
Running head: DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS 1

Developing Artificial Intelligence Agents for a Turn-Based Imperfect Information Game

Wilfrido Perez Cutright

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2019

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Melesa Poole, Ph.D.

Thesis Chair

 Mark Merry, Ph.D.

Committee Member

 Scott Long, Ph.D.

Committee Member

 David Schweitzer, Ph.D.

Assistant Honors Director

Date

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

3

Abstract

Artificial intelligence (AI) is often employed to play games, whether to entertain human

opponents, devise and test strategies, or obtain other analytical data. Games with hidden

information require specific approaches by the player. As a result, the AI must be

equipped with methods of operating without certain important pieces of information

while being aware of the resulting potential dangers. The computer game GNaT was

designed as a testbed for AI strategies dealing specifically with imperfect information. Its

development and functionality are described, and the results of testing several strategies

through AI agents are discussed.

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

4

Developing Artificial Intelligence Agents for a Turn-Based Imperfect Information Game

Introduction

 Since the 20th century, when John von Neumann and Oskar Morgenstern (1944)

formally expressed their Theory of Games, people have increasingly viewed the process

of decision-making in mathematical terms. The unprecedented rate of the proliferation of

computers and the exponential increase in capabilities that have occurred over the same

timespan have acted as a much-appreciated catalyst for further research in this area. Not

only are the devices used to sift through unfathomable quantities of data to detect patterns

that may reveal facets of the human decision process, but the drive to automate as much

as possible has led to myriad systems where computers themselves are responsible for

decisions, a phenomenon known as artificial intelligence (AI). Combining in this way the

logic and planning techniques that human minds employ on a regular basis with the raw

computational power and nearly immeasurable information available to computers today

has often been successful in the past and will likely continue to bring advances in

multitudinous fields of human knowledge (Buchanan, 2005). In accomplishing such

feats, the use of concepts from game theory is effective in guiding the decision-making

process of the computer. This, in turn, involves identifying the problem that the computer

is trying to solve and, if necessary, breaking it into component problems. The intention of

such an analysis is to match the issues with scenarios where solutions can be tested and

optimal approaches determined. The application of concepts from game theory forms the

basis for AI, and the ability of computers to simulate such situations leads to further

expansion of the theory.

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

5

Problems explored in game theory include those that players of nondeterministic

games face when making decisions. Hence, conclusions drawn from the analysis of

players’ decisions in these types of games, where there are significant stochastic

elements, can potentially be used to inform answers to the larger questions posed by the

problems themselves. This is the principle behind the research that forms the body of this

thesis. Taking advantage of the modeling capabilities of computers, GNaT, a virtual

game that presented the players with a combination of several types of problems, was

developed by the author. Imperfect information, a type of complication that precludes

players from knowing certain pieces of information and thus negatively affects their

ability to accomplish their goals, was the foremost issue posed to players within the

game. GNaT’s integrated AI, implemented in the form of modules that behaved in

accordance with the selected strategies for their roles, was consequently tailored to deal

with imperfect information and other difficulties using methods reliant upon probability

within the game. The respective efficacies of the modules in answering the given

problems were experimentally evaluated, resulting in an agent comprised of the relatively

best-performing strategies for each task.

Literature Review

The application of artificial intelligence to games is a common exercise and has

been fruitful in determining decision-making strategies for those games. While not all AI

agents developed for games are suitable for all types of games, various AI algorithms

have been devised to deal specifically with common issues in many games such as

imperfect information.

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

6

Notable Approaches to the Issue of Imperfect Information

Information Set Monte Carlo Tree Search is a member of the family of Monte

Carlo Tree Search algorithms. While it shares the same general stochastic process

characteristic of Monte Carlo algorithms, it uses search trees comprised of information

sets of game states. It has been successfully applied to card games such as Spades and

Scopone (Di Palma & Lanzi, 2018). Multiple members of the counterfactual regret

minimization family of algorithms have seen great success playing several variants of

poker (Brown & Sandholm, 2018). Heuristic-based strategies can also be used for AI. In

zero-sum games, these can be implemented in a straightforward fashion if the Nash

equilibrium is known. (The Nash equilibrium describes the state in a game where all

players are aware that they cannot improve their standings by changing solely their own

strategy.) GNaT relies heavily on elements from the two-player hand game Rock-paper-

scissors, whose Nash equilibrium is the state where both players randomly play each

option with equal probability (van den Nouweland, 2007).

Procedure

 The development of GNaT primarily served to facilitate exploration of AI

strategies when operating in contexts with incomplete information. AI agents were

designed to test various strategies for handling problems presented within the game, chief

of which were incomplete information and shifting probabilities.

Description of the Game

 GNaT is a zero-sum turn-based game designed for two players. The objective of

the game is to eliminate the opponent by reducing his or her health to zero. This is

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

7

accomplished by performing “attacks”, which are actions that require certain amounts of

in-game currency. Each attack can be accompanied by one card, played from the player’s

hand, that assigns an “attack type” – rock, paper, or scissors. If the attack type is

advantageous against the opponent’s “defense type” (using the relationships defined by

the popular hand game Rock-paper-scissors), the opponent loses a larger amount of

health. Less health is lost by the opponent if the attack type is disadvantageous.

 The primary mechanic that drives players’ turns is the roll, which randomly

selects one of six actions for the player to perform. Each of these is assigned a certain

weight. One of the actions available to players is the choice of adding to one of the

weights; in this way, the probabilities upon which the roll depends can be altered. Hence,

if a player optimizes the probabilities according to their preferences, they can perform

desired actions more frequently.

 The key to winning the game lies in mastering both of these mechanics. Correctly

predicting the defense type of the opponent will most efficiently make use of

opportunities to attack, and adjusting the probabilities of certain actions may reduce the

number of actions taken in achieving the goal.

Development goals for the game. GNaT was written in C++ using Microsoft

Visual Studio Community 2017. The language was chosen for its object-oriented features

that allowed clear definitions of classes and their interactions. Since the game was to

serve as a test case for AI strategies, simplicity was a stated design goal. This restricted

the scope of the project and prevented the addition of features that would have increased

its complexity. This consequently meant human enjoyment was not the main focus;

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

8

rather, the intention was to give some level of clarity in comparing approaches to AI for

the game.

Design elements of the game. Using the principles conceived during early stages

of development as a basis, the design of GNaT was conscious and fairly calculated; the

end product reflects this. The foremost example of this is the centrality of AI, which

manifests itself within the program in several ways. Upon running the executable, the

game opens in the console, posing the following question: “Do you want to play against

the computer, or do you want to pit two AIs against each other?” The logic used by AI

agents is integrated into the Player class, and the game produces lengthy scripts detailing

their movements. Information hiding is another underlying principle of the game’s

design; access to information about the players is heavily controlled. Players’ defense

types can only be revealed to their opponents through the purchase of attacks, and the

contents of players’ hands and customized probability weight sets remain private for the

entire duration of the match. This restriction of knowledge serves as the basis for the

problem of incomplete information within the game, in contrast to Rock-paper-scissors,

where information about the opponent is unknown due to the simultaneous actions of

players.

Description of AI Agents

 The AI were designed shortly after the game concept was solidified. Rather than

initially being designed as whole agents, the AI consisted of individual modules that dealt

with making decisions at each point where the game required input. Some of these

modules were explicitly related; one strategy for modifying the weights of actions in an

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

9

automated player’s probability set directly references the response of another module

designed for selecting actions on a turn. However, for the most part the modules were

approached as logically independent segments of the program, each concerned with

separate tasks. This led to a search for a combination of individual modules that

functioned best in general, rather than a more cohesive one comprised of parts that all

conformed to a single unified strategy.

Strategies of each module. These modules interact with the game at the five

points where input is required from the player. Each module is the implementation of a

strategy for determining which response to input at a particular point.

Purchasing attacks. This first point requiring player input occurs when the player

rolls to “visit the shop” and gains the opportunity to purchase attacks. There are three

levels of attack; the more a player pays for the attack, the greater value they will receive

for their currency. Players also have the option to not purchase an attack at all.

Three strategies were developed for this decision point. The first, given the

moniker Spend!, dictates simply that the player should always spend at the highest level

they can afford at the moment. The second strategy attempts to use the player’s

knowledge of the opponent’s defense type; it prescribes the hoarding of funds until either

the elimination of the opponent is guaranteed by an attack or the accumulation of surplus

currency begins, in which case attacks with the intention of discovering the opponent’s

defense type will be made. This behavior earned it the name Save up until kill. Finally,

the third strategy, named Go for the double! consistently attempts to make advantageous

attacks through knowledge of the opponent’s defense type; if the opponent’s defense type

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

10

is unknown and the player has at least enough currency to purchase the lowest-priced

attack twice, the lowest-priced attack will be purchased, revealing the defense type. The

hope is that the player will receive a chance to attack again on a subsequent turn before

the opponent can change his or her defense type.

Playing cards with purchased attacks. Playing cards alongside attacks can be

risky, paying off with double damage if the type is advantageous or halving damage

when the type is at disadvantage. Not playing a card results in a loss of 50 power,

regardless of the attack purchased. Even so, only one strategy was developed for this

decision point as it likely anticipates every situation. In summary, it seeks to always

maximize the damage done; if the opponent’s defense type is unknown, the AI agent will

guess using the most common type of card the player’s hand contains. The exception to

this is the rare case when the opponent’s health is low enough that elimination is

guaranteed when not playing an attack card and the opponent’s defense type is unknown,

in which case guessing with an attack card is avoided and the kill secured.

Choosing a defense type. Two approaches were developed for making a decision

on the player’s defense type. Both are consistent with the Nash equilibrium for Rock-

paper-scissors: a mixed strategy of equal probability of choosing any of the three options.

The sole difference between the first strategy, Random defense!, and the second, Pick

defense least likely to be doubled, does not come into play until the player has acquired a

certain number of the cards (4/15 of the deck). The rationale for this is that the deck is

finite; this second approach anticipates that if a significant portion of the deck is in the

player’s hand, the type of attack card of which they have the most is less likely to be

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

11

played by the opponent. Hence, it dictates that the type that is at a disadvantage against

the most common type of card in their hand should be chosen as the defense type.

Selecting an action. While significantly less likely, it is possible to roll the action

called select, which enables the player to choose from any of the other actions that can be

rolled. The sole strategy for selecting the action uses a function labeled

determineGameState, which attempts to determine the most urgent action through a series

of if statements that assign weights to each choice. The final decision is then determined

randomly; however, some weights assigned in certain cases, such as when the opponent

is almost eliminated, can dominate in such a way that the options given those weights are

nearly guaranteed.

Raising the probability of an action being rolled. Changing the weights of

actions that can be rolled is GNaT’s mechanism for allowing the player to determine

which actions he or she would like to potentially perform more often. The initial weights

for each action have values of six with the exceptions of the weight for the action of

adding to weights, which has a value of four, and the weight for the player voluntarily

selecting an action, which has a value of two. Additionally, when the value of each

weight is raised, it is raised by two, aside from those values representing the two actions

that have lower initial values; they are raised by one. The pertinent question, then,

regards which action will provide the most utility when the value of its weight is raised.

A human player would likely find select to be the action of most utility, but as its value

can only be raised at a lower rate, raising the value of its weight may not be the most

beneficial option. The first strategy, Always choose select, assumes select remains the

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

12

best general option despite the lower rate of increase of its weight value. The second,

Select OR raise probability OR use game state, similarly maintains that select is a good

general option, but also consults the function determineGameState to take its analysis of

the current game’s state into consideration. To a lesser extent, this strategy also considers

the action of raising a probability. The weight whose value is to be raised is then chosen

randomly from these three alternatives.

Experimental Testing of the AI Strategies

 To determine the relative utility of these strategies, combinations of AI modules

were constructed. When two separate modules for a given decision point were to be

contrasted, they would be put in combinations of modules that were otherwise identical.

Then the two combinations would each be assigned to a player within the game, and the

game would run until one of the two players met the win condition. Execution would be

repeated for numerous iterations. The starting player (randomly decided at the beginning

of the game), total number of turns taken, and the state of each player’s health, currency,

and number of cards at the end of the game would be recorded. These data served as

diagnostics for determining which of the two different modules worked better with that

combination of modules. Since only three of the decision points had more than one

strategy, only modules from those points needed to be tested against each other.

 Tests performed. The first two modules to be tested corresponded to the action

of purchasing an attack: Spend! and Save up until kill. The combination of modules with

which they were each paired was comprised of the sole strategies for the decision points

for playing cards and selecting an action, the Random defense! strategy for choosing a

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

13

defense type, and the Always choose select strategy for determining which weight values

to raise. (Henceforth, the modules that are the only strategies for their respective decision

points will be omitted when listing the combinations of modules used for testing.) The

two AI agents were run against each other 16 times, with the AI using the Spend! module

designated Player 1 and the one using Save up until kill designated Player 2. The results

are shown in Table 1.

Table 1

Spend! (Player 1) v. Save up until kill (Player 2)

 Wins Average turns in games won Average health during win

Player 1 8 64.6 931

Player 2 8 83.4 503

Retaining the same combinations of modules for each player, with the exception

of replacing Save up until kill with the Go for the double! module for Player 2, the two

players were run against each other another 16 times, obtaining the results in Table 2.

Table 2

Spend! (Player 1) v. Go for the double! (Player 2)

 Wins Average turns in games won Average health during win

Player 1 11 74.7 532

Player 2 5 73.0 325

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

14

 Following these tests, the two modules for the decision point associated with

choosing a defense type were each placed into a combination containing Spend! and

Always choose select. Player 1 utilized Random defense!, while Player 2 instead used the

Pick defense least likely to be doubled module. The two players faced off 20 times,

leading to the outcomes specified in Table 3.

Table 3

Random defense! (Player 1) v. Pick defense least likely to be doubled (Player 2)

 Wins Average turns in games won Average health during win

Player 1 10 74.9 603

Player 2 10 76.3 505

 For the final decision point, each player’s combination of modules included

Spend! and Random defense!. Player 1 also included Always choose select, while Player 2

featured the Select OR raise probability OR use game state module. The players dueled

for 20 matches, as shown in Table 4.

Table 4

Always choose select (Player 1) v. Select OR raise probability OR use game state

(Player 2)

 Wins Average turns in games won Average health during win

Player 1 10 75.9 540

Player 2 10 80.5 575

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

15

 Finally, a test to determine whether there exists a significant advantage or

disadvantage as a result of starting the game was conducted. The initial assumption when

developing the game was that there would be an advantage, so the player to play second

was given 100 additional health as a counteractive measure. Both players in this scenario

were formed from the same modules, namely, Spend!, Random defense! and Always

choose select. They opposed each other 20 times; the results are documented in Table 5.

Table 5

Starting Player v. Second Player

 Wins Avg. turns in games won Avg. health during win

Starting Player 10 81.0 565

Second Player 10 74.4 635

Conclusion

Performance Evaluation of the AI Agents

 The simplest way to evaluate the utility of the strategies used by the AI agents is

by comparing their performances when pitted against each other. Given enough trials,

any substantial correlations in the data should become apparent.

 For the first decision point, two of the strategies seemed competitive, while the

third did not compare well to one of the other two. Spend! and Save up until kill

performed similarly, though the former seemed to have a slight advantage judging by the

average turns and average remaining health during Player 1’s wins. When Spend! and Go

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

16

for the double! competed, the results showed a significant discrepancy in their abilities to

defeat their respective opponent.

 The two strategies for the decision point for choosing a defense type performed

similarly, although Random defense! may have had a slight advantage given that the

player using the module, on average, won with more health in fewer turns. It was

expected that they would experience similar results, as they both use the same basic

strategy until a certain point in the game is reached. The condition specified by Pick

defense least likely to be doubled, dependent upon the number of cards in that player’s

hand, may have prevented the strategy’s unique code from executing in shorter matches.

 Even more evenly matched were the modules used for raising the probabilities of

particular actions. The slightness of the differences in their average remaining health and

average game lengths may indicate that they perform at equivalent levels; alternatively, it

may suggest that changing the probability of various actions does not matter much in the

outcome of games played by the AI.

 The test to determine whether the starting player has an advantage did not result

in large differences between outcomes for the starting player and second player. If one

has an advantage, the data indicate that it would be the player who plays second, possibly

due to the extra health they receive when turn order is decided.

Implications

Incomplete information is a common factor in conflicts between opposing parties.

As a result, methods of operating despite this lack of knowledge are often essential to

defeating an opponent. Since various approaches exist for dealing with hidden

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

17

information, ascertaining the superior one for a given problem is desirable. GNaT is a

game that models the problem of incomplete information in order to test the efficacy of

AI approaches. The performances of the different AI strategies within the game reflect

their success in mitigating problems imposed by the game. Hence the efficacy of their

respective methods can be analyzed with respect to the particular types of problems they

were developed to face. Conclusions drawn from such an analysis may prove useful in

solving similar problems in other contexts.

Limitations

The primary limitation for this study was the lack of computing power necessary

to implement advanced algorithms such as those of the Monte Carlo Search Tree family,

which generate trees of possibilities, following randomly selected nodes to their endgame

results before committing to particular actions. More computers would also allow for

tests to be run thousands or possibly millions of times, achieving a more accurate picture

of trends within the data.

Further Research

Many aspects of GNaT remain to be explored. For instance, the function

determineGameState is an amalgamation of tests for various conditions. Experimenting

with the combinations of if statements contained within the function may lead to

developing more accurate assessments of the game’s state. Adding additional diagnostics

to tests may reveal further correlations between the performance of AI modules and

variables such as game length, the specific actions whose probabilities of being rolled

were increased, and player hand size. If more computational power is acquired, machine

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

18

learning techniques can be applied to possibly determine entirely new strategies. GNaT

can also be modified to allow for new elements of gameplay to be tested. It is probable

that further efforts such as these will be fruitful, contributing to a better understanding of

AI in games.

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

19

References

Baier, H., Sattaur, A., Powley, E. J., Rollason, J., & Cowling, P. I. (2018). Emulating

human play in a leading mobile card game. IEEE Transactions on Games.

https://doi.org/10.1109/TG.2018.2835764

Bakkes, S., Spronck, P., & van den Herik, J. (2009). Rapid and reliable adaptation of

video game AI. IEEE Transactions on Computational Intelligence and AI in

Games, 1(2), 93-104. https://doi.org/10.1109/TCIAIG.2009.2029084

Bakkes, S. C. J., Spronck, P. H. M., & Lankveld, G. (2012). Player behavioural

modelling for video games. Entertainment Computing, 3, 71-79.

https://doi.org/10.1016/j.entcom.2011.12.001

Bitan, M., Kraus, S. (2017). Combining prediction of human decisions with ISMCTS in

imperfect information games. Retrieved from https://arxiv.org/abs/1709.09451

Brown, N., & Sandholm, T. (2018). Solving imperfect-information games via discounted

regret minimization. Retrieved from https://arxiv.org/abs/1809.04040

Brown, N., Sandholm, T., & Amos, B. (2018). Depth-limited solving for imperfect-

information games. Retrieved from

https://www.researchgate.net/publication/325282968_Depth-

Limited_Solving_for_Imperfect-Information_Games

Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. AI Magazine,

26(4), 53-60. Retrieved from

http://ezproxy.liberty.edu/login?url=https://search.proquest.com/docview/208132

026?accountid=12085

https://doi.org/10.1109/TG.2018.2835764
https://doi.org/10.1109/TCIAIG.2009.2029084
https://doi.org/10.1016/j.entcom.2011.12.001
https://arxiv.org/abs/1709.09451
https://arxiv.org/abs/1809.04040
https://www.researchgate.net/publication/325282968_Depth-Limited_Solving_for_Imperfect-Information_Games
https://www.researchgate.net/publication/325282968_Depth-Limited_Solving_for_Imperfect-Information_Games

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

20

Chitizadeh, A., & Thielscher, M. (2018). Iterative tree search in general game playing

with incomplete information. Retrieved from

https://www.semanticscholar.org/paper/Iterative-Tree-Search-in-General-Game-

Playing-with-Chitizadeh-

Thielscher/4e6835257f7ca348ab35925ed18546c20b1ebe9b

Di Palma, S., & Lanzi, P. L. (2018). Traditional wisdom and Monte Carlo tree search

face-to-face in the card game Scopone. IEEE Transactions on Games, 10(3), 317-

332. https://doi.org/10.1109/TG.2018.2834618

García-Sánchez, P., Tonda, A., Mora, A. M., Squillero, G., Merelo, J. J. (2018).

Automated playtesting in collectible card games using evolutionary algorithms: A

case study in Hearthstone. Knowledge-Based Systems, 153, 133-146.

https://doi.org/10.1016/j.knosys.2018.04.030

Heinrich, J. (2016). Reinforcement learning from self-play in imperfect-information

games. Retrieved from https://arxiv.org/abs/1603.01121

Hom, V., & Marks, J. (2007). Automatic design of balanced board games. Proceedings of

the Third Artificial Intelligence and Interactive Digital Entertainment

Conference, 25-30. Retrieved from

https://aaai.org/Library/AIIDE/aiide07contents.php

Justesen, N., Mahlmann, T., Risi, S., & Togelius, J. (2018). Playing multiaction

adversarial games: Online evolutionary planning versus tree search. IEEE

Transactions on Games, 10(3), 281 - 291.

https://doi.org/10.1109/TCIAIG.2017.2738156

https://www.semanticscholar.org/paper/Iterative-Tree-Search-in-General-Game-Playing-with-Chitizadeh-Thielscher/4e6835257f7ca348ab35925ed18546c20b1ebe9b
https://www.semanticscholar.org/paper/Iterative-Tree-Search-in-General-Game-Playing-with-Chitizadeh-Thielscher/4e6835257f7ca348ab35925ed18546c20b1ebe9b
https://www.semanticscholar.org/paper/Iterative-Tree-Search-in-General-Game-Playing-with-Chitizadeh-Thielscher/4e6835257f7ca348ab35925ed18546c20b1ebe9b
https://doi.org/10.1109/TG.2018.2834618
https://doi.org/10.1016/j.knosys.2018.04.030
https://arxiv.org/abs/1603.01121
https://aaai.org/Library/AIIDE/aiide07contents.php
https://doi.org/10.1109/TCIAIG.2017.2738156

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

21

Kitchen, A. C., & Benedetti, M. (2018). ExIt-OOS: Towards learning from planning in

imperfect information games. Retrieved from https://arxiv.org/abs/1808.10120

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Perolat, J., . . . Graepel,

T. (2017). A unified game-theoretic approach to multiagent reinforcement

learning. Retrieved from https://arxiv.org/abs/1711.00832

Mark, D. (2009). Behavioral mathematics for game AI. Boston, MA: Course Technology

PTR.

Omarov, T., Aslam, H., Brown, J. A., & Reading, E. (2018). Monte Carlo tree search for

Love Letter. Retrieved from

https://www.researchgate.net/publication/327679828_Monte_Carlo_Tree_Search

_for_Love_Letter

Powley, E. J., Cowling, P. I., & Whitehouse, D. (2017). Memory bounded Monte Carlo

tree search. Retrieved from

https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15856

Sun, Q., & Ganzfried, S. (2018). Bayesian opponent exploitation in imperfect-

information games. https://doi.org/10.1109/CIG.2018.8490452

Takaoka, Y., Takashi, K., & Ooe, R. (2018). A fundamental study of a computer player

giving fun to the opponent. Journal of Computer and Communications, 6(1), 32-

41. https://doi.org/10.4236/jcc.2018.61004

van den Nouweland, A. (2007). Rock-Paper-Scissors; a new and elegant proof. Retrieved

from https://minerva-

https://arxiv.org/abs/1808.10120
https://arxiv.org/abs/1711.00832
https://www.researchgate.net/publication/327679828_Monte_Carlo_Tree_Search_for_Love_Letter
https://www.researchgate.net/publication/327679828_Monte_Carlo_Tree_Search_for_Love_Letter
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15856
https://doi.org/10.1109/CIG.2018.8490452
https://doi.org/10.4236/jcc.2018.61004
https://minerva-access.unimelb.edu.au/bitstream/handle/11343/34714/67348_00003579_01_1003.pdf?sequence=1&isAllowed=y

DEVELOPING ARTIFICIAL INTELLIGENCE AGENTS

22

access.unimelb.edu.au/bitstream/handle/11343/34714/67348_00003579_01_1003.

pdf?sequence=1&isAllowed=y

von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.

Princeton, NJ: Princeton University Press.

Zhang, S. (2017). Improving collectible card game AI with heuristic search and machine

learning techniques. https://doi.org/10.7939/R34X54W6H

https://minerva-access.unimelb.edu.au/bitstream/handle/11343/34714/67348_00003579_01_1003.pdf?sequence=1&isAllowed=y
https://minerva-access.unimelb.edu.au/bitstream/handle/11343/34714/67348_00003579_01_1003.pdf?sequence=1&isAllowed=y
https://doi.org/10.7939/R34X54W6H

