18,459 research outputs found

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Rapid adaptation of video game AI

    Get PDF

    Developing Artificial Intelligence Agents for a Turn-Based Imperfect Information Game

    Get PDF
    Artificial intelligence (AI) is often employed to play games, whether to entertain human opponents, devise and test strategies, or obtain other analytical data. Games with hidden information require specific approaches by the player. As a result, the AI must be equipped with methods of operating without certain important pieces of information while being aware of the resulting potential dangers. The computer game GNaT was designed as a testbed for AI strategies dealing specifically with imperfect information. Its development and functionality are described, and the results of testing several strategies through AI agents are discussed

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Serious Games Adaptation According to the Learner’s Performances

    Get PDF
    Basically, serious games provides enjoyment and knowledge, several researches in this field have focused into joining these two proprieties and make the best balance between them, in order, to provide the best game and enjoyable game experience and ensure the learning of the needed knowledge. Players differ and their knowledge background can be a lot different from one to the other. This study focused on how the SG adapts and provide the needed knowledge and enjoyment. The game should analyze players behavior from different angles, thus it can add difficulty, information, immersion or enjoyment modules to fit the player skills/knowledge

    Affective Game Computing: A Survey

    Full text link
    This paper surveys the current state of the art in affective computing principles, methods and tools as applied to games. We review this emerging field, namely affective game computing, through the lens of the four core phases of the affective loop: game affect elicitation, game affect sensing, game affect detection and game affect adaptation. In addition, we provide a taxonomy of terms, methods and approaches used across the four phases of the affective game loop and situate the field within this taxonomy. We continue with a comprehensive review of available affect data collection methods with regards to gaming interfaces, sensors, annotation protocols, and available corpora. The paper concludes with a discussion on the current limitations of affective game computing and our vision for the most promising future research directions in the field
    • …
    corecore