8,926 research outputs found

    Fast, Small and Exact: Infinite-order Language Modelling with Compressed Suffix Trees

    Get PDF
    Efficient methods for storing and querying are critical for scaling high-order n-gram language models to large corpora. We propose a language model based on compressed suffix trees, a representation that is highly compact and can be easily held in memory, while supporting queries needed in computing language model probabilities on-the-fly. We present several optimisations which improve query runtimes up to 2500x, despite only incurring a modest increase in construction time and memory usage. For large corpora and high Markov orders, our method is highly competitive with the state-of-the-art KenLM package. It imposes much lower memory requirements, often by orders of magnitude, and has runtimes that are either similar (for training) or comparable (for querying).Comment: 14 pages in Transactions of the Association for Computational Linguistics (TACL) 201

    Eye-tracking as a measure of cognitive effort for post-editing of machine translation

    Get PDF
    The three measurements for post-editing effort as proposed by Krings (2001) have been adopted by many researchers in subsequent studies and publications. These measurements comprise temporal effort (the speed or productivity rate of post-editing, often measured in words per second or per minute at the segment level), technical effort (the number of actual edits performed by the post-editor, sometimes approximated using the Translation Edit Rate metric (Snover et al. 2006), again usually at the segment level), and cognitive effort. Cognitive effort has been measured using Think-Aloud Protocols, pause measurement, and, increasingly, eye-tracking. This chapter provides a review of studies of post-editing effort using eye-tracking, noting the influence of publications by Danks et al. (1997), and O’Brien (2006, 2008), before describing a single study in detail. The detailed study examines whether predicted effort indicators affect post-editing effort and results were previously published as Moorkens et al. (2015). Most of the eye-tracking data analysed were unused in the previou

    Causal inference in drug discovery and development

    Get PDF
    To discover new drugs is to seek and to prove causality. As an emerging approach leveraging human knowledge and creativity, data, and machine intelligence, causal inference holds the promise of reducing cognitive bias and improving decision-making in drug discovery. Although it has been applied across the value chain, the concepts and practice of causal inference remain obscure to many practitioners. This article offers a nontechnical introduction to causal inference, reviews its recent applications, and discusses opportunities and challenges of adopting the causal language in drug discovery and development

    Predicting Clinical Events by Combining Static and Dynamic Information Using Recurrent Neural Networks

    Full text link
    In clinical data sets we often find static information (e.g. patient gender, blood type, etc.) combined with sequences of data that are recorded during multiple hospital visits (e.g. medications prescribed, tests performed, etc.). Recurrent Neural Networks (RNNs) have proven to be very successful for modelling sequences of data in many areas of Machine Learning. In this work we present an approach based on RNNs, specifically designed for the clinical domain, that combines static and dynamic information in order to predict future events. We work with a database collected in the Charit\'{e} Hospital in Berlin that contains complete information concerning patients that underwent a kidney transplantation. After the transplantation three main endpoints can occur: rejection of the kidney, loss of the kidney and death of the patient. Our goal is to predict, based on information recorded in the Electronic Health Record of each patient, whether any of those endpoints will occur within the next six or twelve months after each visit to the clinic. We compared different types of RNNs that we developed for this work, with a model based on a Feedforward Neural Network and a Logistic Regression model. We found that the RNN that we developed based on Gated Recurrent Units provides the best performance for this task. We also used the same models for a second task, i.e., next event prediction, and found that here the model based on a Feedforward Neural Network outperformed the other models. Our hypothesis is that long-term dependencies are not as relevant in this task

    Grasp: Randomised Semiring Parsing

    Get PDF
    We present a suite of algorithms for inference tasks over (finite and infinite) context-free sets. For generality and clarity, we have chosen the framework of semiring parsing with support to the most common semirings (e.g. Forest, Viterbi, k-best and Inside). We see parsing from the more general viewpoint of weighted deduction allowing for arbitrary weighted finite-state input and provide implementations of both bottom-up (CKY-inspired) and top-down (Earley-inspired) algorithms. We focus on approximate inference by Monte Carlo methods and provide implementations of ancestral sampling and slice sampling. In principle, sampling methods can deal with models whose independence assumptions are weaker than what is feasible by standard dynamic programming. We envision applications such as monolingual constituency parsing, synchronous parsing, context-free models of reordering for machine translation, and machine translation decoding

    Novel statistical approaches to text classification, machine translation and computer-assisted translation

    Full text link
    Esta tesis presenta diversas contribuciones en los campos de la clasificación automática de texto, traducción automática y traducción asistida por ordenador bajo el marco estadístico. En clasificación automática de texto, se propone una nueva aplicación llamada clasificación de texto bilingüe junto con una serie de modelos orientados a capturar dicha información bilingüe. Con tal fin se presentan dos aproximaciones a esta aplicación; la primera de ellas se basa en una asunción naive que contempla la independencia entre las dos lenguas involucradas, mientras que la segunda, más sofisticada, considera la existencia de una correlación entre palabras en diferentes lenguas. La primera aproximación dió lugar al desarrollo de cinco modelos basados en modelos de unigrama y modelos de n-gramas suavizados. Estos modelos fueron evaluados en tres tareas de complejidad creciente, siendo la más compleja de estas tareas analizada desde el punto de vista de un sistema de ayuda a la indexación de documentos. La segunda aproximación se caracteriza por modelos de traducción capaces de capturar correlación entre palabras en diferentes lenguas. En nuestro caso, el modelo de traducción elegido fue el modelo M1 junto con un modelo de unigramas. Este modelo fue evaluado en dos de las tareas más simples superando la aproximación naive, que asume la independencia entre palabras en differentes lenguas procedentes de textos bilingües. En traducción automática, los modelos estadísticos de traducción basados en palabras M1, M2 y HMM son extendidos bajo el marco de la modelización mediante mixturas, con el objetivo de definir modelos de traducción dependientes del contexto. Asimismo se extiende un algoritmo iterativo de búsqueda basado en programación dinámica, originalmente diseñado para el modelo M2, para el caso de mixturas de modelos M2. Este algoritmo de búsqueda nCivera Saiz, J. (2008). Novel statistical approaches to text classification, machine translation and computer-assisted translation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2502Palanci

    Large-Scale Kernel Methods for Independence Testing

    Get PDF
    Representations of probability measures in reproducing kernel Hilbert spaces provide a flexible framework for fully nonparametric hypothesis tests of independence, which can capture any type of departure from independence, including nonlinear associations and multivariate interactions. However, these approaches come with an at least quadratic computational cost in the number of observations, which can be prohibitive in many applications. Arguably, it is exactly in such large-scale datasets that capturing any type of dependence is of interest, so striking a favourable tradeoff between computational efficiency and test performance for kernel independence tests would have a direct impact on their applicability in practice. In this contribution, we provide an extensive study of the use of large-scale kernel approximations in the context of independence testing, contrasting block-based, Nystrom and random Fourier feature approaches. Through a variety of synthetic data experiments, it is demonstrated that our novel large scale methods give comparable performance with existing methods whilst using significantly less computation time and memory.Comment: 29 pages, 6 figure
    corecore