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ABSTRACT 

Affective gaming is a relatively new field of research that 

exploits human emotions to influence gameplay for an 

enhanced player experience. Changes in player’s psychology 

reflect on their behaviour and physiology, hence recognition 

of such variation is a core element in affective games. 

Complementary sources of affect offer more reliable 

recognition, especially in contexts where one modality is 

partial or unavailable. As a multimodal recogntion system, 

affect-aware games are subject to the practical difficulties 

met by traditional trained classifiers. In addition, inherited 

game-related challenges in terms of data collection and 

performance arise while attempting to sustain an acceptable 

level of immersion. Most existing scenarios employ sensors 

that offer limited freedom of movement resulting in less 

realistic experiences. Recent advances now offer technology 

that allows players to communicate more freely and naturally 

with the game, and furthermore, control it without the use of 

input devices. However, the affective game industry is still in 

its infancy and definitely need to catch up with the current 

life-like level of adaptation provided by graphics and 

animation. 

1. INTRODUCTION

Affective computing (AC) (Picard 1997) is the science 

that aims to design and develop emotionally intelligent 

machines. Such automated systems should process and 

interpret human emotions via analysing sensory data. An 

affective model cannot be generic as applications vary in 

emotion models, available information, input devices and 

user requirements. For example, health care systems may 

require intrusive sensors to collect very reliable data, while e-

learning and games may not demand such optimality and 

may or may not require additional controllers (Szwoch and 

Szwoch 2015). Overall, an affect recognition system is 

typically a trained classifier and, regardless of the application 

or input, includes components of traditional supervised 

classification (Fairclough, 2009). Human-Computer 

Interaction (HCI) applications further require system 

adaptation according to the predicted user emotion. This 

extends to affective games (AGs) where the goal is to 

increase engagement by explicitly or implicitly altering the 

game in response to players’ emotions.  

Though a typical diagram of the affective loop in games 

(Fig. 1) does not reflect how the system infers the emotions, 

it implies the need to classify or estimate the response 

received from users (Novak et al. 2012). Very few affect-

ware games truly reflect the concept of the full circle and are 

rather developed for academic research purposes. 

Commercial affective loops engage players’ emotions 

through gameplay and other content in the development stage 

based on a representative player model (Adams 2014). This 

is problematic since individual players often differ from the 

average model, in addition to the rich spectrum of emotions 

experienced by players, which could change from sessions to 

session even for the same player, making it almost 

impossible to predict. However, this is likely to change with 

the advances in affect recognition techniques and input 

devices, allowing the capture of various information channels 

and more reliable predictions.  

Fortunately, there are a variety of traditional classifiers 

that fit the task of emotion recognition and a large number of 

software libraries that make these classifiers available. Also, 

several emotion models and databases have been developed 

and standardised to an extent. Hence, the issue to consider 

often is what affective channels to acquire information from, 

and how to properly process them. Most attempts address the 

face as the main source of affect, while others involve 

speech, bodily and physiological signals. The latter has 

recently gained attention in the gaming context with the 

growth of affordable wearable technology and the well-

established psychophysiological correlation (Christy and 

Kuncheva 2014). As observed by (Picard et al. 2001), 

physiological responses are translated to discrete 

psychological (emotional) states by a supervised 

classification pipeline. Furthermore, it is believed that 

commercial game publishers will start considering 

“psychophysiological hardware” in their next generation of 

game consoles (Valve Steam Box 2013). 

Figure 1. The realisation of the affective loop in games (Yannakakis 

and Paiva 2014). 



 

 

A multimodal architecture was presented in (Hamdy 

2016) as a generic model for affect-aware machines. It 

suggest a more reliable prediction by fusing different types of 

input information. This can naturally be extended to games 

and hence, a typical closed AG loop would include: 

multimodal emotion acquisition, modelling and identification 

of the collected signals via machine learning or statistical 

methods, and reflecting the decision back into the game 

engine to subsequently alter the game, ultimately taking into 

account the strength and type of the recognised affect 

(Christy and Kuncheva 2014). Variations of game adaptation 

includes dynamic difficulty adjustment (DDA), audiovisual 

content alterations, and affect-aware NPCs. 

This paper discusses the external part of the AG loop as a 

multimodal recognition system, and reviews the different 

sources and methods of collecting affect information from 

players. In section 2, a number of modalities used as input to 

affective systems are discussed along with examples from the 

literature that employ these in games. Section 3 analyses 

these sources of affect in gaming context, and highlights 

relevant design issues of AGs as multimodal classifiers. 

Conclusions are presented in section 4. 

 
2. AFFECTIVE INFORMATION 

 
Attempting to improve classification tasks, it is 

recommended that multiple types of input from different 

modalities or different features from the same modality be 

combined (Gunes and Piccardi 2005). Hence, identifying 

psychological states from user biometrics requires that 

different types of measurements be provided simultaneously 

to allow one to verify the others (Drachen et al. 2010). The 

commonly used modelling approach for categorising 

emotions from mono- or multi-modal input is based on the 

arousal (high-low) and valence (positive-negative) 

dimensions in terms of the collected information. In addition 

to the apparent facial expressions and body movement, AGs 

often use monitoring modalities (Giakoumis et al. 2009) 

produced by the autonomic nervous system reflecting 

cardiovascular, electrodermal, or electrical activity in the 

human brain. 

2.1 Behavioural 

Vision channels hold the most informative data as 

humans tend to convey their feelings in a visual sense. The 

non-intrusive properties of cameras make vision-based 

systems more practical especially with the rapid advances in 

hardware and computer vision technology (Szwoch and 

Szwoch 2015).  It is well-established that facial expressions 

and emotion mutually influence each other, hence the 

majority of affect recognition systems focus on face. Several 

features like Face Action Units or facial landmarks have been 

studied and benchmarked to model primary and secondary 

emotions in terms of selected dimensions. However, this is 

the least explored category in the literature with a limited 

number of studies addressing facial expression recognition in 

the context of games. 

NovaEmötions (Mourão and Magalhães 2013) is a 

multiplayer game where players score by acting an emotion 

through facial expressions. The captured emotions are 

labelled using a multiclass Support Vector Machine (SVM) 

and the player with the closest expression wins a round. 

Authors claim the face images were captured in a novel and 

realistic setting despite the purpose being “act out an 

emotion” rather than spontaneously reacting to a stimulus. 

However, the experiment released a novel facial expression 

dataset of several emotions. Three AGs with linearly 

increasing difficulty were developed in (Bevilacqua et al. 

2018) to investigate the relation between facial actions and 

heart rate, and player’s emotional states. Expectedly, 

participants retained a neutral face for longer periods of time 

during the boring game parts. The study concluded that 

fusing the two cues is more likely to detect the emotional 

states. Authors in (Asteriadis et al. 2012a) used images of 

human faces and expressions in an attempt to assess the 

emotional state of a player. Player frustration and 

engagement as well as the challenge imposed by gameplay 

were used to alter the game in response. Other examples 

were previously discussed in (Hamdy and King 2017) to 

develop AGs through emotional NPCs that can believably 

respond to a player’s facial affect. 

Some affective expressions are reflected better through 

the body than the face. Cameras and motion detection 

devices enable the development of posture tracking 

techniques to construct models of body movement. The most 

common technique to capture motion is a suit with visibly 

trackable markers where posture is reconstructed by 

observing the subject with a camera and analysing the 

imagery. This is a well established technique widely used in 

film animation and could easily be functional in games. 

Alternatively, markerless optical systems are available with 

no special equipment needed, like Microsoft’s Kinect.  

A simple yet very effective five-dimensional 

representation of body expressions was introduced in 

(Caridakis et al. 2010) and proved to have a strong 

association with how humans perceive emotions in real 

environments, making them strong candidates for affective 

HCI systems including games. In (Savva and Berthouze 

2011), a motion capture system was attached to subjects 

playing a Wii tennis game to identify their affective states 

from non-acted body movements. The most dominant 

motions were used with a neural netrowk (NN) classifier to 

identify eight emotions. Similarly, Kleinsmith et al. (2011) 

represented postures as rotations of the joints and assessed 

players in Wii sports games after winning or losing a point. 

Distance between body joints was used in (De Silva and 

Berthouze 2004) to recognise four basic emotions. 

Interestingly, the acted dataset of postures was labelled by 

observers from different cultures. The research in (Kapoor et 

al. 2004) examined non-acted postures through a multimodal 

system of facial expressions, body postures, and game state 

information. They reported the highest recognition accuracy 

from posture, although a limited description of the body  was 

used. A system was proposed in (Gunes and Piccardi 2009) 

to identify emotions using a Hidden Markov Model (HMM) 

and a SVM to fuse facial and body cues to identify user 

affect. However the database did not include any real body 

pose information and was of a single subject. 

Other vision-based modalities of player input that have 

been explored use pupilometers and gaze tracking, which are 

argued to be implausible within commercial development 

due to unreliability (sensitivity to distance, light and screen 



 

 

lamination) (Yannakakis et al. 2016). However, eye tracking 

is able to reveal information on attention from the duration of 

fixation, and hence is a good candidate for sensing player’s 

engagement (Bradley et al. 2008; Xu et al. 2011) 

Speech is one of the important behavioural modalities for 

detecting emotions. However, compared to facial 

expressions, emotions may not be captured as clearly in 

voice. In terms of vocal emotional dimensions, arousal is 

reflected by voice intonation and acoustics and has the 

strongest impact on speech, hence, can distinguish emotions 

better. Valence on the other hand is reflected by spoken 

words and is much harder to estimate from voice (Guthier et 

al. 2016). 

Automatic speech recognition (ASR) is currently 

available on most low resource devices, smart phones, and 

game consoles, but mostly focus on the recognition of some 

context-dependant keywords. Although this is limited, it is a 

robust feature against possible interferences from game 

sounds, music and NPC voices in natural gaming 

environments. Hence, there is the trade-off of including a 

“heavy” continuous ASR engine in the game, or limiting the 

emotion analysis to a few affective words (Schuller 2016). It 

is important to note that even lower accuracies of ARS 

modules are proved to be sufficient to identify emotions from 

a word in a consistent context (Metze et al. 2010). In 

addition to words, nonverbal expression of emotions like 

laughter or groans convey a lot of information about the 

speaker’s affective state, and can also be handled by the ASR 

engine.  

Games have been used as means of eliciting emotions for 

data collection in speech research implying the rich spectrum 

of affect present in or by games (Schuller 2016). However, it 

is argued that a player is less likely to want to speak to the 

game (Jones and Deeming 2008) and only a few games truly 

made use of the ability to recognise emotion from speech. 

A voice activated game for identifying four attitudes from 

childrens’ speech was presented in (Yildirim et a. 2011). 

Spontaneous dialog interactions were carried out with 

computer characters and acoustic, lexical, and contextual 

features were captured. Interestingly, results showed that the 

selected features have varying performance with different 

assessed affective states and that fusion of all three cues 

significantly improved classification results.  

Authors in (Jones and Sutherland 2005) developed a 

game with an acoustic recognition system to identify player’s 

emotions from affective cues in speech and alter the 

behaviour of the game NPC accordingly. This was extended 

to a system capable of capturing 40 acoustic features from 

voice to assess five emotions where the character is better 

able to overcome obstacles based on the emotional state of 

the player. 

In (Kim et al. 2004), affective speech and physiological 

signals were collected from players to elicit certain reactions 

in a pet NPC. A pre-selected set of features were used with a 

simple threshold-based classifier. Results showed improved 

accuracy when the two affective channels are combined. In a 

slightly different perspective, Rudra and Tien (2007) proved 

the feasibility of recognising voice emotions of a game 

character. Arbitrary utterances from the artificial Pidgin 

language was classified using a SVM to identify neutral and 

anger states of the NPC. 

The work in (Alhargan et al. 2017) combined eye 

tracking with speech signals in a game that elicits controlled 

affective states. A SVM was used to classify emotions based 

on arousal and valence. Recognition results revealed eye 

tracking outperforming speech in affect detection and, when 

fused at decision level, the two modalities were 

complementary in interactive gaming applications. 

2.2 Physiological 

The Cognitive-motivational-emotive model assumes the 

human emotional state consisting of both affect and 

physiological response (Szwoch and Szwoch 2015). Visible 

affect can be controlled to an extent, but it is almost 

impossible for the average person to control physiological 

reactions. Furthermore, studies show that experienced 

players tend to stay still and speechless while playing 

(Asteriadis et al. 2012a), hence, the need for other forms of 

affect expressions. However, it is argued that in games, with 

enough practice, players’ skills could allow them to control 

their physiological responses, converting an AG loop into a 

straight-forward biofeedback (Nacke et al. 2011).  

The most popular biometric signals used in adaptive 

player-centric games are summarised in Table 1 with their 

correlation to emotion and feasibility in practice (Christy and 

Kuncheva 2014; Bontchev 2016; Garner 2016).  

Table 1: The Common Physiological Signals for Affect Detection 

Signal Measurement/tool Features 

Electrodermal Activity 

(EDA) or Galvanic Skin 

Response (GSR) or 

Electrical Skin Response 

(ESR) 

Electrical conductivity of the skin 

surface. 

A band between two fingers on either 

hand. 

Reliable indicator of affective arousal like stress and anxiety. Simple and low 

cost. Common alone or combined with other techniques. Widely used for affect 

detection including in games. Easy to adapt well into games controllers. Suffers 

latency. Unsuitable for games with hand controllers, unless sensors are attached 

to the controller. 

Electromyography (EMG) Electrical activity from muscles. 

Non-invasive electrodes. 

Vary across subjects and cultures. Need to be placed at various body locations. 

Electroencephalography  

(EEG) 

Electrical signals from the brain. 

Non-invasive electrodes. 

 

Used in various contexts and superior for games due to portability, ease of use, 

temporal resolution and affordability. Able to detect presence of emotions and 

identify the discrete classes. Excellent for examining attempts to conceal or 

pretend emotions. Spatial resolution is relatively low and may be insufficient 

for complex emotion detection. 

Respiration Breaths speed. 

Respiration belt or sensors. 

Not as accurate as other signals. Mainstream applications could be hindered as 

sensors are embedded into clothing. 

Blood volume Heart rate and blood oxygen. 

Optical technology clip. 

Good indicator of affective arousal like stress and anxiety. 

Temperature Body temperature. 

Contact and contactless sensors. 

Related to specific emotional states. Has been used in games. Sensitive to 

movement causing inaccuracies in collected data. 



 

 

Typically, measurement of such signals requires standard 

hardware sensors borrowed from psychological research, 

which could be expensive and not suitable for active game 

play. Wearable sensors were introduced by (Picard and 

Healy 1997) for AC applications, which can be embedded in 

clothes or glasses making them fitting for AGs. Seamless 

sensors, where the user should not be aware of any 

interaction, come into contact with  the body for a limited 

time through classical interfaces like mouse and keyboard. 

Some research attempts to incorporate traditional game 

controllers with such sensing ability. Scheirer et al. (2002) 

proposed a system that combines physiological data with 

behavioural data, namely mouse-clicking patterns, to build a 

HMM classifier of affective classification.  

In (Christy and Kuncheva 2013), a fully functional mouse 

was designed with GSR and HR frequency measuring 

capability for capturing clean physiological signals from the 

player in real time. Rarely, an adaptive AG may use 

keyboard pressure as indication of changes in player effort or 

emotion during gameplay (Tijs et al. 2008). The game ‘‘Rush 

for Gold’’ (Bontchev and Vassileva 2016) used the GSR of 

the player to assess their arousal level and alter game 

componenets accordingly. 

Attempts have been made to commercially produce 

multimodal affect-aware games. Companies had to limit their 

trials within the capabilities of existing sensing technology 

and emotion recognition algorithms. However some were 

involved in manufacturing the necessary hardware and 

software to include affective elements in their games. Christy 

and Kuncheva (2014) provide a tabulated historical survey of 

AC, specifically psychophysiological system developments, 

and industry trends with respect to producing commercial 

AGs. Though unsuccessful, some “retro” systems employed 

the affective concept in player input since the early 80’s with 

custom tailored sensing equipment. More recent AGs that 

made it to the commercial environment are found in (Kotsia 

et al. 2016). 

 

3. MULTIMODAL AFFECTIVE GAMES DESIGN 

 

Integrating AC into games involve interdisciplinary 

fields; signal processing, machine learning, and input from 

psychology. The sensing part of the AG loop is about fitting 

a supervised classifiers component into the design and 

development of the game while maintaining real-time 

performance and adaptation. Below, we discuss the 

feasibility of the modalities in section 2 in games context. 

3.1 Modalities 

Face and Body 

Classification is one of the difficult tasks to automate, and 

when visual data is involved, this becomes more problematic. 

Facial and body movement prove very rich and useful for 

examining emotion expressions but are computationally 

expensive and time consuming (Kaplan et al., 2013). 

Camera-based modalities are highly within reach and do not 

require expensive equipment. However, the majority of 

vision-based affect detection systems cannot operate well in 

real-time (Zeng et al. 2009) and often require a well-lit 

environment that is not always available or preferred by 

gamers, in addition to posing privacy issues. Fortunately, this 

can be resolved to an extent by the advances in computer 

vision and hardware, and the increasing number of available 

vision-based emotion detection software. A rich collection of 

databases exist of facial expressions for primary and 

secondary emotions. However, due to the difficulty of 

obtaining natural emotions in experimental settings, only few 

databases exist that show spontaneous emotions. Real 

expressions could differ greatly from posed ones in terms of 

facial geometry and timing. This deems the majority of 

exiting datasets unsuitable for real-time generalisation 

especially in game environments where natural emotion is 

key. Furthermore, the validity of vision-based affect is highly 

subjective since observations vary between cultures, races 

and social environments (Jack et al., 2012). On another level, 

open space or collaborative games may require several 

cameras posing even further challenges of stereo-vision, real-

time detection, and handling several occlusions due to space 

limitations and presence of several people. 

Speech 

As with visual cues, speech is a highly accessible real-

time and unobtrusive modality, yet it is only applicable for 

games controlled by speech which are not that common. That 

is why few games up to this point make use of the ability to 

recognise emotion from speech, in addition to environmental 

audio posing additional challenges (Schuller 2016). Speech 

signals may not require as much processing power as visual 

cues and it is an advantage that sound recognition has been 

employed in HCI for quite sometime, and with reliable 

performance. A rich number of affective speech resources 

are available although only a few cover different age groups 

with realistic spontaneous emotions. However, this is still 

missing for many languages and cultures. Similar to facial 

expressions, speech emotions are obtained by recording 

performing actors to acquire intense clean samples avoiding 

background noise that accompanies ordinary voice samples. 

The content is often scripted and meaningless for emotion 

detection as opposed to natural speech where some emotions 

appear more than others depending on mood. This increases 

the generalisation error of the trained detector in real 

environments. Furthermore, the validity of voice-based 

labelling in realistic recordings is highly subjective and prone 

to disagreement (Guthier et al. 2016). It is also worth noting 

that most datasets and ASR systems focus on verbal content 

rather than “animated” sounds like laughter and sighs, which 

seem to be the more common in a game environment. 

Physiological signals 

Even though the core technology for physiological 

signals is well founded and developed, hardware for affective 

gaming is still not widely available. Furthermore, most of 

these signals respond to other external/internal factors such 

as subject’s health, physical condition, temperature, etc., 

deeming them unfit for the usual computer usage, not to 

mention gaming. Since video games mostly require active 

players, affective input to AG must be comfortable and 

intuitive as the sensors should not hinder player enjoyment of 

the game. AG would benefit best from seamless contact 

sensors, hence the need for them to be populated outside 

testing labs and into affordable consumer devices (Picard 

2010). Nevertheless, great development is witnessed for non-

intrusive low-powered sensors for remote collection of 

physiological and behavioural data from people. In addition, 



 

 

for existing hardware, real-time collection can be done 

through comfortable affordable wristbands and stored on 

local devices for further processing (Yannakakis et al. 2016). 

Furthermore, several computer manufacturers are 

considering embedding physiological sensors into game 

controllers (Szwoch and Szwoch 2015); Valve and Sony 

have implied that EDA and HR could soon be incorporated 

into standard controllers (Christy and Kuncheva 2014). A 

major leverage physiological signals have over other 

modalities as Table 1 indicates, is that they have been widely 

used in AC and games research and proved reliable 

indicators/classifiers of real-time emotions. Also, they do not 

lack generalised data, and are robust across the populous.  

3.2 Model 

Affect recognition systems, being a multimodal type of 

classifier, are more likely to incorporate methods applied in 

machine learning (ML) applications. Acquiring rich amounts 

of data from different affective signals seems appealing as it 

helps improve recognition and complement situations where 

some signals are not available. However, collecting 

physiological signals is subject to standard pre-processing 

and noise removal methods. Moreover, incompatibility, 

dimensions, and fusion of the collected signals present 

further challenges. Research in (Al Osman and Falk 2017; 

Calvo and D'Mello 2010) analyses automatic multimodal 

affect recognition and the challenges imposed by the need to 

acquire, process and fuse different types of data. Games pose 

additional challenges with respect to the ML model 

components, as many factors affect the collected data that not 

even carefully designed environments can eliminate without 

affecting player experience (Yannakakis et al. 2016). 

Input signals 

Most relevant sensors used in the gaming context are 

highly intrusive affecting the quality of gathered data. In 

addition, the fast-paced rich data from games may reflect 

rapid movement and quick alteration in emotions which may 

not be accurately captured or may even be missed. In 

general, physiological responses are affected by factors like 

mood, age, health in addition to external elements. When 

recording, it is often needed to offset the signal before 

modelling to calibrate the interaction model and eliminate 

subjective biases (Picard et al. 2001). This means a user will 

be recorded for a short resting time before any interaction, 

which may not be feasible for players. Nevertheless, it could 

be a suitable start for AG to exploit player dependent 

classifiers for better prediction. The tutorial level usually 

used to familiarise the player with the game, controls, and 

characters, can be exploited to calibrate the system to 

expressions of the specific player. This can also dynamically 

train AI companions to be accustomed with this player’s 

forms of affect, hence more aware and believable in their 

responses. Surely, this raises feasibility issues and poses 

more constraints regarding system resources, game design 

and adaptation. 

Features 

Due to the rich affective interaction and the varying types 

of emotions experienced in games, the produced signals are 

complex and non-trivial to sample. Some extra features may 

need to be engineered for better distinction of displayed 

emotion. Standard extraction methods may suffice for AC 

applications, but for games, research shows that other 

complex methods such as sequence mining  and deep 

learning offer richer representations of affect in games 

(Yannakakis et al. 2016). To reduce computational effort of 

training and real-time performance, it is best if the model is 

based on a minimal number of features that yield the highest 

prediction accuracy. Dimensionality reduction methods like 

principla component analysis (PCA) and Fisher’s linear 

discriminant analysis (LDA) are all applicable, but current 

work in AG focussed so far on sequential forward selection, 

sequential backward selection and genetic search-based 

feature selection (Martínez and Yannakakis 2010). Another 

important issue to consider is the sampling rate. Most studies 

use an event-based approach where important game events 

determine the response time window that features are 

extracted from (Ravaja et al. 2006; Kivikangas et al. 2011). 

Modelling (Classification) 

 Mapping features to emotions primarily depends on the 

representation model of emotions. If classes or annotated 

states are used to model player’s affect, any of the traditional 

ML algorithms can be used to build an affective classifier. 

On the other hand, if a pairwise preference (rank) format is 

used, the problem becomes a preference learning 

(Yannakakis 2009). Dynamic models of player behaviour can 

be used to infer emotion in real time and induce appropriate 

emotions during gameplay (Bontchev 2016), however, 

Novak et al. (2012) conclude that the majority of adaptive 

physiological systems use static data fusion methods. The 

practical challenges result in emotions being identified with a 

widely varying accuracy (51%–92% according to (Nicolaou 

et al. 2011)) over the literature. Nevertheless, it is fair to say 

that a margin of error is allowed in games as an 

entertainment media (Christy and Kuncheva 2014). If the AG 

convinces players it is recognising and interacting with their 

emotions, then occasional misclassifications should not have 

a significant impact on the player’s experience. This can 

relax the design constraint put on the system, especially for 

commercial products. 

 

4. CONCLUSION 

 
Although game developers have traditionally focused 

their efforts on improving the graphic quality of games, 

speculations is that the advancements in graphics will 

plateau, forcing them to discover new ways of adding 

attraction to their games. This is expected to open a 

commercial perspective for AG (Christy and Kuncheva 

2014; Lara-Cabrera and Camacho 2018), which are basically 

classification systems with a variety of biometrics preferred 

as input. 

Behavioural affective inputs are highly accessible but add 

the traditional challenges associated with audiovisual data 

processing and hence, require robust algorithms with higher 

generalisation level. Besides, with games being a global 

entertainment industry, cross-cultural and social experiences 

influence on emotions must be addressed (Kleinsmith et al. 

2006; Sauter et al. 2010). Ethical implications arise when the 

game requires to audiovisually record players consistently, 

which are barely addressed in the literature. 

Physiological signals offer a commonly acceptable 

alternative. Contact-based sensors produce a wider range of 



 

 

reliable, objective and quantitative data (Guthier et al. 2016). 

However, most existing biometric sensors are rather 

impractical and highly intrusive for interactive applications 

and some are still very costly for a broad use in gaming. 

Also, wearable devices can obscure a significant part of the 

face/body and influence players to exhibit unusual behaviour, 

even subconsciously, which may affect interaction and 

subsequent actions. In such a context, information from 

different channels is required.  

Studies show that behavioural and physiological signals 

can be used to model players state continuously during 

interactive gameplay without interruptions, making the 

gathered data more temporally reliable as opposed to post-

game interviews and questionnaires (Mandryk et al. 2006). 

Although it is evident from the literature that combining 

modalities of different types increases classification 

precision, novel methods for modelling/predicting 

interactions are required and efficient fusion of multimodal 

data remains an open problem. Nevertheless, while reliable 

recognition seems required, independent of external factors 

or personality profiles, Christy and Kuncheva (2014) suggest 

that AG should not exclusively rely on accuracy of emotion 

recognition. Clever game design can reimburse 

misclassifications for an uninterrupted game experience. 

The most obvious way to represent emotion 

computationally is as labels for a limited number of discrete 

emotion categories. This scheme is easy to implement, but 

may be too general to be useful. Samples of affective data are 

often obtained from laboratory experiments with limited 

context, mostly of acted postures or stereotypical expressions 

(Kotsia et al. 2016). Picard (2000) highlighted the common 

emotions experienced or expressed around computer games, 

and the significance of systems that can recognising such 

affect from players. This can narrow the gap in HCI with 

development of more user-centred systems (Hudlicka 2003) 

when trained on emotions more likely related to gamers. 

However, emotion recognition is mostly done to standard 

predefined classes as spontaneity is an extra challenge 

(Kotsia et al. 2016). The experimental research is often done 

in heavily controlled environments limiting its chances of 

being deployed in practice, and results of AG research 

conducted in commercial settings are rarely published. 

According to (Borod et al. 1998), the valence hypothesis 

suggests that there is a difference between processing and 

displaying positive and negative emotions. Hence, it may be 

obvious not to treat all basic emotions equally as it is less 

likely that all emotions will occur with the same probability 

in every day life. This however, could be slightly different 

for games as the genre, content or level are most likely 

intended to elicit particular affective states. In relevance, one 

thing to consider with affect-aware games is signal 

habituation (Sokolov 1963). Getting too familiar with the 

stimulus, such that bodily reactions tend not to be triggered 

as much, is a phenomenon commonly observed with 

experienced gamers or people who spend a lot of time on the 

same game or level. Successful interaction design should be 

dynamic enough to offer ranges of stimuli and keep the game 

exciting (Garner 2016). 

It also worth noting that the majority of research in AG 

addresses single player scenarios. Physical space limitations 

are understandable, in addition to the added complexity of 

having to track and process biometrics of multiple players in 

a virtual environment, while keeping up system performance. 

Moreover, modelling multiplayer free interaction and how it 

influences their subsequent emotions is still a novel field of 

research (Kotsia et al. 2016). Although emotion recognition 

requires to be a real-time application with reasonable 

resources and ability to run on local platforms, it is a huge 

advantage to be able to distribute the recognition between the 

local console and a server (Schuller 2016). 

Although home consoles do not by default incorporate 

biometrics, research shows that interest in biofeedback 

applications is growing and it is anticipated that in ten years, 

biometrics within games will become mainstream (Garner 

2016). This move should inspire the game industry to 

consider design and development of AG loops in their 

products. It is argued that the future of affective gaming lies 

in more sophisticated, smaller, sensorless, noise-free devices 

(Kotsia et al. 2016; Christy and Kuncheva 2014). Fitting 

affective input devices and fast reliable pattern recognition 

algorithms in a game, while maintaining the desired game 

adaptation, is the biggest challenge for AG, especially in 

products affordable to the average player. 
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