60,910 research outputs found

    What do we perceive in a glance of a real-world scene?

    Get PDF
    What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level components of a scene, there is little evidence suggesting any bias toward either scene-level or object-level recognition

    On perceptual expertise

    Get PDF
    Expertise is a cognitive achievement that clearly involves experience and learning, and often requires explicit, time-consuming training specific to the relevant domain. It is also intuitive that this kind of achievement is, in a rich sense, genuinely perceptual. Many expertsā€”be they radiologists, bird watchers, or fingerprint examinersā€”are better perceivers in the domain(s) of their expertise. The goal of this paper is to motivate three related claims, by substantial appeal to recent empirical research on perceptual expertise: Perceptual expertise is genuinely perceptual and genuinely cognitive, and this phenomenon reveals how we can become epistemically better perceivers. These claims are defended against sceptical opponents that deny significant top-down or cognitive effects on perception, and opponents who maintain that any such effects on perception are epistemically pernicious

    Structured computer-based training in the interpretation of neuroradiological images

    Get PDF
    Computer-based systems may be able to address a recognised need throughout the medical profession for a more structured approach to training. We describe a combined training system for neuroradiology, the MR Tutor that differs from previous approaches to computer-assisted training in radiology in that it provides case-based tuition whereby the system and user communicate in terms of a well-founded Image Description Language. The system implements a novel method of visualisation and interaction with a library of fully described cases utilising statistical models of similarity, typicality and disease categorisation of cases. We describe the rationale, knowledge representation and design of the system, and provide a formative evaluation of its usability and effectiveness

    Perceptual factors that influence use of computer enhanced visual displays

    Get PDF
    This document is the final report for the NASA/Langley contract entitled 'Perceptual Factors that Influence Use of Computer Enhanced Visual Displays.' The document consists of two parts. The first part contains a discussion of the problem to which the grant was addressed, a brief discussion of work performed under the grant, and several issues suggested for follow-on work. The second part, presented as Appendix I, contains the annual report produced by Dr. Ann Fulop, the Postdoctoral Research Associate who worked on-site in this project. The main focus of this project was to investigate perceptual factors that might affect a pilot's ability to use computer generated information that is projected into the same visual space that contains information about real world objects. For example, computer generated visual information can identify the type of an attacking aircraft, or its likely trajectory. Such computer generated information must not be so bright that it adversely affects a pilot's ability to perceive other potential threats in the same volume of space. Or, perceptual attributes of computer generated and real display components should not contradict each other in ways that lead to problems of accommodation and, thus, distance judgments. The purpose of the research carried out under this contract was to begin to explore the perceptual factors that contribute to effective use of these displays

    A review of research into the development of radiologic expertise: Implications for computer-based training

    Get PDF
    Rationale and Objectives. Studies of radiologic error reveal high levels of variation between radiologists. Although it is known that experts outperform novices, we have only limited knowledge about radiologic expertise and how it is acquired.Materials and Methods. This review identifies three areas of research: studies of the impact of experience and related factors on the accuracy of decision-making; studies of the organization of expert knowledge; and studies of radiologists' perceptual processes.Results and Conclusion. Interpreting evidence from these three paradigms in the light of recent research into perceptual learning and studies of the visual pathway has a number of conclusions for the training of radiologists, particularly for the design of computer-based learning programs that are able to illustrate the similarities and differences between diagnoses, to give access to large numbers of cases and to help identify weaknesses in the way trainees build up a global representation from fixated regions

    Information recovery from rank-order encoded images

    Get PDF
    The time to detection of a visual stimulus by the primate eye is recorded at 100 ā€“ 150ms. This near instantaneous recognition is in spite of the considerable processing required by the several stages of the visual pathway to recognise and react to a visual scene. How this is achieved is still a matter of speculation. Rank-order codes have been proposed as a means of encoding by the primate eye in the rapid transmission of the initial burst of information from the sensory neurons to the brain. We study the efficiency of rank-order codes in encoding perceptually-important information in an image. VanRullen and Thorpe built a model of the ganglion cell layers of the retina to simulate and study the viability of rank-order as a means of encoding by retinal neurons. We validate their model and quantify the information retrieved from rank-order encoded images in terms of the visually-important information recovered. Towards this goal, we apply the ā€˜perceptual information preservation algorithmā€™, proposed by Petrovic and Xydeas after slight modification. We observe a low information recovery due to losses suffered during the rank-order encoding and decoding processes. We propose to minimise these losses to recover maximum information in minimum time from rank-order encoded images. We first maximise information recovery by using the pseudo-inverse of the filter-bank matrix to minimise losses during rankorder decoding. We then apply the biological principle of lateral inhibition to minimise losses during rank-order encoding. In doing so, we propose the Filteroverlap Correction algorithm. To test the perfomance of rank-order codes in a biologically realistic model, we design and simulate a model of the foveal-pit ganglion cells of the retina keeping close to biological parameters. We use this as a rank-order encoder and analyse its performance relative to VanRullen and Thorpeā€™s retinal model

    Conceptual coordination bridges information processing and neurophysiology

    Get PDF
    Information processing theories of memory and skills can be reformulated in terms of how categories are physically and temporally related, a process called conceptual coordination. Dreaming can then be understood as a story understanding process in which two mechanisms found in everyday comprehension are missing: conceiving sequences (chunking categories in time as a higher-order categorization) and coordinating across modalities (e.g., relating the sound of a word and the image of its meaning). On this basis, we can readily identify isomorphisms between dream phenomenology and neurophysiology, and explain the function of dreaming as facilitating future coordination of sequential, cross-modal categorization (i.e., REM sleep lowers activation thresholds, Ā“unlearningĀ”)
    • ā€¦
    corecore