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Abstract 

Artificial intelligence (AI) is often employed to play games, whether to entertain human 

opponents, devise and test strategies, or obtain other analytical data. Games with hidden 

information require specific approaches by the player. As a result, the AI must be 

equipped with methods of operating without certain important pieces of information 

while being aware of the resulting potential dangers. The computer game GNaT was 

designed as a testbed for AI strategies dealing specifically with imperfect information. Its 

development and functionality are described, and the results of testing several strategies 

through AI agents are discussed. 
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Developing Artificial Intelligence Agents for a Turn-Based Imperfect Information Game 

Introduction 

 Since the 20th century, when John von Neumann and Oskar Morgenstern (1944) 

formally expressed their Theory of Games, people have increasingly viewed the process 

of decision-making in mathematical terms. The unprecedented rate of the proliferation of 

computers and the exponential increase in capabilities that have occurred over the same 

timespan have acted as a much-appreciated catalyst for further research in this area. Not 

only are the devices used to sift through unfathomable quantities of data to detect patterns 

that may reveal facets of the human decision process, but the drive to automate as much 

as possible has led to myriad systems where computers themselves are responsible for 

decisions, a phenomenon known as artificial intelligence (AI). Combining in this way the 

logic and planning techniques that human minds employ on a regular basis with the raw 

computational power and nearly immeasurable information available to computers today 

has often been successful in the past and will likely continue to bring advances in 

multitudinous fields of human knowledge (Buchanan, 2005). In accomplishing such 

feats, the use of concepts from game theory is effective in guiding the decision-making 

process of the computer. This, in turn, involves identifying the problem that the computer 

is trying to solve and, if necessary, breaking it into component problems. The intention of 

such an analysis is to match the issues with scenarios where solutions can be tested and 

optimal approaches determined. The application of concepts from game theory forms the 

basis for AI, and the ability of computers to simulate such situations leads to further 

expansion of the theory.  
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Problems explored in game theory include those that players of nondeterministic 

games face when making decisions. Hence, conclusions drawn from the analysis of 

players’ decisions in these types of games, where there are significant stochastic 

elements, can potentially be used to inform answers to the larger questions posed by the 

problems themselves. This is the principle behind the research that forms the body of this 

thesis. Taking advantage of the modeling capabilities of computers, GNaT, a virtual 

game that presented the players with a combination of several types of problems, was 

developed by the author. Imperfect information, a type of complication that precludes 

players from knowing certain pieces of information and thus negatively affects their 

ability to accomplish their goals, was the foremost issue posed to players within the 

game. GNaT’s integrated AI, implemented in the form of modules that behaved in 

accordance with the selected strategies for their roles, was consequently tailored to deal 

with imperfect information and other difficulties using methods reliant upon probability 

within the game. The respective efficacies of the modules in answering the given 

problems were experimentally evaluated, resulting in an agent comprised of the relatively 

best-performing strategies for each task. 

Literature Review 

The application of artificial intelligence to games is a common exercise and has 

been fruitful in determining decision-making strategies for those games. While not all AI 

agents developed for games are suitable for all types of games, various AI algorithms 

have been devised to deal specifically with common issues in many games such as 

imperfect information.  
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Notable Approaches to the Issue of Imperfect Information 

Information Set Monte Carlo Tree Search is a member of the family of Monte 

Carlo Tree Search algorithms. While it shares the same general stochastic process 

characteristic of Monte Carlo algorithms, it uses search trees comprised of information 

sets of game states. It has been successfully applied to card games such as Spades and 

Scopone (Di Palma & Lanzi, 2018). Multiple members of the counterfactual regret 

minimization family of algorithms have seen great success playing several variants of 

poker (Brown & Sandholm, 2018). Heuristic-based strategies can also be used for AI. In 

zero-sum games, these can be implemented in a straightforward fashion if the Nash 

equilibrium is known. (The Nash equilibrium describes the state in a game where all 

players are aware that they cannot improve their standings by changing solely their own 

strategy.) GNaT relies heavily on elements from the two-player hand game Rock-paper-

scissors, whose Nash equilibrium is the state where both players randomly play each 

option with equal probability (van den Nouweland, 2007). 

Procedure 

 The development of GNaT primarily served to facilitate exploration of AI 

strategies when operating in contexts with incomplete information. AI agents were 

designed to test various strategies for handling problems presented within the game, chief 

of which were incomplete information and shifting probabilities. 

Description of the Game 

 GNaT is a zero-sum turn-based game designed for two players. The objective of 

the game is to eliminate the opponent by reducing his or her health to zero. This is 
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accomplished by performing “attacks”, which are actions that require certain amounts of 

in-game currency. Each attack can be accompanied by one card, played from the player’s 

hand, that assigns an “attack type” – rock, paper, or scissors. If the attack type is 

advantageous against the opponent’s “defense type” (using the relationships defined by 

the popular hand game Rock-paper-scissors), the opponent loses a larger amount of 

health. Less health is lost by the opponent if the attack type is disadvantageous. 

 The primary mechanic that drives players’ turns is the roll, which randomly 

selects one of six actions for the player to perform. Each of these is assigned a certain 

weight. One of the actions available to players is the choice of adding to one of the 

weights; in this way, the probabilities upon which the roll depends can be altered. Hence, 

if a player optimizes the probabilities according to their preferences, they can perform 

desired actions more frequently. 

 The key to winning the game lies in mastering both of these mechanics. Correctly 

predicting the defense type of the opponent will most efficiently make use of 

opportunities to attack, and adjusting the probabilities of certain actions may reduce the 

number of actions taken in achieving the goal. 

Development goals for the game. GNaT was written in C++ using Microsoft 

Visual Studio Community 2017. The language was chosen for its object-oriented features 

that allowed clear definitions of classes and their interactions. Since the game was to 

serve as a test case for AI strategies, simplicity was a stated design goal. This restricted 

the scope of the project and prevented the addition of features that would have increased 

its complexity. This consequently meant human enjoyment was not the main focus; 
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rather, the intention was to give some level of clarity in comparing approaches to AI for 

the game. 

Design elements of the game. Using the principles conceived during early stages 

of development as a basis, the design of GNaT was conscious and fairly calculated; the 

end product reflects this. The foremost example of this is the centrality of AI, which 

manifests itself within the program in several ways. Upon running the executable, the 

game opens in the console, posing the following question: “Do you want to play against 

the computer, or do you want to pit two AIs against each other?” The logic used by AI 

agents is integrated into the Player class, and the game produces lengthy scripts detailing 

their movements. Information hiding is another underlying principle of the game’s 

design; access to information about the players is heavily controlled. Players’ defense 

types can only be revealed to their opponents through the purchase of attacks, and the 

contents of players’ hands and customized probability weight sets remain private for the 

entire duration of the match. This restriction of knowledge serves as the basis for the 

problem of incomplete information within the game, in contrast to Rock-paper-scissors, 

where information about the opponent is unknown due to the simultaneous actions of 

players. 

Description of AI Agents 

 The AI were designed shortly after the game concept was solidified. Rather than 

initially being designed as whole agents, the AI consisted of individual modules that dealt 

with making decisions at each point where the game required input. Some of these 

modules were explicitly related; one strategy for modifying the weights of actions in an 
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automated player’s probability set directly references the response of another module 

designed for selecting actions on a turn. However, for the most part the modules were 

approached as logically independent segments of the program, each concerned with 

separate tasks. This led to a search for a combination of individual modules that 

functioned best in general, rather than a more cohesive one comprised of parts that all 

conformed to a single unified strategy.  

Strategies of each module. These modules interact with the game at the five 

points where input is required from the player. Each module is the implementation of a 

strategy for determining which response to input at a particular point. 

Purchasing attacks. This first point requiring player input occurs when the player 

rolls to “visit the shop” and gains the opportunity to purchase attacks. There are three 

levels of attack; the more a player pays for the attack, the greater value they will receive 

for their currency. Players also have the option to not purchase an attack at all. 

Three strategies were developed for this decision point. The first, given the 

moniker Spend!, dictates simply that the player should always spend at the highest level 

they can afford at the moment. The second strategy attempts to use the player’s 

knowledge of the opponent’s defense type; it prescribes the hoarding of funds until either 

the elimination of the opponent is guaranteed by an attack or the accumulation of surplus 

currency begins, in which case attacks with the intention of discovering the opponent’s 

defense type will be made. This behavior earned it the name Save up until kill. Finally, 

the third strategy, named Go for the double! consistently attempts to make advantageous 

attacks through knowledge of the opponent’s defense type; if the opponent’s defense type 
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is unknown and the player has at least enough currency to purchase the lowest-priced 

attack twice, the lowest-priced attack will be purchased, revealing the defense type. The 

hope is that the player will receive a chance to attack again on a subsequent turn before 

the opponent can change his or her defense type. 

Playing cards with purchased attacks. Playing cards alongside attacks can be 

risky, paying off with double damage if the type is advantageous or halving damage 

when the type is at disadvantage. Not playing  a card results in a loss of 50 power, 

regardless of the attack purchased. Even so, only one strategy was developed for this 

decision point as it likely anticipates every situation. In summary, it seeks to always 

maximize the damage done; if the opponent’s defense type is unknown, the AI agent will 

guess using the most common type of card the player’s hand contains. The exception to 

this is the rare case when the opponent’s health is low enough that elimination is 

guaranteed when not playing an attack card and the opponent’s defense type is unknown, 

in which case guessing with an attack card is avoided and the kill secured. 

Choosing a defense type. Two approaches were developed for making a decision 

on the player’s defense  type. Both are consistent with the Nash equilibrium for Rock-

paper-scissors: a mixed strategy of equal probability of choosing any of the three options. 

The sole difference between the first strategy, Random defense!, and the second, Pick 

defense least likely to be doubled, does not come into play until the player has acquired a 

certain number of the cards (4/15 of the deck). The rationale for this is that the deck is 

finite; this second approach anticipates that if a significant portion of the deck is in the 

player’s hand, the type of attack card of which they have the most is less likely to be 
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played by the opponent. Hence, it dictates that the type that is at a disadvantage against 

the most common type of card in their hand should be chosen as the defense type. 

Selecting an action. While significantly less likely, it is possible to roll the action 

called select, which enables the player to choose from any of the other actions that can be 

rolled. The sole strategy for selecting the action uses a function labeled 

determineGameState, which attempts to determine the most urgent action through a series 

of if statements that assign weights to each choice. The final decision is then determined 

randomly; however, some weights assigned in certain cases, such as when the opponent 

is almost eliminated, can dominate in such a way that the options given those weights are 

nearly guaranteed. 

Raising the probability of an action being rolled. Changing the weights of 

actions that can be rolled is GNaT’s mechanism for allowing the player to determine 

which actions he or she would like to potentially perform more often. The initial weights 

for each action have values of six with the exceptions of the weight for the action of 

adding to weights, which has a value of four, and the weight for the player voluntarily 

selecting an action, which has a value of two. Additionally, when the value of each 

weight is raised, it is raised by two, aside from those values representing the two actions 

that have lower initial values; they are raised by one. The pertinent question, then, 

regards which action will provide the most utility when the value of its weight is raised. 

A human player would likely find select to be the action of most utility, but as its value 

can only be raised at a lower rate, raising the value of its weight may not be the most 

beneficial option. The first strategy, Always choose select, assumes select remains the 
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best general option despite the lower rate of increase of its weight value. The second, 

Select OR raise probability OR use game state, similarly maintains that select is a good 

general option, but also consults the function determineGameState to take its analysis of 

the current game’s state into consideration. To a lesser extent, this strategy also considers 

the action of raising a probability. The weight whose value is to be raised is then chosen 

randomly from these three alternatives. 

Experimental Testing of the AI Strategies 

 To determine the relative utility of these strategies, combinations of AI modules 

were constructed. When two separate modules for a given decision point were to be 

contrasted, they would be put in combinations of modules that were otherwise identical. 

Then the two combinations would each be assigned to a player within the game, and the 

game would run until one of the two players met the win condition. Execution would be 

repeated for numerous iterations. The starting player (randomly decided at the beginning 

of the game), total number of turns taken, and the state of each player’s health, currency, 

and number of cards at the end of the game would be recorded. These data served as 

diagnostics for determining which of the two different modules worked better with that 

combination of modules. Since only three of the decision points had more than one 

strategy, only modules from those points needed to be tested against each other. 

 Tests performed. The first two modules to be tested corresponded to the action 

of purchasing an attack: Spend! and Save up until kill. The combination of modules with 

which they were each paired was comprised of the sole strategies for the decision points 

for playing cards and selecting an action, the Random defense! strategy for choosing a 
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defense type, and the Always choose select strategy for determining which weight values 

to raise. (Henceforth, the modules that are the only strategies for their respective decision 

points will be omitted when listing the combinations of modules used for testing.) The 

two AI agents were run against each other 16 times, with the AI using the Spend! module 

designated Player 1 and the one using Save up until kill designated Player 2. The results 

are shown in Table 1.  

Table 1    

Spend! (Player 1) v. Save up until kill (Player 2) 

 Wins Average turns in games won Average health during win 

Player 1 8 64.6 931 

Player 2 8 83.4 503 

 

Retaining the same combinations of modules for each player, with the exception 

of replacing Save up until kill with the Go for the double! module for Player 2, the two 

players were run against each other another 16 times, obtaining the results in Table 2. 

Table 2   

Spend! (Player 1) v. Go for the double! (Player 2) 

 Wins Average turns in games won Average health during win 

Player 1 11 74.7 532 

Player 2 5 73.0 325 
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 Following these tests, the two modules for the decision point associated with 

choosing a defense type were each placed into a combination containing Spend! and 

Always choose select. Player 1 utilized Random defense!, while Player 2 instead used the 

Pick defense least likely to be doubled module. The two players faced off 20 times, 

leading to the outcomes specified in Table 3. 

Table 3   

Random defense! (Player 1) v. Pick defense least likely to be doubled (Player 2) 

 Wins Average turns in games won Average health during win 

Player 1 10 74.9 603 

Player 2 10 76.3 505 

 

 For the final decision point, each player’s combination of modules included 

Spend! and Random defense!. Player 1 also included Always choose select, while Player 2 

featured the Select OR raise probability OR use game state module. The players dueled 

for 20 matches, as shown in Table 4. 

Table 4   

Always choose select (Player 1) v. Select OR raise probability OR use game state 

(Player 2) 

 Wins Average turns in games won Average health during win 

Player 1 10 75.9 540 

Player 2 10 80.5 575 
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 Finally, a test to determine whether there exists a significant advantage or 

disadvantage as a result of starting the game was conducted. The initial assumption when 

developing the game was that there would be an advantage, so the player to play second 

was given 100 additional health as a counteractive measure. Both players in this scenario 

were formed from the same modules, namely, Spend!, Random defense! and Always 

choose select. They opposed each other 20 times; the results are documented in Table 5. 

Table 5   

Starting Player v. Second Player 

 Wins Avg. turns in games won Avg. health during win 

Starting Player 10 81.0 565 

Second Player 10 74.4 635 

 

Conclusion 

Performance Evaluation of the AI Agents 

 The simplest way to evaluate the utility of the strategies used by the AI agents is 

by comparing their performances when pitted against each other. Given enough trials, 

any substantial correlations in the data should become apparent. 

 For the first decision point, two of the strategies seemed competitive, while the 

third did not compare well to one of the other two. Spend! and Save up until kill 

performed similarly, though the former seemed to have a slight advantage judging by the 

average turns and average remaining health during Player 1’s wins. When Spend! and Go 



DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS 
 

16 

for the double! competed, the results showed a significant discrepancy in their abilities to 

defeat their respective opponent. 

 The two strategies for the decision point for choosing a defense type performed 

similarly, although Random defense! may have had a slight advantage given that the 

player using the module, on average, won with more health in fewer turns. It was 

expected that they would experience similar results, as they both use the same basic 

strategy until a certain point in the game is reached. The condition specified by Pick 

defense least likely to be doubled, dependent upon the number of cards in that player’s 

hand, may have prevented the strategy’s unique code from executing in shorter matches. 

 Even more evenly matched were the modules used for raising the probabilities of 

particular actions. The slightness of the differences in their average remaining health and 

average game lengths may indicate that they perform at equivalent levels; alternatively, it 

may suggest that changing the probability of various actions does not matter much in the 

outcome of games played by the AI. 

 The test to determine whether the starting player has an advantage did not result 

in large differences between outcomes for the starting player and second player. If one 

has an advantage, the data indicate that it would be the player who plays second, possibly 

due to the extra health they receive when turn order is decided. 

Implications 

Incomplete information is a common factor in conflicts between opposing parties. 

As a result, methods of operating despite this lack of knowledge are often essential to 

defeating an opponent. Since various approaches exist for dealing with hidden 
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information, ascertaining the superior one for a given problem is desirable. GNaT is a 

game that models the problem of incomplete information in order to test the efficacy of 

AI approaches. The performances of the different AI strategies within the game reflect 

their success in mitigating problems imposed by the game. Hence the efficacy of their 

respective methods can be analyzed with respect to the particular types of problems they 

were developed to face. Conclusions drawn from such an analysis may prove useful in 

solving similar problems in other contexts. 

Limitations 

The primary limitation for this study was the lack of computing power necessary 

to implement advanced algorithms such as those of the Monte Carlo Search Tree family, 

which generate trees of possibilities, following randomly selected nodes to their endgame 

results before committing to particular actions. More computers would also allow for 

tests to be run thousands or possibly millions of times, achieving a more accurate picture 

of trends within the data. 

Further Research 

Many aspects of GNaT remain to be explored. For instance, the function 

determineGameState is an amalgamation of tests for various conditions. Experimenting 

with the combinations of if statements contained within the function may lead to 

developing more accurate assessments of the game’s state. Adding additional diagnostics 

to tests may reveal further correlations between the performance of AI modules and 

variables such as game length, the specific actions whose probabilities of being rolled 

were increased, and player hand size. If more computational power is acquired, machine 
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learning techniques can be applied to possibly determine entirely new strategies. GNaT 

can also be modified to allow for new elements of gameplay to be tested. It is probable 

that further efforts such as these will be fruitful, contributing to a better understanding of 

AI in games.   
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