization of the first group of methods. A few methods dealing with this case
have been proposed; in [28] a ML-based method is proposed; in [29–31] subspace-
based methods are proposed; in [32, 33] a correlation-based method is proposed; and
in [34, 35] some spatio-temporal filtering methods based on the linearly constrained
minimum variance (LCMV) beamformer [36] and the periodogram are proposed. Note
that some of the above-mentioned methods considers time delay estimation and not
DOA estimation, however, these two parameters are closely related.

In this paper, we also consider joint DOA and pitch estimation. Based on the har-
monic model, we derive the exact and asymptotic CRBs for the joint DOA and pitch
estimation problem. Moreover, we propose a non-linear least squares (NLS) method
for joint DOA and pitch estimation. The proposed estimator is derived under the as-
sumptions that the noise is white Gaussian, the array is a uniform linear array, the
environment is anechoic, and the source of interest is located in the far-field of the ar-
ray. When the assumptions hold, the proposed NLS estimator is also the maximum
likelihood (ML) estimator as opposed to most of the existing joint DOA and pitch es-
timators [28–35]. Moreover, the proposed estimator is applicable in scenarios with
any number of sensors, and it is easily generalized to support any array structure as
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opposed to the joint estimators in [29, 30]. Finally, we propose an approximate NLS
(aNLS) method which is computationally more efficient.

The rest of the paper is organized as follows: in Section 2, we introduce the spatio-
temporal harmonic signal model. Then, in Section 3, we derive the exact and asymptotic
CRBs for the joint DOA and pitch estimation problem; the asymptotic bounds are used
to motivate why the DOA and pitch should be estimated jointly. We derive the NLS and
aNLS estimators for joint DOA and pitch estimation in Section 4, and the estimators
are evaluated on synthetic as well as real-life signals in Section 5. Finally, Section 6
concludes our work.

2 Signal Model
In this paper, we consider joint estimation of the DOA, θ, and the pitch, ω0, of a quasi-
periodic source, also referred to as the source of interest (SOI), which is recorded using
a Ns-element uniform linear array (ULA) in a noisy and anechoic environment. We
assume that the noise is uncorrelated with the SOI. The ULA and the definition of θ are
illustrated in Fig. E.1. Real-life examples of quasi-periodic sources are, e.g., voiced
speech and musical instruments. We assume that the quasi-periodic source is in the
far-field of the ULA. The signal measured on the nsth sensor at time instance, nt, for
ns = 0, . . . , Ns − 1 and nt = 0, . . . , Nt − 1 is then given by

yns(nt) = βnss(nt − fsτns) + wns(nt)

= xns(nt) + wns(nt) , (E.1)

where βns and τns are the attenuation and the delay of the wave generated by the SOI
from sensor 0 to sensor ns, respectively, fs is the sampling frequency, s(nt − fsτns) is
the delayed quasi-periodic signal, and wns(nt) is the noise picked up by the nsth sensor.
Note that in the rest of the paper (·)ns means that the variable or constant is related to
the nsth sensor. Due to the array structure, we know that the delay is given by

τns = ns
d sin θ

c
, (E.2)

where d is the inter-element spacing of the ULA, and c is the wave propagation velocity.
Since the SOI is assumed to be quasi-periodic, we know that it can be modeled as a
harmonic source,

s(nt) =

L∑
l=1

αle
jlω0nt , (E.3)

for nt = 0, . . . , Nt − 1, where L is the model order, αl = Ale
jφl , and Al > 0 and

φl are the real amplitude and phase of the lth harmonic. In case the desired signal
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Fig. E.1: Illustration of the uniform linear array structure assumed in this paper.

has inharmonicities, the model can be extended to account for this [12, 37, 38]. Note
that the signal model is complex as opposed to many real-life signals which are real.
However, it is common to use complex signal representations since it leads to a simpler
notation, and the complex model can easily be applied on real signals if we convert
these to analytic signals using the Hilbert transform [6, 9]. In this paper, we consider
the model order L as a known parameter (see, e.g., [6, 39] and the references therein
for an overview of existing model order estimators).

Using the signal model in (E.3), the desired signal at sensor ns can be written as

s(nt − fsτns) =

L∑
l=1

αle
jlω0(nt−fsτns ) (E.4)

=

L∑
l=1

αle
jlω0nte−jlωsns , (E.5)

where ωs = ω0fsτ1 is the so-called spatial frequency. Note that the spatial frequency is
dependent on the fundamental frequency, ω0.

Additionally, we define a spatio-temporal matrix signal model, which is useful in
the derivation of parameter estimators. The matrix model is defined as

Y(nt) = X(nt) + W(nt) , (E.6)
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where

Y(nt) =

 y0(nt) · · · y0(nt −Nt + 1)
...

. . .
...

yNs−1(nt) · · · yNs−1(nt −Nt + 1)

 , (E.7)

with X(nt) and W(nt) being defined similarly to Y(nt). The attenuated desired signal
matrix X(nt) can be rewritten using (E.5) as

X(nt) = β

L∑
l=1

αl(nt)zs(lωs)z
T
t (lω0) , (E.8)

where

αl(nt) = αle
jlω0nt , (E.9)

β = diag
{[
β0 · · · βNs−1

]T}
, (E.10)

zs(ωs) =
[
1 e−jωs · · · e−j(Ns−1)ωs

]T
, (E.11)

zt(ω0) =
[
1 e−jω0 · · · e−j(Nt−1)ω0

]T
, (E.12)

with diag{·} denoting the operator that transforms a vector into a diagonal matrix, and
(·)T denoting the transpose of a vector or matrix. Alternatively, the matrix model in
(E.6) can be mapped to a vector model by stacking the columns of Y(nt) as

y(nt) = vec{Y(nt)}
= x(nt) + w(nt) = Z̄α(nt) + w(nt) , (E.13)

where vec{·} is the column-wise stacking operator, and

Z̄ = BZ , (E.14)

B =

β 0
. . .

0 β

 , (E.15)

Z =
[
z(ω0, ωs) · · · z(Lω0, Lωs)

]
, (E.16)

z(lω0, lωs) = zt(lω0)⊗ zs(lωs) , (E.17)

α(nt) =
[
α1e

jω0nt · · · αLe
jLω0nt

]T
, (E.18)

with ⊗ denoting the Kronecker product operator. In summary, the objective considered
in this paper is to estimate the DOA and the pitch jointly from spatio-temporal observed
signal samples which can be modeled by (E.13).
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3 Cramér-Rao Bounds
It is common practice to place a lower bound on the variance of unbiased estimators.
This is useful while evaluating the performance of such estimators, and it provides
insight into the nature of the estimation problem. There exists a multitude of such
bounds among which the CRB is one of the most commonly used [40]. In this section,
we derive exact and asymptotic expressions for the CRBs for the joint DOA and pitch
estimation problem. Moreover, we show why it is beneficial to estimate the DOA and
the pitch jointly by analyzing the asymptotic CRB expressions.

3.1 Exact Bounds
First, we derive the exact CRBs for the joint DOA and pitch estimation problem. Let

ȳ(nt) =
[
y0(nt) · · · yNs−1(nt)

]T
(E.19)

be the observed signal vector from the Ns-element ULA at nt ∈ [0;Nt − 1]. We can
also write the observation vector, ȳ(nt), as

ȳ(nt) = x̄(nt) + w̄(nt) , (E.20)

where the noise vector, w̄(nt), is defined similar to ȳ(nt) and

x̄(nt) =
[
β0s(nt − τ0) · · · βNs−1s(nt − τNs−1)

]T
(E.21)

= βs̄(nt) , (E.22)

s̄(nt) =
[
s(nt − τ0) · · · s(nt − τNs−1)

]T
. (E.23)

We derive the CRBs under the assumption that the noise, w̄(nt), is complex white
Gaussian with zero mean and variance σ2. Under this assumption, we can write the
log-likelihood function of the observed signal as

ln p(ȳ;ψ) = −N ln(πσ2) (E.24)

− 1

σ2

Nt−1∑
nt=0

[ȳ(nt)− βs̄(nt)]
H

[ȳ(nt)− βs̄(nt)] ,

where

ψ =
[
ω0 θ A1 · · · AL φ1 · · · φL

]T
, (E.25)

The Fisher information matrix (FIM) for the joint DOA and pitch estimation problem
is given by

I(ψ) = −E
{
∂2 ln p(ȳ;ψ)

∂ψ

}
. (E.26)



3. Cramér-Rao Bounds 127

If we assume that the covariance matrix of the noise signal does not depend on the
parameter vector, ψ, the FIM is given by

I(ψ) =
2

σ2
Re

{
Nt−1∑
nt=0

DH
nt

(ψ)β2Dnt(ψ)

}
, (E.27)

where Re{·} denotes the real part of a complex number, and Dnt(ψ) is the gradient
matrix for time instance nt defined as

Dnt(ψ) =
[
dnt(ω0) dnt(θ) dnt(A1) (E.28)

· · · dnt(AL) dnt(φ1) · · · dnt(φL)
]
.

Note that the columns of Dnt(ψ) can be interpreted as the gradient vectors with respect
to each of the unknown parameters. The gradient vector with respect to the pitch,
dnt(ω0), is defined as

dnt(ω0) =
∂s̄(nt)

∂ω0
, (E.29)

and the vectors dnt(θ), dnt(Al) and dnt(φl) are defined similar to dnt(ω0) for l =
1, . . . , L. The individual entries of the gradient vectors are given by

[dnt(ω0)]ns
=

L∑
l=1

jlAl

(
nt − fsns

d sin θ

c

)
× ejlω0(nt−fsns

d sin θ
c )+jφl , (E.30)

[dnt(θ)]ns
=−

L∑
l=1

jlAlω0fsns
d cos θ

c

× ejlω0(nt−fsns
d sin θ
c )+jφl , (E.31)

[dnt(Al)]ns
=ejlω0(nt−fsns

d sin θ
c )+jφl , (E.32)

[dnt(φl)]ns
=jAle

jlω0(nt−fsns
d sin θ
c )+jφl , (E.33)

for ns = 0, . . . , Ns − 1. The exact CRB for the kth parameter in ψ is defined as the
(k, k)th element of the inverse FIM, i.e.,

CRB ([ψ]k) =
[
I−1(ψ)

]
kk

. (E.34)

3.2 Asymptotic Bounds
The exact CRB expressions are rather complicated, and it is difficult to see how the
different parameters and the sample lengths influence the different CRBs. Furthermore,
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it is hard to see from the exact CRB expressions if there are any benefits of estimating
the DOA and pitch jointly compared to estimating them separately. Therefore, we also
derive simpler asymptotic CRBs for the joint DOA and pitch estimation problem.

The asymptotic bounds are derived under the assumption that the sensors in the
ULA are closely spaced such that β ≈ I. First, we introduce a new variable,

∆(x, y) =

Nt−1∑
nt=0

Re
{
dHnt

(x)dnt(y)
}

(E.35)

= ∆(y, x) . (E.36)

For Ns →∞ and Nt →∞, we know that the frequency spaced sinusoids are orthogo-
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nal. For large Ns and Nt, it follows that

∆(ω0, ω0) ≈
[
Nt(Nt − 1)(2Nt − 1)

6
Ns (E.37)

+Ntζ
2 sin2 θ

Ns(Ns − 1)(2Ns − 1)

6

−Nt(Nt − 1)

2
ζ sin θNs(Ns − 1)

] L∑
l=1

l2A2
l ,

∆(ω0, θ) ≈
[
− Nt(Nt − 1)

2
ω0ζ cos θ

Ns(Ns − 1)

2
(E.38)

+Ntω0ζ
2 sin 2θ

2

Ns(Ns − 1)(2Ns − 1)

6

] L∑
l=1

l2A2
l ,

∆(ω0, Al) ≈ 0 (E.39)

∆(ω0, φl) ≈
[
Nt(Nt − 1)

2
Ns −Ntζ sin θ

Ns(Ns − 1)

2

]
lA2

l , (E.40)

∆(θ, θ) ≈ Ntω
2
0ζ

2 cos θ
Ns(Ns − 1)(2Ns − 1)

6

L∑
l=1

l2A2
l , (E.41)

∆(θ,Al) ≈ 0 , (E.42)

∆(θ, φl) ≈ −Ntω0ζ cos θ
Ns(Ns − 1)

2
lA2

l , (E.43)

∆(Ap, Aq) =

{
NtNs, p = q

(≈)0, p 6= q ,
(E.44)

∆(Ap, φq) =

{
0, p = q

(≈)0, p 6= q ,
(E.45)

∆(φp, φq) =

{
NtNsA

2
l , p = q

(≈)0, p = q ,
(E.46)

where ζ = fsd
c . Furthermore, we know that [41][

A U
V B

]−1

=

[
C−1 −C−1UB−1

−B−1VC−1 B−1VC−1UB−1 + B−1

]
, (E.47)

with C = A − UB−1V. We now apply (E.47) on the FIM with the expressions in
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(E.37)-(E.46) and with

A =

[
∆(ω0, ω0) ∆(ω0, θ)
∆(θ, ω0) ∆(θ, θ)

]
, (E.48)

U =

[
0 ∆(ω0, φ1) · · · 0 ∆(ω0, φL)
0 ∆(θ, φ1) · · · 0 ∆(θ, φL)

]
(E.49)

= VH , (E.50)
B = diag{[∆(A1, A1) ∆(φ1, φ1) · · · (E.51)

∆(AL, AL) ∆(φL, φL)]} .

The asymptotic CRBs of the DOA and the pitch can then be found from the diagonal
elements of the matrix, C−1. Here, we only derive the asymptotic CRBs for these
two parameters while the derivations for the other parameters are left to the interested
reader. Some tedious manipulations yield

CRB(ω0) ≈ 6

N3
t Ns

PSNR−1 , (E.52)

CRB(θ) ≈
[(

c

ω0fsd cos θ

)2
6

NtN3
s

+

(
tan θ

ω0

)2
6

N3
t Ns

]
PSNR−1 , (E.53)

where

PSNR =

∑L
l=1 l

2A2
l

σ2
(E.54)

is the so-called pseudo signal-to-noise ratio. In Fig. E.2, we see that the asymptotic
bounds indeed approaches the exact bounds for large Nss and Nts. To obtain the results
in Fig. E.2, we used the following set up: the pitch was f0 = 100 Hz, the DOA was
θ = 20◦, the model order was L = 4, the variance of the noise was σ2 = 0.1, the
sampling frequency was fs = 2 kHz, the wave propagation speed was c = 340 m/s,
and the inter-element spacing was d = 2c/fs. Furthermore, the number of sensors was
Ns = 20 for the simulations with varying Nt, and the number of samples was Nt = 20
for the simulations with varying Ns.

3.3 Motivation for Joint DOA and Pitch Estimation
By investigating the asymptotic CRB expressions, it can be seen that the bound for ω0

is decreasing cubically in Nt and linearly in Ns. The bound for θ consists of two terms;
one of the terms is linear in Nt and cubical in Ns, and vice versa for the other term.
Moreover, it can be seen that it is beneficial to estimate the DOA and the pitch jointly



4. Joint DOA and Pitch Estimation 131

20 40 60 80 100 120 140 160 180 200
10

−8

10
−7

10
−6

Nt

C
R
B
(ω

0
)

 

 
Exact
Asymp.

20 40 60 80 100 120 140 160 180 200
10

−8

10
−7

10
−6

10
−5

Nt

C
R
B
(θ
)

 

 
Exact
Asymp.

20 40 60 80 100 120 140 160 180 200
10

−10

10
−9

10
−8

10
−7

10
−6

Ns

C
R
B
(ω

0
)

 

 
Exact
Asymp.

20 40 60 80 100 120 140 160 180 200
10

−8

10
−7

10
−6

10
−5

Ns

C
R
B
(θ
)

 

 
Exact
Asymp.

Fig. E.2: Plot of the exact and asymptotic Cramér-Rao bounds for (top) the pitch and (bottom)
the DOA of the joint DOA and pitch estimation problem as a function of (left) Nt and (right) Ns.

rather then separately. First, we can see from the asymptotic DOA bound in (E.53) that
the CRB is decreased by taking the harmonic signal structure into account as opposed
to if we estimated the DOA of a single sinusoid since the bound depends on the PSNR.
Moreover, we can see from the asymptotic bound in (E.52) that the CRB of the pitch
can be decreased linearly by increasing the number of sensors, Ns.

The DOA and the pitch could also be estimated separately using a two-step proce-
dure where we 1) estimate the DOA and extract the signal impinging from the estimated
DOA, and 2) estimate the pitch from the extracted signal. Similarly, we could also es-
timate the pitch first, extract the signal with the estimated pitch, and then estimate
the DOA of the extracted signal. We will term such estimation methods as cascaded
methods. The cascaded methods, however, will most likely increase the CRBs of the
parameters to be estimated in the second step. The cause of the CRB increase is the sig-
nal extraction occurring in the first step of the cascaded methods, since the extraction
is often performed by a filter which, in general, does not span or contains the subspace
spanned by the gradient matrix, Dnt(ψ).

4 Joint DOA and Pitch Estimation
In this section, we propose two estimators that jointly estimate the DOA and the pitch
of a periodic source that is sampled by a ULA. The methods are based on nonlinear
least-squares (NLS), and they are derived under a white Gaussian noise assumption.
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4.1 Nonlinear Least-Squares Method
First, we derive the NLS method for joint DOA and pitch estimation. The NLS method
is derived under the assumption that the noise is white Gaussian. If the noise is indeed
white Gaussian, the proposed NLS method resembles the maximum likelihood (ML)
estimator, i.e., it will attain the CRB. The proposed NLS method may even provide
accurate estimates when the noise is not white Gaussian, as the NLS method for a
single sinusoid derived for white Gaussian noise is asymptotically efficient even for
colored noise [42].

In this paper, the attenuation matrix β is considered as known, i.e., the joint NLS
estimates of the DOA and pitch are found by solving{

θ̂, ω̂0

}
= arg min

α,{θ,ω0}∈Θ×Ω

∥∥y − Z̄α
∥∥2

2
, (E.55)

with ‖ · ‖2 denoting the `2-norm. Minimizing (E.55) with respect to the complex am-
plitude vector, α, yields

α̂ = (Z̄HZ̄)−1Z̄Hy . (E.56)

If we then insert (E.56) into (E.55), we get that{
θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
yHZ̄

(
Z̄HZ̄

)−1
Z̄Hy , (E.57)

The above estimator is referred to as the NLS estimator. If we keep only the highest
order terms, the complexity of the estimator per point in the search grid Θ × Ω is
O(NL2 +L3) whereN = NtNs. On basis of (E.57), we define the NLS cost-functions
as

JNLS(θ, ω0) =
∥∥Z̄Hy

∥∥2

(Z̄H Z̄)
−1

= Tr
{

Z̄HyyHZ̄
(
Z̄HZ̄

)−1
}
, (E.58)

with ‖ · ‖2W denotes the weighted `2-norm where W is the weighting matrix. Instead
of only using a single-data snapshot, y, in the cost-function in (E.58), we could replace
y by

yns(nt) = vec


 yns(nt) · · · yns(nt −M ′t )

...
. . .

...
yns+M ′s (nt) · · · yns+M ′s (nt −M ′t )


 , (E.59)

with M ′s = Ms − 1, M ′t = Mt − 1, Ms ≤ Ns, and Mt ≤ Nt in (E.58). If we then take
the expected value, we get

E
{
‖Z̄Hyns(nt)‖2(Z̄H Z̄)−1

}
= Tr

{
Z̄HRZ̄

(
Z̄HZ̄

)−1
}
. (E.60)
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That is, we can also estimate the DOA and pitch jointly by matching the signal model
to the covariance matrix, R, of yns(nt) as{

θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
Tr
{

Z̄HRZ̄
(
Z̄HZ̄

)−1
}
. (E.61)

The computational complexity per grid point for the expectation based estimator is
O(L2M + LM2 + L3) where M = MtMs. Note that even though this complexity
looks worse than for the single snapshot NLS estimator it might not be the case in all
scenarios since M ≤ N .

In practice, we do not know the exact covariance matrix R, but we can replace it
by, e.g., the sample covariance matrix estimate defined as [19]

R̂ =

Ns−Ms∑
ms=0

Nt−Mt∑
mt=0

yms(nt −mt)y
H
ms

(nt −mt)

(Ns −M ′s )(Nt −M ′t )
. (E.62)

The gradient of the cost-function, JNLS(θ, ω0), is given by

∇JNLS(θ, ω0) =
[
∂JNLS
∂θ

∂JNLS
∂ω0

]T
, (E.63)

where
∂JNLS

∂θ
=yH

(
GθP

⊥ + P⊥GH
θ

)
y , (E.64)

∂JNLS

∂ω0
=yH

(
Gω0

P⊥ + P⊥GH
ω0

)
y, (E.65)

with

P⊥ = (I−P), (E.66)

P = Z̄(Z̄HZ̄)−1Z̄H , (E.67)

Gθ = Z̄
(
Z̄HZ̄

)−1
YH
θ B , (E.68)

Gω0 = Z̄
(
Z̄HZ̄

)−1
YH
ω0

B , (E.69)

[Yθ]pq = −jqω0ζ cos θks,pe
−jqω0(ζ sin θks,p+kt,p) , (E.70)

[Yω0 ]pq = −jq (ζ sin θks,p + kt,p) e
−jqω0(ζ sin θks,p+kt,p) , (E.71)

ks,p = (p − 1) (mod Ms) and kt,p = bp−1
Ms
c. Note that y (mod x) denotes that y is

modulo x, and b·c is the floor operator. Using the gradient in (E.63), we can iteratively
obtain refined estimates of the DOA and the pitch as[

θ̂(i+1)

ω̂
(i+1)
0

]
=

[
θ̂(i)

ω̂
(i)
0

]
+ δ∇JNLS , (E.72)

where i is the iteration index and δ > 0 is a small constant which can be found using a
line search algorithm.
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4.2 Approximate Nonlinear Least-Squares Method
When the number of spatial and temporal samples are large, the harmonics are close to
being orthogonal, i.e., [9]

lim
M→∞

1

M
ZHZ = I . (E.73)

Therefore, cf. (E.14) and the mixed-product property

(A⊗B)(C⊗D) = AC⊗BD, (E.74)

it can be shown that

lim
M→∞

1

M
Z̄HZ̄ =

‖β‖22
Ms

I . (E.75)

Inserting (E.75) into (E.57) yields the approximate NLS (aNLS) estimator defined as{
θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
yHZ̄Z̄Hy . (E.76)

That is, the aNLS cost-function is given by

JaNLS(θ, ω0) = ‖Z̄Hy‖22 . (E.77)

The computational complexity per search grid point of the aNLS estimator is O(NL),
i.e., it is only quadratic compared to the complexity of the NLS estimator which was
cubic1. As for the NLS method, we also propose an alternative covariance-based esti-
mator {

θ̂, ω̂0

}
= arg max

{θ,ω0}∈Θ×Ω
Tr
{
Z̄HRZ̄

}
(E.78)

The computational complexity of evaluating the expectation based aNLS estimator in
each point of the search grid is O(M2L + ML2). Note that the alternative aNLS
cost-function in (E.78) can be interpreted as the output power of a periodogram-based
filterbank when B = I.

The expressions for the partial derivatives of the aNLS cost-function are given by

∂JaNLS

∂θ
= yH

(
BYθZ̄

H + Z̄Y
H
θ B
)

y , (E.79)

∂JaNLS

∂ω0
= yH

(
BYω0

Z̄H + Z̄Y
H
ω0

B
)

y . (E.80)

We can then obtain refined aNLS estimates by using (E.79) and (E.80) in (E.72).
1Here, we consider all unknown variables as one variable when counting the order, i.e., O(NL) is con-

sidered as a second order term.
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5 Experimental Results
To evaluate the proposed joint DOA and pitch estimators, we conducted simulations on
both synthetic as well as real-life data. The results from these simulations are explained
in the following subsections.

5.1 Statistical Evaluation
We conducted several series of Monte-Carlo simulations using synthetic data. In all of
these simulations, the sampling frequency was fs = 8 kHz, the speed of sound was
assumed to be c = 343.2 m/s, the array was uniform and linear with d = c

fs
, there

was no attenuation across the sensors such that B = I, and the desired signal was
designed to be a harmonic signal with f0 = 243 Hz, θ = 15◦, L = 5 and αl = 1.
We estimated the pitch and DOA in each of the simulations using different estima-
tors including the proposed; besides the proposed estimators, we used the multichannel
maximum likelihood (MC-ML) and multichannel approximate maximum likelihood
(MC-aML) estimators [43] for pitch estimation, and we used the steered response
power (SRP) method, the steered response power with phase transform (SRP-PHAT)
method [44, 45], and the broadband MVDR (bMVDR) beamformer [17] for DOA es-
timation. Finally, we used the position-pitch plane (PoPi) based estimator in [32], the
subspace (Sub.) method in [30], and the LCMV filtering (LCMV) method in [35] for
joint DOA and pitch estimation. For pitch estimation, we compare with the MC-ML and
MC-aMLS estimators since these were shown to outperform the multi-channel pitch es-
timators in [46, 47]. Note that in our implementations of the SRP and bMVDR methods
we use an FFT length of 256, and we integrate over all frequency indices whereas in
the SRP-PHAT method we integrate over the frequency indices corresponding to the in-
terval [200 Hz;Lmax{f0,grid}] with max{f0,grid} being our maximum pitch candidate.
Moreover, in our implementation of the bMVDR method, we used 20 blocks of length
bNt/3c to estimate the cross-spectral density. We used an FFT size of 1024 for the PoPi
method, a block size of Nt/2 and a smoothing factor of 5 for the subspace method, and
spatial and temporal filter lengths of max{[2, bNs ·2/3c]} and bNt/4c, respectively, for
the LCMV method.

In each series of Monte-Carlo simulations, the performance of the estimators was
measured in terms mean squared error (MSE). In the first series of Monte-Carlo sim-
ulations, we measured the estimation performance as a function of the signal-to-noise
ratio (SNR) defined as

SNR = 10 log10

∑L
l=1 |αl|2

σ2
. (E.81)

The number of sensors were Ns = 2 and the number of temporal sample was Nt = 80.
Then, we conducted another series of Monte-Carlo simulations where the estimation
performance was evaluated versus the number of sensors Ns while the SNR was fixed
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to 10 dB and the number of temporal samples wasNt = 60. In the third series, we mea-
sured the performance as a function of the number of temporal samples Nt, and, here,
the SNR was 30 dB while the number of sensors wasNs = 2. Finally, we conducted two
series of Monte-Carlo simulations on synthetic data containing two harmonic sources
each with five harmonics with unit amplitudes. In the first of these series, both sources
had a DOA of 15◦. One of the sources had a pitch of 243 Hz, while pitch of the other
source was varied. The MSEs was then measured as the mean of the MSEs for the
two sources. For this experiment, the number of sensors and samples was Ns = 2 and
Nt = 80, respectively. In the other of these series, the pitch of both sources was 243
Hz, and the DOA of one of the sources was 15◦, while the DOA of the other source was
varying. The number of sensors and samples was Ns = 8 and Nt = 60, respectively, in
this experiment.

The results from all of the series of Monte-Carlo simulations are depicted in Fig.
E.3, and they reveal several interesting facts. First, we note that the proposed NLS es-
timator attains the CRB for both the DOA and pitch when the noise is white Gaussian
and we have a single harmonic sources. This was also expected according to our pre-
vious claims. Moreover, the NLS estimator has a better or similar performance than all
other methods in the comparison. The proposed aNLS estimator, however, is slightly
biased and does therefore not attain the CRB, but in many scenarios it closely follows it.
The PoPi, MC-aML, SRP and SPR-PHAT methods are also biased; therefore, as for the
aNLS method, their performances do not necessarily improve by improving the estima-
tion conditions, e.g., by increasing the SNR, Nt or Ns. Another key observation for the
single-source experiments is that the aNLS method seems to outperform the MC-aML
method in most scenarios in terms of the MSE of the pitch estimates.

In the first two-source scenario2, the DOAs of the sources were the same while
the pitch spacing was varying. The NLS, aNLS, MC-ML and MC-aML methods out-
perform the PoPi and LCMV methods for pitch estimation for pitch spacings above
≈ 0.0155 in this scenario. Moreover, the proposed NLS and aNLS estimators clearly
outperforms all other methods for DOA estimation. It is expected that the SRP, SRP-
PHAT, and bMVDR methods fail in this scenario, as the broadband methods can not
resolve sources with the same DOA. In the other two-source scenario, the two sources
had the same pitch, while the DOA spacing between the sources was altered. Here, we
observe that the proposed methods outperforms all other methods for pitch estimation
for DOA spacings below ≈ −0.87. We note that the MC-ML and MC-aML meth-
ods fail in this scenario, since they only conduct a one-dimensional search. For DOA
estimation, the NLS, aNLS and SRP methods yields the best performance for DOA
spacings below ≈ −0.87.
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Fig. E.3: MSE of (a) pitch and (b) DOA estimates obtained in different scenarios. In all scenarios,
500 Monte-Carlo simulations were conducted for each experimental setup to estimate the MSE
of the parameter estimates.

5.2 Real-life Examples
We also conducted some qualitative experiments to evaluate the performance of the
proposed methods on real-life signals. These experiments were conducted in a meeting
room. The floor plan of the room and the measurement setup are illustrated in Fig. E.4,

2The subspace method is not considered in these scenarios as it is only suited for estimating the parameters
of a single source.
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Fig. E.4: Floor plan of the meeting room used for the real-life experiments. The angle between
the two speakers, ’S1’ and ’S2’, was θ1 ≈ 45◦ and θ2 ≈ −13◦, respectively.

while the height of the room was 2.64 m. In these simulations, the sampling frequency
was fs = 44.1 kHz, the speed of sound was assumed to be c = 343.2 m/s, the room
reverberation time3 at 1 kHz was T60 ≈ 0.53 s, the array was uniform and linear with
d = 4 cm and Ns = 8, we assume that there was no attenuation across the sensors such
that B = I, and the desired signal was assumed to consist of L = 8 harmonics. The
estimators used in these experiments were the same as in the previous simulations with
synthetic data and they were set up similarly.

In the first of the real-life experiments, we played back an anechoic trumpet signal
using the speaker ’S2’. The anechoic trumpet signal was generated by concatenating
anechoic trumpet signal excerpts4. The played back trumpet signal was recorded using
the ULA to obtain a multichannel trumpet signal with slight reverberation. From the
recording, we estimated the pitch and the DOA of the trumpet signal using the estima-
tors mentioned previously. In Fig. E.5, the estimates obtained from this experiment are
depicted. We can see that all of the applied estimators for pitch estimation except the
PoPi and LCMV methods seems to correctly estimate the pitch of the trumpet signal if
we compare the estimates with the spectrogram. Regarding DOA estimation, we can see
that all estimators obtain estimates relatively close to the true DOA except the bMVDR
and LCMV methods which looks heavily biased. Note that the NLS and aNLS meth-
ods yield estimates close to the true parameter values even though recording contains
reverberation and B 6= I in practice. We then conducted a similar experiment where

3Here, the reverberation time is defined as time required for reflections of a direct sound to decay by 60
dB below the level of the direct sound.

4The excerpts were downloaded from http://theremin.music.uiowa.edu/MIS.html

http://theremin.music.uiowa.edu/MIS.html
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Fig. E.5: Estimation results from a real-life experiment with a single source; the source was a
trumpet signal played back using ’S2’. The pitch and DOA estimates of the trumpet signal is
depicted in the top and bottom plots, respectively.

we played back the same trumpet signal using ’S1’ and a speech signal using ’S2’, and
the mixture was recorded using the array. The played back speech signal was a female
speech excerpt taken from the Keele pitch database [48]. In this experiment, the speech
signal was considered noise, so the objective was to estimate the DOA and the pitch
of the trumpet signal. In Fig. E.6, the results from this experiment are shown. Again,
we observe that the pitch estimators except for the PoPi and LCMV estimators seem to
provide correct pitch estimates except at ≈ 7.3 s. For DOA estimation, it seems that
the proposed methods outperform the other methods. The SRP-PHAT method provides
heavily biased estimates, and the estimates of the bMVDR, PoPi, and LCMV methods
seem erroneous. We note that the proposed methods provide good pitch and DOA esti-
mates even though the noise is indeed not white Gaussian in this experiment. In sum-
mary, the proposed methods show comparable or better estimation performance than
other state-of-the-art DOA and pitch estimators in our real-life experiments. Moreover,
the results from these experiments indicate that the proposed methods are applicable
on real-life signals, and that they are robust against reverberation as well as other noise
types than white Gaussian noise. Note that the above observations based on our qualita-
tive experiments may be different for, e.g., other sensor and source positions, and array
structures, due to the complicated nature of reverberant signals.
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Fig. E.6: Estimation results from a real-life experiment with two sources; the sources were a
trumpet signal and a speech signal played back using ’S1’ and ’S2’, respectively. The pitch and
DOA estimates of the trumpet signal is depicted in the top and bottom plots, respectively.

6 Conclusion
In this paper, we have considered joint estimation of the DOA and the pitch of a har-
monic source recorded using a ULA. First, we derived the exact and asymptotic Cramér-
Rao bounds (CRBs) for the joint estimation problem. From the asymptotic bounds, it
is clear that the DOA can be estimated more accurately by taking the harmonic struc-
ture into account compared to if we just estimated the DOA of, e.g., the fundamental
tone. Moreover, these bounds reveal that the pitch can be estimated more accurately
when multiple sensors are used. Then, we proposed two estimators for joint DOA and
pitch estimation, namely the NLS and aNLS methods. The proposed estimators are
maximum likelihood estimators when the noise is white Gaussian, the environment is
anechoic, and the source of interest is in the far-field. We conducted numerous of simu-
lations on synthetic data where the proposed methods and other state-of-the-art methods
for DOA and pitch estimation were applied. The results show that the proposed meth-
ods attains the CRB with the aNLS being slightly biased. In general, the proposed
methods outperform the other methods for both DOA and pitch estimation in terms of
mean squared error. This is even the case in two-source scenarios where the noise is not
white Gaussian only. The results obtained from the two-source scenarios also show that
it is beneficial to estimate the DOAs and the pitches jointly when two sources are hav-
ing the same DOA or pitch, since the methods estimating only one of these parameters
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may fail. Furthermore, we conducted experiments on real-life data. The results from
these experiments indicate that the proposed methods has similar or better estimation
performance than the other applied methods. Moreover, these experiments indicate that
the the proposed methods are applicable on real-life signals, and that they are robust
against reverberation and noise which is not white Gaussian.
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Abstract
In many existing time-domain filtering methods for noise reduction in, e.g., speech pro-
cessing, the filters are causal. Such causal filters can be implemented directly in prac-
tice. However, it is possible to improve the performance of such noise reduction filtering
methods in terms of both noise suppression and signal distortion by allowing the filters
to be non-causal. Non-causal time-domain filters require knowledge of the future, and
are therefore not directly implementable. If the observed signal is processed in blocks,
however, the non-causal filters are implementable. In this paper, we propose such non-
causal time-domain filters for noise reduction in speech applications. We also propose
some performance measures that enable us to evaluate the performance of non-causal
filters. Moreover, it is shown how some of the filters can be updated recursively. Using
the recursive expressions, it is also shown that the output SNRs of the filters always in-
crease as we increase the length of the filter when the desired signal is stationary. From
both the theoretical and practical evaluations of the filters, it is clearly shown that the
performance of time-domain filtering methods for noise reduction can be improved by
introducing non-causality.

1 Introduction
Noise reduction is an important fundamental signal processing problem. In this pa-
per, we consider generic noise reduction filters which are useful for enhancing any
kind of desired signal. An example of a desired signal is speech which is commonly
utilized in a multitude of applications such as telecommunications, teleconferencing,
hearing-aids, and human-machine interfaces. In all these, the speech first has to be
recorded using one or more microphones, and the speech will inevitably be corrupted
by some degree of background noise. The noise could be, for example, other interfer-
ing speakers, fan noise, car noise, etc. Since the noise will reduce the speech quality
and intelligibility, it will most likely have a detrimental impact on speech applications.
In hearing-aids, for example, decreased speech quality can cause listener fatigue. It
is therefore highly important to develop noise reduction methods to reduce the impact
of the noise in various signal processing applications. Over the years, numerous noise
reduction methods have been proposed. For an overview of speech related noise reduc-
tion methods, see, e.g., [1, 2] and the references therein. In general, we can divide these
speech related noise reduction methods into three groups, i.e., spectral-subtractive algo-
rithms [3], statistical-model-based algorithms [4–7], and subspace algorithms [8–11].
The references, [3–5, 8–10], refer to some of the pioneering work within these groups.
Note that in the literature, noise reduction in speech applications is also termed speech
enhancement.

Often, noise reduction methods rely on linear filtering. In such filtering methods,
the noise reduction problem is formulated as a filter design problem. The goal of such
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filter design problems is to design a filter which attenuates the noise as much as possi-
ble while it only introduces an inconsiderable amount of distortion of the desired signal,
e.g., speech. The filter can be derived directly in the time domain or in different trans-
form domains. For example, it is possible to reduce the computational complexity by
utilizing transform domain filters [12]. Two examples of transform domains are the
Fourier [3, 9, 13, 14] and Karhunen-Loève [15, 16] domains. The filters can, though,
be equivalently derived in all domains. In this paper, we consider time-domain filters
only. Moreover, we restrict ourselves to the study of single-channel filters only.

Many existing time-domain filter designs for noise reduction are causal. In this
paper, however, we propose novel non-causal filter designs, and we quantify the per-
formance gain which can be obtained by exploiting non-causality. Note that we only
consider the effects of introducing non-causality in the filter designs and not of introduc-
ing non-causality in the estimation of the signal and noise statistics since the statistics
are assumed to be known exactly in most parts of the paper. The proposed filter de-
signs are based on two different decompositions of the desired signal; three designs are
based on an orthogonal decomposition [12], and one is based on a harmonic decomposi-
tion [17, 18]. The orthogonal decomposition based filters are suitable for enhancing any
kind of desired signal since they are designed using the noise statistics, whereas the har-
monic decomposition based filter is calculated from the statistics of the desired signal
under the assumption that it is periodic. Periodicity or quasi-periodicity is a reasonable
assumption for, e.g., short segments of voiced speech and musical instrument signals.
The two decomposition approaches both have advantages and disadvantages as dis-
cussed in [19]. For example, the orthogonal decomposition based filters can be used for
enhancing any kind of desired signal, however, they are sensible to non-stationary noise
since it is difficult to estimate the noise statistics when the desired signal is present. The
harmonic decomposition filter, on the other hand, is robust against non-stationary noise
since it is based on the statistics of the desired signal, but it will cause distortion of the
desired signal when the periodicity assumption does not hold exactly. It was shown
in [19, 20] that the orthogonal and harmonic decomposition based filters are closely
related, and that it is beneficial to use them jointly for speech enhancement.

In this paper, we generalize the mentioned decompositions such that they support
the derivation of non-causal time-domain filters. Based on these generalized decompo-
sitions, we propose several performance measures suited for evaluation of non-causal
filters. Moreover, we derive different non-causal orthogonal and harmonic decomposi-
tion based filters. Note that the causal filters proposed in [12, 17, 18, 21] can be seen
as special cases of the proposed designs. For the two particular cases where the fil-
ter is causal and anti-causal, respectively, we derive expressions for recursive updates
of the orthogonal decomposition based filters and the maximum output signal-to-noise
ratio of these. From these recursive expressions, it can be shown that the maximum
output SNR always increases if we increase the filter order when the desired signal is
stationary. We quantify the performance gain that can be achieved by introducing non-
causality in the filter design. To this end, we assume that the desired signal is periodic
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and, therefore, has a harmonic structure. Using this assumption, we can obtain exact
closed-form expressions for the performance measures which we can use to precisely
quantify the theoretical gains that can be achieved by using non-causal filters. Finally,
we apply the non-causal filters to noise reduction of noisy speech signals to show the
practical benefits of introducing non-causality in the filter design.

The rest of the paper is organized as follows. In Section 2, we introduce the signal
model utilized in the paper, and we define the problem of designing non-causal time-
domain filters for noise reduction. We then, in Section 3, describe the concept of linear
non-causal filtering for noise reduction for two different signal decompositions. Based
on the different decompositions, we propose several performance measures for non-
causal noise reduction filters in Section 4. In Section 5, we propose new optimal non-
causal noise reduction filters. We show, in Section 6, that some of the filters and their
output signal-to-noise ratios can be updated recursively. In Section 7, we quantify the
performance gain that can be obtained by introducing non-causality in the filter design.
Finally, we conclude on the paper in Section 9.

2 Signal Model and Problem Statement
In this paper, we consider the benefits of introducing non-causality in optimal time-
domain linear filters for noise reduction. The objective of such filters is to extract a
zero-mean desired signal x(n) ∈ R from an observed signal y(n) ∈ R defined as

y(n) = x(n) + v(n) , (F.1)

where v(n) ∈ R is additive noise and n denotes the discrete-time index. The observed
signal y(n) could, for example, be a microphone recording and the desired signal x(n)
could be clean speech. In the rest of the paper, we assume that the noise v(n) is a
zero-mean random process which is uncorrelated with the desired signal.

In some parts of the paper, we assume that the desired signal is quasi-periodic.
This is a reasonable assumption for voiced speech segments. By assuming this specific
signal structure, we can obtain closed-form expressions for certain performance mea-
sures related to optimal filters which are applied on the observed signal. Ultimately, the
closed-form performance measures enable easy quantification of the performance gain
which can be obtained by introducing non-causality in noise reduction filters. This will
become clear from the later sections. When the desired signal is quasi-periodic, we can
express it in terms of a harmonic model. The signal model in (F.1) then becomes

y(n) =

L∑
l=1

Al cos(lω0n+ φl) + v(n) , (F.2)

where ω0 is the fundamental frequency (aka. the pitch), L is the number of harmonics,
Al is the amplitude of the lth harmonic, and φl is the phase of the lth harmonic. In
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this paper, we consider the pitch, ω0, and the model order, L, as known parameters.
Numerous methods for estimation of these parameters exist [17, 18, 22–28]. Using
Euler’s formula, we can also write (F.2) as

y(n) =

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (F.3)

where al = Al
2 e

jφl is the complex amplitude of the lth harmonic, and (·)∗ denotes the
elementwise complex conjugate of a matrix/vector.

To make the notation simpler when deriving the optimal non-causal noise reduction
filters, we stack consecutive samples of the observed signal y(n) into a vector y(nk) ∈
RM×1 where nk = n+ k. The vector signal model is then given by

y(nk) = x(nk) + v(nk) , (F.4)

where

y(nk) =
[
y(nk) y(nk − 1) · · · y(nk −M + 1)

]T
, (F.5)

with (·)T denoting the matrix/vector transpose. Note that the definitions of the desired
signal vector x(nk) and the noise vector v(nk) follow the definition of the observed
signal vector y(nk) in (F.5). Since the observed signal x(n) and the noise v(n) are un-
correlated by assumption, we can obtain a simple expression for the covariance matrix
Ry ∈ RM×M of y(nk) as

Ry = E[y(nk)yT (nk)]

= Rx + Rv , (F.6)

where E[·] is the mathematical expectation operator, Rx = E[x(nk)xT (nk)] is the
covariance matrix of x(nk) and Rv = E[v(nk)vT (nk)] is the covariance matrix of
v(nk). When x(n) is quasi-periodic, we can also model Rx as [29]

Rx ≈ Zk(ω0)PZHk (ω0)

= Z(ω0)PZH(ω0) , (F.7)

with (·)H denoting the complex conjugate transpose operator, and

P = diag
{[
|a1|2 |a∗1|2 · · · |aL|2 |a∗L|2

]}
, (F.8)

Zk(ω0) = Z(ω0)S(k) , (F.9)

Z(ω0) =
[
z(ω0) z∗(ω0) · · · z(Lω0) z∗(Lω0)

]
, (F.10)

z(lω0) =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
, (F.11)

S(k) = diag
{[
ejω0k e−jω0k · · · ejLω0k e−jLω0k

]}
, (F.12)
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where diag{·} denotes the construction of a diagonal matrix from a vector.
The objective in traditional noise reduction methods is to find a “good” estimate

of x(n) or x(n) from the observed signal vector y(n). Within the field of speech
enhancement research there is, in general, consensus on that “good” means the noise
should be reduced as much as possible while the desired signal remains undistorted or
nearly undistorted in the noise reduction process. In this paper, we consider another
approach on noise reduction where we instead estimate x(n) from y(nk) where k ∈
[0;M − 1]. That is, we introduce non-causality in the estimation procedure which,
eventually, can increase the amount of noise reduction.

3 Noise Reduction Using Non-Causal Linear Filters
Filtering methods constitute a commonly used group of methods for noise reduction
tasks such as speech enhancement. In the majority of such filtering methods, a finite
impulse response (FIR) filter is applied on the observed signal vector. If the filter is al-
lowed to be non-causal, we can, in general, write the noise reduction filtering operation
as

x̂k(n) =

M−1−k∑
m=−k

hm,ky(n−m)

= hTk y(nk) , (F.13)

for k ∈ [0;M − 1] and where

hk =
[
h−k,k h−k+1,k · · · h−k+M−1,k

]T
(F.14)

and x̂k(n) should be an estimate of x(n). Traditionally, time-domain filters for noise
reduction have been considered causal, i.e., they have been derived for k = 0 (see,
e.g., [12] and the references therein). In this paper, however, we consider the general
case where k can be any integer in the interval [0;M − 1]. In practice, we can easily
implement non-causal filters by doing block processing and allowing a small delay.

In the last couple of decades, several different causal filter designs have been pro-
posed. The main difference between the designs is how the observed signal is decom-
posed. For the causal filter design problem, we have, for example, the classical, the
orthogonal and the harmonic decompositions [12, 18]. Followingly, we redefine the
orthogonal and harmonic decompositions by introducing non-causality.

3.1 Orthogonal Decomposition
Recently, it was proposed to design causal time-domain noise reduction filter based on
an orthogonal decomposition of the desired signal [12, 21]. By using this approach,



152 PAPER F

it is clear that some components of the signal vector x(n) actually act as interference
when we estimate the desired signal x(n). Here, we generalize this decomposition by
introducing non-causality to enable the estimation of x(n) from x(nk). If we apply the
orthogonal decomposition with respect to x(n) on the signal vector x(nk), we get

x(nk) = x(n)ρxx,k + xi(nk)

= xd(nk) + xi(nk) , (F.15)

where

ρxx,k =
E[x(nk)x(n)]

E[x2(n)]
(F.16)

=
[
ρx(k) ρx(k − 1) · · · ρx(k −M + 1)

]T
,

ρx(m) =
E[x(n+m)x(n)]

E[x2(n)]
. (F.17)

Note that ρx(m) = 1 for m = 0. The elements in xd(nk) in (F.15) are the parts of the
elements in x(nk) which are proportional to the desired signal x(n) and xi(nk) is the
“interference” which is orthogonal to xd(nk). If we insert (F.15) into (F.13), we get

x̂k(n) = hTk xd(nk) + hTk xi(nk) + hTk v(nk)

= xfd,k(n) + xri,k(n) + vrn,k(n) , (F.18)

where xfd,k(n) = hTk xd(nk) is the filtered desired signal, xri,k(n) = hTk xi(nk) is the
residual interference, and vrn(nk) = hTk v(nk) is the residual noise. Since xd(nk),
xi(nk) and v(nk) are all orthogonal to each other, the variance of x̂k(n) is given by

σ2
x̂k

= σ2
xfd,k

+ σ2
xri,k

+ σ2
vrn,k

, (F.19)

where

σ2
xfd,k

= hTkRxd,khk = σ2
x

(
hTk ρxx,k

)2
, (F.20)

σ2
xri,k

= hTkRxi,khk , (F.21)

σ2
vrn,k

= hTkRvhk , (F.22)

Rxd,k = σ2
xρxx,kρ

T
xx,k is the covariance matrix of xd(nk), σ2

x = E[x2(n)] is the vari-
ance of the desired signal, and Rxi,k = E[xi(nk)xTi (nk)] is the covariance matrix of
the interference xi(nk).

We can obtain the following error function for the orthogonal decomposition ap-
proach

ek(n) = xfd,k(n) + xri,k(n) + vrn,k(n)− x(n) . (F.23)
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Compared to the classical filtering approach, the orthogonal decomposition approach
has an extra noise term, namely the residual interference xri,k(n) [12]. Moreover, the
desired signal xfd,k(n) is different from the desired signal in the classical filtering ap-
proach. The design goal is to minimize the effect of xri,k(n) and vrn,k(n) while keeping
the difference between xfd,k(n) and x(n) small. These goals can obviously be fulfilled
by minimizing the error function in the mean square error (MSE) sense, possibly under
some constraints.

3.2 Harmonic Decomposition
The harmonic decomposition approach to noise reduction filter design is a special case
of the classical approach to linear filtering. In the harmonic decomposition, it is as-
sumed that the desired signal is periodic and modeled by the harmonic model in (F.3).
The harmonic model has previously been applied in numerous pitch estimation meth-
ods [18]. Many real-life signals such as audio and voiced speech are quasi-periodic
which makes the harmonic decomposition approach useful in practice. By using the
harmonic model, we can write the signal vector x(nk) as

x(nk) = Z(ω0)a(nk) = x′d(nk) , (F.24)

where

a(nk) =
[
a1e

jω0(n+k) a∗1e
−jω0(n+k) · · · (F.25)

aLe
jLω0(n+k) a∗Le

−jLω0(n+k)
]T

.

In this approach, there is no interference since the harmonic model enables us to use all
information embedded in x(nk) in the estimation of x(n). Moreover, the desired signal
x(n) is the (k + 1)th entry of the vector Z(ω0)a(nk), i.e., we can write it as

x(n) = zr,k(ω0)a(nk) , (F.26)

where zr,k(ω0) is the (k + 1)th row of Z(ω0). An estimate of the desired signal x(n)
can be obtained by inserting (F.24) into (F.13). This yields

x̂k(n) = hTk x′d(nk) + hTk v(nk)

= x′fd,k(n) + vrn,k(n) . (F.27)

where x′fd,k(n) = hTk x′d(nk) is the filtered desired periodic signal. The orthogonality
between the desired signal and the noise enables us to write the variance of x̂k(n) as

σ2
x̂k

= σ2
x′fd,k

+ σ2
vrn,k

. (F.28)
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Since the desired signal is assumed periodic in this approach, the variance of the filtered
signal can also be written as

σ2
x′fd,k

= hTkRx′d,k
hTk

≈ hTkZ(ω0)PZH(ω0)hk , (F.29)

where

Rx′d,k
= E[x′d(nk)x′Td (nk)] ≈ Z(ω0)PZH(ω0) (F.30)

is the covariance matrix of x′d(nk). We can obtain the following error function for
harmonic decomposition approach

ek(n) = x′fd,k(n) + vrn,k(n)− zr,k(ω0)a(nk) . (F.31)

A filter which minimizes the effect of the noise, vrn,k(n), and the difference between
x′fd,k(n) and zr,k(ω0)a(nk) can then be designed by minimizing (F.31), possibly under
some constraints.

4 Performance Measures
Recently, several performance measures for noise reduction tasks were proposed in
[12, 21]. In this section, we generalize these performance measures to encompass non-
causal filters. Note that while the measures are here derived for the orthogonal decom-
position approach, they can easily be derived for the harmonic decomposition approach
by replacing σ2

xfd,k
by σ2

x′fd,k
and σ2

xri,k
by 0.

4.1 Noise Reduction
A common measure of noise reduction is the signal-to-noise ratio (SNR). Here, we
consider two SNRs, i.e., the input SNR (iSNR) and the output SNR (oSNR). The iSNR
is the SNR of the observed signal before filtering

iSNR =
σ2
x

σ2
v

, (F.32)

with σ2
v = E[v2(n)] being the variance of the noise. The oSNR is defined as the SNR

after filtering. When using the orthogonal decomposition, it is therefore given by

oSNR(hk) =
σ2
xfd,k

σ2
xri,k

+ σ2
vrn,k

. (F.33)
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Another measure is the noise reduction factor ξnr(hk). This measure is defined as the
ratio between the noise before and after noise reduction. That is, we can write the factor
as

ξnr(hk) =
σ2
v

σ2
xri,k

+ σ2
vrn,k

. (F.34)

The noise reduction factor is expected to be larger than or equal to 1.

4.2 Signal Distortion
In many noise reduction methods, the desired signal is distorted in the process of noise
reduction. One measure which quantifies this distortion is the desired signal reduction
factor. This factor is defined as the ratio between the variances of the desired signal
before and after filtering, respectively. The measure can also be written as

ξdsr(hk) =
σ2
x

σ2
xfd,k

. (F.35)

If there is no distortion, the desired signal reduction factor will be 1. Otherwise, it will
be different from 1. According to (F.20), this implies that we must require that

hTk ρxx,k = 1 , (F.36)

if a filter should be distortionless. This knowledge can, for example, be applied in the
filter design by using it as a constraint.

When the desired signal is periodic, we can also consider the harmonic distortion
incurred by the filter. The harmonic distortion measure was proposed in [19]. This
measure is defined as the sum of the absolute differences between the powers of the
sinusoids before and after noise reduction, i.e.,

ξhd(hk) = 2

L∑
l

|Pl − Pf,k,l|

= 2

L∑
l

Pl|1− hTk z(lω0)zH(lω0)hk| , (F.37)

where Pf,k,l is the power of the lth harmonic after filtering using hk. The harmonic
distortion measure will be zero when the harmonics are not distorted. Otherwise it will
be larger than zero. Note that the harmonics might be distorted even though (F.36) is
fulfilled.
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5 Optimal Non-Causal Filters for Noise Reduction
In this section, we rederive some optimal orthogonal and harmonic decomposition
based noise reduction filters to obtain non-causal filters. The corresponding causal
filters were derived in [12, 17, 18, 21]. Note that all filters derived here except the har-
monic decomposition based linearly constrained minimum variance (HDLCMV) filter
are based on the orthogonal decomposition.

5.1 Maximum SNR
The maximum SNR filter, hmax,k, is a filter which maximizes the output SNR with
respect to the estimation of x(n). The output SNR is defined in (F.33). If we insert
(F.20)–(F.22) into (F.33), we can also write the output SNR for an orthogonal decom-
position based filter as

oSNR(hk) =
hTkRxd,khk

hTkRin,khk
, (F.38)

where

Rin,k = Rxi,k + Rv (F.39)

is the covariance matrix of the interference-plus-noise. The expression in (F.38) can
also be recognized as a generalized Rayleigh quotient [30]. This quotient is maximized
when the filter, hk, equals the eigenvector umax,k corresponding to the largest eigen-
value, λmax,k, of R−1

in,kRxd,k . Clearly, R−1
in,kRxd,k is rank one, i.e.,

λmax,k = Tr
(
R−1

in,kRxd,k

)
= σ2

xρ
T
xx,kR

−1
in,kρxx,k (F.40)

= oSNR(hmax,k) ,

with Tr(·) denoting the trace operator. An important observation from the above ex-
pression is that, in general, λmax,p 6= λmax,q for p 6= q. That is, the output SNR may
be different for different ks which means that we may be able to improve the oSNR by
introducing non-causality in the filter design.

From (F.40), we can readily see that umax,k and thus hmax,k are given by

hmax,k = αkR
−1
in,kρxx,k , (F.41)

where αk 6= 0 is some arbitrary scaling factor. As it will become clear soon, the only
difference between the orthogonal decomposition based filters described in this paper,
is the scaling factor αk.
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5.2 Wiener
In the orthogonal decomposition based Wiener (ODW) filter design, the filter is de-
signed by minimizing the MSE. The MSE criterion, J(hk), can be written as

J(hk) = E[e2
k(n)]

= σ2
x

(
hTk ρxx,k − 1

)2
+ hTkRin,khk . (F.42)

The minimizer of J(hk) is found by differentiating with respect to hk and equating
with zero. If we do this, we get the following expression for the non-causal orthogonal
decomposition based Wiener filter

hODW,k = σ2
xR
−1
y ρxx,k . (F.43)

If we note that Ry can also be written as

Ry = σ2
xρxx,kρ

T
xx,k + Rin,k , (F.44)

and if we apply the matrix inversion lemma on R−1
y , we can obtain another expression,

hODW,k =
σ2
x

1 + λmax,k
R−1

in,kρxx,k , (F.45)

for the Wiener filter. It appears from this expression that the ODW filter indeed maxi-
mizes the output SNR since it is just a scaled version of the maximum SNR filter where
the scaling factor, αW,k, is given by

αODW,k =
σ2
x

1 + λmax,k
. (F.46)

The output SNR of the non-causal ODW filter is therefore given by

oSNR(hODW,k) = oSNR(hmax,k) . (F.47)

5.3 Minimum Variance Distortionless Response
The minimum variance distortionless response (MVDR) filter (aka. the Capon filter)
was proposed by Capon in the context of spatial filtering [31, 32]. Here, the MVDR fil-
ter, or orthogonal decomposition based MVDR (ODMVDR) filter as we term it, is used
for temporal filtering, and it is designed on basis of the orthogonal decomposition. The
ODMVDR filter is designed such that it minimizes the variances of both the residual
interference, xri,k(n), and the residual noise, vrn,k(n). Moreover, the ODMVDR filter
is designed to be distortionless with respect to the desired signal. Such a filter design
can be obtained by solving the following quadratic minimization problem

min
hk

hTkRin,khk s.t. hTk ρxx,k = 1 . (F.48)
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The well-known solution of this optimization problem is given by

hODMVDR,k =
R−1

in,kρxx,k

ρTxx,kR
−1
in,kρxx,k

. (F.49)

It turns out that the ODMVDR filter can be equivalently expressed as

hODMVDR,k =
R−1

y ρxx,k

ρTxx,kR
−1
y ρxx,k

. (F.50)

Another important expression for the ODMVDR filter is given by

hODMVDR,k =
σ2
x

λmax,k
R−1

in,kρxx,k

=
1 + λmax,k

λmax,k
hW,k , (F.51)

from which it is clear that the ODMVDR filter maximizes the output SNR. The scaling
factor, αODMVDR,k, is given by

αODMVDR,k =
σ2
x

λmax,k
. (F.52)

That is, by using the hODMVDR,k, we can have maximum output SNR while not distort-
ing the desired signal, x(n). Since the ODMVDR filter is just a scaled version of the
maximum SNR filter, its output SNR is given by

oSNR(hODMVDR,k) = oSNR(hmax,k) . (F.53)

5.4 Harmonic LCMV
The last filter described in this section, is the HDLCMV filter. This filter design is
inspired by the LCMV beamformer (aka. the Frost beamformer) proposed by Frost in
the context of spatial filtering [33]. Here, we derive a non-causal HDLCMV filter for
temporal filtering. The HDLCMV filter is designed to extract periodic signals modeled
by (F.2), i.e., it is suited for extraction of signals such as voiced speech and musical
instruments. The causal version of the HDLCMV filter was proposed in [17].

Since the non-causal HDLCMV filter is based on the harmonic decomposition, it
utilizes all the information in x(nk) to estimate x(n). In the harmonic decomposi-
tion, there is no interference term as opposed to in the orthogonal decomposition where
we have xi(nk). Therefore, in the harmonic decomposition based filter design, we
only have to minimize the residual noise power, σ2

vrn,k
, without distorting the signal too
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much. The HDLCMV filter, in particular, is designed to minimize σ2
vrn,k

without dis-
torting the harmonics of the desired periodic signal, x(n). Such a filter can be obtained
by solving the following optimization problem

min
hk

hTkRvhk s.t. ZHk hk = 1⇔ ZHhk = zHr,k , (F.54)

where 1 =
[
1 · · · 1

]T
. It can readily be verified that the constraint in (F.54) makes

the filter distortionless with respect to both the desired signal reduction factor and the
harmonic distortion measure, respectively, by applying the covariance matrix model in
(F.35) and (F.37).

The well-known solution to the multiple constrained quadratic optimization prob-
lem in (F.54) is given by

hHDLCMV,k = R−1
v Z

(
ZHR−1

v Z
)−1

zHr,k . (F.55)

In [19], it was shown that we can replace Rv by Ry in the above expression without
changing the filter response. If we do this, we get the following equivalent expression
for the HDLCMV filter

hHDLCMV,k = R−1
y Z

(
ZHR−1

y Z
)−1

zHr,k . (F.56)

This expression is interesting since we can find the optimal HDLCMV filter without
knowing the noise statistics which is often a requirement in noise reduction methods.
On the other hand, we need to know the pitch, ω0, and the number of harmonics, L,
of the desired signal, x(n). When the HDLCMV filter is applied to a noise corrupted
periodic signal, the output SNR can be found by replacing σ2

xfd,k
by σ2

x′fd,k
and σ2

xri,k
by

0 in (F.33). If we do this, we get the following expression

oSNR(hHDLCMV,k) ≈
hTHDLCMV,kZPZHhHDLCMV,k

hTHDLCMV,kRvhHDLCMV,k

=
σ2
x

zr,k
(
ZHR−1

v Z
)−1

zHr,k

. (F.57)

6 Recursive Filter Updates and the Maximum Output
SNR

We now show how the ODW and ODMVDR filters presented in the previous section can
be updated recursively. As a by product of this result, we also show how the maximum
output SNR can be updated recursively which, eventually, proofs that the maximum
output SNR always increases when the filter order M is increased. Here, we only
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provide the recursion for k = 0, but it can be generalized for all ks. Note that the
derived recursive expressions also holds for k = M − 1 due to prediction symmetry.

From (F.43) and (F.50) it is clear that the ODW and ODMVDR filters both depend
on R−1

y ρxx for k = 0 where ρxx = ρxx,0. Therefore, to find recursive filter and
output SNR expressions, we derive a recursive expression for R−1

y ρxx. To simplify the
derivations of the recursion, we introduce a slightly different notation. First, we define
the length m observed signal vector as

ym(n) =
[
y(n) y(n− 1) · · · y(n−m+ 1)

]T
=
[
yTm−1(n) y(n−m+ 1)

]T
. (F.58)

Using the above expression, we can write the covariance matrix of the observed signal
as

Rm = E
[
ym(n)yTm(n)

]
=

[
Rm−1 rb,m−1

rTb,m−1 r(0)

]
, (F.59)

where

rb,m−1 =
[
r(m− 1) r(m− 2) · · · r(1)

]T
, (F.60)

r(i) = E[y(n)y(n− i)] , i = 0, 1, . . . ,m− 1 . (F.61)

Using the new notation, we can write the Wiener-Hopf equations as

Rmgm = pm , (F.62)

where

pm = ρxx

=
[
p(0) p(1) · · · p(m− 1)

]T
=
[
pTm−1 p(m− 1)

]
. (F.63)

We know from backward linear prediction theory that

Rm−1bm−1 = rb,m−1 , (F.64)

where bm−1 is the length (m − 1) optimal linear backward predictor. Moreover, we
know that

Rm

[
−bm−1

1

]
=

[
0

Em−1

]
, (F.65)
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with Em−1 being the prediction error energy defined as

Em−1 = r(0)− rTb,m−1bm−1 . (F.66)

Consider now the following expression

Rm

[
gm−1

0

]
=

[
Rm−1 rb,m−1

rTb,m−1 r(0)

] [
gm−1

0

]
=

[
pm−1

rTb,m−1gm−1

]
. (F.67)

If we use (F.64) on in the above expression we immediately see that

rb,m−1gm−1 = bTm−1pm−1 . (F.68)

Then we subtract (F.67) from (F.62) which yields

Rm

(
gm −

[
gm−1

0

])
=

[
0

γm−1

]
, (F.69)

where

γm−1 = p(m− 1)− bTm−1pm−1 . (F.70)

If we multiply both sides of (F.65) with γm−1

Em−1
and compare it to (F.69), we can obtain

that

gm =

[
gm−1

0

]
− γm−1

Em−1

[
bm−1

−1

]
. (F.71)

That is, if we use the above expression in connection with the Levinson-Durbin algo-
rithm, we can calculate R−1

y ρxx recursively. The resulting algorithm is depicted in
Table F.1. Note that in Table F.1, the matrix Jm ∈ Rm×m is defined as

Jm =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0

 , (F.72)

and κm can be interpreted as the reflection coefficient.
We can now use the algorithm in Table F.1 to recursively calculate the orthogonal

decomposition based Wiener and MVDR filters for k = 0 using the definitions in (F.43)
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Table F.1: Efficient and recursive computation of R−1
y ρxx.

E0 = r(0)
for m = 1, . . . ,M
γm−1 = p(m− 1)− bTm−1pm−1

κm =
1

Em−1

[
r(m)− bTm−1Jm−1rb,m−1

]
gm =

[
gm−1

0

]
− γm−1

κm−1

[
bm−1

−1

]
bm =

[
0

bm−1

]
− κmJm

[
bm−1

−1

]
Em = Em−1(1− κ2

m)
end

and (F.51), respectively. By doing this, we get the following recursive expressions for
the filters

hODW,0,m = σ2
xgm

= σ2
x

[
gm−1

0

]
− γm−1

κm−1

[
bm−1

−1

]
, (F.73)

hODMVDR,0,m =
gm

pTmgm

=

[
gm−1

0

]
− γm−1

κm−1

[
bm−1

−1

]
pTm−1hm−1 +

γ2
m−1

Em−1

, (F.74)

where the third subscript on the filters denotes the filter order. By calculating the Wiener
and MVDR filters using the recursive procedure in Table F.1, we can reduce the com-
putational complexity significantly compared to when the filters are calculated directly
using (F.43) and (F.50), respectively [34]. Similar recursive filter expressions can be
found for the non-causal filters where k is between 0 and M − 1.

Moreover, we can use the recursive algorithm developed in this section, to find a
recursive expression for the maximum output SNR when using orthogonal decomposi-
tion based filters. Again, we only derive the recursive expression for k = 0 (and thereby
also for k = M − 1), but it can be generalized to different ks. First, we have to rewrite
the expression for the maximum output SNR. It can be seen that the covariance matrix,
Rxi,k , of the interference vector, xi(nk), is given by

Rxi,k = Rx − σ2
xρxx,kρ

T
xx,k . (F.75)

If we then insert (F.75) into (F.39) which is then inserted into (F.40), and if we use the
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matrix inversion lemma, we can show that

oSNRmax,k = σ2
xρ

T
xx,k

(
Ry − σ2

xρxx,kρ
T
xx,k

)−1
ρxx,k

=
1(

σ2
xρ

T
xx,kR

−1
y ρxx,k

)−1

− 1
. (F.76)

We now consider the case where k = 0. In this case, we can use the recursive expres-
sions in Table F.1 to write

ρTxxR
−1
y ρxx = pTmgm

= pTm

([
gm−1

0

]
− γm−1

κm−1

[
bm−1

−1

])
= pTm−1gm−1 +

γ2
m−1

Em−1
. (F.77)

If we substitute (F.77) back into (F.76) we get

oSNRmax,0,m =
1[

σ2
x

(
pTm−1gm−1 +

γ2
m−1

Em−1

)]−1

− 1

. (F.78)

From the above expression, we can readily see that the output SNR will always increase
as we increase m when the desired signal is stationary.

7 Study of Output SNR and Distortion
In this section, we investigate the performance of all the non-causal filters proposed in
this paper when the desired signal is periodic. The assumption of periodicity enables
us to exactly quantify the gains which can be obtained by introducing non-causality in
the filters since we can then model the requisite statistics with closed-form expressions.
First, we conduct a study where we measure the performance of all the non-causal
filters as a function of k. Then, we investigate the asymptotic behavior of the maximum
output SNR for different ks.

7.1 Filter Performances for Small M
We now investigate the performance of the non-causal ODW, ODMVDR, and HDL-
CMV filters in terms of output SNR and harmonic distortion when the filters are ap-
plied on periodic signals. First, we derive closed-form expressions for the performance
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measures under the assumption of periodicity. When the desired signal is periodic, we
know that

ρxx,k =
Rxik

iTkRxik

≈
ZPzHr,k
σ2
x

, (F.79)

where ik ∈ RM×1 is a vector of zeros except at the kth entry which is a 1. If we insert
(F.79) into (F.40), we see that the output SNR for the ODW and ODMVDR filters is

oSNR(hODW,k) = oSNR(hODMVDR,k)

≈
zr,kPZHR−1

in,kZPzHr,k

σ2
x

(F.80)

when they are applied on periodic signals. The output SNR for the HDLCMV filter on
periodic signals are given in (F.57). To find expressions for the harmonic distortion of
the ODW and ODMVDR filters, we need expression for the filters for periodic signals.
These can be obtained by inserting (F.79) into (F.43) and (F.50) which yields

hODW,k ≈ R−1
y ZPzHr,k , (F.81)

hODMVDR,k ≈
R−1

y ZPzHr,k

zr,kPZHR−1
y ZPzHr,k

. (F.82)

We can then obtain closed-form expression for the harmonic distortion of the ODW and
ODMVDR filters by inserting (F.81) and (F.82) into (F.37)

ξhd(hODW) ≈ 2

L∑
l=1

Pl

∣∣∣∣1− ∣∣∣zr,kPZHR−1
y z(lω0)

∣∣∣2∣∣∣∣ , (F.83)

ξhd(hODMVDR) ≈ 2

L∑
l=1

Pl

∣∣∣∣∣∣∣1−
σ4
x

∣∣∣zr,kPZHR−1
y z(lω0)

∣∣∣2(
zr,kPZHR−1

y ZPzHr,k

)2

∣∣∣∣∣∣∣ . (F.84)

The harmonic distortion for the HDLCMV filter will always be zero due to its con-
straints.

Followingly, we have evaluated the performances of the ODW, ODMVDR, and
HDLCMV filters in different scenarios. We evaluated the performances when the filters
were applied for enhancement of a periodic signal, x(n), in noise, v(n). The periodic
signal was constituted by L = 6 harmonic sinusoids with a pitch of ω0 = 0.1578. The
amplitudes of the harmonics were chosen to be[

A1 · · · A6

]
=
[
1 0.8 0.5 0.35 0.2 0.1

]
. (F.85)
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Fig. F.1: Performance measures and filter responses of the ODW, ODMVDR, and HDLCMV
filters for (a) M = 30 and (b) M = 50 when the noise is white Gaussian and the input SNR is
10 dB.

By using decreasing amplitudes, we can get insight into how the filters perform with
respect to noise reduction of, for example, voiced speech. First, we evaluated the per-
formances when the desired signal was corrupted by white Gaussian noise at an input
SNR of 10 dB, and when the filter order was M = 30. In Fig. F.1a the results are
shown for different values of k. From these results, it is clear that the output SNR can
be improved significantly by changing k compared to the traditional approach where
k = 0. For the ODW and ODMVDR filters, the output SNR can be improved by ≈ 3
dB by choosing k = 12, and for the HDLCMV filter an improvement of ≈ 4 dB is
obtainable by choosing k = 14. It is important to note that we do not necessarily in-
troduce additional harmonic distortion by improving the output SNR by changing k. In
this case, the harmonic distortion is also lowered compared to k = 0 for both the ODW
and ODMVDR filters when the output SNR is maximized in k. Also, in Fig. F.1a, we
have plotted the responses of the filters, for both k = 0 and for the k that maximizes
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Fig. F.2: Performance measures and filter responses of the ODW, ODMVDR, and HDLCMV
filters for (a) M = 30 and (b) M = 100 when the noise is a sum of sinusoidal noise and white
Gaussian. The ratio between the desired signal and the white noise is 10 dB and the input SNR
is ≈ −0.09 dB.

the output SNR. It is clear from the filter responses, that the noise reduction can be
improved significantly for ω > 1 by choosing k 6= 0.

Then we conducted similar simulations, but with a filter order of M = 50. The
results from these simulations are depicted in Fig. F.1b. Now, the gain that can be
obtained by changing k is smaller. Compared to the case with k = 0, we can obtain a
gain of ≈ 0.8 dB if we chose k = 5. Again, we can see that we can improve the output
SNR and harmonic distortion simultaneously by changing k. We also plotted the filter
responses. From these it is clear that we can obtain better noise reduction by choosing
k = 5. This is especially so for high frequencies (ω > 1).

We also conducted simulations where the noise was a sum of white Gaussian noise
and sinusoidal noise. The sinusoidal noise source is used to investigate the impact of
noise resembling voiced speech. In these simulations, the ratio between the desired
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signal and the white Gaussian noise was 10 dB. The sinusoidal noise source was con-
stituted by 3 harmonic sinusoids having a pitch of 0.1932. The amplitudes of the three
harmonics of the sinusoidal noise source were

[
1 0.9 0.3

]
. The input SNR is there-

fore ≈ −0.09 dB in these simulations. Again, we conducted some simulations where
the performances of the filters were evaluated for different ks. The results for a filter
order of M = 30 are shown in Fig. F.2a. In this case, no improvement can be obtained
for the ODW and ODMVDR filters compared to k = 0. For the HDLCMV filter a
small improvement of ≈ 0.1 dB can be obtained by choosing k = 6 instead of k = 0.
While the output SNR for the ODMVDR filter cannot be improved by changing k, its
harmonic distortion can still be reduced. If we take a look on the filter responses, we
can see that the HDLCMV filter for k = 6 provides significantly more noise reduction
for ω > 1 compared to when k = 0.

The simulations with sinusoidal noise were also conducted for a filter order ofM =
100. The results from this simulation are depicted in Fig. F.2b. In these simulations,
we see that the output SNR can be improved by ≈ 0.5 dB by changing k from 0 to 10
for the ODW and ODMVDR filters, and from 0 to 9 for the HDLCMV filter. We can
see that the harmonic distortion of the ODW and ODMVDR filters are also improved
by changing k. Again, it is clear from the frequency responses of the filters that we can
obtain significantly more noise reduction for high frequencies (ω > 1) by optimizing
the output SNR over k.

From the results in Fig. F.1a-F.2b, we can conclude that the k that maximizes the
output SNR is dependent on the filter length, the noise, the fundamental frequency and
the number of harmonics. To the extend of our knowledge, there is no simple expression
for this optimal k and, in practice, it therefore has to be estimated by maximizing over
the estimated output SNRs for all ks in [0; b(M − 1)/2c] at every time instance.

7.2 Filter Performances for Large M

We now consider the performances of the filters when we let M approach infinity.
Recall that the maximum output SNR for the orthogonal decomposition based filters
can be written as

oSNRmax,k =
1(

σ2
xρ

T
xx,kR

−1
y ρxx,k

)−1

− 1
. (F.86)

Inserting (F.79) in (F.86) and applying (F.79) in the left hand side of the denominator in
(F.86) yields

σ2
xρ

T
xx,kR

−1
y ρxx,k =

zr,kPZH
(
ZPZH + Rv

)−1

ZPzHr,k

σ2
x

=
zr,kPCPzHr,k

σ2
x

, (F.87)
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where

C = ZH
(
ZPZH + Rv

)−1

Z . (F.88)

When the noise is a summation of white Gaussian noise and sinusoidal interferers, it
can be shown that [19]

lim
M→∞

C = P−1 . (F.89)

If we combine (F.86), (F.87), and (F.89) we can see that

lim
M→∞

oSNRmax,k =∞ . (F.90)

That is, when M becomes very large and the noise is a sum of white Gaussian noise
and sinusoidal noise, the maximum output SNR of the orthogonal decomposition filter
will approach∞ for all values of k. The same will be the case for the HDLCMV filter
since it equals the ODMVDR filter for large M [19].

Followingly, we consider the asymptotic behavior of the harmonic distortion of
the filters. Again, we assume that the desired signal is periodic. We know that the
HDLCMV filter always has no harmonic distortion due to its constraints, so this filter
is not considered in this investigation. The expression for the ODW and ODMVDR
filters when the desired signal is periodic are given in (F.81) and (F.82). If we then let
M approach infinity we can see that

lim
M→∞

hODMVDR,k = lim
M→∞

hHDLCMV,k = R−1
y ZPzHr,k

= hODW,k . (F.91)

It can now be seen that the harmonic distortion of the ODW and ODMVDR filters
approaches zero when M is increased. This can be seen by inserting (F.91) into (F.37),
and by letting M approach infinity, which yields

lim
M→∞

ξhd(hODW,k) = lim
M→∞

ξhd(hODMVDR,k) = ξhd(hHDLCMV,k)

= 0 . (F.92)

In summary, all filters show the same asymptotic performances for all ks both with
respect to noise reduction and distortion. This motivates using the orthogonal and har-
monic decomposition based filters jointly as considered in [19, 20] for k = 0 since they
have complementary advantages and disadvantages. However, this will not be treated
in this paper.

8 Example: Noise Reduction of Speech
Followingly, we demonstrate the applicability of the proposed non-causal filters on real-
life signals. In particular, we consider noise reduction of speech recordings. First, we
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Fig. F.3: Spectrograms of (a) a clean female speaker signal, (b) a female speaker signal in white
noise at an iSNR of 5 dB, (c) an enhanced signal obtained using a causal ODW filter, (d) an
enhanced signal obtained using a causal ODMVDR filter, (e) an enhanced signal obtained using
a causal HDLCMV filter, (f) an enhanced signal obtained using a non-causal OD Wiener filtering
scheme, (g) an enhanced signal obtained using a non-causal ODMVDR filtering scheme, and (h)
an enhanced signal obtained using a non-causal HDLCMV filtering scheme. The enhancement
filters were all of length M = 60.

considered a 2.2 seconds long speech segment sampled at 8 kHz. The segment contains
a female speaker uttering the sentence “Why where you away a year Roy?”. In Fig.
F.3a, the spectrogram of the clean speech signal is plotted. As it can be seen from this
spectrogram, the speech signal used in the first experiment on real-life speech contains
voiced speech only. This was chosen to allow for the evaluation of the HDLCMV
filter which is only applicable on (quasi-)periodic signals. We added white Gaussian
noise to the speech signal at an average input SNR of 5 dB, and the spectrogram of
the noisy signal is depicted in Fig. F.3b. The noisy signal was then enhanced using
different causal and non-causal filtering schemes; we used causal and non-causal ODW,
ODMVDR, and HDLCMV filtering schemes involving filters of length M = 60. In
the filtering schemes, we used (F.43), (F.51) and (F.56) for different k; for the causal
filtering schemes, k was set to 0 whereas, for the non-causal filtering schemes, k was
chosen such that the estimated output SNRs of the filters were maximized at every
time instance. Note that the applied filters require that the noise and/or signal statistics
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Fig. F.4: Estimated output SNRs over
time for causal and non-causal (a) ODW,
(b) ODMVDR, and (c) HDLCMV filtering
schemes.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30

35

40

45
(a)

L
S

D
 [

d
B

]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30

35

40

45
(b)

L
S

D
 [

d
B

]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30

35

40

45

Time [s]

L
S

D
 [

d
B

]

(c)

 

 

causal non−causal noisy

Fig. F.5: Estimated log-spectral distances over
time for causal and non-causal (a) ODW,
(b) ODMVDR, and (c) HDLCMV filtering
schemes.

are known or estimated in practice which justifies that we require knowledge about
the output SNRs. In all filtering schemes, we recalculated the filters and their output
SNRs at every time instance, n, using the estimated observed signal, desired signal and
noise statistics (R̂y, R̂x, and R̂v). The statistics were estimated from the previous
N = 400 samples of the observed signal, desired signal and noise, respectively. We
focus on comparing the performance of causal and non-causal filters in this section, so
we assume that the noise signal is always available. In practice, we can estimate the
noise statistics during silences by using a voice activity detector (VAD) if the noise is
stationary, or we can estimate the noise statistics even in periods with voice activity
using, e.g., [14, 35]. The ODW and ODMVDR filters were calculated using R̂y and
R̂v, whereas the HDLCMV filter was calculated using R̂y, the pitch estimated at every
time instance, and a fixed harmonic model order of L = 13. We estimated the pitch
using the orthogonality based subspace method in [17, 18] which is freely available
online1. The model order, on the other hand, was chosen on basis of an inspection of

1http://www.morganclaypool.com/page/multi-pitch

http://www.morganclaypool.com/page/multi-pitch
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Fig. F.6: PESQ scores for noisy (a) female and (b) male speech signals enhanced using the causal
ODW filter, the non-causal maximum SNR ODW filtering scheme, the causal ODMVDR filter,
and the non-causal maximum SNR ODMVDR filtering scheme. The scores were measured in
different noise scenarios for different filter lengths.

the spectrogram in Fig. F.3a. Furthermore, in the calculations of the HDLCMV filter,
we regularized the covariance matrix of the observed signal as in [36]

R̂y,reg = (1− γ)R̂y + γ
Tr
{

R̂y

}
M

I . (F.93)
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The regularization is necessary due to estimation errors on the signal statistics and mis-
match between the assumed harmonic model and the speech signal. We experienced
that γ = 0.7 gives consistently good results in terms of oSNR and perceptual scores.

The spectrograms of the resulting enhanced signals obtained using the described
simulation setup are depicted in Fig. F.3c-F.3h. It is clearly indicated by these spec-
trograms that the non-causal filtering schemes reduce the noise more than their causal
counterparts. At the same time, the non-causal filtering schemes do not introduce ad-
ditional distortion of the desired signal compared to the causal filters. To support the
rather subjective observations on the noise reduction performances, we also estimated
the output SNRs for both the non-causal filtering schemes and the causal filters at each
time instance. The estimated output SNRs are depicted in Fig. F.4. As expected, the
non-causal filtering schemes has higher output SNRs at every time instance compared
to the causal filters. This is expected, since we maximize the output SNR at every time
instance in the non-causal filtering schemes. It seems from the results in Fig. F.4 that
the HDLCMV filter outperforms both the ODW and ODMVDR filters in terms of out-
put SNR. This cannot be concluded, however, since the output SNRs for the orthogonal
and harmonic decomposition are defined differently. In practice, the orthogonal decom-
position based filters actually show superior noise reduction performances compared to
the HDLCMV filter according to our listening experience. We also measured the log-
spectral distance (LSD) between the clean signal and the enhanced signals over time,
and the results are depicted in Fig. F.5. First of all, we can see from these results that
the enhanced signals obtained using the non-causal filtering schemes have lower LSDs
compared to the enhanced signals obtained using the causal filters at almost every time
instance. That is, these results indicate that the non-causal filtering schemes have bet-
ter distortion properties compared to the causal filters. Moreover, we can see from the
results in Fig. F.5 that both the ODW and ODMVDR filters outperform the HDLCMV
filter in terms of LSDs. This supports our previous claim on that, in practice, the ODW
and ODMVDR filters introduce less distortion of the desired signal compared to the
HDLCMV filter.

The results from the previous simulations indicate that we can achieve better noise
reduction and distortion performances by using non-causal filtering schemes instead
of non-causal filters. However, these results do not necessarily reflect the achievable
perceptual improvement in performance. Therefore, we conducted another real-life ex-
periment on speech where we considered enhancement of female (sp12.wav) and male
(sp02.wav) speech signals in noise. The speech signals are part of the NOIZEUS speech
corpus [37]. Note that since the utilized speech signals contain segments of unvoiced
speech, we only evaluate the ODW and ODMVDR filters in this experiment. Using
the ODW and ODMVDR non-causal filtering schemes and causal filters considered in
the previous experiment, we conducted simulations where we enhanced the female and
male speech signals in different noise scenarios, for different input SNRs, and for dif-
ferent filter lengths. The necessary statistics for this experiment were estimated as in
the previous simulations. In each simulation, we measured the “Perceptual Evaluation
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of Speech Quality” (PESQ) scores [38] of the different enhanced signals compared to
the clean speech signals using a freely available online toolbox2. The PESQ score is an
objective measure which reflects the perceptual quality of a speech signal. That is, we
can use PESQ scores to evaluate the practical applicability of the non-causal filtering
schemes versus causal filters. The PESQ scores resulting from the simulations involv-
ing the female and male speech signals are shown in Fig. F.6. First, we observe from
these results that the ODW non-causal filtering schemes and causal filters outperform
the ODMVDR non-causal filtering schemes and causal filters, respectively. Moreover,
we observe that, in the simulations with female speech, the non-causal filtering schemes
outperform their causal counterparts in almost all scenarios. Only for some noise types
(street and car), for a 10 dB iSNR, and for small filter lengths, the causal filters get
similar or a slightly better PESQ scores compared to the non-causal filtering schemes.
Finally, we observe that the non-causal OD Wiener and ODMVDR filtering schemes
outperforms their causal versions in all of the considered scenarios with male speech.
Furthermore, by listening to the enhanced signals, it is our experience that the non-
causal filtering schemes indeed outperforms the corresponding causal filter versions in
terms of noise reduction in most scenarios. The enhanced signals used in our informal
listening test can be found at the demo website3 for the paper.

9 Conclusion
In this paper, we proposed novel non-causal time-domain filters for noise reduction in,
e.g., speech applications. The proposed filters are based on the orthogonal and harmonic
signal decompositions. To enable the design of non-causal filters from these decompo-
sitions, we generalized the decompositions. We also proposed performance measures
for evaluating non-causal time-domain filters based on the generalized decompositions.
On a side note, we showed how the non-causal orthogonal decomposition based filters
can be updated recursively when the filter order is increased. This was shown for the
two particular cases where the filters are either causal or anti-causal. A by-product of
these recursive updates is that we can also show how the output SNR is updated re-
cursively which, eventually, proofs that the output SNR is always increased when we
increase the filter length and the desired signal is stationary. We also conducted the-
oretical evaluations of the filters. In these evaluations, we assumed that the desired
signal is periodic and thereby has a harmonic structure. By making this assumption,
it is possible to obtain exact closed-form expressions for the performance measures of
the filters. The theoretical evaluations showed that we can indeed improve both the
output SNR and the harmonic distortion of the filters simultaneously by allowing the
filters to be non-causal. Moreover, we applied the non-causal filters for noise reduction
of noisy real-life speech signals. These simulations showed that the non-causal filters

2http://www.utdallas.edu/~loizou/speech/software.htm
3http://kom.aau.dk/~jrj/Demo/non_causal_filt/demo.html

http://www.utdallas.edu/~loizou/speech/software.htm
http://kom.aau.dk/~jrj/Demo/non_causal_filt/demo.html
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can achieve more noise reduction compared to the causal filters in practice in terms of
output SNR, log-spectral distance and PESQ scores.
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Abstract
Most state-of-the-art filtering methods for speech enhancement require an estimate of
the noise statistics, but the noise statistics are difficult to estimate in practice when
speech is present. Thus, non-stationary noise will have a detrimental impact on the per-
formance of most speech enhancement filters. The impact of such noise can be reduced
by using the signal statistics rather than the noise statistics in the filter design. For ex-
ample, this is possible by assuming a harmonic model for the desired signal; while this
model fits well for voiced speech, it will not be appropriate for unvoiced speech. That
is, signal-dependent methods based on the signal statistics will introduce undesired dis-
tortion for some parts of speech compared to signal-independent methods based on the
noise statistics. Since both the signal-independent and signal-dependent approaches
to speech enhancement have advantages, it is relevant to combine them to reduce the
impact of their individual disadvantages. In this paper, we give theoretical insights into
the relationship between these different approaches, and these reveal a close relation-
ship between the two approaches. This justifies joint use of such filtering methods which
can be beneficial from a practical point of view. Our experimental results confirm that
both signal-independent and signal-dependent approaches have advantages and that
they are closely-related. Moreover, as a part of our experiments, we illustrate the prac-
tical usefulness of combining signal-independent and signal-dependent enhancement
methods by applying such methods jointly on real-life speech.

1 Introduction
Human speech is frequently encountered in several signal processing applications such
as telecommunications, teleconferencing, hearing-aids, and human-machine interfaces.
Before the speech can be utilized in such applications, it must be picked up by one or
more microphones. Unfortunately, the desired signal (in this case speech) will always,
to a certain degree, be corrupted by noise which is present when sampling the signal.
The noise will most likely have a detrimental impact on speech applications since it may
degrade the speech quality and intelligibility. In hearing-aids, for example, a decreased
speech quality (i.e., a high noise level) can cause listener fatigue. Therefore, it is of great
importance to develop methods for reducing the noise of speech recordings before the
speech is utilized in any relevant application. Such methods are typically termed noise
reduction methods or enhancement methods. In the past few decades, developing such
methods have been a major challenge. For an overview of existing enhancement meth-
ods, we refer to, e.g., [1, 2]. In general, we can divide speech enhancement methods
into three groups, i.e., spectral-subtractive algorithms [3], statistical-model-based algo-
rithms [4, 5], and subspace algorithms [6–8]. The references, [3–8], refer to some of
the pioneering work within each of the groups.

A common approach used in speech enhancement is linear filtering. In this ap-
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proach, the speech enhancement problem is formulated as a filter design problem. That
is, a filter should be designed such that it reduces the noise level of the observed sig-
nal as much as possible while not introducing any noticeable distortion of the speech.
The design of such a filter can be performed either directly in the time domain or in
some transform domain. This could for example be in the frequency [3, 7, 9] or in the
Karhunen-Loève expansion (KLE) domains [10]. The advantage of filtering in trans-
form domains can, for example, be a reduced computational complexity. Filters derived
in transform domains, however, can also be derived equivalently in other domains and
vice versa. In this paper, we consider time-domain filters for single-channel recordings
which can also be extended to other domains according to the previous discussion. Typ-
ically, time-domain filters are designed by minimizing some error function like in the
classical Wiener filter design [11]. The first step in the design is therefore to define the
error function.

In the vast majority of filtering methods for speech enhancement, the filter is de-
signed from the statistics of the observed signal and the noise. We term this the signal-
independent filter design approach. In practice, however, the noise signal is not directly
available, and the noise statistics could, for example, be estimated during silence peri-
ods where only the noise is present. The main advantage of this approach is that it is
completely independent of the statistics of the desired speech signal since it only uses
the observed signal and the noise statistics, and it is well-known that the speech struc-
ture changes drastically over time. However, the signal-independent filter approach will
not be influenced by this, since it does not rely on the statistics of the desired signal.
Non-stationary noise, on the other hand, will have a detrimental impact on this filter de-
sign approach since the noise statistics are difficult to estimate when speech is present.

Recently, a signal-dependent filter design approach has been proposed [12]. By
signal-dependent, we mean that the filter is calculated using the statistics of the desired
signal and without using the statistics of the noise. The desired signal is assumed to
be periodic in this approach and is therefore well-modeled by a sum of harmonically
related sinusoids. This type of harmonic modeling has been used extensively within
speech processing. Due to the periodicity assumption, the filter in [12] ends up being
driven only by the pitch, the harmonic model order, and the statistics of the observed
signal. In this paper, the pitch and the number of harmonics will be treated as known
parameters, and we refer the interested reader to [13–22] and the references therein for
an overview of methods for estimation of these parameters when they are unknown.
Since the signal-dependent approach does not depend directly on the noise statistics, it
will be robust against non-stationary noise as opposed to the signal-independent filter
design approach. However, the harmonic model will only be appropriate for voiced
speech segments. For unvoiced speech segments, the signal-dependent approach will
therefore introduce some distortion of the speech signal due to model mismatch.

As highlighted in the previous discussion that the signal-independent and signal-
dependent filter design approaches have complementary advantages and disadvantages.
Therefore, it is highly relevant to investigate if these approaches can be combined to ob-
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tain the advantages of both while reducing the impact of their disadvantages. As a first
step in this direction, we here provide further insight into the relationship between the
signal-independent and signal-dependent filter design approaches in this paper. More
specifically, we consider the relationship between two recently proposed filter designs,
namely the orthogonal decomposition based minimum variance distortionless response
(ODMVDR) filter [23], and the harmonic decomposition linearly constrained mini-
mum variance (HDLCMV) filter [12, 21]. The ODMVDR filter is signal-independent
whereas the HDLCMV filter is signal-dependent. Moreover, we present some closed-
form performance measures for filters designed using both the signal-independent and
signal-dependent design approaches when the desired signal is periodic. A new perfor-
mance measure for the harmonic distortion is also proposed. The closed-form expres-
sions for the performance measures enable easy comparison of the filters. Finally, in
the experimental part of the paper, we propose a filtering scheme where the ODMVDR
and HDLCMV filters are used jointly. By doing this, we can, to some extend, have
the individual advantages of both a signal-independent and a signal-dependent filtering
approach.

The remainder of the paper is organized as follows. In Section 2, we define the
signal model which forms the basis of the paper. Then, in Section 3, we introduce the
notion of using filtering for enhancement purposes for different signal decompositions.
Based on this, we briefly introduce two recently proposed optimal filter designs for
enhancement in Section 4. In Section 5, we perform a theoretical study of the two
filters, and we show that there is a clear link between them. When the desired signal
is periodic, we can obtain closed-form expression for the filter performance measures
which we describe in Section 6. In the experimental part of the paper, in Section 7,
we compare the ODMVDR and HDLCMV filters through simulations, and we propose
and evaluate a scheme where the ODMVDR and HDLCMV filters are used jointly for
speech enhancement. Finally, we conclude on the paper in Section 8.

2 Signal Model
In this paper, we consider the performance and the relationship of recent optimal filter
designs for enhancement of a zero-mean desired signal, x(n) ∈ R1×1, buried in addi-
tive noise, v(n) ∈ R1×1, where n denotes the discrete-time index. That is, the objective
is to recover x(n) from a mixture signal given by

y(n) = x(n) + v(n) . (G.1)

The mixture signal, y(n) ∈ R1×1, could be a microphone recording and the desired
signal could be a speech signal. We assume that the noise, v(n), is a zero-mean random
process uncorrelated with the desired signal, x(n). Specifically, we consider the spe-
cial scenario where x(n) is quasi-periodic which is a reasonable assumption for voiced
speech segments. Considering this special scenario enables us to provide closed-form
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solutions for the enhancement performance measures, and it enables us to investigate
the relationship between different optimal filter designs. These observations will be-
come clear from the later sections.

By assuming quasi-periodicity, we can rewrite the signal model in (G.1) as

y(n) =

L∑
l=1

Al cos(lω0n+ φl) + v(n) , (G.2)

where ω0 is the pitch, L is the number of harmonics, Al is the amplitude of the lth
harmonic, and φl is the phase of the lth harmonic. For many signals, the harmonic
model does not fit exactly due to inharmonicity, but we can cope with this by modifying
the signal model in several ways (see, e.g., [21] and the references therein). However,
inharmonicity is out of the scope of this paper, and it will not be discussed any further.
Without loss of generality, we can also write the signal model in (G.2) as

y(n) =

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (G.3)

with al = Al
2 e

jφl being the complex amplitude of the lth harmonic, and (·)∗ denotes
the element-wise complex conjugate of a matrix/vector.

The observed data can be stacked into a vector, y(n) ∈ RM×1, which enables us to
do block processing. The vector signal model is given by

y(n) = x(n) + v(n) , (G.4)

where

y(n) =
[
y(n) y(n− 1) · · · y(n−M + 1)

]T
, (G.5)

with (·)T denoting the matrix/vector transpose, and the definitions of x(n) ∈ RM×1

and v(n) ∈ RM×1 resemble the definition of y(n). Since we have assumed that x(n)
and v(n) are uncorrelated, we can obtain the following simple expression for the co-
variance matrix, Ry ∈ RM×M , of the observed signal

Ry = E[y(n)yT (n)] = Rx + Rv , (G.6)

where E[·] is the expectation operator, Rx ∈ RM×M is the covariance matrix of x(n)
and Rv ∈ RM×M is the covariance matrix of v(n). Under the assumption of x(n)
being quasi-periodic, we know that Rx can be modeled by [24]

Rx ≈ Z(ω0)PZH(ω0) , (G.7)
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where (·)H denotes the complex conjugate transpose operator, and

P = diag
{[
|a1|2 |a∗1|2 · · · |aL|2 |a∗L|2

]}
, (G.8)

Z(ω0) =
[
z(ω0) z∗(ω0) · · · z(Lω0) z∗(Lω0)

]
, (G.9)

z(lω0) =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
, (G.10)

with diag{·} denoting the construction of a diagonal matrix from a vector. In the re-
mainder of the paper, we denote Z(ω0) as Z to get a simpler notation.

A common goal in different enhancement algorithms is then to find a “good” esti-
mate of x(n) or x(n). Often, in enhancement problems, “good” means that the noise
reduction should be significant while the desired signal remains nearly undistorted. In
this paper, we focus on two recently proposed filtering methods which estimate x(n)
from an observation vector, y(n), of length M .

3 Enhancement by Linear Filtering
Linear filters have been widely used for enhancement purposes. For example, enhance-
ment performed by applying a finite impulse response (FIR) filter to the observed signal
vector, y(n). The filtering operation can be written as

x̂(n) =

M−1∑
m=0

hmy(n−m) = hTy(n) , (G.11)

where

h =
[
h0 h1 · · · hM−1

]T
(G.12)

and x̂(n) should be an estimate of x(n). The output of the filter is often decomposed
into a filtered desired signal part and a filtered noise part to facilitate the filter design.
We here describe three different decompositions of the filter output: the classical, the
orthogonal, and the harmonic decompositions.

3.1 Classical Decomposition
In most classical filtering methods for signal enhancement, the filter output is decom-
posed as

x̂(n) = hTx(n) + hTv(n) = xf(n) + vrn(n), (G.13)

where xf(n) , hTx(n) is the signal after filtering and vrn(n) , hTv(n) is the residual
noise. The goal in the filter design is then two-fold. First, the noise should be attenuated
significantly by filtering. Second, the distortion of the desired signal introduced by
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the filter should be low. Numerous filter designs have been proposed according to
these design criteria. A common approach is to minimize the mean-square error (MSE)
between the desired signal and the enhanced signal, where the error is defined as

e(n) = x(n)− x̂(n) . (G.14)

In [23], however, it was claimed and shown that this approach can be inappropriate
since only some of the information embedded in x(n) is useful for the estimation of
x(n).

3.2 Orthogonal Decomposition
Recently, it has been proposed to design an enhancement filter based on an orthogonal
decomposition of the desired signal since some components of x(n) interfere with the
estimation of the desired signal x(n) [23]. Using the orthogonal decomposition, the
clean signal can be rewritten as

x(n) = x(n)ρxx + xi(n) = xd(n) + xi(n) , (G.15)

where

ρxx =
E[x(n)x(n)]

E[x2(n)]
(G.16)

=
[
1 ρx(1) · · · ρx(M − 1)

]T
,

ρx(m) =
E[x(n−m)x(n)]

E[x2(n)]
. (G.17)

Note that xd(n) is the part of x(n) being proportional to the desired signal x(n) and
xi(n) is the “interference” being orthogonal to xd(n). Inserting (G.15) into (G.13)
yields

x̂(n) = hTxd(n) + hTxi(n) + hTv(n) . (G.18)

It can be shown that the variance of x̂(n) is given by [23]

σ2
x̂ = σ2

xfd
+ σ2

xri
+ σ2

vrn
, (G.19)

where

σ2
xfd

= hTRxdh = σ2
x(hTρxx)2 , (G.20)

σ2
xri

= hTRxih , (G.21)

σ2
vrn

= hTRvh , (G.22)
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Rxd = σ2
xρxxρ

T
xx is the covariance matrix of xd(n), σ2

x = E[x2(n)] is the variance of
the desired signal, and Rxi = E[xi(n)xTi (n)] is the covariance matrix of the interfer-
ence, xi(n).

The main difference between the classical approach and this approach is that we
have two noise terms to minimize in this approach, namely σ2

xri
and σ2

vrn
. Moreover, the

filtered desired signal is different in this approach since it does not include the interfer-
ing part of x(n) which is here considered as noise. Like in the previous approach, the
filter should be designed such that the error in (G.14) is small (e.g., in the MSE sense)
while there is no or only a little distortion of the desired signal.

3.3 Harmonic Decomposition
The harmonic model in (G.2) has been used in many pitch estimation methods [21]. In
general, the model can be used for describing periodic signals as

x(n) = Za(n) = x′d(n) , (G.23)

where

a(n) =
[
a1e

jω0n a∗1e
−jω0n · · · (G.24)

aLe
jLω0n a∗Le

−jLω0n
]T
.

Note that in this approach there is no interference as opposed to in the orthogonal de-
composition approach since all samples in x(n) can be fully used for describing the
desired signal x(n). This is due to the underlying harmonic signal model. Therefore,
the vector, x′d(n), describing the desired signal, x(n), is simply equal to the signal vec-
tor, x(n), in this approach. The desired signal, x(n), is equal to the first entry of the
vector Za(n), i.e.,

x(n) = 1Ta(n) , (G.25)

where 1 =
[
1 · · · 1

]T
. Like in the orthogonal decomposition approach, we can

insert (G.23) into (G.13) which yields the following estimate of x(n)

x̂′(n) = hTx′d(n) + hTv(n) . (G.26)

If we exploit the orthogonality between x′d(n) and v(n) in (G.26), we can write the
variance of x̂′(n) as

σ2
x̂′ = σ2

x′fd
+ σ2

vrn
, (G.27)

where

σ2
x′fd

= hTRx′d
h = hTZPZHh , (G.28)



186 PAPER G

and σ2
vrn

is defined as in (G.22). Moreover, Rx′d
= E

[
x′d(n)x′Td (n)

]
= ZPZH is the

covariance matrix of x′d(n).
Compared to the orthogonal decomposition approach, this approach only has one

noise term, σ2
vrn

. When this approach is used, the filter, h, should therefore be designed
such that it minimizes σ2

vrn
without distorting the x(n) too much.

4 Optimal Filters for Enhancement
We consider two recently proposed filter designs for enhancement of single-channel
signals: 1) the orthogonal decomposition MVDR filter [23] and 2) the harmonic de-
composition LCMV filter [20]. Following, we will revisit the two filter designs.

4.1 Orthogonal Decomposition MVDR
Traditionally, the minimum variance distortionless response (MVDR) filter proposed
by Capon [25, 26] has been derived and applied in the context of multichannel signals.
Recently, however, the MVDR filter has also been applied for single-channel speech
enhancement [23]. Here, we term the MVDR filter proposed in [23] as the orthogonal
decomposition MVDR (ODMVDR) filter. The ODMVDR filter design is based on an
orthogonal decomposition of the desired signal as described in Section 3.2. The filter
is designed to minimize the sum of the residual interference variance, σ2

xri
, and the

residual noise variance, σ2
vrn

, while it should not distort the desired signal. That is,

min
h

hTRinh s.t. hTρxx = 1, (G.29)

where Rin = Rxi +Rv is the interference-plus-noise covariance matrix. The constraint
comes from the measure of desired signal reduction (aka. speech reduction) for the
orthogonal decomposition introduced in [23]

ξdsr(h) =
σ2
x

σ2
xfd

=
1

(hTρxx)2
. (G.30)

When ξdsr(h) = 1 there is no desired signal reduction (or distortion if you will) while
it is expected to be greater than 1 when there is a reduction. That is, to make the filter
distortionless according to this measure, we must require that hTρxx = 1 which exactly
corresponds to the constraint in (G.29).

The well-known solution to the quadratic optimization problem in (G.29) is given
by

hODMVDR =
R−1

in ρxx

ρTxxR
−1
in ρxx

=
R−1

y ρxx

ρTxxR
−1
y ρxx

. (G.31)
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In practice, the correlation vector, ρxx, in (G.31) is replaced by

ρxx =
E[y(n)y(n)]− E[v(n)v(n)]

σ2
y − σ2

v

=
σ2
yρyy − σ2

vρvv

σ2
y − σ2

v

, (G.32)

where σ2
y is the variance of y(n), σ2

v is the variance of v(n), and ρyy and ρvv are defined
similarly to ρxx in (G.16). The evaluation of the performance of the ODMVDR filter
follows from later sections.

4.2 Harmonic Decomposition LCMV
Like the MVDR filter, the linearly constrained minimum variance (LCMV) filter pro-
posed by Frost [27] has mainly been used in multichannel settings. Recently, however,
an LCMV filtering method for enhancement of periodic signals was proposed which is
applicable on single-channel signals [12, 20]. Following, we recast the LCMV design
procedure from [20] such that it is more general and compliant with the harmonic de-
composition in Section 3.3. This design procedure is somewhat similar to that of the
ODMVDR filter.

In the harmonic decomposition LCMV (HDLCMV) filter, it is assumed that the
desired signal is periodic. When the desired signal is periodic and modeled by (G.3), all
information in x(n) can be used in the estimation of x(n) which, in general, is not the
case in the orthogonal decomposition approach where there will be some interference,
xi(n). Therefore, we only need to care about minimizing the residual noise power, σ2

vrn
,

in the harmonic decomposition approach without introducing too much desired signal
distortion. The HDLCMV filter, in particular, is designed such that the residual noise
variance, σ2

vrn
, is minimized while the desired signal, x(n), is passed undistorted. This

can also be casted as the following optimization problem

min
h

hTRvh s.t. ZHh = 1 . (G.33)

To verify that the constraint in (G.33) makes the filter distortionless, we consider the
desired signal reduction measure for the harmonic decomposition approach which is
given by

ξ′dsr(h) =
σ2
x

σ2
x′fd

=
σ2
x

hTZPZHh
. (G.34)

It can be seen that when the signal is periodic, the desired signal variance is given
by σ2

x = 1TP1. That is, the filter will indeed be distortionless with respect to the
distortion measure in (G.34) if it is designed such that Zh = 1. It can also be shown
that the constraint in (G.33) ensures that the individual harmonics are not distorted [24].
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If we solve the quadratic optimization problem with multiple constraints in (G.33),
we get

hHDLCMV = R−1
v Z

(
ZHR−1

v Z
)−1

1 . (G.35)

In the Appendix, we have shown that replacing Rv by Ry does not change the filter
response. If we utilize this, we can also write the HDLCMV filter as

hHDLCMV = R−1
y Z

(
ZHR−1

y Z
)−1

1 . (G.36)

We can see from this expression that if x(n) is periodic, the pitch, ω0, is known, and
the number of harmonics, L, is known, we only need the statistics, Ry, of the observed
signal to design the HDLCMV filter. This is a key difference from the design of the
ODMVDR filter for which we also need to know either the statistics of the desired
signal, ρxx, or of the noise, ρvv .

5 Relation between the ODMVDR and HDLCMV Fil-
ters

Although the ODMVDR and HDLCMV filters were derived under different constraints,
we show in this section that there is a clear link between the filters. For this analysis, we
assume that the noise is a sum of interfering sinusoids and white Gaussian noise such
that

Rv = ZsnPsnZ
H
sn + σ2

wnI , (G.37)

where Zsn and Psn are the steering and power matrices of the sinusoidal noise source,
and σ2

wn is the variance of the white Gaussian noise. The matrices are defined similarly
to (G.8) and (G.9).

It is clear from (G.16) that ρxx corresponds to the first column of Rx normalized
with respect to the signal variance, σ2

x. That is, without loss of generality, we can also
write ρxx as

ρxx =
Rxi

iTRxi
, (G.38)

where i =
[
1 0 · · · 0

]T ∈ RM×1. Under the periodicity assumption, we can
rewrite this expression by inserting (G.7) into (G.38)

ρxx =
ZPZH i

iTZPZH i
=

ZP1

1TP1
=

ZP1

σ2
x

. (G.39)
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If we substitute this expression for ρxx back into the expression for the ODMVDR filter
in (G.31), we get that

hODMVDR = R−1
y ZP1

(
1TPZHR−1

y ZP1
)−1

σ2
x

= σ2
xBP

(
1TPCP1

)−1
1 , (G.40)

where B = R−1
y Z and C = ZHB. Note that using the same notation, the HDLCMV

filter can be written as

hHDLCMV = BC−11 . (G.41)

At a first glance, the filters in (G.40) and (G.41) do not look similar. However, by using
the matrix inversion lemma on C, we see that it can be rewritten as

C = ZH
(
ZPZH + Rv

)−1

Z

= ZH
[
R−1

v −R−1
v Z

(
P−1 + ZHR−1

v Z
)−1

ZHR−1
v

]
Z

= D−D
(
P−1 + D

)−1
D , (G.42)

where D = ZHR−1
v Z. If we also use the matrix inversion lemma on D, we get that

D =
1

σ2
wn

ZHZ− 1

σ2
wn

ZHZsn

(
P−1

sn +
1

σ2
wn

ZHsn Zsn

)−1

ZHsn Z . (G.43)

Moreover, if we then assume that the frequencies of the sinusoidal noise sources are
different from the harmonic frequencies, and if we let M →∞, we can write [21]

lim
M→∞

1

M
ZHZ = I , (G.44)

lim
M→∞

1

M
ZHZsn = 0 . (G.45)

Thus, for large M , we can approximate C as

C ≈ σ−2
v

[
MI−M2

(
σ2
vP
−1 +MI

)−1
]
. (G.46)

Furthermore, it turns out that we can approximate the (p, q)th element of C as

[C]pq ≈


M

σ2
v + PqM

, for p = q

0 , for p 6= q
. (G.47)



190 PAPER G

When M is large and PqM � σ2
v , the expression for the qth diagonal element of C

can be further simplified as [C]qq ≈ P−1
q . In this case, we can write

C ≈ P−1 . (G.48)

If we insert this approximation for C in (G.40), we readily obtain that

lim
M→∞

hODMVDR = BP1

= hHDLCMV . (G.49)

Thus, when the desired signal is periodic, the noise is a summation of interfering si-
nusoids and white Gaussian noise, and the filter order M is large, then the ODMVDR
and HDLCMV filters are approximately identical. This observation is important since
it justifies the joint use of the two filters for enhancement of quasi-periodic signals. The
two different filters are based on different knowledge, i.e., the noise and signal statistics,
respectively. Depending on which statistics are available, the appropriate filter can be
applied. In the experimental part of the paper, we also investigate the relation between
the filters for small Ms.

6 Performance Measures
In [23], a number of performance measures for enhancement methods were introduced.
In this section, we exploit the periodicity of the desired signal to derive closed-form
expressions for the performance measures for each of the filters described in Section 4.

6.1 Noise Reduction
The most fundamental measure of the performance of enhancement algorithms is the
signal-to-noise ratio (SNR). In general, we can consider two SNRs, namely the input
SNR (iSNR) and the output SNR (oSNR). The iSNR is defined as the SNR of the
observed signal before filtering, i.e.,

iSNR =
σ2
x

σ2
v

. (G.50)

The oSNR, on the other hand, is the SNR after noise reduction. That is, when using the
orthogonal decomposition, it is obtained as

oSNROD(h) =
σ2
xfd

σ2
xri

+ σ2
vrn

=
σ2
x

(
hTρxx

)2
hTRinh

. (G.51)

where (·)OD denotes that the measure is applicable when using the orthogonal decom-
position. We can then obtain a closed-form expression for the oSNR of the ODMVDR
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filter when the desired signal is periodic by inserting (G.39) and (G.40) into (G.51).
This yields

oSNROD(hODMVDR) =
1TPZHR−1

in ZP1

σ2
x

. (G.52)

When the harmonic decomposition is utilized, the oSNR is given as

oSNRHD(h) =
σ2
x′fd

σ2
vrn

=
hTZPZHh

hTRvh
, (G.53)

where (·)HD denotes that the measure is applicable when using the harmonic decompo-
sition. A closed-form expression for the oSNR of the HDLCMV filter is then found by
inserting (G.41) into (G.53), which yields

oSNRHD(hHDLCMV) =
σ2
x

1T
(
ZHR−1

v Z
)−1

1
. (G.54)

Yet another performance measure related to the noise reduction, is the so-called
noise reduction factor, ξnr(h). This factor is defined as the ratio between the noise in
the observed signal and the noise remaining in the signal after filter. That is, when the
orthogonal decomposition is used, the noise reduction factor is given by

ξOD
nr (h) =

σ2
v

σ2
xri

+ σ2
vrn

=
σ2
v

hTRinh
. (G.55)

The noise reduction factor is expected to be larger than or equal to 1, since ξnr(h) < 1
would imply that the noise is amplified through the filtering. If we insert the expression
for the ODMVDR filter into (G.40), we get that

ξOD
nr (hODMVDR) =

σ2
v1

TPZHR−1
in ZP1

σ4
x

. (G.56)

If the harmonic decomposition is used instead, the noise reduction factor is obtained as

ξHD
nr (h) =

σ2
v

σ2
vrn

=
σ2
v

hTRvh
. (G.57)

This gives the following noise reduction factor for the HDLCMV filter

ξHD
nr (hHDLCMV) =

σ2
v

1T
(
ZHR−1

v Z
)−1

1
. (G.58)

Note that if we know the pitch, ω0, the number of harmonics, L, the powers of the
harmonics, Pl, and the noise statistics, Rv, we can calculate the output SNRs and the
noise reduction factors for the two filters.
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6.2 Signal Distortion
A common and unwanted side-effect of most enhancement procedures is that they also
attenuate the desired signal in the process of attenuating the noise. The desired signal
attenuation can also be considered as distortion. The amount of distortion can be quan-
tified by the speech reduction factor measure [23]. Here, the measure will be termed
the desired signal reduction factor since we do not consider speech only. The reduction
factor is defined as the ratio between the variance of the desired signal and the variance
of the desired signal after filtering. That is, when the orthogonal decomposition is used,
the factor is given by

ξOD
dsr (h) =

σ2
x

σ2
xfd

=
1

(hTρxx)
2 . (G.59)

If distortion occurs, the noise reduction factor will be greater or less than one (expect-
edly greater than one) and it will equal 1 otherwise. Therefore, if a filter should be
distortionless, we must require that

hTρxx = 1 . (G.60)

The ODMVDR filter was derived exactly under this constraint, i.e.,

ξOD
dsr (hODMVDR) = 1 , (G.61)

which can also be easily verified. Similarly, for the harmonic decomposition approach,
the desired signal distortion is defined as

ξHD
dsr (h) =

σ2
x

σ2
x′fd

=
σ2
x

hTZPZHh
. (G.62)

The HDLCMV filter is designed to be distortionless when the desired signal is periodic,
i.e.,

ξHD
dsr (hHDLCMV) = 1 . (G.63)

This result can easily be verified. On a side note, it can be seen that the HDLCMV
filter is also distortionless with respect to the desired signal reduction measure for the
orthogonal decomposition approach since

hTHDLCMVρxx =
1T
(
ZHR−1

y Z
)−1

ZHR−1
y ZP1

σ2
x

=
1TP1

σ2
x

= 1 . (G.64)
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This emphasizes the strong link between the two filters.
We also propose a new distortion measure, namely the harmonic distortion. The

harmonic distortion is the sum of the differences between the powers of the harmonics
before and after filtering which can also be written as

ξhd(h) = 2

L∑
l=1

|Pl − Pf,l|

= 2

L∑
l=1

Pl|1− hT z(lω0)zH(lω0)h| , (G.65)

where Pl = |al|2 and Pf,l is the power of the lth harmonic after filtering. This perfor-
mance measure is defined in exactly the same way for both the orthogonal decomposi-
tion approach and the harmonic decomposition approach. The harmonic distortion will
be equal to 0 when there is no distortion of the harmonics while it will be greater than
0 otherwise. A closed-form expression for the harmonic distortion of the ODMVDR
filter can be obtained by inserting (G.40) into (G.65) which yields

ξhd(hODMVDR) = 2

L∑
l=1

Pl

∣∣∣∣∣∣∣1−
σ4
x

∣∣∣1TPZHR−1
y z(lω0)

∣∣∣2(
1TPZHR−1

y ZP1
)2

∣∣∣∣∣∣∣ . (G.66)

It is clear from the above expression that the harmonic distortion of the ODMVDR filter
will be close to 0 whenM is large. The HDLCMV filter is derived under the constraints
that the harmonics should not be distorted, i.e.,

ξhd(hHDLCMV) = 0 , (G.67)

which is readily verified by inserting (G.41) into (G.65).

7 Experimental Results
In the previous sections, we presented two single-channel filtering methods which can
be used for extraction of periodic sources. These are the ODMVDR and HDLCMV
filters. We showed that there is a clear link between the filters and that they are even
equivalent in some special scenarios. To illustrate the link, we compare the responses
of the filters in this section. The link between the filters suggests that they can be used
jointly which can be useful in practice as we illustrate and account for in the application
example later in this section. Furthermore, we defined some performance measures for
both of the methods given that the underlying desired signal is periodic and modeled by
(G.3). In this section, we will also study these measures through theoretical simulations.
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Fig. G.1: Magnitude responses of the ODMVDR and HDLCMV filters of order (a) M = 20 and
(c) M = 40 designed for a periodic signal corrupted by white Gaussian noise, and of order (b)
M = 50 and (d) M = 100 when the noise also contained an interfering periodic signal.

7.1 Qualitative Comparison of Filter Responses
In this theoretical experiment, we compared the ODMVDR and HDLCMV filters in
terms of their filter responses in different scenarios. The signal and noise statistics were
assumed to be known in this experiment, i.e., we assumed that the desired signal was
constituted by a sum of L = 6 harmonic sinusoids with a pitch of ω0 = 0.245. Each of
the sinusoids was assumed to have a unit amplitude (Al = 1).

In the first part of the experiment, we compared the ODMVDR and HDLCMV fil-
ters in (G.31) and (G.36), respectively, when white Gaussian noise, vwn(n), was added
to the desired signal, x(n), at an iSNR of 10 dB. When the filter length was set to
M = 20, we obtained the filter responses depicted in Fig. G.1a. We observe from the
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plot that the filters have poor noise reduction capabilities due to the relatively short fil-
ter length. Furthermore, we can see that the filters have different magnitude responses.
By careful inspection, we note that the HDLCMV filter has unit gains at the harmonic
frequencies as a result of its constraints which is not the case for the ODMVDR filter.
When we increase the filter length to M = 40, we get the responses in Fig. G.1c.
In accordance with the theoretical discussion in Section 5, we observe that the filters
become equivalent when the filter order becomes large.

In the second part of the experiment, the noise was a summation of white Gaussian
noise, vwn(n), and sinusoidal noise, vsn(n), containing 6 harmonics with unit ampli-
tudes. The pitch of the sinusoidal noise source was 0.247. The ratio between the desired
signal and the white Gaussian noise was 10 dB resulting in an iSNR of−0.41 dB. First,
we designed ODMVDR and HDLCMV filters of length M = 50, and the resulting
responses are shown in Fig. G.1b. The filter responses are close, and they both seem
to extract the desired signal while attenuating both the sinusoidal noise, vsn(n), and the
white noise, vwn(n). When we increase the filter order, the filters become almost equiv-
alent, as can be seen from Fig. G.1d. This was also expected in the sinusoidal noise
scenario according to Section 5.

7.2 Evaluation of the Filter Performances
The second experiment was about evaluation of the performance of the ODMVDR and
HDLCMV filters in different scenarios. The performance measures considered in this
section were the output SNR and the harmonic distortion. As in the first experiment,
this experiment was conducted with exact statistics, i.e., without synthetic data samples.
In all simulations, the desired signal, x(n), was a periodic signal containing L = 6
harmonic sinusoids. We conducted simulations with both unit amplitude harmonics
(Al = 1) and harmonics with decreasing amplitudes[

A1 · · · A6

]T
=
[
1 0.8 0.5 0.35 0.2 0.1

]T
. (G.68)

By using decreasing amplitudes, we believe that we get a slightly better insight into the
performance of the filters when the desired signal is speech which often has decreasing
harmonic amplitudes. In all of the simulations in this experiment, the pitch of the
desired signal was ω0 = 0.245.

First, we measured the performance of the two filters as a function of the iSNR. In
this simulation, the filter length was M = 30, and the desired signal, x(n), was cor-
rupted by white Gaussian noise. For the scenario with unit amplitude harmonics, we
obtained the results depicted in Fig. G.2a. Both filters improved the SNR by approxi-
mately 6 dB for all iSNRs. However, the ODMVDR filter had a little distortion of the
harmonics at low iSNRs. For decreasing harmonic amplitudes, we got the results in
Fig. G.2b. Note that in this scenario, the ODMVDR filter has a slightly higher oSNR
than the HDLCMV filter at low iSNRs. However, the higher oSNR comes at the cost
of distortion of the harmonics.
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Fig. G.2: Performance of the filters forM = 30 as a function of the iSNR when the harmonics has
(a) unit amplitudes and (b) decreasing amplitudes, respectively, and the noise is white Gaussian.

Next, we compared the performance of the filters as a function of the filter length.
In these simulations, the desired signal, x(n), was corrupted by white Gaussian noise at
an iSNR of 10 dB. First, the performance comparison was conducted for unit harmonic
amplitudes resulting in the plot in Fig. G.3a. While the oSNRs of the filters are close,
the ODMVDR filter has a little harmonic distortion. We also conducted the comparison
for decreasing harmonic amplitudes as seen in Fig. G.3b. Here we see a larger differ-
ence in performance. For all filter lengths, the oSNR of the ODMVDR filter is greater
than that of the HDLCMV filter. However, there is also some harmonic distortion in-
troduced by the ODMVDR filter. Note that the step-wise increase in the oSNR in Fig.
G.3a and Fig. G.3b is caused by the orthogonality (or the lack thereof) between the
harmonics which is evident from (G.54) when the noise is white Gaussian.

Furthermore, we conducted simulations where the noise was a sum of white Gaus-
sian noise, vwn(n), and sinusoidal noise, vsn(n). The variance, σ2

vsn
, of the sinusoidal

noise source was normalized with respect to the variance, σ2
x, of the desired signal such

that they had the same power. White Gaussian noise was also added to the desired
signal resulting in the following iSNR

iSNR =
σ2
x

σ2
vsn

+ σ2
vwn

. (G.69)

Note that since the sinusoidal noise source has the same variance as the desired signal,
the iSNR will always be smaller than or equal to zero (in dB) in these simulations ac-
cording to the above equation. First, for the sinusoidal noise scenario, we compared
the filter performances as a function of the iSNR when the filter order was M = 50.
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Fig. G.3: Performance of the filters as a function of M when the harmonics has (a) unit ampli-
tudes and (b) decreasing amplitudes, respectively, and the noise is white Gaussian.

The result for unit harmonic amplitudes are given in Fig. G.4a. The oSNRs of the
filters are relatively close, but with the largest difference when the white noise vari-
ance, σ2

vwn
, is largest. For all iSNRs, the ODMVDR filter has more harmonic distortion

compared to the scenario with white Gaussian noise only. When decreasing harmonic
amplitudes were considered (see Fig. G.4b), the difference in oSNRs between the filters
was more pronounced with the ODMVDR having the highest oSNR for all iSNRs. The
ODMVDR filter, however, also had more harmonic distortion in this case.

In the sinusoidal noise scenario, we also compared the performances as a function
of the filter length, and the results are depicted in Fig. G.5a and Fig. G.5b, respectively.
As in the previous simulations, we observe that the oSNR of the ODMVDR filter is in
general higher than the oSNR of the HDLCMV filter. However, the difference between
the filters decreases when M increases. The harmonic distortion of the ODMVDR
filter is more significant in this simulation compared to the white Gaussian noise only
scenario, but it decreases as we increase M .

Finally, we compared the filter performances as a function of the pitch spacing ∆ω0

between the desired signal and the sinusoidal noise source. In this simulation, the filter
order was M = 100. The results are given in Fig. G.6a and Fig. G.6b, respectively. For
both unit and decreasing amplitudes, the oSNRs of the two filters are not much different
for all source spacings, but with the ODMVDR having a slightly better oSNR. More-
over, for both filters the oSNR increases as we increase the spacing of the harmonic
sinusoidal sources. We also observe that for both types of amplitudes, the ODMVDR
has much harmonic distortion in this case compared to the other simulations.
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Fig. G.4: Performance of the filters for M = 50 as a function of the iSNR when the harmonics
has (a) unit amplitudes and (b) decreasing amplitudes, respectively, and the noise is a sum of
sinusoidal noise and white Gaussian noise.

7.3 Application Example: Using the ODMVDR and HDLCMV Fil-
ters Jointly for Speech Enhancement

In this experimental example, we show how the ODMVDR and HDLCMV can be ap-
plied jointly for enhancement of speech signals. For the experiment, we used a 2.2
second long speech segment sampled at 8 kHz. The segment contains a female speaker
reading aloud the sentence “Why where you away a year Roy?” and it is plotted in
Fig. G.7. Since the pitch is needed in the HDLCMV filter design, we estimated the
pitch of the speech signal at all time instances using an orthogonality based subspace
method [19, 21]. The pitch estimator is available from an online toolbox1. The pitch
track resulting from the pitch estimation is also depicted in Fig. G.7, and it is used for
later filter designs. Note that since we focus on speech enhancement rather than pitch
estimation in this paper, we estimated the pitch directly from the clean speech signal,
x(n). The spectrogram of the speech signal, x(n), is shown in Fig. G.8a.

First, we consider a scenario in which the speech signal is corrupted by babble noise
at an average iSNR of 5 dB. The babble noise was taken from the AURORA database
[28]. The spectrogram of the noisy signal is depicted in Fig. G.8b. We then enhanced
the noisy signal using three different filtering setups, i.e., using the ODMVDR filter
only, using the HDLCMV filter only, and using the ODMVDR and HDLCMV filters
jointly. The joint filtering method is proposed since using only either the ODMVDR or
the HDLCMV filter has drawbacks. For example, the ODMVDR method is sensitive to

1http://www.morganclaypool.com/page/multi-pitch

http://www.morganclaypool.com/page/multi-pitch
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Fig. G.5: Performance of the filters as a function of M when the harmonics has (a) unit ampli-
tudes and (b) decreasing amplitudes, respectively, and the noise is a sum of sinusoidal noise and
white Gaussian noise.

non-stationary noise, since it requires that knowledge about the noise statistics which
we do not always have access to in practice. This is not an issue for the HDLCMV
filter, but, on the other hand, it will introduce some distortion of speech signals because
the harmonic model does not hold exactly. Furthermore, the HDLCMV filter has, in
general, more constraints than the ODMVDR filter, and it will therefore most likely
have a lower oSNR compared to the ODMVDR filter. The joint use of the filters can be
justified by their close relationship described in Section 5. In the joint filtering scheme,
we first use the HDLCMV filter to obtain a rough estimate of the speech signal. The
rough speech estimate is then subtracted from the observed signal to obtain an estimate
of the noise signal. We estimate the noise statistics from the estimated noise signal, and
the noise statistics are used for designing the ODMVDR filter. Finally, the ODMVDR
filter is applied for enhancement of the observed signal. By using the ODMVDR filter
for the enhancement rather than the HDLCMV filter, we expect to remove some of the
distortion introduced by the HDLCMV filter in practice. Moreover, we expect to obtain
more noise reduction, since the ODMVDR filter is less constrained compared to the
HDLCMV filter.

In all the filtering setups, the filters were updated for each time instance. The update
was conducted by recalculating the filters from the signal and noise statistics (R̂y and
R̂v) estimated from the previous 400 samples (≈ 50 ms). Both R̂y and R̂v were used
to calculate the ODMVDR filter. That is, we assumed that the noise signal was available
in this simulation, albeit it is not the case in practice. The HDLCMV filter was updated
using R̂y, the pitch estimates in Fig. G.7, and a model order of L = 13. The model
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Fig. G.6: Performance of the filters for M = 100 as a function of the source spacing ∆ω0 when
the harmonics has (a) unit amplitudes and (b) decreasing amplitudes, respectively, and the noise
is a sum of sinusoidal noise and white Gaussian noise.

order was chosen by inspecting the spectrogram in Fig. G.8a since we do not consider
model order estimation in this paper. Furthermore, in the calculations of the HDLCMV
filter and the filters in the joint filtering setup, we regularized the covariance matrix
using [29]

R̂y,reg = (1− γ)R̂y + γ
Tr
{

R̂y

}
M

I , (G.70)

where Tr{·} denotes the trace operator. The regularization is used to compensate for,
e.g., numerical stability, model mismatch, and noisy statistics. Choosing γ = 0.7 was
found to give the best results in terms of oSNR and perceptual scores. All filters were
chosen to be of order M = 100.

The observed signal containing the speech signal and babble noise was then en-
hanced using the three filtering setups, and the spectrograms of the resulting enhanced
signals are shown in Fig. G.9. The spectrograms indicate that the joint filtering method
has better noise reduction abilities than when using either the ODMVDR or the HDL-
CMV filter only. Regarding distortion, the ODMVDR filter seems to outperform the
joint filtering method. However, it is important to remember that the ODMVDR filter
was designed using the noise signal, and it will therefore most likely have a worse per-
formance in practice. To confirm the observations on the performances of the filters,
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Fig. G.7: A plot of a female speech signal (top) and the pitch estimates associated with it (bot-
tom).

we also measured the oSNRs associated with the enhanced signals in Fig. G.9 using

oSNR(h) =
σ2
xf

σvrn

=
hTRxh

hTRvh
. (G.71)

Note that we here use the traditional oSNR measure, since, in practice, the interference
term of the ODMVDR approach is relatively large which complicates the comparison of
the oSNR measures in (G.51) and (G.53), respectively. The measured oSNRs are shown
in Fig. G.10. These measurements show that both the ODMVDR and the joint filtering
methods outperform the HDLCMV filtering method in terms of noise reduction. The
ODMVDR and joint filtering methods have comparable noise reduction performance
even though the joint filtering method is implemented without access to the noise signal
directly. This justifies the use of the joint filtering method in practice as it is more
tractable than the ODMVDR filtering method when the noise signal is not available.

The oSNR measure, however, does not quantify how much the filtering methods
distort the desired signal. Therefore, we also evaluated the filtering methods in terms
of “Perceptual Evaluation of Speech Quality” (PESQ) scores [30]. The PESQ score
is an objective measure which reflects the perceptual quality of a speech signal. That
is, the PESQ scores give a more complete picture of the performance of the filtering
methods since the perceptual quality is affected both by noise reduction and distortion.
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Fig. G.8: Spectrograms of (a) the clean speech signal in Fig. G.7 and (b) the speech signal in Fig.
G.7 corrupted by babble noise at an iSNR of 5 dB.

We compared the PESQ scores of noisy speech signal enhanced using the joint filtering
method, the ODMVDR filtering method, the HDLCMV filtering method, a spectral
subtraction based method [31], and a method using MMSE estimates of the spectral
amplitudes [32]. Note that, in these simulations, we design the ODMVDR filter from
the true noise signal, and it therefore only serves as a bound to the proposed joint
filtering scheme.

Followingly, we describe how the different enhancement methods were set up for
the PESQ score evaluations. In all of the filtering methods, i.e., the joint method,
the ODMVDR method, and the HDLCMV method, the observed signal and noise
statistics were calculated as in the previous experiment. The noise statistics were
calculated directly from the noise signal, and they were only used for designing the
ODMVDR filter. In the joint and HDLCMV filtering methods, the observed signal
statistics were regularized as in the previous experiment. The model order was set to
L = min([15, bπ/ω0c − 1]) at each time instance when designing the HDLCMV fil-
ters. The speech signals used in these evaluations contained both voiced and unvoiced
speech segments. However, the HDLCMV filter used in both the joint and HDLCMV
filtering methods are designed for voiced speech segments only. Therefore, we up-
dated the HDLCMV filter in these evaluations as follows; for voiced speech segments,
the HDLCMV filter was designed as in (G.36), and for unvoiced speech segments, the
filter was updated as

h(n) = (1− γ)0 + γh(n− 1) , (G.72)

when ‖h(n−1)‖2 > 0.1 with γ = 0.95 and 0 is a vector of zeros. The norm conditional
update was introduced to avoid abrupt changes when transitioning between unvoiced/no
speech and voiced speech. Both the spectral subtraction and the MMSE-based methods
are available in the VOICEBOX toolbox2 for MATLAB, in which they are implemented

2http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Fig. G.9: Spectrograms of enhanced versions of the noisy signal in Fig. G.8b. The enhanced
signals are obtained using (a) the ODMVDR filter only, (b) the HDLCMV filter only, and (c) the
joint HDLCMV and ODMVDR filtering setup, respectively.

using noise power spectral density estimates based on optimal smoothing and minimum
statistics [33]. We used the default settings given by the VOICEBOX toolbox for the
spectral subtractions and MMSE methods.

For the PESQ score evaluations of the aforementioned enhancement methods, we
used two female and two male speech excerpts each of length 4-6 seconds taken from
the Keele database [34]. Since pitch estimation is not the main topic of this paper,
we used the pitch estimates of the voiced parts of the speech excerpts from the Keele
database for the design of the HDLCMV filters. Moreover, the pitch estimates in the
Keele database are 0 when the speech is unvoiced or no voice is present. We exploited
this to distinguish between voiced and unvoiced speech since the unvoiced/voiced speech
detection problem is not considered here. The chosen speech excerpts were then buried
in white Gaussian noise, car noise, babble noise, exhibition hall noise, and street noise.
All noise sources except the white noise were taken from the AURORA database [28].
First, we applied the proposed joint filtering method on all four speech excerpts in all
five noise scenarios for different filtering lengths when the iSNR was 5 dB. The PESQ
scores averaged across the different noisy speech excerpts are shown in Fig. G.11a. We
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Fig. G.10: The estimated iSNR and oSNRs over time for the enhanced signals in Fig. G.9.

can see that the perceptual performance of the proposed joint filtering method peaks
around M = 110. We then applied all of the enhancement methods of the comparison
on all the speech excerpts in all of the different noise scenarios for different iSNRs. For
these simulations, the filter length of the filtering-based enhancements methods was set
to 110, and the PESQ results averaged over the different speech excerpts and noise sce-
narios are shown in Fig. G.11b with 95% confidence intervals. From these results, it
seems that the joint filtering method outperforms the spectral subtraction and MMSE-
based methods on average for relative low iSNRs (≤ 5 dB) and vice versa for a higher
iSNR (10 dB). However, from these results, we cannot say this with 95% confidence
due to overlapping confidence intervals, but it does not preclude that the observations
are statistically significant since we can also consider the difference in PESQ scores. To
investigate this further, we measured the average of the difference in PESQ scores be-
tween the proposed joint filtering scheme and the spectral subtraction and MMSE-based
methods, respectively; the results from this investigation is plotted in G.11c with 95%
confidence intervals. From these results, we can conclude with 95% confidence that the
proposed joint filtering method outperforms the spectral subtraction and MMSE-based
methods on average for iSNRs of 0 dB and 5 dB in terms of PESQ scores since the
confidence intervals do not include 0. In practice, it is expected that the proposed joint
filtering method only outperforms the other methods for relatively low iSNRs since the
harmonic model assumption embedded in the proposed joint filtering design introduces
a small amount of distortion due to model mismatch.
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Fig. G.11: Average PESQ scores (a) for the joint filtering scheme as a function of M for an
iSNR of 5 dB, and (b) for several enhancement methods as a function of the iSNR for M = 110
with 95% confidence intervals. In (c), the average differences in PESQ scores between the joint
filtering scheme and the spectral subtraction and MMSE-based methods, respectively, are plotted
with 95% confidence intervals.

8 Conclusion
In this paper, we considered two recent filter designs for speech enhancement, namely
the ODMVDR and HDLCMV filters. The ODMVDR filter is not explicitly dependent
of the desired signal since it is calculated from the observed signal and noise statis-
tics. This makes it a general filtering method which is appropriate for enhancement
of all types of speech (e.g., both voiced and unvoiced). However, the ODMVDR filter
is vulnerable to non-stationary noise since the noise statistics are typically estimated
during periods of silence. On the other hand, the HDLCMV filter is signal-dependent
since it is designed using the observed signal and the desired signal statistics. In this
filter, a harmonic model is assumed which enables the estimation of the signal statis-
tics if the pitch and the number of harmonics are known. While this filter is robust
against non-stationary noise, it will only be appropriate for voiced speech due to the
harmonic model assumption. Since both filters have complementary advantages and
disadvantages, we investigated the relationship between them in this paper. Our theo-
retical studies confirmed that the filters are indeed closely related. We also proposed
some performance measures for both filters which are available in closed-form when
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the desired signal is periodic. We compared the performance measures in theoretical
simulations. From these simulations, it was again clear that the methods are closely
related, but each filter had its own advantages. For example, the ODMVDR filter has,
in general, a slightly higher oSNR than the HDLCMV while the HDLCMV filter does
not distort the harmonics as opposed to the ODMVDR filter. The close relationship
between the filters inspired us to propose a filtering scheme where the ODMVDR and
HDLCMV filters are used jointly. This scheme was applied on real speech signals in
different noise scenarios. The results of these experiments showed that, for relatively
low iSNRs (i.e., < 10 dB) , the joint filtering scheme outperforms some existing en-
hancement techniques in terms of average PESQ scores with 95% confidence.

9 Appendix: On Rewriting the HDLCMV Filter in Terms
of the Observed Signal Covariance Matrix

In this appendix, we show that it makes no difference whether we use the noise covari-
ance matrix, Rv, or use the observed signal covariance matrix, Ry, in (G.35). First,
recall that the HDLCMV filter is given by

hHDLCMV = R−1
v Z

(
ZHR−1

v Z
)−1

1 . (G.73)

Note that in the following derivations we denote the HDLCMV filter as h. If we use the
covariance matrix model on Ry, the noise covariance matrix can also be written as [24]

Rv = Ry − ZPZH . (G.74)

If we substitute (G.74) back into (G.73), we get that

h =
(
Ry − ZPZH

)−1

Z

[
ZH

(
Ry − ZPZH

)−1

Z

]−1

1

= AZB1 , (G.75)

where

A =
(
Ry − ZPZH

)−1

, (G.76)

B =

[
ZH

(
Ry − ZPZH

)−1

Z

]−1

(G.77)

=
(
ZHAZ

)−1
.

Applying the matrix inversion lemma on A yields

A = R−1
y + R−1

y Z
(
P−1 − ZHR−1

y Z
)−1

ZHR−1
y . (G.78)
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If we insert this expression for A back into (G.77), we get

B =
(
ZHR−1

y Z
)−1 −P . (G.79)

We can then rewrite the HDLCMV filter expression by inserting (G.78) and (G.79) into
(G.75) which yields

h = R−1
y Z

(
ZHR−1

y Z
)−1

1−R−1
y ZP1

+R−1
y

(
P−1 − ZHR−1

y Z
)−1

1

−R−1
y Z

(
P−1 − ZHR−1

y Z
)−1

ZHR−1
y ZP1 . (G.80)

After some algebra, it turns out that the somewhat complex expression for the filter in
(G.80) can be reduced to

h = R−1
y Z

(
ZHR−1

y Z
)−1

1 . (G.81)

That is, there is no difference between using the noise covariance matrix, Rv, and the
observed signal covariance matrix, Ry, in (G.73).
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1. Introduction 213

Abstract
In many state-of-the-art filtering methods for speech enhancement, an estimate of the
noise statistics is required. However, the noise statistics are difficult to estimate when
speech is present and, consequently, nonstationary noise has a detrimental impact on
the performance of most noise reduction filters. We propose a joint filtering scheme
for speech enhancement which supports the estimation of the noise statistics even dur-
ing voice activity. First, we use a pitch driven linearly constrained minimum variance
(LCMV) filter to estimate the noise statistics. A Wiener filter is then designed based on
the estimated noise statistics, and it is applied for the noise reduction of the speech. In
experiments involving real signals, we show that the proposed filtering scheme outper-
forms other existing speech enhancement methods in terms of perceptual evaluation of
speech quality (PESQ) scores in different nonstationary noise scenarios.

1 Introduction
Speech is frequently encountered in numerous signal processing applications such as
telecommunications, teleconferencing, hearing-aids, and human-machine interfaces.
The speech picked up by a microphone can be very noisy. Unfortunately, the noise
will degrade the speech quality and intelligibility which, eventually, has a detrimental
impact on speech applications. It is therefore highly relevant to develop methods for
reducing the noise. In this paper, we consider filtering methods for noise reduction of
single-channel speech recordings. Several such methods have been developed in the
past decades. For an overview of such methods, we refer to [1] and the references
therein. Many existing noise reduction filtering methods assume that the noise signal
is directly available since they rely on the noise statistics. This is, of course, not the
case in practice, so the noise statistics could, for example, be estimated when there is
no voice activity. Some alternative methods based on, e.g., harmonic tunneling [2] and
minimum statistics [3] have been proposed for estimating the noise statistics during
speech presence.

In this paper, we propose a novel joint filtering scheme for nonstationary noise
reduction of noisy quasi-periodic signals such as voiced speech. It is well-known that
speech can be both voiced and unvoiced, so the proposed filtering scheme has to be
combined with voiced/unvoiced speech detection (see, e.g., [4, 5]) when applied to
speech enhancement. In the proposed scheme, we utilize two recently proposed filters,
namely the orthogonal decomposition based Wiener (ODW) filter and the harmonic
decomposition based linearly constrained minimum variance (HDLCMV) filter [6, 7].
Followingly, the proposed filtering scheme is described. First, we use the HDLCMV
filter to obtain a rough estimate of the desired signal. In the HDLCMV filter, it is
assumed that the desired signal is quasi-periodic and thereby has a harmonic structure
which is a reasonable assumption for the voiced parts of speech signals. Therefore, the
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HDLCMV filter is designed using the pitch, the number of harmonics, and the statistics
of the observed signal, i.e., this filter does not rely on noise statistics. Pitch and model
order estimation is not considered in this paper, but there exists a multitude of methods
for this (see, e.g., [7] and the references therein). From the rough estimate of the desired
signal, we obtain an estimate of the noise signal. That is, using this approach, we can
easily estimate the noise statistics even when speech is present. The estimated noise
statistics are used to design the ODW filter which, finally, performs the noise reduction
of the observed speech signal. Besides proposing the joint filtering scheme, we also
provide a few important closed-form performance measure expressions for the filters
under the assumption that the desired signal is quasi-periodic.

The remainder of the paper is organized as follows. In Section 2, we introduce the
signal model used in the paper, the problem of designing noise reduction filters, and the
orthogonal and harmonic decompositions. Based on this, we derive the optimal ODW
and HDLCMV filters in Section 3. We then propose a joint filtering scheme for noise
reduction and evaluate its performance in Section 4. Finally, in Section 5, we conclude
on the paper.

2 Signal Model
In this paper, we consider nonstationary noise reduction of single-channel speech record-
ings using filtering. The noise reduction problem is to extract a zero-mean desired
signal, x(n), from a mixture signal

y(n) = x(n) + v(n) , (H.1)

where v(n) is a zero-mean noise source, and n is the discrete time index. The noise
source is assumed to be uncorrelated with the desired signal. Moreover, in some parts
of the paper, we assume that the desired signal is quasi-periodic which is indeed a rea-
sonable assumption for, e.g., voiced speech. When the desired signal is quasi-periodic,
we can rewrite the signal model in (H.1) as

y(n) =

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (H.2)

where ω0 is the fundamental frequency (aka the pitch), L is the model order, al =
Al
2 e

jφl is the complex amplitude of the lth harmonic, Al is the real amplitude of the
lth harmonic, φl is the random phase of the lth harmonic, and (·)∗ denotes the complex
conjugation. Many real-life signals, however, have some degree of inharmonicity. The
problem of inharmonicity is not considered in this paper, yet several methods dealing
with it exist (see, e.g., [7] and the references therein).

When designing optimal filters for noise reduction, we need several consecutive
samples of the observed signal, y(n). Therefore, we use the vector signal model given
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by

y(n) = x(n) + v(n) , (H.3)

where

y(n) =
[
y(n) y(n− 1) · · · y(n−M + 1)

]T
, (H.4)

with (·)T denoting the transpose of a vector or matrix,M is the number of samples, and
the definitions of x(n) and v(n) follow that of y(n). We know by assumption that the
desired signal and the noise are uncorrelated. Therefore, we can obtain the following
simple expression for the covariance matrix,

Ry = E[y(n)yT (n)] = Rx + Rv , (H.5)

of the observed signal where E[·] is the mathematical expectation operator, Rx =
E[x(n)xT (n)] is the covariance matrix of x(n), and Rv = E[v(n)vT (n)] is the co-
variance matrix of v(n). When the desired signal is quasi-periodic, we can model the
covariance matrix of x(n) as

Rx ≈ ZPZH , (H.6)

where (·)H denotes the complex conjugate transpose of a matrix or vector, and

P = diag
([
|a1|2 |a∗1|2 · · · |aL|2 |a∗L|2

])
, (H.7)

Z =
[
z(ω0) z∗(ω0) · · · z(Lω0) z∗(Lω0)

]
, (H.8)

z(lω0) =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
, (H.9)

with diag(·) denoting the construction of a diagonal matrix from a vector.
The goal in noise reduction filtering methods is to design a filter which extracts

one or more samples of the desired signal x(n) from y(n). That is, the filter should
attenuate the noise v(n) as much as possible while not distorting the desired signal too
much. In this paper, we focus on optimal filtering methods for extraction of a single
sample of x(n). A filtering operation which estimates x(n) from y(n) can be written
as

x̂(n) =

M−1∑
m=0

hmy(n−m) = hTy(n) , (H.10)

where h =
[
h0 h1 · · · hM−1

]T
, and x̂(n) is an estimate of x(n). The main dif-

ference between optimal filtering methods for noise reduction is how the desired signal
is decomposed. In this paper, we consider the orthogonal and harmonic decomposi-
tions [6, 7].
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In the orthogonal decomposition, the signal vector x(n) is decomposed into two
parts being proportional and orthogonal to x(n), respectively. That is, using this de-
composition, x(n) can also be written as

x(n) = x(n)ρxx + xi(n) = xd(n) + xi(n) , (H.11)

where

ρxx =
E[x(n)x(n)]

E[x2(n)]
(H.12)

is the normalized correlation vector between x(n) and x(n). If we insert (H.11) into
(H.10), we get

x̂OD(n) = hT [xd(n) + xi(n) + v(n)]

= xfd(n) + xri(n) + vrn(n) , (H.13)

where xfd(n) = hTxd(n) is the filtered desired signal, xri(n) = hTxi(n) is the resid-
ual interference, and vrn(n) = hTv(n) is the residual noise. Using the orthogonal
decomposition, we can define the following error signal

eOD(n) = x(n)− [xfd(n) + xri(n) + vrn(n)] . (H.14)

Optimal noise reduction filters based on the orthogonal decomposition can then, for
example, be derived by minimizing e(n) or parts of e(n) subject to some constraints.
Most commonly, the error is minimized in the mean-square error (MSE) sense. Clearly,
this design procedure ensures that the aforementioned design goals are fulfilled.

In the harmonic decomposition approach, it is assumed that the desired signal is
quasi-periodic which makes it useful for signals produced by voiced speech and musical
instruments [7, 8]. Due to this assumption, the signal vector, x(n), can be written as

x(n) = Za(n) = x′d(n) , (H.15)

where

a(n) =
[
a1e

jω0n a∗1e
−jω0n · · · (H.16)

aLe
jLω0n a∗Le

−jLω0n
]T
.

From the above expression, we can see that there is no interference in this decompo-
sition as opposed to in the orthogonal decomposition. This is because all information
in x(n) can be used to describe the desired signal when we know the signal model.
We can obtain an estimate of x(n) using a harmonic decomposition filter by inserting
(H.15) into (H.10). This yields

x̂HD(n) = hT [x′d(n) + v(n)] . (H.17)
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We define the following error function for the harmonic decomposition approach to
filter design

eHD(n) = x(n)− [x′fd(n) + vrn(n)] , (H.18)

where x′fd(n) = hTx′d(n). We can then design a harmonic decomposition based filter
for noise reduction by minimizing the effects of eHD(n) or parts of eHD(n) perhaps
subject to some constraints (e.g., to avoid undesired distortion).

3 Optimal Filters
In this section, we derive the ODW filter and the HDLCMV filter. Furthermore, we
provide expressions for the filters and some of their performance measures; the perfor-
mance measure expressions are closed-form when the desired signal is periodic.

3.1 Orthogonal Decomposition Wiener
The ODW filter is found by minimizing E{|eOD(n)|2} with respect to the unknown
filter response. This yields

hW = σ2
xR
−1
y ρxx , (H.19)

where σ2
x is the variance of x(n). When the desired signal is periodic, we can also write

the normalized correlation vector, ρxx, as

ρxx =
Rxi

iTRxi
=

ZP1

σ2
x

, (H.20)

where 1 =
[
1 · · · 1

]T
and i is the first column of the M ×M identity matrix. That

is, for periodic signals, the OD Wiener filter is given by

hW = R−1
y ZP1 . (H.21)

The output signal-to-noise ratio (oSNR) of an orthogonal decomposition based filter is
defined as the ratio between the variance of the filtered desired signal and the sum of
the variances of the residual interference and noise [6]. It can be shown that the ODW
filter achieves the maximum output SNR [6]. The output SNR of the ODW filter for
periodic signals therefore equals

oSNROD(hW) =
1TPZHR−1

in ZP1

σ2
x

, (H.22)

where Rin = Rxi + Rv and Rxi is the covariance matrix of xi(n). The harmonic
distortion measure is useful when the desired signal is periodic. This measure is defined
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as the sum of the absolute differences between the harmonics before and after filtering.
The harmonic distortion of the ODW filter can be show to be

ξhd(hW) = 2

L∑
l=1

Pl

∣∣∣1− |1TPZHR−1
y z(lω0)|2

∣∣∣ . (H.23)

3.2 Harmonic Decomposition LCMV
This filter is designed for noise reduction of periodic signals. The HDLCMV filter is
designed such that the variance of the residual noise is minimized under the constraint
that the harmonics of the desired signal are not distorted. This design can also be written
as the following optimization problem

min
h

hTRvh s.t. ZHh = 1 . (H.24)

The solution to the quadratic optimization problem above is well-known and given by

hHDLCMV = R−1
v Z

(
ZHR−1

v Z
)−1

1 (H.25)

= R−1
y Z

(
ZHR−1

y Z
)−1

1 . (H.26)

The step from (H.25) to (H.26) can be shown by using the matrix inversion lemma.
From this expression, we can see that if we know the pitch ω0 and the number of
harmonics L then we only need the statistics of the observed signal Ry to design the
HDLCMV filter. Note that these parameters can be estimated using the very same
HDLCMV filtering method [7]. In the ODW filter, we need to know either the statistics
of the desired signal ρxx or of the noise ρvv . When the filter order M becomes large
and the desired signal is indeed periodic, it can be shown that the ODW and HDLCMV
filters become identical. In the harmonic decomposition, there is is no interference
term. The output SNR of a harmonic decomposition based filter is therefore simply
defined as the ratio between the variances of the filtered desired signal and the residual
noise. Therefore, the output SNR of the HDLCMV filter is given by

oSNRHD(hHDLCMV) =
σ2
x

1T (ZHR−1
v Z)−11

, (H.27)

where B = R−1
y Z and C = ZHB. The harmonic distortion in (H.23) of the HDLCMV

filter is always 0 due to its constraints.

4 Joint ODW and HDLCMV Filtering
In this section, we propose to use the ODW and HDLCMV filters jointly for noise re-
duction in voiced speech segments. The joint use of the filters is relevant since they have
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Fig. H.1: Average PESQ scores (a) for the joint filtering scheme as a function of M for an iSNR
of 5 dB, and (b) for several enhancement methods as a function of the iSNR for M = 110
with 95% confidence intervals. In (c), the average differences in PESQ scores between the joint
filtering scheme and the spectral subtraction and MMSE-based methods, respectively, are plotted
with 95% confidence intervals.

complementary advantages and disadvantages. The ODW filter is in practice reliant on
the noise statistics. The noise signal is, however, not available directly in practice, so
the noise statistics are relatively difficult to estimate. That is, nonstationary noise has
a detrimental impact on the performance of the ODW filter. The HDLCMV filter, on
the other hand, is driven by the pitch, and the observed signal statistics. It should there-
fore be more robust against nonstationary noise since the noise statistics are not needed
directly in the filter design. The HDLCMV filter, however, assumes that the desired
signal is quasi-periodic which is not exactly true for all parts of speech. As a result
of that, distortion will be introduced by the HDLCMV filter due to model mismatch.
Therefore, it should be beneficial to use the filters jointly. In the joint filtering scheme,
the HDLCMV filter is used to obtain a rough estimate of the desired signal. This esti-
mate is then subtracted from the observed signal to obtain an estimate of the noise. The
estimated noise is used to find the noise statistics which, eventually, are applied in the
design of the ODW filter. Finally, the ODW filter is utilized for estimating the desired
signal.
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The proposed joint filtering scheme was evaluated by measuring “Perceptual Eval-
uation of Speech Quality” (PESQ) scores [9]. The PESQ score is an objective measure
that reflects the subjective quality of a speech signal, and the score can be measured
relative to an original speech signal or not. That is, by evaluating the proposed scheme
using PESQ scores, we evaluate the perceptual performance of the scheme. We com-
pared the PESQ scores of the signals enhanced using the joint filtering scheme with
those enhanced using the ODW filter only, the HDLCMV filter only, a spectral subtrac-
tion based method [10], and a method using MMSE spectral amplitudes [11]. In the
design of the ODW filter, the noise signal is assumed available, so the performance of
this method can be thought of as an upper bound on the performance of the proposed
method. Followingly, we describe how the enhancement methods were set up for the
evaluation. The statistics needed for the filter designs were replaced by the respective
sample covariance matrices calculated from the past 400 samples. The filters in the
joint filtering scheme were reguralized using [12]

R̂reg = (1− γ)R̂ + γTr
{

R̂
}
M−1I , (H.28)

where Tr{·} is the trace operator and γ is the regularization factor. Regularization was
necessary due to estimation error on the signal statistics and model mismatch. We
chose γ = 0.7 which gave consistently good results in terms of PESQ scores. At each
time instance, the model order was set to L = min{[15, bπ/ω0c − 1]}. The speech
signals used for the evaluation contains both voiced and unvoiced parts, however, the
HDLCMV filter in the proposed filtering scheme is suited for voiced speech enhance-
ment only. Therefore, in the simulations, we updated the HDLCMV filter as follows;
for voiced speech segments the HDLCMV filter was designed using (H.26) while, for
unvoiced speech segments, it was updated as

h(n) = (1− λ)0 + λh(n− 1) , (H.29)

when ‖h(n− 1)‖2 > 0.1 with λ = 0.95 and 0 is the zero vector. The spectral subtrac-
tion and MMSE based methods are available in the VOICEBOX toolbox1 for MATLAB
in which they are implemented using noise power spectral density estimates calculated
using optimal smoothing and minimum statistics [3]. We used the defaults settings in
the toolbox for these enhancement methods.

We conducted a number of experiments where we used the joint filtering scheme
for nonstationary noise reduction. For these experiments, we used two female and two
male speech excerpts of length 4-6 seconds taken from the Keele database [13]. In
this paper, we treat the pitch and the harmonic model order as known parameters to
evaluate the maximum achievable performance of the proposed method. Therefore,
we used the pitch information from the Keele database to design the HDLCMV filter.
Moreover, we do not consider voiced/unvoiced speech detection in this paper. The pitch

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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track from the Keele database contains zeros when the speech signal is unvoiced or no
speech is present, so this information was used to circumvent the detection problem.
We then generated observed signals by adding different noise types to the different
speech excerpts; the added noise types were white Gaussian noise, car noise, babble
noise, exhibition hall noise, and street noise. All noise sources except the white noise
were taken from the AURORA database [14]. First, we enhanced the noisy signals at
an iSNR of 5 dB at different filter lengths, and the PESQ scores were measured and
average across the different excerpts. The resulting PESQ scores are shown in Fig.
H.1a. It can be seen that the perceptual performance is highest around M = 110. We
then enhanced the noisy signals for different iSNRs when the filter length was M =
110. The average PESQ scores with 95 % confidence intervals are depicted in H.1b.
These results indicate that the proposed scheme outperforms the spectral subtraction
and MMSE-based methods for iSNRs of 0 and 5 dB on average in terms of perceptual
confidence. To investigate this further, we measured the average difference in PESQ
scores between the proposed scheme and the two other methods; the average differences
are shown in Fig. H.1c. From these results, we can conclude that the proposed scheme
outperforms the spectral subtraction and MMSE-based methods in terms of average
PESQ scores with 95 % confidence for low SNRs.

5 Conclusions
In this paper, we proposed a joint filtering scheme for nonstationary noise reduction
of quasi-periodic signals. The joint scheme consists of the ODW and HDLCMV fil-
ters. The ODW filter is driven only by the noise statistics and is therefore appropriate
for enhancement of any desired signal. However, in practice the noise is not available
directly, so the noise statistics are difficult to estimate. As a consequence of that, the
performance of the ODW filter is deteriorated by nonstationary noise. The HDLCMV
filter assumes that the desired signal is periodic and thereby has a harmonic structure.
This is a good assumption for voiced parts of speech signals. Using this assumption,
the HDLCMV filter is designed using the pitch and the model order of the desired har-
monic signal, and the statistics of the observed signal, i.e., this filter is not dependent
on the noise statistics. The HDLCMV filter is therefore more robust against nonsta-
tionary noise, but it will introduce some distortion in practice due to the periodicity
assumption. The advantages and disadvantages of the ODW and HDLCMV filter are
complementary, and we therefore proposed to use the filters jointly. In the joint scheme,
the HDLCMV filter is used to estimate the noise statistics which are then used to de-
sign the ODW filter. The noise reduction is then performed by the ODW filter. We
showed that the proposed joint filtering method outperforms existing speech enhance-
ment methods in terms of average PESQ scores with 95 % confidence for relatively low
iSNRs (≤ 5 dB).
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Abstract
Filtering methods have been widely used for extraction of signals in both time and
space. Recently, two multi-channel filters have been proposed which can be applied for
extraction of multi-channel periodic signals. In these filters, the harmonic structure of
periodic signals is exploited. The filters were based on the periodogram and the LCMV
beamformer, respectively. The periodogram-based filter is unsuitable for multi-source
scenarios whereas the LCMV-based filter has an erratic filter response behaviour at
high SNRs. We propose an optimal filtering method which is useful in multi-source
scenarios and which has a nicely behaving filter response for a larger range of SNRs
compared to the LCMV-based filter. Our simulations show that our method solves the
high SNR issue of the LCMV-based filter and that the proposed filter is applicable to
real-life signals.

1 Introduction
In many applications, it is beneficial to separate or extract one or more desired signals
from a mixture. A few examples of such applications are teleconferencing, surveillance
systems and hearing-aids. Often, the signal of interest (SOI) in these applications is
speech and/or musical instrument signals. These types of signals are known to be quasi-
periodic. Thus, for short data segmentents, we can model such signals as

s(nt) =

L∑
l=1

αle
jlωtnt , for nt = 0, . . . , Nt − 1 , (I.1)

where Nt is the number of temporal samples, L is the model order and αl = Ale
jφl

with Al > 0 and φl being the real amplitude and the phase of the lth harmonic, respec-
tively. Previously, it has been investigated how a single-channel signal as in (I.1) can be
extracted from a noisy mixture using, for example, algebraic separation [1] and comb
filtering [2]. More recently, optimal filter designs for fundamental frequency estima-
tion were proposed [3–5], and these filters can be seen as either generalizations of the
MVDR beamformer [6] or special cases of the LCMV beamformer [7]. While the fil-
tering methods have a good parameter estimation performance in settings with multiple
interfering sources, they perform poorly for extraction purposes. This is particularly
true for the high signal-to-noise ratio (SNR) settings. In these settings, the filter design
problem becomes ill-conditioned, hence, the poor extraction performance. In [8, 9], a
set of optimal filters for extractions and enchancement purposes were derived. As op-
posed to the MVDR/LCMV-like optimal filters, these filters have a good performance
regarding extraction of synthetic as well as real-life periodic sources.

Sometimes, however, the signal is recorded by an array of microphones in the afore-
mentioned applications. The mentioned single-channel methods are therefore inappro-
priate in such cases. In a multi microphone scenario, we can write the signal observed
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at the nsth microphone as

xns(nt) = sns(nt) + wns(nt) , for nt = 0, . . . , Nt − 1 , (I.2)

where sns(nt) = s(nt − τns) is the SOI, wns(nt) is the noise on the nsth sensor, Ns
is the number of microphones and τns is the time delay of the sound wave from sensor
ns to a reference point. We assume a uniform linear array (ULA) structure so the
time delay is given by τns = ns

d sin θ
c for θ ∈ [−90◦; 90◦] where d is the microphone

spacing, θ is the DOA and c is the wave propagation velocity. Combining (I.1) and (I.2)
leads to a multi-channel harmonic model

xns(nt) =

L∑
l=1

αle
jlωtnte−jlωsns + wns(nt) , (I.3)

where ωs = ωtfsdc
−1 sin θ. Due to the harmonic structure, the voiced speech and au-

dio extraction problem can be considered as extraction of L narrowband sources while,
traditionally, voiced speech and audio have been considered broadband in multi-channel
extraction methods. The narrowband simplification enables us to derive much simpler
extraction algorithms which is evident from the following sections.

Recently, two methods for joint DOA and fundamental frequency esimation were
proposed [10]. One of them was signal independent since it was based on the peri-
odogram while the other was based on the LCMV beamformer and therefore signal
dependent. Although these filtering methods could also be used for extraction of multi-
channel periodic sources, they suffer from the same issues as the corresponding single-
channel methods. In this paper, we therefore derive a new joint spatio-temporal optimal
filter for extraction of (quasi-)periodic sources from multi microphone recordings. We
will term the filter design method as the filtering-based multi-channel periodic signal
extraction (FIMPSIX) method. The filter is designed optimally from the observed sig-
nal and is therefore signal adaptive. Like the filters in [8, 9], the proposed filter is
inspired by the well known amplitude and phase estimation (APES) method [11]. We
expect that the proposed filter will outperform the filtering methods in [10] regarding
extraction, since this is the case for the analogous single-channel filtering methods.
The main application of the proposed method is extraction and enhancement, however,
it can also be used for joint DOA and fundamental frequency estimation, model order
selection and amplitude estimation of the individual harmonics.

The rest of the paper is organized as follows. In Section 2, we state the filter design
problem and introduce the notation. We solve the filter design problem in Section 3. In
Section 4, we describe the experimental evaluation of the proposed filter design, and,
finally, we conclude on our work in Section 5.
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2 Joint Spatio-Temporal Filter Design Problem
We consider the problem of designing a joint optimal spatio-temporal filter for extrac-
tion of periodic sources. Generally speaking, the output y(nt) of an FIR filter with the
coefficients h(ns,mt) from the input xns(nt −mt) can be written as

y(nt) =

Ns−1∑
ns=0

Mt−1∑
mt=0

h(ns,mt)xns(nt −mt) , (I.4)

for n{s,t} = 0, . . . , N{s,t}−1. Our goal is to design the filter such that its output resem-
bles a desired signal ŷ(nt) as much as possible in the mean squared error (MSE) sense.
The MSE P is given by

P =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

|y(nt)− ŷ(nt)|2 . (I.5)

In this filter design, the desired signal is defined as the noise-free signal given by the
signal model in (I.1). If we insert (I.1) and (I.4) into (I.5) we get

P =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

(I.6)

∣∣∣∣∣
Ns−1∑
ns=0

Mt−1∑
mt=0

h(ns,mt)xns(nt −mt)−
L∑
l=1

αle
jlωtnt

∣∣∣∣∣
2

.

Whereas we initially assume that the fundamental frequency ω0 and the model order
L are known, it is shown later how the proposed filter can also estimate these param-
eters. The expression in (I.6) can be simplified by introducing matrix/vector notation.
Consider, for example, the filter and signal matrices, H and X(nt), defined as

H =

 h∗(0, 0) · · · h∗(0,Mt − 1)
...

. . .
...

h∗(Ns − 1, 0) · · · h∗(Ns − 1,Mt − 1)

 (I.7)

X(nt) =

 x0(nt) · · · x0(nt −Mt + 1)
...

. . .
...

xNs−1(nt) · · · xNs−1(nt −Mt + 1)

 , (I.8)

where (·)∗ denotes the complex conjugate. We define two new vectors h = vec{H} and
x(nt) = vec{X(nt)} with vec{·} denoting the column-wise matrix stacking operator.
This enable us to obtain a much more convenient MSE expression as

P =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

|hHx(nt)−αHe(nt)|2 , (I.9)
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where

α =
[
α1 · · · αL

]H
(I.10)

e(nt) =
[
ejωtnt · · · ejLωtnt

]T
. (I.11)

It turns out that we can expand the MSE expression in (I.9) as

P = hHR̂h−αHGh− hHGHα+αHEα , (I.12)

with

R̂ =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

x(nt)x
H(nt) (I.13)

G =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

e(nt)x
H(nt) (I.14)

E =
1

Nt −Mt + 1

Nt−1∑
nt=Mt−1

e(nt)e
H(nt) . (I.15)

We recognize that R̂ is the spatio-temporal sample covariance matrix [10].

3 Derivation of the Optimal Filter
Following, we derive the optimal spatio-temporal filter by solving the filter design prob-
lem introduced in Section 2. First, if we differentiate and solve with respect to α in
(I.12) we get that

α̂ = E−HGh . (I.16)

Inserting the amplitude estimate α̂ into (I.12) yields

P = hH(R̂−GHE−1G)h (I.17)

= hHQ̂h , (I.18)

where Q̂ = R̂ −GHE−1G can be interpreted as an estimate of the noise covariance
matrix [12]. Note that asymptotically, the matrix E equals I which can be exploited to
obtain a computationally simpler algorithm [8].

The optimal filter is derived from (I.18). However, solving directly for the unknown
filter leads to the zero vector solution. We circumvent this by introducing some ad-
ditional constraints. The constraints are formulated such that the filter has a unit gain
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(a) Proposed filter.
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(b) LCMV-based filter.
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(c) Proposed filter.
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(d) LCMV-based filter

Fig. I.1: Frequency responses of the filters at SNRs of (a),(b) -20 dB and (c),(d) 20 dB, respec-
tively.

at all of the harmonic frequencies and DOA pairs of the SOI. This leaves us with the
following constrained optimization problem

min
h

hHQ̂h s.t. hHzlωt,lωs = 1 , (I.19)

for l = 1, . . . , L ,

where

zlωt,lωs = zlωt ⊗ zlωs (I.20)

zlωt =
[
1 e−jlωt · · · e−jlωt(Mt−1)

]T
(I.21)

zlωs =
[
1 e−jlωs · · · e−jlωs(Ns−1)

]T
, (I.22)
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with⊗ denoting the Kronecker product operator. Note that all constraints can be written
as a singel matrix-vector product as

hHZωt,ωs = 1 , (I.23)

where

Zωt,ωs =
[
zωt,ωs · · · zLωt,Lωs

]
. (I.24)

We recognize that the problem in (I.19) is a quadratic optimization problem which is
solvable using the Lagrange multiplier method. If we introduce the Lagrange multiplier
vector λ =

[
λ1 · · · λL

]
, the Lagrangian dual function is given by

L(h,λ) = hHQ̂h−
(
hhZωt,ωs − 1T

)
λ . (I.25)

By differentiating the Lagrange dual function with respect to the unknown Lagrange
multiplier λ and the unknown filter h, by equating with 0, and by inserting the so-
obtained expressions into each other, we get that the optimal filter ĥ is given by

ĥ = Q̂−1Zωt,ωs

(
ZHωt,ωsQ̂

−1Zωt,ωs

)−1

1 . (I.26)

Note that the optimality criterion for the filter design is twofold: 1) the filter gain should
be one at all harmonic frequencies and DOA pairs while the filter minimizes all other
frequency/DOA components, and 2) the filter output should resemble a sum of sinusoids
as much as possible under the given constraints. If we insert the optimal filter response
in (I.26) into (I.16), we can obtain estimates of the amplitudes of the harmonics

α̂ = E−1GQ̂
−1

Zωt,ωs(Z
H
ωt,ωsQ̂

−1Zωt,ωs)
−11 . (I.27)

Introductory, we asummed that the fundamental frequency ω0 was known. If this is not
the case we could either estimate it using another method or using the just proposed
optimal filter. To estimate it using the proposed filter, the optimal filter is applied on
the input signal and the output power is then estimated. This procedure is repeated
for a two-dimensional grid of candidate fundamental frequencies and DOAs. The fun-
damental frequency estimated is obtained by taking the argument of the maximizing
fundamental frequency and DOA pair as

{ω̂t, θ̂} = arg max
(ωt,θ)∈Ωt×Θ

ĥHR̂ĥ , (I.28)

with Ωt and Θ being sets of candidate fundamental frequencies and DOAs, respec-
tively. Likewise, the optimal filtering method can be used for model order L estimation
according to [5].
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Fig. I.2: Spectrograms of (a) a trumpet signal, (b) a trumpet signal in noise consisting of interfer-
ing periodic sources and complex Gaussian noise at a 30 dB SNR and (c) a signal extracted using
the optimal filter.

4 Experimental Results
Following, we describe the experimental evaluation of the proposed filter design. As
mentioned previously, filtering methods based on the minimum variance principle suf-
fers from a bad performance regarding signal extraction. This is well known, and the
main reason is their unfortunate behavior at high SNRs. Several books and papers
(e.g., [13, 14]) have dealt with this issue and a common fix is to, for instance, use diag-
onal loading techniques. The erratic high SNR behavior is also apparent from our first
experiment. In this experiment, we investigate the frequency response of the proposed
filter and the LCMV-based filter proposed in [10]. The filters were designed to extract
a multi-channel periodic signal with Nt = 250, fs = 2, 500 Hz, ft = 200 Hz, L = 5,
θ = 6◦, and unit amplitudes of the harmonics. Moreover, the signal was corrupted
by complex Gaussian noise, the array was specified by Ns = 6, c = 343.2 m/s and
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Fig. I.3: Segments of (top) the trumpet signal, (middle) the observed signal with complex Gaus-
sian noise at a SNR of 30 dB and interfering periodic sources, and (bottom) the signal extracted
using the optimal filter.

d = c/fs, and the filter was of orders Mt = 20 and Ms = 6. We designed the filters
for SNRs of -20 dB (depicted in Fig. I.1a and I.1b) and 20 dB (depicted in Fig. I.1c
and I.1d), respectively. From the plots, we observe that both filter types behave nicely
at low SNRs. At high SNRs, the proposed filter still seems to perform nicely in terms
of emphasizing the harmonics while the LCMV-based filter has huge side lobes.

In the second experiment, we applied the proposed filter for extraction of a trum-
pet signal. The utilized trumpet signal was originally single-channel and sampled at
fs = 8, 820 Hz. Therefore, we resynthesized it spatially as if it was impinging on a
4-element ULA with a DOA of θ = 17◦. We corrupted the trumpet signal with addi-
tional synthetic periodic sources and complex Gaussian noise at an SNR of 30 dB. The
FIMPSIX filter was designed for 60 ms segments with a filter length of 40 and it was
updated every 30 ms. For each input segment, we estimated the fundamental frequency
of the trumpet signal using an MVDR-based method. The filter was designed for the
estimated fundamental frequency and for a fixed model order of L = 8. The spec-
trograms of the original trumpet signal, the noisy signal, observed on the first sensor,
and the extracted signal are depicted in Fig. I.2(a)-(c), respectively. Furthermore, short
segments of the different signals are shown in Fig. I.3. It is clear from these figures
that the proposed filter design are useful for extraction of periodic signals (or nearly
periodic signals such as the trumpet signal).



5. Conclusion 235

5 Conclusion
In this paper, we proposed a novel optimal joint spatio-temporal filtering method for
extraction of periodic signal recorded in time and space using a uniform linear micro-
phone array. The proposed filter is based on a harmonic model which makes it suitable
for all signals being (quasi-)periodic of nature such as audio and speech. Specifically,
the proposed filter is inspired by the amplitude and phase estimation (APES) method.
By using the APES principle rather than the minimum variance principle in the filter
design, we obtain a filter with a less erratic filter response at high SNRs compared to
minimum variance based filters. This is also evident from the experimental results. Due
to the better filter response behaviour, the proposed filter is better suited for signal ex-
traction. Our simulation results showed that the proposed filter is also applicable for
extraction of real-life signals such as a trumpet signal. From the results, it is clear that
the filter is useful for suppressing both random noise and interferering sources.
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