71 research outputs found

    Detection of Intestinal Bleeding in Wireless Capsule Endoscopy using Machine Learning Techniques

    Get PDF
    Gastrointestinal (GI) bleeding is very common in humans, which may lead to fatal consequences. GI bleeding can usually be identified using a flexible wired endoscope. In 2001, a newer diagnostic tool, wireless capsule endoscopy (WCE) was introduced. It is a swallow-able capsule-shaped device with a camera that captures thousands of color images and wirelessly sends those back to a data recorder. After that, the physicians analyze those images in order to identify any GI abnormalities. But it takes a longer screening time which may increase the danger of the patients in emergency cases. It is therefore necessary to use a real-time detection tool to identify bleeding in the GI tract. Each material has its own spectral ‘signature’ which shows distinct characteristics in specific wavelength of light [33]. Therefore, by evaluating the optical characteristics, the presence of blood can be detected. In the study, three main hardware designs were presented: one using a two-wavelength based optical sensor and others using two six-wavelength based spectral sensors with AS7262 and AS7263 chips respectively to determine the optical characteristics of the blood and non-blood samples. The goal of the research is to develop a machine learning model to differentiate blood samples (BS) and non-blood samples (NBS) by exploring their optical properties. In this experiment, 10 levels of crystallized bovine hemoglobin solutions were used as BS and 5 food colors (red, yellow, orange, tan and pink) with different concentrations totaling 25 non-blood samples were used as NBS. These blood and non-blood samples were also combined with pig’s intestine to mimic in-vivo experimental environment. The collected samples were completely separated into training and testing data. Different spectral features are analyzed to obtain the optical information about the samples. Based on the performance on the selected most significant features of the spectral wavelengths, k-nearest neighbors algorithm (k-NN) is finally chosen for the automated bleeding detection. The proposed k-NN classifier model has been able to distinguish the BS and NBS with an accuracy of 91.54% using two wavelengths features and around 89% using three combined wavelengths features in the visible and near-infrared spectral regions. The research also indicates that it is possible to deploy tiny optical detectors to detect GI bleeding in a WCE system which could eliminate the need of time-consuming image post-processing steps

    Time-based self-supervised learning for Wireless Capsule Endoscopy

    Full text link
    State-of-the-art machine learning models, and especially deep learning ones, are significantly data-hungry; they require vast amounts of manually labeled samples to function correctly. However, in most medical imaging fields, obtaining said data can be challenging. Not only the volume of data is a problem, but also the imbalances within its classes; it is common to have many more images of healthy patients than of those with pathology. Computer-aided diagnostic systems suffer from these issues, usually over-designing their models to perform accurately. This work proposes using self-supervised learning for wireless endoscopy videos by introducing a custom-tailored method that does not initially need labels or appropriate balance. We prove that using the inferred inherent structure learned by our method, extracted from the temporal axis, improves the detection rate on several domain-specific applications even under severe imbalance. State-of-the-art results are achieved in polyp detection, with 95.00 ± 2.09% Area Under the Curve, and 92.77 ± 1.20% accuracy in the CAD-CAP dataset

    Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

    Full text link
    Wireless Capsule Endoscopy is a technique that allows for observation of the entire gastrointestinal tract in an easy and non-invasive way. However, its greatest limitation lies in the time required to analyze the large number of images generated in each examination for diagnosis, which is about 2 hours. This causes not only a high cost, but also a high probability of a wrong diagnosis due to the physician’s fatigue, while the variable appearance of abnormalities requires continuous concentration. In this work, we designed and developed a system capable of automatically detecting blood based on classification of extracted regions, following two different classification approaches. The first method consisted in extraction of hand-crafted features that were used to train machine learning algorithms, specifically Support Vector Machines and Random Forest, to create models for classifying images as healthy tissue or blood. The second method consisted in applying deep learning techniques, concretely convolutional neural networks, capable of extracting the relevant features of the image by themselves. The best results (95.7% sensitivity and 92.3% specificity) were obtained for a Random Forest model trained with features extracted from the histograms of the three HSV color space channels. For both methods we extracted square patches of several sizes using a sliding window, while for the first approach we also implemented the waterpixels technique in order to improve the classification resultsThis work was funded by the European Unions H2020: MSCA: ITN program for the “Wireless In-body Environment Communication WiBEC” project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research.Pons Suñer, P.; Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo, V. (2019). Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images. En Lecture Notes in Artificial Intelligence. Springer. 105-113. https://doi.org/10.1007/978-3-030-33617-2_12S105113Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis., Image Signal Process. 147(4), 349–355 (2000). https://doi.org/10.1049/ip-vis:20000630Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324Buscaglia, J.M., et al.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008). https://doi.org/10.1016/j.cgh.2007.12.029Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018Li, B., Meng, M.Q.H.: Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans. Biomed. Eng. 56(4), 1032–1039 (2009). https://doi.org/10.1109/TBME.2008.2010526Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015). https://doi.org/10.1109/TIP.2015.2451011Novozámskỳ, A., Flusser, J., Tachecí, I., Sulík, L., Bureš, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12), 126007 (2016). https://doi.org/10.1117/1.JBO.21.12.126007Signorelli, C., Villa, F., Rondonotti, E., Abbiati, C., Beccari, G., de Franchis, R.: Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy. Endoscopy 37(12), 1170–1173 (2005). https://doi.org/10.1055/s-2005-870410Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7(1), 91 (2006). https://doi.org/10.1186/1471-2105-7-9

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE

    Learning-based classification of informative laryngoscopic frames

    Get PDF
    Background and Objective: Early-stage diagnosis of laryngeal cancer is of primary importance to reduce patient morbidity. Narrow-band imaging (NBI) endoscopy is commonly used for screening purposes, reducing the risks linked to a biopsy but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to present a strategy to perform automatic selection of informative endoscopic video frames, which can reduce the amount of data to process and potentially increase diagnosis performance. Methods: A new method to classify NBI endoscopic frames based on intensity, keypoint and image spatial content features is proposed. Support vector machines with the radial basis function and the one-versus-one scheme are used to classify frames as informative, blurred, with saliva or specular reflections, or underexposed. Results: When tested on a balanced set of 720 images from 18 different laryngoscopic videos, a classification recall of 91% was achieved for informative frames, significantly overcoming three state of the art methods (Wilcoxon rank-signed test, significance level = 0.05). Conclusions: Due to the high performance in identifying informative frames, the approach is a valuable tool to perform informative frame selection, which can be potentially applied in different fields, such us computer-assisted diagnosis and endoscopic view expansion
    corecore