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Abstract
Natural disasters strike anywhere, disrupting local communication and
transportation infrastructure, making the process of assessing specific local
damage difficult, dangerous, and slow. The goal of Building Damage
Assessment (BDA) is to quickly and accurately estimate the location, cause,
and severity of the damage to maximize the efficiency of rescuers and saved
lives. In current machine learning BDA solutions, attention operators are the
most recent innovations adopted by researchers to increase generalizability
and overall performances of Convolutional Neural Networks for the BDA
task. However, the latter, nowadays exploit attention operators tailored to the
specific task and specific neural network architecture, leading them to be hard
to apply to other scenarios. In our research, we want to contribute to the BDA
literature while also addressing this limitation.

We propose Global Voxel Transformer Operators (GVTOs): flexible
attention-operators originally proposed for Augmented Microscopy that
can replace up-sampling, down-sampling, and size-preserving convolutions
within either a U-Net or a general CNN architecture without any limitation.
Dissimilar to local operators, like convolutions, GVTOs can aggregate global
information and have input-specific weights during inference time, improving
generalizability performance, as already proved by recent literature.

We applied GVTOs on a state-of-the-art BDA model and named it GVT-
BDNet. We trained and evaluated our proposal neural network on the xBD
dataset; the largest and most complete dataset for BDA. We compared GVT-
BDNet performance with the baseline architecture (BDNet) and observed that
the former improves damaged buildings segmentation by a factor of 0.11.
Moreover, GVT-BDNet achieves state-of-the-art performance on a 10% split
of the xBD training dataset and on the xBD test dataset with an overall F1-
score of 0.80 and 0.79, respectively.

To evaluate the architecture consistency, we have also tested BDNet’s
and GVT-BDNet’s generalizability performance on another segmentation
task: Tree & Shadow segmentation. Results showed that both models
achieved overall good performances, scoring an F1-score of 0.79 and 0.785,
respectively.

Keywords
AttentionOperators, Convolutional Neural Networks (CNNs), Deep Learning,
Building Damage Assessment, Generalizability, Global Voxel Transformer
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Sammanfattning
Naturkatastrofer sker överallt, stör lokal kommunikations- och
transportinfrastruktur, vilket gör bedömningsprocessen av specifika lokala
skador svår, farlig och långsam. Målet med Building Damage Assessment
(BDA) är att snabbt och precist uppskatta platsen, orsaken och allvarligheten
av skadorna för att maximera effektiviteten av räddare och räddade liv.

Nuvarande BDA-lösningar använder Convolutional Neural
Network (CNN) och ad-hoc Attention Operators för att förbättra
generaliseringsprestanda. Nyligen föreslagna attention operators är dock
specifikt skräddarsydda för uppgiften och kan sakna flexibilitet för andra
scenarier eller neural nätverksarkitektur.

I vår forskning bidrar vi till BDA -litteraturen genom att föreslå Global
Voxel Transformer Operators (GVTO): flexibla attention operators som
kan appliceras på en CNN -arkitektur utan att vara bundna till en viss
uppgift. Nyare litteratur visar dessutom att de kan öka utvinningen av global
information och därmed generaliseringsprestanda.

Vi tillämpade GVTO på en toppmodern CNN-modell för BDA. GVTO: er
förbättrade skadessegmenteringsprestandan med en faktor av 0,11. Dessutom
förbättrade de den senaste tekniken för xBD-testdatauppsättningen och nådde
toppmodern prestanda på en 10% delning av xBD-träningsdatauppsättningen.
Vi har också utvärderat generaliserbarheten av det föreslagna neurala nätverket
på en annan segmenteringsuppgift (Tree Shadow segmentering), vilket
uppnådde över lag bra prestationer.

Nyckelord
Attention Operators, Convolutional Neural Networks (CNNs), Deep Learning,
Building Damage Assessment, Generalizability, Global Voxel Transformer
Operators (GVTOs).
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Chapter 1

Introduction

This chapter introduces the problem of Building Damage Assessment (BDA)
and discusses the state-of-the-art solutions and their limits. Moreover, it
summarizes the technical background needed to understand the thesis and
outlines the thesis’s goals, motivation, and contribution.

We start with an introduction to the problem background, a theoretical
introduction to Machine Learning (ML) and other essential techniques that
define the foundation of which this thesis builds on. Next, we present a
discussion regarding satellite data analysis, data types, and what is the most
suitable one for BDA in terms of spatial and temporal resolution. We continue
studying the limitation of the latest solutions and how they can be tackled at a
high level. Finally, we outline the goals, motivation, contribution of the thesis,
and the thesis structure.

1.1 Problem Background
Long before the industrial revolution, humanity started to alter the Earth’s
environment, with an exponential and disruptive incremental tendency in the
last decades. Nowadays, the impact of human activities on the Earth ecosystem
can be seen almost everywhere on Earth: the global atmosphere, the world
ocean, lands, and particularly the global temperature. As of 2019, the global
temperature increased by 1 °C above the pre-industrial level. With the current
rise of warming (0.2°C per decade), global warming will reach 1.5°C between
2030 and 2052 [9].

Even though this temperature rise might appear small, it has catastrophic
consequences for the world’s climate and ecosystem. One of the problems
caused by the rising of global temperature is that it increases the amount,
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Figure 1.1: Number of people affected by natural disasters yearly from 1900
to 2020 . The data has been collected from the EM-DAT disaster database [1]

intensity, and destructive power of natural disasters such as tornadoes, floods,
and wildfires. As a consequence, the number of people affected by such
catastrophic events has also increased, producing more and more life losses,
economic damages, and property damages worldwide. Figure 1.1 shows the
trend of people affected by natural disasters per year from 1900 to 2020. We
can see that from the 1960s to 2020, the trend gradually increased [1].

Nowadays, natural disasters kill around 90,000 people every year and
affect nearly 160 million people worldwide, according to the World Health
Organization [10]. Given the growing number of occurrences and the rising
intensity of natural disasters, today, more than ever, immediate and accurate
post-disaster workflows are needed to increase the efficiency of resource
deployment in order to maximize the number of saved lives. In such scenarios,
responders need to know basic damage information such as location, cause,
and severity, etc before they can act.

Satellite imagery offers a powerful source of information to mitigate the
hazardous effect of natural disasters. It can be used to assess the extent
and areas of damages of wide geographic regions with restricted time delay.
Currently, after a natural disaster strikes, satellite and aerial images are
annotated for building damage manually for days or weeks, which is expensive
in both time and labor costs. This creates an analytical bottleneck in the
post-disaster workflow [11][12][13] that makes damage analysis impossible
to consult before rescues are sent. Moreover, after a natural disaster strikes,
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many casualties are caused by untimely rescuers. According to D. Vukovic et
al. [14], the first 72 hours are crucial to finding disaster survivors. As time
passes, the chances to find them alive decrease. In the Haiti earthquake of
2010, CNN reports that one of the major causes of death was a condition called
Rhabdomyolysis [15]. It occurs when the muscles get crushed and rupture,
causing kidney failure, which may cause death if not treated promptly.

Hence, right after a disaster strikes, the consulting of a reliable and
complete building damage analysis of the affected area is crucial to better
deploy resources as it helps sending humanitarian support to where damages
are concentrated the most.

1.2 Technical Background

1.2.1 Machine Learning and Deep Learning for BDA
Traditional data analysis for BDA typically relies on ground-based
assessments, which require a tremendous amount of labor, manual work, and
are difficult and time-consuming to obtain. From the 2010s, the scientific
community has started to research the automation of BDA using machine
learning algorithms, as it enables immediate results and the optimization of
rescue plans. Nevertheless, the integrity and immediacy of building damage
analysis profoundly depend on the structure of the model and the data type
used.

Within building damage analysis, the input data are sequences of either
images or video frames. From examples of historical visual disaster data,
ML models gradually learn how to classify the intensity of building damage
from feature extraction. Deep Learning (DL) is a branch of Machine Learning
that introduces artificial neural networks and is specialized in the extraction
of high-level features from structured and unstructured data (e.g. images)
with representation learning. Convolutional Neural Network (CNN) are
deep artificial neural networks specifically tailored to cope with visual data.
They have become dominant in various computer vision tasks such as face
recognition [16], [17] and brain-tumor detection [18], therefore they have been
also widely used within the BDA literature [5][19][20][7].

Convolutional Neural Networks (CNNs) enable feature-learning for
imagery data and exploit deep image representations to perform image
classification and image segmentation tasks. The architecture of CNNs is
analogous to the connectivity pattern of neurons in the human brain and has
been inspired by the organization of the visual cortex [4]. However, differently
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Figure 1.2: Basic structure of a MLP (right) and basic structure of a CNN
(left) for image classification. Due to sequences of convolutional and pooling
layers, CNN can better represent spatial and temporal dependencies of an
image, thus achieving better performances. The workflow of a CNN is divided
into Feature Extraction (convolution and pooling layers) and Classification
(typically composed by a fully connected layer).

from basic neural network architectures, (e.g., Multilayer Perceptron (MLP)),
CNNs can successfully capture the spatial dependencies in an image and
extract progressively higher level features that enables the learning process.
Neurons are organized in layers, and feature maps are the activation of the
output of the layers’ hidden neurons. In CNNs, they can describe low-
level patterns within the shallow layers (colors, edges, basic shapes) and
more semantic-rich features within the deepest layers (body parts, vegetation,
buildings). Figure 1.2 shows the structure of an MLP compared to the one of
a CNN.

A convolutional block can be seen as a single step of the learning process
and is usually divided into a convolutional layer and a pooling layer. A typical
CNN for image classification consists of a sequence of convolutional blocks
followed by a fully connected layer, responsible for feature extraction and the
classification task, respectively. When an image is fed into a convolutional
block, a sliding window that acts as anM×M filter is applied over the image.
Features are gradually collected by performing a dot operation between the
filter and the local patch of the image captured by the sliding filter. The output
feature map is then down-sampled to decrease the feature dimensionalities and
fed into the following convolutional blocks, which will extract more and more
significant image features. Once the last convolutional block is completed,
the deepest and highest-level feature map which learns the most semantic-rich
patterns, is fed into a fully connected layer to perform the classification task.
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Figure 1.3: An example of Input and Output of Image Segmentation. Each
pixel of the street view figured in the Input has been labeled as either one of
the classes listed in the table, and a segmentation mask has been computed
accordingly [2]

Other than image classification, the fully connected layer can be replaced
by a different task-oriented architecture. In our case, one can address BDA
with a two-step approach. First, buildings have to be detected and segmented
from the background. Secondly, they have to be classified based on the severity
of the damage. This workflow can be translated into a building detection task
followed by a damage classification task, and they can be both addressed with
an image segmentation algorithm, whose goal is to assign each pixel of the
image a label that belongs to a specific class and output a pixel-wise mask of
the image. An example of image segmentation can be seen in Figure 1.3. In
our case, we want to classify each pixel of the image as either the background,
or a building falling into one of the different damage classes.

Since the output of image segmentation is a pixel-wise mask of the input
image, after extracting features with sequences of convolution blocks, we have
to gradually return to the image’s original size and perform the segmentation
task. The ML architecture that is most suitable for image segmentation is the
convolutional autoencoder, and it consists of an encoder followed by a decoder
and one (or more) output layer(s). The encoder is responsible for feature
extraction during down-scaling, and it is equivalent to a feature extractor of a
CNN. On the other hand, the decoder takes feature maps outputted by encoder
as inputs. Then it gradually up-scale inputs features into their original sizes for
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Figure 1.4: U-Net architecture (example for 32x32 in the lowest resolution).
It represents an example of convolutional autoencoder architecture with long
skip-connection colored in grey [3]

pixel-wise classification. Therefore, the decoder’s pooling layers are replaced
with up-sampling layers, while the convolutional layers are maintained.

Figure 1.4 shows the architecture of U-Net [3], a convolutional
autoencoder originally developed for segmenting biomedical images, that the
scientific community has widely acclaimed due to its flexibility to similar
segmentation tasks, with remarkable performances, such as autonomous
driving [21] and the segmentation of satellite images [22]. What makes U-Net
innovative is that, besides the canonical autoencoder architecture, it presents
long skip-connections, linking the contracting path (encoder) to the expanding
path (decoder). Skip-connections recover low-level spatial information lost
during down-sampling and enable fine-grained details in the output.

1.2.2 Transfer Learning
A limitation of CNNs, and deep learning models in general, is that they need
a significant amount of training time and data to be trained without a priori
knowledge, which can be impractical to obtain for BDA. Transfer Learning
is a popular technique used in deep learning to remedy this problem, making
CNNs and deep learning models more accessible for tasks with small dataset.
In Transfer Learning, we first train a base naural network on a base (large)
dataset and (supervised) task, and thenwe either repurpose the learned features
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Figure 1.5: Two approaches of Transfer Learning. With the first approach
(left), the classifier’s weights are the only ones updated. In the second one
(right), both classifier and feature extractor’s weights are updated.

or transfer them to a second target network to be trained on a target dataset with
target task. The process is meaningful if the features are general, meaning they
can be easily adapted to both base and target tasks, instead of specific to the
base task [23]. An example would be using the knowledge of a model that
does skyscraper segmentation from satellite images as a starting point to train
a general building segmentation model. In this way, we are no longer training
our neural network from scratch; instead, we are training the neural network
from a pre-existing state, reducing the amount of data needed and saving
training time. Moreover, Transfer Learning improves network generalization
abilities, as it leverages the base knowledge of models trained with massive
input data. This technique is widely used in Computer Vision [24] and Natural
Language Processing [25].

Particularly, there are two main approaches to Transfer Learning, as Figure
1.5 shows. The first approach applies when one has little data and wants to
be time-effective with great performances. It freezes the Feature Extraction
weights of a pre-trained model and uses them as your own Feature Extractor
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Figure 1.6: Residual block in ResNet-50. The skip connection bypasses some
layers (two in this example) and is added to the output of the very last bypassed
layer, which is then fed as input to the following layer. By doing so, we add a
bias to the backpropagation and avoid the vanishing of the gradient.

to train, for example, an image classifier. Doing so, one will update only the
weights of a classifier/regressor (or other architectures), thus speeding up the
training.The second approach applies when one has large data and wants to
push the network’s learning process even further to be more adaptied to the
task. It consists of training the neural network composed of the pre-trained
Feature Extractor followed by a customized task-oriented architecture (e.g.,
fully connected layer, convolutional decoder).

One of the most famous pre-trained models that is widely used in Transfer
Learning is ResNet-50 [26]. It is a 50 layers deep CNN residual network
developed by Microsoft which obtains excellent results in image classification
and image segmentation. The reason why ResNet-50 is successful relies on
its resistance against the vanishing gradient problem, which every deep model
encounters during backpropagation.

The latter is an algorithm for supervised learning of artificial neural
networks using gradient descent as optimization strategy. Given an artificial
neural network and an error function (loss function), it calculates the gradient,
which is a multi-variable derivative of the loss function with respect to all
the network parameters. The gradient describes the direction in which the
loss function increases faster, so neural network’s weights are changed in
the opposite direction to minimize the loss function. At each iteration, the
calculation of the gradient and weights’ update proceeds backwards through
the network from the output layer to the input layer. In deep neural networks,
this process could lead the gradient to drastically diminish in deep learning



Introduction | 9

models because, as it back-propagates through the network, it may have a
minimal effect when it arrives at the lower level layers, and in the worst
scenario, it could become zero.

ResNet-50 solved the vanishing gradient problem with the introduction of
skip connections between layers. Given a deep neural network composed of
X layers, a skip connection copies the output of a layer x ∈ X and adds it
to the output of a layer x + i, where i is the number of layers skipped. The
final output is then fed as input into layer x + i + 1. By doing so, we add a
bias to the outcome of layer x+ i+1, hence limiting the negative effect of the
vanishing gradient problem. Figure 1.6 shows the structure of residual blocks,
the primary component of ResNet-50, characterized by skip connections.

As we further analyse in Section 2, BDA is usually tackled by exploiting
either CNN or convolutional autoencoders with a pre-trained feature extractor
(typically ResNet-50), merging the benefit of convolutional operators with the
strength of residual blocks and Transfer Learning.

1.2.3 Attention Operators for CNN
A limit of current CNN-based models and U-Net-like neural networks is
that they implement the encoder/encoder-decoder architecture by stacking
local operators like convolutions with small kernels, which do not aggregate
information from the entire input if its spatial size is larger than the receptive
field [4]. Each output unit follows a local path through the network and only
has access to the information within its receptive field on the input image [27]
[28]. This approach could lead to poor generalizability performances as it fails
to capture long-range dependencies, which are crucial for results’ accuracy and
consistency. Attention operators represent a solution to the limitations of local
operators [27].

As shown in Figure 1.7, the main difference between attention operators
and local operators is that the former computes each output unit as a weighted
sum of all input units, while the second have a receptive field determined
by the kernel size. In attention operators, weights are obtained through
interaction between different representations of the inputs, making them non-
local-operators with a global receptive [28]. Moreover, the weights in attention
operators are not fixed after training (as convolutional weights), which makes
them input-dependent. In this way, attention operators can leverage extracted
information accordingly when transforming different input images.
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Figure 1.7: Attention operator (top figure) versus convolutional operator
(bottom figure). Note that in the attention operator weights are input-
dependent during prediction time, and that there is no limit in the receptive
field. On the other hand, convolutions have a limited receptive field determined
by a fixed weighted kernel (in this case 3 × 3). [4]

1.3 Remote Sensing Analysis and Data
Imagery

In remote sensing analysis, and ML applications, the choice of a good data
type and data source is crucial to train a model architecture efficiently. Here
we provide background information on remote sensing analysis, and explain
why it is important to understand the data sources for practical applications
and understand their limitations in terms of resolution.

Remote sensing refers to technologies for gathering visual information or
other data about a site from the air or space. The collected data represents
the input of neural networks built for remote sensing analysis. The data
types available for remote sensing analysis are categorized based on different
resolution, both spatial and temporal. The primary ones are the following:

1. UAV (Unmanned Aerial Vehicle) Data: Known also as drones, UAVs
offer a broad range of solutions for different applications and are very
versatile. They can be equipped with onboard sensors as optical and
hyperspectral camera-based, GPS, etc., with low operational costs and
very high spatial resolution, down to 1 cm. They are usually adopted
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when there is a need for high-resolution images of quite limited areas.

2. Aircraft Data: Nowadays, aircraft data is collected by human-crewed
aircraft specifically sent for data gathering. Nonetheless, they can give
very detailed images of broad areas with few hours of delay. Like UAVs,
aircraft can be equipped with onboard sensors, yet their resolution is
lower due to the need to fly at higher altitudes (from 0.1 to 6.0km on
demand)

3. Satellite Data: It is themost time-efficient airborne data source. Satellite
data can be gathered online in a few hours and exploited instantly. They
are already equipped with specific sensors, but they offer relatively
lower image resolution than other airborne sources (commercial satellite
imaging is limited to 30 cm/px resolution). They are most suitable when
immediate data imagery of huge areas is needed and data resolution is
not a priority.

As one might think, satellite data is the most suitable data type for either
building damage analysis or other image data analyses in response to a natural
disaster, since authorities need immediate post-disaster imagery of the affected
area. Moreover, modern satellites offer medium image resolution (up to 10
meters [29]) at low prices or for free. An example is Sentinel 2 that scans the
European continent with high-resolution images on a 5-days basis [29]. Costs
start rising when real-time data imagery is needed, but it is always guaranteed
a pseudo-real-time image availability of vast areas (e.g., big cities, forests,
countryside). Note optical satellite images require no clouds, while radar can
work for clouds as well.

However, to extract the damage level from each building, post-disaster
data must be supported with pre-disaster data. As Google AI researchers
discovered, when neural networks are fed with pre-disaster and post-disaster
imagery in two different branches, independently of how they are processed
through the network (e.g., by concatenation, subtraction), performances
generally increase [5]. By comparing pre-disaster images with post-disaster
images, neural networks and particularly CNNs can better describe each
pixel’s damage level depending on the difference between pre-image features
and post-image features.
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1.4 Problems and Limitations of BDA
One of the biggest challenges of BDA is to build models that are widely
applicable across many disasters and countries. That is, an ideal BDA model
should predict the damage level without decreasing performances regardless
of the building construction style (which may vary depending on where the
disaster occurred) and the natural disaster that may have caused the damage
(e.g., earthquake, tornado, tsunami). This would enable multiple disaster
response agencies to potentially reduce their workload by using a single model
with a known deployment cycle.

To build such a model, the training dataset has to include both pre-disaster
and post-disaster imagery of multiple disaster types that occurred in different
countries. Unfortunately, within the last decade, the limited availability of
heterogeneous datasets with a coherent damage scale has constrained the
research to non-heterogeneous datasets with fixed resolutions, locations, and
disaster types [30][31][32]. Consequently, even though many ML models
achieve good performances, they are only specific to locations and disasters,
and achieve lower results when transferred to new environments [20]. In 2019,
the the Defence Innovation Unit (DIU) of the USA, to assess such a problem,
proposed the xView2 Challenge [33] and published the xBD dataset [8], which
is the largest BDA dataset to date. It includes five disaster types dislocated in
17 different areas.

Another key challenge of BDA is the great unbalance between damaged
buildings, undamaged buildings, and the background within the input data.
From a sample of the xBD dataset, the dataset has found to be highly
unbalanced towards background pixels (94%), and when looking at building
pixels (5.5%), undamaged buildings pixels (4%) were numerically greater
than damaged buildings (1.5%). Generally, ML algorithms are expressly
required to be trained on balanced training set. So when someone works with
highly skewed datasets, models tend to have poor predictive performances,
specifically for the minority classes.

Therefore, to assess unbalanced datasets, one may use a few balancing
methods. A few techniques widely popular to assess unbalanced datasets are:

• Resampling the training set: Before feeding the network with the data,
one may change the dataset class distribution by either oversampling
pictures that present a more significant amount of pixels of the minority
class or undersampling images that do not present pixels of the minority
class.
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• Adopting balancing loss functions: Here, one does not modify the input
data, but on the other hand, a cost function is defined to penalize wrong
classifications of the minority class more than wrong classifications
of the majority class. Therefore, the learning process will be skewed
towards reasonable classifications of rare classes. Some well-known
loss functions that act very well with unbalanced data are the Focal Loss
[34] (initially shaped for image recognition tasks) and the Dice Loss [35]
(designed for segmentation tasks).

Although many different re-sampling techniques have been largely
assessed in recent years, very little research has been done to either assess
or compare the most promising balancing loss functions and state which
one achieve the overall higher F1-score performance on the building damage
segmentation task. Heretofore, researchers mainly focus on new ML model
architectures and compared them to the state-of-the-art, but have used the
Cross Entropy loss function or its slight variants primarily. Hence, up to now,
BDA literature lacks of a clear comparison between balancing loss functions
tested on a common neural network architecture.

1.5 Motivation and Goals
This research aims to contribute to the xView2 Challenge and improve upon
the state-of-the-art of BDA and generalizability among imbalancedmulti-class
segmentation tasks. Moreover, we align with #9 (Industry, Innovation, and
Infrastructure) and #13 (Climate Action) sustainable development goals for
the United Nations [36]. The primary goals and objectives of this study are:

• Discuss and analyze themost promising state-of-the-art architectures for
BDA and multiclass segmentation in general, emphasizing solutions for
unbalanced datasets and generalizability.

• Benchmark the best performing BDA neural network architecture on the
xBD dataset with many balancing loss function (Dice Loss, Focal Loss,
Weighted Cross-Entropy, and J regularization [37]).

• Implement state-of-the-art attention operators (Global Voxel
Transformer Operators [4]) for the BDA task on the proposed
baseline neural network architecture, and test them with the xBD
dataset.
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• Assess the generalizability and flexibility of the model in a brand new
environment within the remote sensing analysis field. Particularly, we
test the proposed neural network architecture on another multi-class
imbalanced segmentation task: Tree&Shadow segmentation. The latter
helps to reduce the risks of power outages and fires sparked by falling
trees and storms. The aim is to save lives, reduce CO2 emissions while
also radically reducing time and infrastructure inspection costs.

1.6 Research Methodology
Our research presents elements from both a quantitative and qualitative
research analysis.

Firstly, we conduct an in-depth literature review to evaluate state-of-the-art
BDA neural network architectures and choose the best performing one as the
baseline architecture for our study. Then, to collect our results, we conduct
experiments by testing various neural network architectures with the xBD
dataset, which has been retrieved from the xView2 Challenge website [33].
Results are then analyzed via a quantitative analysis approach. Particularly,
the performance of each model is described (and compared with other models)
with three main statistical metrics. The discussion of a model’s performance
is also supported by qualitative results, which are the model’s predictions of a
dataset input sample.

1.7 Structure of the thesis
The thesis is structured as follows. Chapter 2 presents a discussion and
analysis of the state-of-the-art for BDA. It discusses the evolution of BDA
neural network architectures and analyses how researchers have coped with
generalizability problems and data imbalance. Chapter 3 describes the chosen
research methodology and outlines the network architectures proposed. It
also motivates each conducted experiment and the thesis workflow. Chapter 4
presents, describes, and discusses obtained results and compares themwith the
state-of-the-art model for BDA. Finally, chapter 5 summarizes the conclusions,
limitations, and future works.
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Chapter 2

Literature Review

This chapter summarizes the previously published research for BDA and
discusses the state-of-the-art solutions addressing generalization and data
imbalance. Furthermore, the discussion highlights literature gaps that are
addressed throughout the thesis.

2.1 BDA State-of-the-Art
From the early 2000s to the early 2010s, building damage analysis has
been widely adopted by various real world applications such as building
reconstruction optimization, post-disaster safety estimation and development
of hazard maps [11][12][38][39][40]. The damage analysis was usually
conducted manually by visual estimation without Artificial Intelligence (AI),
taking days, weeks, or even months to be completed. Such limitations
prevent BDA’s technology from being directly adopted for improving quick
humanitarian assistance, making BDA only serve as an approach for prevent
humanitarian and economic disasters in a post-natural disaster environment.

Satellite imagery offers a powerful source of information to mitigate
the hazardous effect of natural disasters. It can be used to assess the
extent and areas of damages of wide geographic regions with restricted time
delay. Synthetic Aperture Radar (SAR) satellite images were among the
most commonly used resources for building damage analysis and disaster
recovery. In 2012, A. Suppasri et al. [11], exploited SAR satellite images
to determine tsunami affected-areas and assess building/vegetation recovery
using the reflection property or backscattering coefficient. The latter is a
physical value that is strongly dependent on the roughness of the ground
surface and is likely to decrease when it is detected after building collapse or
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inundation. The authors then classified building damages into four categories
by looking at the difference between the backscattering coefficients of pre-
and post-disaster images, and supported the results investigating the presence
of rooftops manually. After statistical data analysis, the research outcomed a
probabilistic damage graph with respect to the inundation depth that could be
useful to develop future hazard plans.

In the early 2010s, many other studies focused on the manual and visual
interpretation of pre-disaster and post-disaster images with approaches from
statistical analysis [12][38][39], which may be statistically effective, but time-
inefficient. Because of that, it was not possible to include accurate building
damage analyses in the evaluation of rescue plans, even though research shows
that it is extremely beneficial. It has been noticed that building damage maps
may be a proxy for victim localization [41] and could also aid in planning and
delineating more efficient recovery plans [42].

Another limitation of pre-AI BDA solutions is that researchers might
had different damage interpretations for the same buildings, as manual
interpretation is strictly subjective. Therefore, the outcome of the damage
analysis could have been a trade-off between all interpretations, which
could have been inaccurate and led to unprecise hazard plans. Researchers
from Tohoku University also argued that the disastrous effect of tornados,
earthquakes, and other disasters, cannot be statistically predicted with high
fidelity [39]. Hence, disaster recovery plans cannot rely solely on hazard plans
and statistical studies. For these reasons, with the exponential improvement of
AI and the development of CNNs and DL in the late 2010s, researchers started
to use DL algorithms to assess building damage. The benefit of CNN over
traditional approaches is that it automatically detects discriminative features
without any human supervision. It also drastically decreases the amount
of time required to process data from weeks to hours, opening prospects
to use building damage analysis to plan immediate humanitarian assistance.
Moreover, in recent years, it has been demonstrated that using deep neural
network models provides higher performances compared to other supervised
ML models like Support Vector Machines and Random Forests, especially for
high-dimentional data [43].

The firsts CNNs developed for BDA focused on estimating damages of
single disasters (mainly earthquakes and tornados), and single locations, using
various aerial imagery. M. Ji et al. [44] proposed a method to estimate the
number of collapsed buildings given post-earthquake imagery, which could be
interpreted as a classification algorithm. The authors developed a CNN based
on SqeezeNet, a CNN able to replicate ImageNet [45] performances but with
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50x fewer parameters, and achieved 0.807 F1-score on building localization
and 0.766 on building classification.

While this approach is suitable for statistical analysis, it could be inefficient
for humanitarian assistance, as they would have to compose the hazard map
manually. Consequently, most studies tackled BDA as a segmentation problem
[5] [6] [19] [30][44][46] since it would have been more accessible for rescuers.
The output of BDA is then a building damage map that classifies each pixel
as either the background or a building falling into damaged buildings or
undamaged buildings. Depending on the dataset, the damaged class can be
divided into more specific damage levels.

Beside approaching BDA as a segmentation technique, in recent years it
has been showed that the best input format for BDA models is paired pre-
disaster and post-disaster imagery, rather than post-disaster imagery only [5]
[6]. One of the studies that supports this fact is a research conducted in
2019 by Google Researchers, where they compared the performances of four
different CNN models in detecting damaged buildings using the 2010 Haiti
earthquake dataset [5]. These four different architectures (Figure 2.1) were
based on AlexNet [45] architecture but differed on how the input was fed and
preprocessed throughout the network. The neural network architectures have
been implemented as follows:

1. Concatenated Channel model (CC): Pre-disaster and post-disaster
images are concatenated into a single 6-channels image and fed into a
unique convolutional encoder.

2. Post-image Only model (PO). A 3-channels post-disaster image is used
as input and fed into a single convolutional encoder.

3. Twin-Tower Concatenate model (TTC). Pre-disaster and post-disaster
images are preprocessed using separate convolutional encoders, then
concatenated to extract features along the channel dimension.

4. Twin-Tower Subtract model (TTS). Same as TTC, except that the
extracted pre-disaster and post-disaster feature values, after the
convolutional encoders, are substracted element-wise instead of
concatenated.

Results showed that twin-tower models outperformed single tower models
using 5-cross-validation. The TTS model achieved the best performance with
a 0.8302 ± 0.0056 AUC score, while the TTC model achieved the second-best
performance with a 0.8120 ± 0.0054 AUC score.
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Figure 2.1: (a) CC model (b) PO model (c) TTC model (d) TTS model. [5]
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Furthermore, the PO single-tower model outperformed the CC one,
achieving a 0.8030 ± 0.0064 AUC score and 0.8008 ± 0.0033, respectively.
The CC model was the least performant. This suggests that a) a simple
concatenation of pre-disaster and post-disaster images is insufficient if we do
not first extract high-level features from the images, and b) twin-tower models
with paired pre-disaster and post-disaster imagery are the most suitable for
such a task.

Results in line with Google Researchers findings were measured by B.
Kalantar et al [30] in 2020, who assessed building damage after the 2016
earthquake in Kumamoto, Japan. The study compared the performances of
three CNN models: one single-tower model, where pre-disaster and post-
disaster images are treated as a single 6-channel image input, and two twin-
tower models, where pre-disaster and post-disaster images are first fed into
two different convolutional encoders and then concatenated throughout the
network . Results showed again that twin-tower models outperformed single-
tower model when paired pre-disaster and post-disaster imagery is used as
input. Twin-Tower models achieved an overall accuracy of 76.85% and a F1-
score of 0.761.

2.1.1 Generalizability in BDA models
For a damage detection model, to be practically useful, it must perform well in
future disasters and generalize well to disasters it has not been trained on. The
most straightforward technique used to enhance generalizability is to increase
the training set. In this way, we may have more buildings characteristics,
disaster types, camera angles, and weather conditions to test our model on,
increasing data variety and improving overall performances.

In 2019, Google Researchers investigated the performances of a TTC
Model (Figure 2.1 (c)) when trained and tested with different datasets [5].
Results showed that as the training set guaranteed a wide variety of disasters
and locations, performances increased when tested on a brand new dataset.
Performances maximize when the model was pre-trained with a subset of the
target disaster dataset. Table 2.1 shows the tests run by Google Researchers
using three different datasets from Haiti 2010 earthquake, Mexico City 2017
earthquake, and Indonesia 2018 earthquake.

Nonetheless, generalizability within BDA is still a challenge as there
is only a small number of past disasters for which high-resolution images
and manual damage assessment are available. The challenge becomes even
more complicated when one wants to develop a model capable of estimating
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Train Dataset Test Dataset AUC Accuracy
Haiti Mexico 0.62 0.60

Haiti + Indonesia Mexico 0.73 0.68
Haiti + Indonesia + 10% of Mexico 90% of Mexico 0.76 0.72

Haiti Indonesia 0.63 0.60
Haiti + Mexico Indonesia 0.73 0.67

Haiti + Mexico + 10% of Indonesia 90% of Indonesia 0.80 0.70

Table 2.1: Results of Google’s generalizability experiments [5]. A TTC model
has been trained and tested with different dataset combinations.

the damages of multiple natural disasters. One of the main reasons is that
there is a lack of datasets that comprehends a great variety of locations and
disaster types with a common building damage scale. The only option to date
is the xBD dataset [8], including five different disaster types (earthquakes,
tornados, floodings, volcanic eruptions, hurricanes) from four geographic
regions (America, Europe, Asia, Oceania). Since its publishment, several
papers investigated the performances of single-tower and twin-tower CNN
architectures for the xBD dataset using paired pre-disaster and post-disaster
imagery [6] [7] [19][46].

E. Weber et al. [19] built a TTC model based on a ResNet-50 backbone
with shared weights and scored an F1-score of 0.835 for building segmentation
and an F1-score of 0.679 for damage assessment on the xBD validation dataset.
On the same track, R. Gupta et al. [46] developed a CC model based on a
dilated ResNet with a subsequent Atrous Spatial Pyramid Pooling model as
an encoder to extract multi-level features. It achieved an F1-score of 0.84 for
building segmentation and an F1-score of 0.74 for damage assessment when
tested on a sample of the xBD validation dataset.

As data for BDA is very limited, to further boost generalizability within
BDA models, recent literature started to include attention operators in
CNN architectures. Attention operators are non-local-operators, opposed to
convolutional operators, that compute output units as a weighted sum of
all input units, increasing the extraction of global information and hence
generalizability performance. The most interesting BDA models that presents
attention-operators are the following.

H. Hao et al. [6] proposed Siam-U-Net-Attn model, a multi-class deep
neural network with an attention mechanism to assess BDA with paired pre-
disaster and post-disaster images. A U-Net architecture is shared by pre-
disaster and post-disaster images, which are fed individually. The U-Net
module’s outputs are two segmentation maps, one for pre-disaster building
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Figure 2.2: Siam-U-Net-Attn model. IA and IB are the pre-disaster and post-
disaster input images. IMA and IMB are the corresponding output building
segmentation masks. IMD is the output damage scale classification map.[6]

segmentation (IMA), and one for post-disaster image segmentation (IMB).
The difference between the two-stream features produced by U-Net encoder
and a new separate decoder, constitute a Siamese network used for damage
assessment. The model estimate building damage by extracting features
from the difference between pre-disaster and post-disaster feature maps. In
order to capture long-range information, an attention module is used within
the Siamese network. Results showed an F1-score of 0.73 for building
segmentation and an F1-score of 0.7 for damage estimation when trained on
60% of the xBD training set and tested on 20% of the xBD training set. The
other 20% of the xBD training set was used as validation set. The structure of
the network is showed in Figure 2.2.

Another interesting approach is the one developed by Y. Shen et al.
[7] Researchers proposed a CNN module with a Cross-Directional features
strategy based on attention operators to better explore the correlation between
pre-disaster and post-disaster images. As the previous example, images are
fed individually into a shared U-Net architecture with ResNet-50 used as
encoder. What is crucial here is that building damage is assessed with a two-
step approach. First, the pre-disaster image is fed into the U-Net architecture,
and a building segmentation map is extracted. Then weights from the first
step are used as a starting point for the second step, which uses post-disaster
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Figure 2.3: (a) U-Net-like neural network with fusion-attention modules
porposed by Y.Shen et al. [7]. In the building segmentation phase, only
pre-disaster images and the upper U-Net branch is used. In the damage
classification stage, pre-disaster and post-disaster images are fed into the
shared U-Net architecture separately. (b) Architecture of the cross-directional
fusion model.

images to compute a damage map, using the previously computed building
segmentation map as a filter in post-processing. Cross-Directional features
modules are added at each convolutional step of the shared decoder to extract
more information about the relationship between pre-disaster and post-disaster
images. Each modulemi takes as input the two decoder convolutional steps at
level i. It uses attention operators to aggregate spatial and channel information
in a crossmanner and then embeds them into the network. Figure 2.3 shows the
structure of the network. With this two-step approach, Y. Shen et al. achieved
the state-of-the-art for the xBD dataset, as they scored an F1-score of 0.864 in
building segmentation and an F1-score of 0.778 for damage estimation.

Attention operators are indeed the most recent innovation for BDA model,
as they are capable to boost generalizability and increase damage classification
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performances even when little data augmentation is applied. However,
research behind attention operators for BDA is still at the beginning, since very
few studies have investigated the performances of state-of-the-art attention
modules in BDA models. Moreover, attention modules that have been already
tested for BDA (e.g. the ones described before) are specifically tailored to the
BDA task and they have never been tested on other segmentation/classification
tasks to investigate their versatility. There is the need to test a more versatile
attention module that could be used either on another task or another neural
network architecture too without loosing quality.

An example of versatile attention modules from recent literature for
augmentedmicroscopy are Global Voxel Transformer Operators (GVTOs) [4].
GVTOs combine local and non-local operators and can capture both local
and long-range dependencies. In particular, they can be used as a flexible
building block in the U-Net architecture, thus potentially applicable in various
scenarios. GVTOs have been designed to support size-preserving, down-
sampling, and up-sampling tensor processing, covering all kinds of operators
in the U-Net framework.

With GVTOs, GVT-Nets [4] have been proposed for Augmented
Microscopy as an advanced tool to address the limitation of the convolutional
U-Net framework. Studies showed that: a) basic GVT-Nets with a single
size-preserving GVTO at the bottom level improves upon the U-Net baseline
on 13 different datasets for augmented microscopy; b) GVT-Nets obtained a
more promising Transfer Learning performance than state-of-the-art 3D-to-
2D image projection models, indicating a better generalization ability.

Hence, GVT-Nets are very promising, and an investigation of those
for BDA could enrich its literature and improve state-of-the-art U-Net
architectures.

2.1.2 Handling bias (data imbalance) in BDA models
Besides generalizability, CNN and ML performances are strictly related
to the data distribution of the training dataset. When the distribution
of examples across the known classes is biased or skewed, we face an
unbalance classification/segmentation problem. This is a challenge for ML
models, as they are built to assume equal data distribution among classes.
If not appropriately addressed, this results in models with poor predictive
performances, especially among the minority classes.

xBD and other datasets designed for BDA are examples of imbalanced
datasets, where the distribution of damage classes is highly skewed towards
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Figure 2.4: Distribution of damage class labels in the xBD dataset [8].

"no damage". Specifically, in the xBD dataset, the number of "no damage"
buildings is eights times the number of buildings of all other classes (Figure
2.4). Consequently, state-of-the-art solutions for BDA introduce many
algorithms to address data imbalance.

As of today, the leading solution adopted by the state-of-the-art is the
introduction of class-balancing weights inside the implementation of the loss
function, giving higher weights to minority classes and lower weights to
majority classes. In this way, wrong predictions of the minority classes will
be more influential than good predictions of the majority class in the loss
function, making the training process more equally distributed. We can see
this approach applied with the Weighted Cross Entropy loss functions by most
of the BDA state-of-the-art models [6] [7] [19] [44].

Another approach adopted by the state-of-the-art to address data imbalance
during preprocessing time is to either over-sample minority classes or under-
sample majority classes. That means to either increase the class distribution
of minority classes or decrease the class distribution of majority classes
intentionally before training. We can see a combination of random over-
sampling and random under-sampling techniques in [44] and a specific over-
sampling technique, named CutMix [47], used by Y. Shen et al. [7]. CutMix is
a data augmentation technique that generates a new image by combining two
image samples. In BDA and imbalanced classification/segmentation tasks in
general, it is used to copy-paste hard classes on top of images with a higher
density of background pixels.

Although BDA’s state-of-the-art has proved the beneficial effect of
weighted loss functions and data re-balancing techniques, no real comparison
is available that investigates the ones that achieves better building damage
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segmentation performances for the BDA task. Moreover, most of BDA’s state-
of-the-art uses the Weighted Cross Entropy as a loss function, even though
other loss functions have already outperformed it in image segmentation (Dice
Loss [35], J regularization [37]) and image classification tasks (Focal Loss
[34]). A comparison of those could be beneficial for the BDA literature
to understand what loss function is the best performing one for building
segmentation and damage classification and to what extent they could improve
the prediction of hard classes.

2.2 Summary
This chapter summarized the most recent innovative architecture for BDA,
addressing generalizability and techniques that improve the handling of
imbalanced datasets. Moreover, the literature review highlighted knowledge
gaps that are going to be addressed in the following chapters.

Specifically, attention operators have found to be the state-of-the-art
for improving BDA generalizability, even though the research is still at its
beginning. Current architectures lack versatility and generalizability. They
are particularly tailored either for the BDA task or to particular neural network
architectures, and have not been tested on other segmentation/classification
tasks. GVT-Nets are proposed to improve upon current attention operators
as recent studies showed their flexibility within the U-Net architecture and
improved upon augmented microscopy state-of-the-art.

Moreover, current BDA imbalanced datasets are addressed with the
Weighted Cross Entropy loss function, even though ML literature showed that
other loss functions seem more practical for imbalanced segmentation and
classification tasks. A comparison of state-of-the-art balancing loss functions
is needed to understand which is the best performing one for BDA.
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Chapter 3

Method

This chapter describes the materials used throughout our investigation, the
neural network architectures adopted for our research, and the techniques
used to evaluate the obtained results. The study is mainly divided
into four experiments, which consist of: (1) investigating the effects of
Transfer Learning for the BDA task and particularly for the xBD dataset;
(2) benchmarking state-of-the-art balancing loss functions with the most
promising state-of-the-art CNN for BDA ; (3) testing GVTOs with the best
performing loss function and compare it with state-of-the-art BDA models;
(4) testing neural network flexibility with a brand new imbalance segmentation
task. At the end of the chapter implementation details are also given.

3.1 xBD Dataset
The dataset used throughout our investigation is a data split of the xBD dataset
[8], published in 2019 by the Defence Innovation Unit (DIU) of the USA. It
was used as a benchmark for the 2019 xView2 Challenge [33]. The goal of the
challengewas to identify buildings and rate them based on how badly they have
been damaged by past natural disasters, using satellite images taken before and
after the disaster occurred.

The dataset contains 850’736 annotated buildings and spans 45’365
square kilometers of satellite imagery across 4 different geographical regions
(Americas, Europe, Asia, Oceania). It captures 19 natural disasters of
5 different types (volcanic eruptions, earthquakes, floods, wildfires, and
tornadoes). For training models, it includes 18’336 pairs of pre-disaster/post-
disaster 1024x1024 high-resolution color images (Figure 3.1). Each building
of post-disaster images is labeled based on the amount of damage they
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Figure 3.1: Examples of xBD pre-disaster and post-disaster images (with
labels) caused by a wildfire (first and last image sequences) and a flood
(second image sequence). Labels are defined as follows: color red represents
the background, color green represents undamaged buildings, and color blue
represents damaged buildings

sustained from a given natural disaster, ranging from "no damage" to
"destroyed" (Table 3.1).

As we see from Figure 2.4, the dataset is highly biased towards the "no
damage class" and the number of buildings affected by each disaster varies
from less than 200 to more than 100’000. Moreover, data is sparse since
building pixels are only 5.5% of the total dataset pixels. Undamaged buildings
represent 73% of total buildings and makeup 4% of the dataset’s total pixels.
On the other hand, damaged buildings (regardless of the type of damage)
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Disaster Level Structure Description
0 (No damage) Undisturbed. No sign of water, structural or shingle

damage, or burn mark.
1 (Minor damage) Building partially burnt, water surrounding structure,

volcanic flow nearby, roof elements missing, or visible
cracks.

2 (Major damage) Partial wall or roof collapse, encroaching volcanic
flow, or surrounded by water, mud.

3 (Destroyed) Scorched, completely collapsed, partially/completely
covered with water/mud, or otherwise no longer
present

Table 3.1: Joint Damage Scale descriptions on a four-level granularity scheme

represent 27% of total buildings and makeup 1.5% of the dataset’s total pixels.
Data imbalance and data sparcity is thus a big challenge when the dataset is
used as training set.

Structurally, the dataset is divided into four main folders. There are two
training folders (Tier1 and Tier3), one validation folder, and one testing folder.
Originally, the dataset was published with the training and testing datasets
only, as the validation dataset was adopted by the jury to evaluate the solutions
proposed by the participants of the xView2 Challenge. However, even though
the xBD test dataset was available since the beginning of the challenge, many
state-of-the-art papers tested on different data splits, leading the comparison
between state-of-the-art models to be inconsistent. The major evaluation data
splits used by the state of the art are either the xBD test dataset, or a split
(usually from 10% to 20%) of the train dataset. We can see that, if a researcher
want to conduct an exhaustive research, he would have to evaluate both on a
subset of the train dataset and on the xBD test dataset, which is redundant and
time-inefficient. For this reason, and because there is not an official benchmark
for the xBD dataset, we would like to delineate a new evaluation standard to
facilitate future research: the training set may be either one between Tier1 and
Tier3 folder, or both of them; the validation datamay be either a data split of the
training dataset or the xBD validation folder; the testing data must be covered
by the xBD testing dataset. If such a schema is followed by future literature,
researchers will find the comparison between state-of-the-art models much
more accessible and easy to understand. The new benchmark can be found on
PapersWithCode’s website [48]. Moreover, it is very important that the dataset
or data split used is clearly stated for each experiment that is going to test, as
follows.
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Experiment Train set Validation set Test set
(1) Investigating Trans-
fer Learning effects in
BDA

90% Tier1-slice 10% Tier1-slice Test-slice

(2) Loss Function Bench-
mark

90% Tier1-slice 10% Tier1-slice Test-slice

(3) GVT-Net Ablation
study

90% Tier1-slice 10% Tier1-slice Test-slice

(4) Comparison of GVT-
Net with state-of-the-art
BDA models

90% Tier1 10% Tier1 Test

Table 3.2: Data settings for each experiment

3.1.1 Data Split used for each experiment
In our case, we used different xBD dataset splits depending on the experiments
that we wanted to run. As we had limited time and computational power,
we decided to run intermediate experiments with a subset of the Tier1 folder
and a subset of the xBD test dataset. We named the subsets Tier1-slice and
Test-slice, where image pairs were sampled from each disaster equally. Tier1-
slice has 396 image pairs in total, while Test-slide has 44 of them. For the
most important experiments, we trained our models on the entire Tier1 folder
and tested them on the xBD test dataset. Table 3.2 shows data splits used
throughout each experiment. In our research, to minimize the difficulty of the
task, we grouped all damaged buildings from "minor damage" to "destroyed"
as a single "damaged" class. The splitting of the latter into the three different
damage types would be one of the future works of this research.

3.2 CNN baseline: BDNet
We decided to implement our baseline neural network based on the state-
of-the-art baseline neural network that achieves the overall best F1-score
performance in the building damage segmentation task , which is the double-
branch CNN proposed by Y. Shen [7]. We also followed their two-steps
protocol discussed in Section 2. The first step is for building segmentation
maps, where only pre-disaster images and the first branch are used. The second
step is for damage classification, where paired pre-disaster and post-disaster
images are adopted as well as both branches. We named the network BDNet.
Figure 3.2 shows an overview of the neural network architecture, and Table
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Figure 3.2: BDNet architecture. The encoder (blue convolutions) has identical
implementation for each step and each branch. The red decoder is the one used
for pre-disaster images while the grey encoder is used for post-disaster images.
The output of the 1st step is used as a mask to optimize the output of the 2nd
step. The parameter used at each convolutional level are stated in Table 3.3

.

3.3 shows the parameters of BDNet.
Each branch of BDNet is composed of an encoder and a decoder, which

contain five and four convolutional blocks respectively. Each convolutional
block is divided into a convolutional layer, a batch-normalization layer, and a
ReLU activation layer. A pooling/upsampling layer is added to either down-
sample or up-sample the feature maps for an/a encoder/decoder block. Output
layers are similar to a standard convolutional block. However, in this case they
equip a different activation function in the last layer. For step 1, the sigmoid
activation function is used to produce the building segmentation map. For step
2, the softmax activation function is used to produce the damage segmentation
map. Moreover, in step 2, before the output layer, pre-disaster features and
post-disaster features are concatenated, and then and fed as input into the
output layer.

As BDNet is a U-Net-like CNN, skip connections are added, so that
features from the encoder and decoder are integrated to enhance the learning
ability of the network. Moreover, as Figure 3.2 shows, the building
segmentation map from Step 1 is applied as a binary mask over the damage
segmentation map from Step 2 to form the final output. The building
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Step 1 Step 2
Layer Feature Size Kernel Size Layer Feature Size Layer Feature Size Kernel Size

input-pre 512x512x3 - input-pre 512x512x3 input-post 512x512x3 -
convb1 256x256x64 5x5 convb6 256x256x64 convb11 256x256x64 5x5
convb2 128x128x256 3x3 convb7 128x128x256 convb12 128x128x256 3x3
convb3 64x64x512 3x3 convb8 64x64x512 convb13 64x64x512 3x3
convb4 32x32x1024 3x3 convb9 32x32x1024 convb14 32x32x1024 3x3
convb5 16x16x2048 3x3 convb10 16x16x2048 convb15 16x16x2048 3x3
dconvb1 32x32x512 3x3 dconvb5 32x32x512 dconvb9 32x32x512 3x3
dconvb2 64x64x512 3x3 dconvb6 64x64x512 dconvb10 64x64x512 3x3
dconvb3 128x128x96 3x3 dconvb7 128x128x96 dconvb11 128x128x96 3x3
dconvb4 256x256x32 3x3 dconvb8 256x256x32 dconvb12 256x256x32 3x3
Output 512x512x1 - - - Ouput 512x512x3 -

Table 3.3: Parameters of BDNet. The 1st branch is used in the 1st step to
estimate building segmentation and it is maintained in the 2nd step. In the
2nd step both branches are used. The two branches differs only for the output
layer

segmentation threshold from Step 1 is not set to a fixed value. Instead, we
calculated the overall binary segmentation F1-score for threshold from 0.01 to
0.99. The threshold with the highest F1-score value was then chosen.

3.2.1 Investigating Transfer Learning in BDA
Researches for Transfer Learning has made one of the greatest achievements
within the last decade. As already mentioned in Section 2, most state-of-the-
art models adopt a ResNet-50 with ImageNet pre-trained weights to initialize
the BDA task. However, even though the benefits of Transfer Learning are
consolidated, to the Authors’ knowledge there is little work that investigate the
effects of Transfer Learning within the building damage segmentation task.

For this reason, we compared the performance of a vanilla BDNet and
a BDNet architecture boosted with a ResNet-50 encoder with ImageNet pre-
trained weights. In this way, we were able to understand the impact of Transfer
Learning for the BDA task. This experiment was one of the two ablation
studies conducted throughout our research. Results are shown in Section 4.1.

3.2.2 Loss Function Benchmark
We decided to benchmark BDNet with various balancing loss functions
to understand which one achieves better F1-score performance in the
building damage segmentation task. Specifically, we wanted to compare the
performance of the Weighted Cross Entropy, which is used by most of the
state-of-the-art, with other balancing loss function, as we noticed that little



Method | 33

research has been done about. Weighted Cross Entropy is most of the time
adopted without motivation and/or not specifying the reason why it is better
than other loss functions. With our experiment we want to investigate whether
the Weighted Cross Entropy loss function could be outperformed from other
balancing loss function, and if so, to what extend. Due to time constraints, we
adopted the best performing loss function for this experiment also for the next
experiments. The loss functions that have been compared are the following:

1. Weighted Cross-Entropy Loss: It is a weighted version of the cross-
entropy loss functions, where different weights are given to each
predicted class. Weights can be either 1/ft with f the frequency of
class t, or custom. This loss function has been widely used within the
BDA literature within the last two years. It can be defined as:

WCE(pt) = −αtlog(pt) (3.1)

where pt are the predicted values for class t and αt as the weighting
parameter.

2. Focal Loss: Originally developed by Facebook AI Researchers [34],
the focal loss adds a regularizer to the cross-entropy to prevent easy
negatives from overwhelming the detector during training. It happens
when there is an extreme foreground-background class imbalance (e.g.,
the one noticed between background pixels and building pixels within
the xBD dataset). More formally, we define the Focal Loss as:

FL(pt) = −(1− pt)γlog(pt) (3.2)

where pt is defined as:

pt =

{
p, if y=1
1− p, otherwise

(3.3)

with y as the ground-truth of class t and pε[0, 1] as the model’s estimated
probability. in Equation 3.2 (1−pt)γ is a modulating factor to the cross-
entropy loss with hyper-parameter γ. We can see that as pt goes to 1,
the regularizer goes to 0 and the loss for well-classified examples is
down-weighted. The focusing parameter γ adjusts the rate at which easy
examples are down-weighted. In our study, we added the regularizer
to the Weighted Cross-Entropy loss function, with αt as the inverse
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frequency of class t:

FL(pt) = −αt(1− pt)γlog(pt) (3.4)

3. Dice Loss: Initially proposed by F. Mitellari et al for cancer
segmentation [35], the Dice Loss aims to address the extreme imbalance
between the foreground and background class (as the Focal Loss does),
but specifically for segmentation tasks. The loss function is based on
the dice coefficient which measures the pixel similarity of predicted
values and ground truth for each class between foreground pixels and
background pixels. More specifically, we can define the Dice Loss as:

D =
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

(3.5)

where pi are the predicted values of class i and gi is the ground truth
of class i. In this way, we estimate the ratio between good predictions
and bad predictions specifically for each class. The final loss value is
the sum of all class ratios. Note that weights are not strictly needed.

4. J Regularization Loss: Originally developed for cell segmentation [37],
the J regularization loss function is based on the J statistic, formulated
by statistician Willian J. Youden to improve rating the performance of
diagnostic tests of diseases [49]. The J statistic gives equal importance
to correctly classified samples no matter if they belong to a class or not.
That is, it gives the same weights to the true positive ratio (sensitivity)
and the true negative ratio (specificity) for each class. Considering
a binary classification problem, we define the J regularization loss
function as:

Lj(pt, yt) = −λ log(
α + β

2
) (3.6)

with α and β as soft definitions for the true positive rate and the true
negative rate, respectively, and λ as a custom weighting coefficient. The
loss function can be converted into a multi-class surrogate by summing
all pairwise binary surrogates as follows:

Lj(pt, yt) = −
C∑
i=0

C∑
k=0

λt,k log(
αt + βt,k

2
) (3.7)

In Equation 3.7, λt,k is a pairwise class weight. αt and βt,k are
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soft definitions of the true positive rate and the true negative rate,
respectively, where i represent the positive class and k the negative one.
More specifically, αt and βt,k are defined as:

αt = −
∑

pt
yt
nt

(3.8)

βt,k = −
∑

(1− pt)
yk
nk

(3.9)

where nt and nk are the numbers of pixels of the positive class t and the
negative class k, respectively.

Each loss function has been tested singularly. Specifically, for each loss
function, we trained BDNet with a binary variation for the 1st step (building
segmentation), and with a multi-class variation for the 2nd step (damage
classification). Results are shown in section 4.2.

3.3 Global Voxel Transformer Operators
As we discussed in Section 2, attention operators are nowadays the state-of-
the-art to improve the overall performance within BDA models.

However, current BDA state-of-the-art attention operators lack versatility,
that is, their architectures prevent them from being adapted to other tasks
(or makes it costly in practice). On the other hand, GVTOs proved
great flexibility within a U-Net-like architecture, as they can replace
down-sampling convolutions, up-sampling convolutions, and size-preserving
convolutions. This makes them potentially applicable to every segmentation
and classification task where a U-Net-like architecture is exploited. GVT-Nets
are U-Net architectures that feature GVTOs instead of common convolutions.

Figure 3.3 shows the structure of a general GVT-Net architecture. We
can see that there are three types of GVTOs: Size preserving GVTOs, down-
sampling GVTOs, and up-sampling GVTOs.

3.3.1 Size Preserving GVTO
We define a tensor X ∈Rc×d×h×w as the input tensor of the size-preserving
GVTO, representing c feature maps of spatial size d×h×w. As the first step,
GVTO performs three independent 1×1×1 convolutions onX, obtaining three
different d × h × w × c tensors, namely the Query (Q), Key (K), and Value
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Figure 3.3: GVT-Net architecture. It is a U-Net-like architecture where
down-sampling convolutions are replaced with down-sampling GVTOs.
Size-preserving and up-sampling convolutions are replaced too with size-
preserving and up-sampling GVTOs. Under the network architecture we can
see a detailed visualization of each GVTO block.

(V ). Subsequently, Q, K, and V are unfolded along the channel dimension.
Therefore, we obtain three tensors namely Q′, K ′, V ′ with shape c × dhw.
These three matrices are the input of the attention operator defined as:

Y = V ·Norm(K ′TQ′) ∈ Rc×dhw, (3.10)

where the function Norm(−) normalizes each column of Q′TK ′ ∈ Rdhw×dhw

with the inverse of the tensor spatial size 1/dhw. Specifically, the
normalization function is defined as follows:

Norm(K ′TQ′) =
K ′TQ′

dhv
=

1

dhv
K ′TQ′ ∈ Rc×dhw (3.11)

Afterwards, Y is folded back to a tensor Y ′ ∈ Rc×d×h×w. The output
of the size-preserving GVTO is the sum between Q and Y ′, that is a residual
connection between the query tensorQ and the output of the attention operator
Y ′. Sizes are therefore preserved.

3.3.2 Down-sampling and Up-sampling GVTOs
The difference between down-sampling/up-sampling GVTOs and size-
preserving GVTOs are the following.

In the first step of down-sampling GVTOs, we use a 3 × 3 × 3
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convolution with stride 2 to obtain the tensor query QRd/2×h/2×w/2×2c, and
two independent 1 × 1 × 1 to generate the tensors key K ∈ Rd×h×w×2c and
value V ∈ Rd×h×w×2c. The three tensors are then unfolded along the channel
dimensions to obtain Q′ ∈ R2c×dhw/8,K ′ ∈ R2c×dhw, and V ′ ∈ R2c×dhw. The
tensors are then fed into the same attention module, which output the tensor
Y ∈ R2c×dhw, folding it back to a tensor Rd/2×h/2×w/2×2c.

As opposed to size-preserving GVTO the output tensor Y ′ has shape
d/2 × h/2 × w/2 × 2c, thus performing a down-sampling operation. Up-
sampling GVTOs are very similar to down-sampling operator. To obtain
Q,K, V transpose convolutions are applied instead of convolutions (all other
parameters are maintained). Hence, the three convolutions generate Q′ ∈
R2d×2h×2w×c/2, K ′ ∈ Rd×h×w×c/2, and V ′ ∈ Rd×h×w×c/2. The attention
module and the residual connections are kept the same. The output of a up-
sampling GVTO is Y ′ ∈ R2d×2h×2w×c/2, doubling the spatial size but halving
the channel dimension.

3.3.3 Positioning GVTOs inside BDNet
Z. Wang [4] et al. states that GVTOs can easily replace convolution operators
in order to increase generalizability. Specifically, they demonstrated that
a basic GVT-Net improves performances over a basic U-Net architecture
in label-free prediction of 3D fluorescence images from transmitted-light
microscopy. The basic GVT-Net differs from the U-Net only at the bottom
level, where a size-preserving GVTO is applied instead of a convolution. As
the first step for applying GVTOs to BDA, inspired by Z. Wang et. al, we
also want to investigate whether the replacement of the bottom convolution of
BDNet with a size-preserving GVTO is improving performances.

3.3.4 Experimental settings
The first experiment that we run with GVTOs is a comparison between a basic
BDNet architecture with the ResNet encoder, and a GVT-BDNet architecture
with ResNet encoder and a size-preserving GVTO as the bottom operator. As
Table 3.2 shows, the comparison has been done with a subset of the xBD
dataset. More specifically, we exploited a 90% of Tier1-slice as training set,
and the remaining 10% as validation set. Then we used Test-slice as the test
set. Results are shown in Section 4.3.

As the second experiment with GVTOs, we compared GVT-BDNet
performanceswith other state-of-the-art BDAmodels to have a better overview
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of the power of GVTOs compared to current BDA solutions. At this time, we
trained and tested on the entire Tier1 folder (90% for train, 10% for validation)
and the entire xBD test dataset, respectively. However, as we discuss in Section
3.1, in order to compare consistently GVT-BDNet with the state-of-the-art, we
tested it also on 10% of the Tier1 folder. Results are shown in Section 4.4.

3.3.5 Evaluation and Metrics
The experimental results of all trained methods are reported and compared
to other models by using three different metrics defined within the xView2
Challenge. By doing so, we can compare our models with state-of-the-art
models in a clear manner. The first metric is the F1-score (F1b) for building
segmentation. The second metric is the harmonic mean of class-wise damage
classification F1 (F1d), which defines the model’s overall performance for
damage assessment. The third and final metric describes the model’s overall
performance for both tasks (F1o). Specifically, metrics are defined as follows:

F1b =
2TP

2TP + FP + FN
(3.12)

F1d =
n∑n

i=1 1/F1Ci

(3.13)

F1o = 0.3× F1b + 0.7× F1d (3.14)

In Equation 3.12, TP , FP , and FN are the number of true postive, false
positive, and false negative of building segmentation results, respectively,. In
Equation 3.13, F1Ci

denotes the F1-score of each damage level for damage
assessment and has a definition similar to F1b. Ci denotes the damage level.
By using F1d as the damage assessment metric we can compare models that
have a different division of the damage classes, as we take their harmonic
mean. In Equation 3.14, the model’s overall performance is largely influenced
by its performance on the damage assessment task.

3.4 Testing GVTNet on other tasks with
highly skewed datasets

The effectiveness of neural network architectures can also be described on
how well they perform for similar tasks with different scenarios. An excellent
example of a good segmentationmodel is theU-Net architecture, which proved



Method | 39

Figure 3.4: TSNet architecture. Both steps explot the same architecture. They
differ only for the output layer. In the 1st step a 1 channel convolution and the
sigmoid activation function is used. In the 2nd step a 3 channel convolution
and a softmax activation function is used.

to outperform state-of-the-art performances for cell segmentation, cancer
segmentation, and many other segmentation problems.

In our study, we want to investigate whether GVT-BDNet does perform
well on other multi-class segmentation problems with highly skewed datasets.
More Specifically, we decided to test GVT-BDNet performances with Tree and
Shadow segmentation (T&S).

For this task we used the Spacept Dataset as the training set (90% as
proper training set, 10% as validation data) and the testing set. The dataset
contains more than 11000 thousands 1024x1024 satellite images of cities and
countrisides divided into 8 subfolders, which categorized by the country and
the time that the satellite images have been retrieved. Images are labelled at
pixel-level. There are three different classes: trees, shadows, and background.
Moreover, the Spacept dataset is highly biased too, even if at a lower scale
compared to the xBD dataset. Specifically, in the Spacept Dataset there are
95% of background pixels, 3.7% of tree pixels, and 1.3% of tree shadows
pixels. Figure 3.5 shows an example of satellite imagery from the Spacept
Dataset.

3.4.1 GVTNet architecture for T&S segmentation
The architecture of GVT-BDNet used for BDA is strictly related to change
detection, particularly the one used in the 2nd and final step. That is, the neural
network leverage pre-disaster and post-disaster image features to estimate a
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building damagemap, as wewant to predict the damage that happened between
the two temporal stages. In T&S segmentation, we do not have paired images
as input, as the task is not related to change detection. Instead, we estimate
whether each pixel is either a tree, a shadow, or the background, thus having
a more general multi-class segmentation problem.

When translating the GVT-BDNet architecture to T&S segmentation, one
could merge the two-steps training into a single multi-class segmentation
training step with a single CNN branch. Nevertheless, we wanted to maintain
the GVT-BDNet structure and training process as similar as possible to the
one used for BDA. Therefore, we decided to keep the two-steps training and
define the two steps as follow:

• Step 1: Identical to GVT-BDNet 1st step (see Table 3.3). In this case
the output is a binary T&S segmentation map, where trees and shadows
are defined as a single positive class, and the background is defined as
the negative class.

• Step 2: Similar to GVT-BDNet 2nd step. The difference is that we are
no-longer using a double-branch CNN, as we do not need a comparison
between two images. Instead, in the T&S 2nd step, we modify the same
neural network architecture used in the 1st step by replacing the output
layer with a multi-class segmentation layer. As for BDA, 2nd step initial
weights are loaded from 1st step weights.

Figure 3.4 shows the architecture used for T&S segmentation. We named
the network Tree Shadow Neural Network (TSNet).

To obtain the final output, we apply the 1st step T&S segmentation map as
a binary mask to the 2nd step multi-class segmentation mask. The threshold
value used for the 1st step T&S segmentation map is chosen from the best-
performing threshold value from 0.01 to 0.99, similarly to BDA. Furthermore,
to be time-efficient, we did not benchmark the four balancing loss functions
described previously for the T&S task. Instead, given the similarity between
the two tasks, we decided to only train TSNet with the loss function that would
have achieved the best performance within the BDA task. Similar to BDA, the
T&S experiment results are evaluated by using theF1t andF1smetrics, which
are defined as Equation 3.12.
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3.5 Implementation Details
We implemented all network architectures using Tensorflow and Keras.
Final experiments with the entire dataset have been conducted with AWS
(AmazonWeb Services) Notebooks with four Tesla A100 GPUs. Intermediate
experiments have been conducted with dataset-slices via Google Cloud and
Google Colab, with a single Tesla P100 GPU.

1024x1024 Images were cropped into four 512x512 images for training
and testing. We applied only basic data augmentations such as flip, rotation,

Figure 3.5: Visualization of the Spacept Dataset. Image pixels are labelled
into three different classes: color blue represents the background, color red
represents trees, and color green represents tree shadows
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and random brightness increase/decreased. We used different loss functions
depending on the experiment. Moreover, we used ResNet-50 with pre-trained
weights loaded from the Keras library as the backbone for all experiments
except the first one. The number of convolutional channels is equal between
each 1st step (BDNet, GVT-BDNet, TSNet, GVT-TSNet). The 2nd step of
BDNet, TSNet, and GVT-BDNet has equal convolutional parameters, while
the 2nd step of GVT-TSNet has the same parameter as the 1st step. The last
convolutional block has 1 convolutional channel during the 1st steps and 4
channels during the 2nd steps.

The optimization method is Adam [50]. In the 1st step of BDA and T&S
segmentation, the learning rate used is 0.00015 and the initial chosen number
of epochs was 120 (our assumption is based on the training parameters chosen
by Y.Shen at al. [7]). During the final training, however, the 1st step converged
after 90 epochs for BDA, and 65 epochs for T&S segmentation. On the other
hand, in the 2nd step of BDA and T&S segmentation, the learning rate used
is 0.0002 and the initial chosen number of epochs was 25. In this case, during
the final training, BDA converged after 24 epochs, and T&S segmentation
converged after 15 epochs.
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Chapter 4

Results and Analysis

This section reports all the results obtained by the experiments described in
Section 3 and divides them into four main subsections. In Subsection 4.1,
we analyze how Transfer Learning affects the performance of our baseline
neural network (BDNet) on the xBD dataset. In Subsection 4.2, we compare
different balancing loss functions to identify the most suitable one for BDNet
and the xBD dataset. In Subsection 4.3, we discuss the performance of a size-
preserving GVTO applied to the BDNet and compare the results with the state-
of-the-art BDA neural networks. In Section 4.4, we analyze the performance
of TSNet, a neural network based on the BDNet for T&S segmentation.

4.1 Experiment 1: Transfer Learning
As the first step of our analysis, we investigated the performance gain that
Transfer Learning can boost for glsBDA. Particularly, we compared two
neural network architectures using the same training set (90% of Tier1-slice)
and testing set (10% of Tier1-slice) but with different encoder initialization
strategies. The first neural network architecture, named vanilla BDNet, is a
simple BDNet architecture with model parameters described in Table 3.3, and
is initiated with random weights. The second neural network architecture,
named BDNet (with ResNet), is also a simple BDNet architecture but using
a ResNet-50 module with convolutional blocks [64, 256, 512, 1024, 2048].
Moreover, it starts with ImageNet pre-trained weights. Each neural network
has been trained in two steps, one focusing on building segmentation and the
other focusing on damage classification, as described in Section 3.

As we can see from the results obtained (Table 4.1), Transfer Learning
improves overall performance using BDNet for BDA as expected. Specifically,
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Model F1b Und. Build. Dam. Build. F1d F1o
Vanilla BDNet 0.82 0.73 0.32 0.44 0.55

BDNet (with ResNet) 0.85 0.79 0.58 0.67 0.73

Table 4.1: Quantitative results of Experiment 1. BDNet with a pre-
trained ResNet-50 module used as encoder outperformed the vanilla BDNet
architecture. With the best results in Bold

Figure 4.1: Comparison between vanilla BDNet predictions and BDNet (with
ResNet) predictions. Pre-disaster and post-disaster images are visualized
alongside their respective label and the predictions of the two models.

the vanilla BDNet module achieved an F1-score of 0.82 in building
segmentation while BDNet-ResNet achieved an F1-score of 0.85, where there
is an improvement of 0.03 for the binary segmentation task of step 1. Moving
to step 2 (damage assessment), we can see that the BDNet experienced a boost
in performance for undamaged buildings and damaged building segmentation
when using the pre-trained ResNet-50 module. Particularly, we observe an
improvement of 0.06 in terms of the F1-score metric for undamaged buildings
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segmentation, as well as an improvement of 0.26 F1-score for damaged
buildings. These results highlight the effectiveness of Transfer Learning to
improve overall performance including the generalization performance of a
multi-class segmentation model (BDA in this case), especially for hard classes
(e.g. undamaged and damaged buildings).

Such claims are also supported by qualitative results. As Figure 4.1 shows,
we can see that buildingswere better segmented from the BDNetwith a ResNet
backbone (Figure 4.1(a)) and damaged buildings were also more accurately
detected. A clear example is the case of damage caused by floods, which were
missed by the Vanilla BDNet, but have been detected by the BDNet with the
pre-trained ResNet encoder (Figure 4.1(c)-(d)). Overall, both quantitative and
qualitative results showed a clear improvement in the prediction of damaged
buildings by BDNet when Transfer Learning were applied.

4.2 Experiment 2: Loss Function Bench
mark

Results showed that Transfer Learning is needed for better generalizability.
However, to further increase the performance on a highly skewed dataset
like the xBD dataset, one needs to assess the class imbalance of the
dataset. Therefore, we decided to benchmark some of the most promising
balancing loss functions referred by recent BDA (Weighted Cross Entropy)
and Computer Vision literature in general (Dice Loss, Focal Loss, J
Regularization). The goal here is to compare Weighted Cross Entropy
performace, which is the loss function most adopted by the BDA literature.
A banchmark is also needed as the Weighted Cross Entropy loss function is
most of the time adopted without motivation and/or not specifying the reason
why it is better than other loss functions.

For this experiment, we used a slice of Tier1 and a slice of the xBD
test dataset for training and testing, respectively. The adopted network is
the BDNet architecture with a pre-trained ResNet-50 encoder. Quantitative
results are showed in Table 4.2. Each column represents the chosen model
trained with either the Weighted Cross Entropy (WCE), the Focal Loss (FL),
the Dice Loss (DL), and the J regularization technique (JL). From the results,
we can see that JL achieved the highest F1-score for building segmentation
with an F1-score of 0.87, followed by the WCE Loss (0.86 F1-score), the Dice
Loss (0.85 F1-score), and the Focal Loss (0.84 F1-score). Overall, in the 1st
step performance were quite similar, which demonstrate that the WCE loss
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Model F1b Und. Build. Dam. Build. F1d F1o
BDNet (with ResNet) + WCE 0.86 0.78 0.53 0.63 0.70
BDNet (with ResNet) + FL 0.84 0.75 0.57 0.65 0.71
BDNet (with ResNet) + DL 0.85 0.79 0.58 0.67 0.73
BDNet (with ResNet) + JL 0.87 0.78 0.6 0.68 0.74

Table 4.2: Comparison of BDNet performance when trained with different loss
functions. They are Weighted Cross-Entropy (WCE), Focal Loss (FL), Dice
Loss (DL), and J regularization (JL). Best results are visualized in Bold

function has generally equal performance to other balancing loss functions for
building segmentation. However, we cannot say the same for the 2nd step.
From the results, we can see that the best two loss functions that achieved
the highest F1-score for damage assessment were the DL (0.67 F1-score) and
the JL (0.68 F1-score), while slightly lower performance were achieved by
the FL (0.65 F1-score) and the WCE (0.63 F1-score). Here we can see that
loss functions that are not specifically designed for segmentation tasks (WCE,
FL) are outperformed by loss functions specifically tailored to the tasks (JL,
DL). Overall, when performance of both steps were taken into account, JL was
the best loss function with an overall F1-score of 0.74, followed by DL (0.73
overall F1-score), FL (0.71 overall F1-score), andWCE (0.7 overall F1-score).

As we expected, loss functions built for imbalance segmentation tasks
(as mentioned in Section 3), outperformed the WCE loss function in BDA.
Therefore, we can state that both DL and JL should be favored to adoption
of the BDNet network when one is dealing with such a task. Due to time
constraints, we were not able to test the next experiments with both JL and DL,
thus we tested on DL only. However, we mention that the next experiments
should be tested on JL as future works, as they achieved the best overall
performance when tested on a slice of the xBD dataset.

4.3 Experiment 3: GVTOs
To reach the state-of-the-art performance, we added GVTOs to the BDNet
architecture. Particularly, we replaced the topmost convolutional layer of the
encoder (2048 feature channel dimension) with a size-preserving GVTO, to
boost generalization and therefore the segmentation of hard classes. From
literature review, we already know that GVTOs and a singular size-preserving
GVTO in particular, have already been tested for augmented microscopy tasks
and outperformed the state-of-the-art U-Net architecture [4].
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Model F1b Und. Build. Dam. Build. F1d F1o
BDNet (with ResNet) 0.85 0.79 0.58 0.67 0.73

GVT-BDNet (with ResNet) 0.86 0.81 0.69 0.75 0.78

Table 4.3: Results obtained from the comparison between GVT-BDNet and
BDNet. We can see that the size-preserving GVTO located at the bottom of
the encoder improves the overall performance of GVT-BDNet

Therefore, as the first step, we compared the proposed network
architecture, named GVT-BDNet with the BDNet architecture adopted from
the previous experiments. As we mentioned in the previous subsection, we
used the Dice Loss as the primary loss function. Particularly, we used a
Binary Dice Loss function for step 1, as building segmentation is a binary
segmentation task, and aMulti-Class Dice Loss function for step 2, as building
damage segmentation is amulti-class segmentation task. Moreover, we trained
on Tier1-slice (90% for training, 10% for validation), and tested on Test-slice.

Results showed (Table 4.3) that GVT-BDNet achieved an F1-score of 0.86
in building segmentation and an F1-score of 0.78 in damage assessment, while
BDNet achieved lower results in both tasks (0.85 of F1-score in building
segmentation and 0.69 in damage assessment). We notice there is significant
improvement in damaged building segmentation. The F1-score increased from
a value of 0.58 to a value of 0.69, improving by a factor of 0.11. Overall,
the GVT-BDNet architecture outperformed the basic BDNet architecture by a
factor of 0.05, achieving an overall F1-score F1o of 0.78.

Figure 4.2 and Figure 4.3 show the qualitative results of the comparison
between GVT-BDNet and BDNet. Particularly, from Figure 4.2 we can see
that GVT-BDNet has better segmentation of undamaged buildings with more
solid border. Moreover, from Figure 4.3 we can see that GVT-BDNet improves
also the segmentation for both undamaged and damaged buildings.

Overall, both quantitative and qualitative results of GVTO-based models
yield higher performance on the classification of hard classes as well as an
improvement in building segmentation.

This experiment showed the power of a single size-preserving GVTO,
which has consistently improved the performance of a basic U-Net-like state-
of-the-art neural network architecture for BDA. We hypothesized that it is
due to the ability of GVTOs to aggregate global information, as opposed to
local operators like convolutions. With the shared size-preserving GVTO
at the bottom of the ResNet-50 module, more information can be exploited
to improve features representation of pre-disaster and post-disaster images,
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Figure 4.2: Comparison between BDNet and GVT-BDNet predictions. In these
examples we can clearly see an improvement in building segmentation for the
GVT-BDNet model.

Figure 4.3: Comparison between BDNet and GVT-BDNet predictions. In these
examples we can clearly see an improvement in damage assessment for the
GVT-BDNet model, even with high-contrast images (examples (a)-(b))
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Figure 4.4: Visualization of BDNet and GVT-BDNet prediction and relative
attention map given a paired input images.

thus improving the damage detection. We can see that this is particularly
true as xBD damage labels value the damage score not only by the damages
on the building itself but also at its surrounding (water surrounding or near
the house, burned objects surrounding the house, encroaching volcanic flow
in the nearby). We hypothesized that convolutional operations might have
difficulties detecting those types of damage, as a fixed receptive field size
could prevent them from spotting long-range dependencies. That limit might
be overcame with attention operators, as they allow a global receptive field and
thus facilitate the learning of long-distance damage features.

To support our hypothesis, we used attention maps. They are heatmaps
representing the relative importance of layer activations with respect to the
target task (in this case, BDA). When the neural network outputs a prediction,
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one can visualize the attention map of the last convolution to see which part
of the image has contributed more to the output. Specifically, the brightest the
color, the most that part of the image has contributed to the prediction.

Figure 4.4 shows predictions and relative attention maps of BDNet and
GVT-BDNet given a pair of input images. Pre-disaster and post-disaster
images describe the damage suffered by buildings after a hurricane that caused
extensive flooding (water surrounding buildings).

By looking at predictions and relative attention maps, we can see that
BDNet struggled to capture damages in both examples. BDNet’s attention
maps are overall less bright in the surrounding of a building, meaning that
little information has been used to retrieve that particular prediction. On the
other hand, GVT-BDNet achieved higher damage segmentation performance.
GVT-BDNet’s attention maps are brighter than the BDNet ones within the
surrounding of a building, meaning that more information has been used to
retrieve the prediction. Overall, this analysis validates our initial hypothesis.
BDNet’s architecture seems to be less sensitive than the GVT-BDNet’s one to
the surroundings of buildings and therefore cannot precisely predict damages
caused by floodings. Nevertheless, we encourage future research to build upon
our results and contribute to the analysis.

4.3.1 Comparison with the state-of-the-art
To evaluate the final performance of our model, we compared GVT-BDNet
with the state-of-the-art BDAmodels. As discussed in Section 3.1, we divided
the comparison into two tables due to different data splits used in the evaluation
phase by the BDA literature.

The first comparison is between state-of-the-art models that trained on
90% of the Tier1 folder and tested on 10% of the Tier1 folder. We trained
from scratch and tested our model with this split to conduct the comparison.
Table 4.4 shows the performance of BDNet and GVT-BDNet along with other
state-of-the-art models. Results showed that our baseline neural network
(BDNet) achieved and set a new state-of-the-art overall performance for
building segmentation, with an F1-score F1b of 0.87. Similarly, GVT-BDNet
improved and set a new state-of-the-art for damage assessment, with an F1-
score F1d of 0.78. The overall performance F1o also improved with an F1-
score of 0.8. Note that we did only use basic data augmentations with no
advanced data re-sampling techniques, which are commonly adopted by most
of the state-of-the-art models.

The second comparison comprehends state-of-the-art models trained on
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Model F1b F1d F1o
Siam-U-Net (concatenation) [6] 0.73 0.69 0.70
Siam-U-Net (difference) [6] 0.73 0.70 0.70

RescueNet [46] 0.84 0.74 0.77
BDNet (with ResNet) [Ours] 0.87 0.73 0.77

GVT-BDNet (with ResNet) [Ours] 0.86 0.78 0.8

Table 4.4: First comparison with state-of-the art BDA models. In this case
all models have been trained on 90% of the Tier1 folder and tested on 10%
of the Tier1 folder. BDNet and GVT-BDNet improved over the state-of-the-art
for both building segmentation and damage assessment.

Model F1b F1d F1o
Weber E. et al [19] 0.84 0.70 0.74
Shen Y. et al. [7] 0.86 0.78 0.80

GVT-BDNet (with ResNet) [Ours] 0.86 0.76 0.79

Table 4.5: Second comparison with state-of-the art BDA models. In this case
all models have been trained on the entire Tier1 folder and tested on the
xBD holdout dataset. GVT-BDNet reached state-of-the-art performances for
building segmentation and parallel results for damage assessment.

the entire Tier1 folder and tested on the xBD test dataset. At this time, we
trained from scratch and tested our neural network according to this split.
Table 4.5 shows the performance of GVT-BDNet along with the other state-
of-the-art models. Unlike the previous comparisons, GVT-BDNet did not
improved, but reached, state-of-the-art performances. Our proposal neural
network achieved an F1-score of 0.86 (in line with Shen Y. et al. model [7])
for building segmentation (F1b), and parallel results for damage assessment
(F1d) and overall performance (F1o).

Let us now analyse these comparison results deeper. Unlike other
state-of-the-art BDA models, GVT-BDNet tackles class imbalance with
a balancing loss function specifically designed for image segmentation
without using strong data augmentation. Specifically, we adopted the Dice
Loss as a loss function, which improved the overall F1-score performance
of building damage segmentation upon the Weighted Cross-Entropy loss
function. Moreover, the size-preserving GVTO demonstrated to be helpful
for the segmentation of hard classes, and improved the model’s ability to
distinguish between undamaged buildings and damaged ones. Moreover, it
even improved the performance that surpass the state-of-the-art, proving that
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attention modules are a great solution to help classifiers at learning more
complex and global information, and thus a solution for class imbalance. We
also stress that, as the first step, we decided to only test the effectiveness of
substituting the bottom convolutional layer of the encoder with a single size-
preserving GVTO. Considering the state-of-the-art results already gotten by
GVT-BDNet in certain scenarios, we believe more evaluations with different
GVTO variants can be very interesting and promising, as down-sampling
GVTO and up-sampling GVTO are yet to be investigated. As a follow-up
to our analysis, one could carry on the investigation of GVTOs, and examine
whether down-samplingGVTOs and up-samplingGVTOs could improve even
more BDA performance. Another interesting and simple follow-up is to apply
strong data augmentations to GVT-BDNet, which we avoided due to time
constraints, but could be the key to achieve higher performance on hard classes.

4.4 Experiment 4: Generalizability
evaluation on the T&S segmentation
task

To better evaluate the flexibility of BDNet and GVT-BDNet, we decided to test
the previously mentioned neural network architectures on a brand new task:
T&S. The goal here is to understand if BDNet and the two-step training, could
be translated to other imbalanced multi-class segmentation tasks while keep
good results. However, since the T&S task is logically different from the BDA
task, we implemented a variation of BDNet, named TSNet (Figure 3.4), and
re-defined the two-step protocol (as discussed in Section 3.4.1). The main
difference between TSNet and BDNet architectures is that the latter present a
single-branch CNN for building segmentation (1st step) and a double-branch
CNN with paired input images for building damage segmentation (2nd step);
on the other hand, TSNet presents a single-branch with single input images for
both steps (the description of TSNet steps can be found is section 3.4.1).

Table 4.6 shows the performance of TSNet and GVT-TSNet trained and
tested on the Spacept dataset. Similar to GVT-BDNet, GVT-TSNet is a TSNet
variant, which uses a size-preserving GVTO at the bottom of the pretrained
ResNet-50 encoder. Therefore, the comparison shares the same spirits with
the case of TSNet and GVT-BDNet for T&S segmentation. Results show that
TSNet achieves an F1-score of 0.85 for tree segmentation (F1t) and an F1-
score of 0.73 for shadow segmentation (F1s), with an overall F1-score of 0.79
(F1o). On the other hand, GVT-TSNet achieves equal performance to TSNet,
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Model F1t F1s F1o
TSNet 0.85 0.73 0.79

GVT-TSNet 0.84 0.73 0.785

Table 4.6: performance of TSNet andGVT-TSNet with the Spacept data. In this
case, 90% of the dataset has been used as train set, and 10% of the dataset
has been used as test set. We can see that TSNet and GVT-TSNet have overall
similar performance

Figure 4.5: Visualization of TSNet prediction for T&S segmentation. In this
case, trees are colored in red, shadows in green, and the background in blue.
We can see that overall predictions have high segmentation performance.

with slightly lower results in tree segmentation and, consequently, in overall
performance.

It is interesting to see that, unlike what one would have expected, the
size-preserving GVTO is not improving the performance, but seems to have
zero impact. This fact suggests that GVTOs, and attention operators in
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general, might not be effective when no additional global view is needed to
increase the performance and thus, their performance could be strictly related
to the different tasks. Apart from that, the neural network architectures, and
TSNet particularly, achieve good overall performance, which validates our
initial assumption. Figure 4.5 shows the qualitative results of TSNet for
T&S segmentation. We can see that, generally, the model achieves good
performance on tree segmentation and shadow segmentation. We decided
not to show the predictions of GVT-BDNet since they are very similar to the
ones of TSNet and GVT-TSNet, and meaningful differences between the two
cannot be extracted. Nevertheless, this is a validation of the flexibility and
generalization performance of BDNet architecture.
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Chapter 5

Conclusions and Future Works

This chapter presents a final discussion and the conclusions of our research.
Moreover, we discuss limitations and future works that could be investigated
as a follow-up to our research.

5.1 Conclusions
In our research, we proposed a flexible attention-operator, namedGlobal Voxel
Transformer Operator (GVTO), to improve performance and generalizability
within the scope of ML-based BDA. GVTOs have been initially proposed
for Augmented Microscopy, where they demonstrated their superiority over
the U-Net architecture on several publicly available datasets. These attention
operators replace convolutional up-sampling, down-sampling, and size-
preserving operators, improving the extraction of global information and long-
range dependencies. Moreover, unlike the other state-of-the-art attention
operators for BDA, they are flexible, as they can be applied to any CNN
architecture without being tied to a specific task or neural network architecture.

As the starting point of the investigation of GVTOs for BDA, we proposed
and tested the BDNet, a double-branch U-Net with the bottom encoder
convolution replaced by a size-preserving GVTO. We named the resultant
model as GVT-BDNet. Results showed that GVT-BDNet achieves state-of-
the-art performances on the xBD dataset, which is the largest and most diverse
publicly available dataset for BDA. Specifically, GVT-BDNet improved hard-
classes segmentation (damaged buildings) and increased generalizability.

To test the effectiveness of BDNet and GVT-BDNet towards
generalizability, we implemented two of their variants, TSNet and GVT-
TSNet, for Tree & Shadow segmentation. At this time, results showed that
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the baseline TSNet and the GVTO variant, GVT-TSNet, achieves comparable
results, which made us re-consider the power of GVTO and attention
operators in general. From our perspective, attention operators and GVTO are
a great opportunity to improve deep neural network performances in terms
of generalizability and hard-classes accuracy. However, easy tasks as Tree &
Shadow segmentation might not be suitable for such operators. In those cases,
the aggregate global information collected by GVTOs and attention operators
could be inefficient, and in some cases might be even counterproductive.
However, both neural networks (TSNet and GVT-TSNet) still achieved high
performances for the previously mentioned task, demonstrating the power of
our baseline CNN.

Throughout our research, we also performed minor experiments, which
are useful for future explorations for BDA. Most importantly, due to the
class-imbalance nature of the xBD dataset, we benchmarked the most
promising balancing loss function specifically for BDNet, our CNN baseline.
We discovered that when loss functions specifically designed for image
segmentation tasks are adopted (J regularization technique, Dice Loss),
performances usually increase. Specifically, these loss functions outperformed
the Weighted Cross Entropy, which is nowadays widely adopted by the BDA
literature.

Moreover, we proposed a new guideline for the xBD benchmark, as
we found the comparisons between state-of-the-art models are sometimes
confusing and not straightforward. That means different evaluation metrics
and datasets were used, making the comparison difficult to build. With our
suggestions, we want to define a new protocol, which is going to facilitate and
make the comparisonsmore accessible, accelerating future BDAdevelopment.
We encourage the use of this proposed benchmark in future academic works.
The new benchmark is described in detail in Section 3.1 and is now available
at PapersWithCode’s website [48].

5.2 Limitations
Some of our experiments were limited by time constraints and available
computational resources. Specifically, for the first three experiments, we
decided to train with a representative subset of the dataset used for the fourth
experiment, as increased GPU power was not available, and because we
wanted to keep the time costs for each training under 24h. On the other hand,
for the last two and most important experiments, we trained with multi-GPU
machines, utilizing the entire dataset. Each training was still under 24h.
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Nevertheless, even if during the first experiments we trained with a
representative subset of the data, we believe that results are reliable. Results
from GVT-BDNet, trained with both Tier1-slice (Experiment 3) and the
entire Tier1 folder (Experiment 4), did not present significant changes, thus
increasing the statistical reliability of the first three experiments.

5.3 Future works
Some future works that could be built upon our research are:

• Divide damage classes into three more sub-classes: The xBD dataset
defines three different damage classes to describe the type of damage
suffered from a building. Those areminor damages, major damages, and
destroyed. As a first step, we decided to relabel those three classes as
a single class, but future works could investigate whether performances
change when the damage class is divided into minor damages, major
damages, and destroyed (and if so, to what extend).

• Apply advanced data augmentation to BDNet and GVT-BDNet: In
our research, we decided not to use any advanced data augmentation.
However, as we see from BDA literature, a benchmark with a set of
more diversed augmentation techniques could be crucial to improve
the performances of BDNet/GVT-BDNet, and the segmentation of hard
classes even more. At the same time, it can also investigate the
effectiveness of the state-of-the-art data augmentation techniques for
BDA.

• Feature Subtraction VS Feature Concatenation: As we mentioned in
the literature review, Google researchers discovered that double branch
CNNmodels where pre-disaster and post-disaster features are subtracted
before the convolutional encoder achieves overall better results than
the ones that concatenate them [5]. It could be intuitive to test
performances of BDNet and GVT-Net with a element-wise subtraction
operation before the convolutional decoder instead of the currently
adopted concatenation.
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